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SUMMARY

Five major human toxic syndromes caused by the consumption of shellfish contaminated by

algal toxins are presented. The increased risks to humans of shellfish toxicity from the prevalence

of harmful algal blooms (HABs) may be a consequence of large-scale ecological changes from

anthropogenic activities, especially increased eutrophication, marine transport and aquaculture,

and global climate change. Improvements in toxin detection methods and increased toxin

surveillance programmes are positive developments in limiting human exposure to shellfish

toxins.
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INTRODUCTION

Shellfish are a rich source of protein, essential min-

erals and vitamins A and D and they feed mainly on

marine microalgae. The importance of algae in the

food chain arises from the fact that they are the only

organisms that can readily make long-chain poly-

unsaturated fatty acids (PUFAs) and the potential

beneficial role of shellfish and finfish in the human diet

has been attributed to the presence of oils that are rich

in PUFAs [1]. Bivalve molluscs filter large volumes of

water when grazing on microalgae, and can concen-

trate both bacterial pathogens and phycotoxins [2].

A range of human illnesses associated with shellfish

consumption have been identified as being due to

toxins that are produced by marine microalgae. When

algae populations increase rapidly to form dense

concentrations of cells they may form visible blooms,

the so-called ‘red tides ’ (Fig. 1), but blooms are not

always visible as they may not be coloured and they

can proliferate well below the surface. The term

‘harmful algal blooms’ (HABs) is preferred and these

events can have negative environmental impacts in-

cluding oxygen depletion of the water column and

damage to the gills of fish. Moreover, toxin-producing

algae can cause mass mortalities of fish, birds and

marine mammals and human illness via consumption

of seafood. It is estimated that only 60–80 species of

about 4000 known phytoplankton are potentially

toxin-producing and capable of producing HABs [3].

Maximum toxin levels permitted in shellfish are con-

trolled by national and international regulations and
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new analytical methods have been developed for the

determination of toxins in shellfish, especially liquid

chromatography–mass spectrometry (LC–MS). These

methods have recently been reviewed and will not be

discussed in detail [4]. The European Food Standards

Agency has recently published a scientific opinion on

marine biotoxins with proposals to lower some toxin

limits and other measures that will hasten the re-

placement of mouse bioassay (MBA) methods that

have traditionally been used to monitor toxin levels in

shellfish for human consumption [5]. Unfortunately,

the lack of clinical testing methods has led to a large

underestimation of the incidence of human poison-

ings due to algal toxins, especially since many of the

symptoms are similar to viral and bacterial infections.

In addition, only acute intoxications due to algal

toxins are recognized and there is very little knowl-

edge of the human impacts due to chronic exposure

to these toxins. The high potency and target specificity

that many of these marine toxins possess has led to

their exploitation as research tools [6].

The main vectors of algal toxins to humans are

filter-feeding bivalve molluscs and herbivorous finfish

that ingest toxic algae (Fig. 2). The bivalve molluscs

that are mainly affected with algal toxins include

mussels, clams, scallops and oysters. Although crus-

taceans can also be contaminated with toxins, the ex-

tent of toxicity is generally low and the incidences of

human intoxications due to crustacean consumption

are rare. Other significant environmental impacts of

HABs include major fish kills and large mortalities

to birds and marine mammals [7, 8]. One of the most

dramatic events involving sea mammals was the ex-

tensive mass mortalities to sea lions in California due

to domoic acid (DA) intoxication where the main

vector was anchovy [9]. Figure 2 summarizes the

interrelationships and potential vectors for toxins

arising from HABs but the toxic impact to humans is

predominantly from shellfish consumption. Bivalve

shellfish graze on algae and concentrate toxins, if

present, very effectively.

Historically, there have been sporadic reports of

shellfish poisoning; one fatal incident that occurred

in British Columbia in 1793 was reported by Captain

Vancouver and the earliest scientific reference to

shellfish poisoning appeared in 1851 [10]. Prohibitions

regarding the consumption of shellfish are found in

several cultures and, together with religious beliefs,

this has limited the role of shellfish as a potential

food source. Such prohibitions are found in the Old

Testament :

These ye shall eat of all that are in waters: all that have fins
and scales shall ye eat : And whatsoever hath not fins and
scales ye may not eat ; it is unclean unto you. (Deuteronomy

14: 9–10; King James Version)

In this review, five major human toxic syndromes

caused mainly by the consumption of bivalve mol-

luscs contaminated by algal toxins are discussed

(Table 1), together with the identification of the in-

creased risks to humans of shellfish toxicity.

SHELLFISH TOXIC SYNDROMES

Paralytic shellfish poisoning (PSP)

Mild symptoms include a tingling sensation or

numbness around the lips which gradually spreads to

the face and neck, accompanied by a prickly sensation

in fingertips and toes. Greater intoxications induce

headache, nausea, vomiting and diarrhoea with in-

creasing muscular paralysis and pronounced respir-

atory difficulty. In the absence of artificial respiration

there is a high risk of death as a consequence of acute

PSP intoxication [7]. The onset of symptoms of PSP

in humans is dose dependent and can occur rapidly

(within 30 min) after the consumption of shellfish.

PSP toxins are collectively called saxitoxins (STXs)

and at least 21 analogues of these cyclic guanidines

are known in shellfish, with saxitoxin (Fig. 3a) being

the most common toxin. STXs exert their effect by a

direct binding on the voltage-dependent sodium chan-

nel blocking the influx of sodium and the generation

Fig. 1. A dramatic algal bloom (red tide) in the South China
Sea. This bloom, Noctiluca scintillans, was non-toxic.

(Reproduced with permission of Springer SBM NL. In:
Okaichi T, Fukuyo Y, eds. Red Tides, Berlin, Heidelberg:
Springer, 2004.)
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of action potentials in nerve and muscle cells, leading

to paralysis [11]. The primary site of action of STXs

in humans is the peripheral nervous system. The lethal

dose in humans is 1–4 mg STX, or equivalent STXs,

and since levels up to 100 mg STX equivalents/g

shellfish have been reported, consumption of only a

few contaminated shellfish have proved fatal in these

rare cases. However, hospitalization of affected in-

dividuals is critical to deal with respiratory paralysis

and STXs clear from the blood within 24 h leaving no

organ damage or long-term effects [12]. Saxitoxin has

reached notoriety by being included, along with ricin,

in the Schedule 1 list of the Chemical Weapons

Convention. Detection and control of PSP toxins in

shellfish is less problematic than the control of lipo-

philic toxins. PSP toxins are efficiently extracted from

shellfish tissues using a strong acid and a MBA has

been validated as an official method by AOAC

International [13].

Dinoflagellates that produce STXs belong to three

genera; Alexandrium, Gymnodinium and Pyrodinium

and HABs involving blooms of these dinoflagellates

occur in both Northern and Southern Hemispheres [8]

(Table 2). It has been estimated that there are 2000

human intoxications per year and PSP outbreaks

are seasonal [14, 15]. Although there is anecdotal

evidence of human intoxications associated with

shellfish for centuries, a PSP outbreak that occurred

in northern California in 1927 led to a major in-

vestigation of this phenomenon. Poisoning of 102

individuals from mussel consumption caused six

deaths [16]. PSP outbreaks have occurred on both the

eastern and western coastlines on North America,

with Alaska being particularly badly affected and

toxic events have been reported for more than 130

years [17, 18]. Large marine mammals have also been

affected by PSP and 14 humpback whales died in Cape

Cod Bay in 1987 from exposure to STXs where

mackerel was suspected to be the main vector [19].

Although STXs are detected in the coastal waters

and shellfish in many European countries, human in-

toxications are rare. In the 1970s, there were several

PSP intoxications involving 80–120 individuals,

caused by mussels produced in Spain, Portugal and

the UK [20–22] but implementation of good regulat-

ory control has effectively eliminated further major

outbreaks. There have been repeated PSP outbreaks

in Chile and Argentina during the past 40 years, with

21 PSP deaths reported in Chile since 1991 [23], and

these investigations included one of the rare identifi-

cations of toxins in the body fluids of victims [24]. In

the Philippines, there have been an estimated 2000

cases of PSP between 1983 and 1998, with 115 deaths

[25]. Blooms of Pyrodinium spp. were the main cause

of these intoxications and these blooms have spread

throughout the tropical Pacific region. Climate

change has been implicated with an apparent corre-

lation between these HABs and the occurrence of El

Niño Southern Oscillation events [26]. PSP events in

geographically remote locations cause higher death

Human

Toxic phytoplankton & bacteria
Finfish

Marine mammals

Bivalves

Crustaceans

Fig. 2. The toxin cycle: diagram illustrating the interrelationships between harmful algae and shellfish, finfish, birds and

mammals.
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rates due to the lack of hospital facilities with respir-

atory support equipment.

Diarrhoetic shellfish poisoning (DSP)

DSP is a gastrointestinal illness and the main symp-

toms are diarrhoea followed by nausea, vomiting and

abdominal cramps. DSP can occur within 30 min to a

few hours after ingestion of contaminated shellfish

and complete recovery occurs within 3 days. Since

clinical tests are rarely used for DSP toxins, this con-

dition is often confused with bacterial enterotoxin

poisoning. DSP is caused by the ingestion of con-

taminated filter-feeding bivalve molluscs, especially

mussels and scallops, where the lipophilic toxins are

accumulated mainly in the digestive glands (hepato-

pancreas) [27].

DSP toxins were originally divided into three

different structural classes : (a) okadaic acid (OA)

(Fig. 3b) and its analogues, dinophysistoxins (DTXs),

(b) pectenotoxins (PTXs) and (c) yessotoxins (YTXs)

[28]. However, YTXs have now been excluded from

the DSP classification because they are not orally

toxic and do not induce diarrhoea [29, 30]. PTXs

Table 1. Confirmed outbreaks of human poisonings due to shellfish toxins

Toxic syndrome Location of outbreak (year) Shellfish species
Number of
poisonings Ref.

PSP USA – California (1927–1936) Mussels >100 (6 deaths) [16]

USA – Alaska (1973–1992) 117 [14]
USA (1998–2002) 43 [123]
Canada (1880–1970) 187 [17]

Spain Mussels 120 [20]
UK (1968) Mussels 78 [22]
Norway (1901–1992) 32 (2 deaths) [124]
Portugal (1994) 9 [21, 23]

Chile (1991–2002) Mussels, oysters 21 deaths [24, 26]
Philippines (1988–1998) 877 (44 deaths) [25]

DSP Japan (1976–1984) Mussels, scallops >1000 [39, 40]
France (1980–1987) Mussels 7600 [41]

Denmark (1990–2002) Mussels 800–900 [43, 47]
Norway (1984–1985) Mussels >400 [125]
Spain (1978–1981) Mussels >5000 [43]

Portugal (2002) Mussels 58 [126]
UK (1997) Mussels 49 [45]
Ireland (1984–1994) Mussels ? [46]

Canada (1990) Clams, mussels 16 [127]
Chile (1970–1991) Mussels, cholgas >100 [128]
Argentina (2000) Mussels 40 [129]
New Zealand 13 [59]

NSP USA – North Carolina (1987) Oysters 48 [60, 130, 131]

USA – Florida (1996–2006) Whelks, clams 23 [56, 61]
New Zealand (1993) Green mussels,

cockles, oysters
186 [58, 132]

ASP Canada (1987) Mussels 107 (3 deaths) [66, 67]

USA – Washington State (1991) Razor clams 24 [73, 77]

AZP The Netherlands (1995) Mussels 8 [85, 133]
Ireland – Arranmore Island (1997) Mussels 20–24 [86]
Italy (1998) Mussels 10 [89]

France (1998) Mussels 20–30 [89, 94]
UK (2000) Mussels 16 [93]
France (2008) Mussels 200 [134]

PSP, Paralytic shellfish poisoning; DSP, Diarrhoetic shellfish poisoning; NSP, Neurotoxic shellfish poisoning; ASP, Amnesic

shellfish poisoning; AZP, Azaspiracid poisoning.
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and YTXs are toxic to mice upon intraperitoneal in-

jection, which is the official, but primitive, DSP test-

ing procedure. However, no case of human poisoning

due to these toxins has been reported. The strange

scenario when using the official MBA is that the least

toxic substances, YTXs, elicit the highest toxic re-

sponse [7]. Not only are these lethal bioassays pro-

hibited in several countries, including Germany, The

Netherlands and Sweden, alternative methods for

toxin determination can only be implemented in the

EU when they have been validated against the MBA

which itself has never been validated [31]. A recent

pronouncement from the European Food Safety

Authority belatedly acknowledged the unacceptable

current regulatory situation and stated [5] :

The mouse bioassay (MBA) is the official reference method
for lipophilic biotoxins. The Panel on Contaminants in the
Food Chain (CONTAM Panel) noted that this bioassay has

shortcomings and is not considered an appropriate tool
for control purposes because of the high variability in re-
sults, the insufficient detection capability and the limited
specificity.

The mechanism of action of the OA group toxins is

via inhibition of serine-threonine protein phosphatase

2A (PP2A) [32], which plays important roles in many

regulatory processes in cells. OA probably causes

diarrhoea by stimulating phosphorylation of proteins

that control sodium secretion in intestinal cells [33].

Protein phosphatase assays are very sensitive and can

be readily applied for detecting OA and analogues in

shellfish but LC–MS methods are more widely used

[34, 35]. Although DSP is not fatal, this type of

poisoning deserves attention, because in addition to

the severe acute effects, the chronic effects may be

important as OA and DTX1 have been shown to

be potent tumour promoters [36, 37]. A major risk

factor for colorectal cancer from shellfish consump-

tion has been proposed due to the presence of DSP

toxins [38].

The first confirmed outbreak of DSP occurred

in Japan in the late 1970s with 164 cases of shellfish

poisoning [39]. There were 34 outbreaks of DSP in

Japan between 1976 and 1984, affecting more than

1000 people [40]. DSP outbreaks have involved large

population numbers and have affected the greatest

number of individuals compared to the other shellfish

toxic syndromes (Table 1). In Europe, DSP outbreaks

involving several thousand individuals have been re-

ported since 1978 in France [41, 42], Norway and

Denmark [43], Spain [44, 45] and mussels exported

from Ireland have caused DSP outbreaks throughout

Europe [46]. Despite this DSP monitoring, mussels

from Denmark caused DSP intoxications to more

than 1000 individuals in Belgium [47]. DSP is

now recognized as a worldwide problem and also af-

fects Canada, Chile, Argentina and New Zealand

(Table 1).

DSP toxins are produced by the dinoflagellates,

Dinophysis spp. and Prorocentrum spp. (Table 2) and

their toxin profiles can vary within a single species
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Fig. 3. Structures of the most abundant toxin responsible for each of the five shellfish toxic syndromes; (a) saxitoxin (PSP),
(b) okadaic acid (DSP), (c) brevetoxin (NSP), (d) domoic acid (ASP), (e) azaspiracid (AZP).
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[48–50]. In Europe, OA and its isomer, DTX2, are the

predominant DSP toxins and they co-occur in shell-

fish from Ireland [46], Portugal and Spain [51]. DTX1,

the methyl analogue of OA, is the predominant DSP

toxin in Japan [49, 52]. The regulatory level for these

toxins in Europe is currently 0.16 mg/g.

Neurotoxic shellfish poisoning (NSP)

NSP is a illness caused by the consumption of bivalve

molluscs contaminated with neurotoxins that are

produced by the marine dinoflagellate, Karenia brevis

(formerly known as Gymnodinium breve and

Ptychodiscus brevis) [53, 54]. Brevetoxin (Fig. 3c)

and its analogues can also affect finfish, aquatic

mammals and birds and this topic has been recently

reviewed [55, 56]. The symptoms of NSP include

gastroenteritis and neurological problems [53].

Brevetoxin-producing HABs have caused problems in

the Gulf of Mexico for many decades and have been

responsible for respiratory problems and eye irri-

tation in humans due to exposure to aerosol sprays

along Florida beaches [55]. Brevetoxins have also

been responsible for the deaths of large marine ani-

mals, including manatees and bottlenose dolphins

[57]. In New Zealand, brevetoxins have also caused

problems and new analogues have been identified

[58, 59]. The first confirmed NSP outbreak in New

Zealand occurred in 1993, affected 186 individuals,

and caused both gastrointestinal symptoms and

respiratory problems due to aerosol inhalation

(Table 1) [59].

In humans, the onset of symptoms of NSP occurs

within 0.5–3 h after consumption of shellfish and can

include gastroenteritis, chills, sweats, hypotension,

arrhythmias, numbness, peripheral tingling and, in

severe cases, broncho-constriction, paralysis, seizures

and coma. NSP symptoms can persist for a few days

[53, 60, 61].

In addition to ingestion, the second route of ex-

posure to brevetoxins is by inhalation of sea spray and

this affects individuals who are near to a beach.

K. brevis is a very fragile dinoflagellate and during

rough seas this organism readily ruptures releasing

toxins into the water. This exposure to aerosols

containing brevetoxins can cause irritation of the

eyes and nasal membranes, as well as respiratory

problems [62].

The mode of action of brevetoxins is by receptor

binding to the sodium channels which control the

generation of action potentials in nerve, muscle and

cardiac tissue, enhancing sodium entry into the cell.

This leads to the incessant activation of the cell which

causes paralysis and fatigue of these excitatory cells

[63]. A recent NSP outbreak in Florida affected 20

individuals, of which seven were hospitalized. Six in-

dividuals complained of uncontrolled muscle con-

tractions and psychotic outbursts [56].

The monitoring of shellfish for NSP has tradition-

ally involved MBAs that involve a non-specific ex-

traction process but this test can be effective for

control in situations where other lipophilic toxins are

not prevalent. The action level is 20 mouse units

(MU) per 100 g shellfish tissue which is equivalent to

Table 2. Seafood toxic syndromes, toxins and the phytoplankton source of toxins

Toxic syndrome Toxins Affected seafood Toxic algae

1. Paralytic shellfish
poisoning (PSP)

Saxitoxin (STX), neosaxitoxin (NEO),
gonyautoxin (GTX) and 18 other

analogues

Bivalve shellfish,
crustraceans

Alexandrium spp. [135],
Gymnodinium spp. [136]

2. Diarrhoetic shellfish
poisoning (DSP)

Okadaic acid (OA), dinophysistoxins
(DTXs), pectenotoxins (PTXs)

Bivalve shellfish Dinophysis spp. [49, 137],
Prorocentrum spp.

[138, 139]
3. Neurotoxic shellfish

poisoning (NSP)
Brevetoxins (PbTx) Bivalve shellfish Karenia brevis (formerly

Gymnodinium breve and
Ptychodiscus brevis)

[140, 141]
4. Amnesic shellfish

poisoning (ASP)
Domoic acid (DA) and analogues Bivalve shellfish,

finfish
Pseudonitzschia spp. [68]

5. Azaspiracid
poisoning (AZP)

Azaspiracids (AZAs) and analogues Bivalve shellfish Protoperidinium crassipes
[105], Azadinium spinosum
[106]
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0.8 mg brevetoxin (PbTx-2)/g tissues [56]. There are

a number of sensitive receptor-binding assays that

utilize the specific binding of brevetoxins to sodium

channels [64]. LC–MS is the only method for identi-

fying individual brevetoxins in seafood [55]. Overall,

it can be concluded that NSP is relatively rare [56], it

is not geographically widespread and therefore poses

the least threat to human health of the five toxic syn-

dromes discussed in this review.

Amnesic shellfish poisoning (ASP)

ASP first came to attention in Canada in 1987 when

human fatalities occurred from eating mussels

(Mytilus edulis) cultivated in Prince Edward Island

[65]. In addition to gastrointestinal disturbance, un-

usual neurological symptoms, especially memory im-

pairment, were observed. Of the 107 cases involved in

this ASP event, three individuals died within 18 days

after admission to hospital [66]. The neurological

symptoms included headache, confusion, disorien-

tation, seizures and coma within 48–72 h. However,

the permanent loss of short-term memory in some of

the survivors led this toxic syndrome to be named

ASP. Epidemiological studies revealed age-dependent

responses to ASP. Those aged <40 years were more

likely to suffer gastrointestinal problems whereas in-

dividuals aged >50 years were more likely to suffer

from memory loss [66]. DA was identified as the

causative toxin (Fig. 3d) [67] and a short time later,

marine diatoms of the Pseudonitzschia spp. were

identified as the source of this toxin [68]. DA was a

previously known marine natural product and was

originally discovered in seaweed in Japan where the

latter was used for its anthelminthic and insecticidal

properties [69]. In addition to mussels, DA can enter

the food chain through vectors such as scallops, razor

clams and crustaceans [70–72]. There was a second

report of human intoxications from consumption of

razor clams, cultivated in Washington State, USA,

but only two individuals experienced slight neuro-

logical problems [73].

Although there are many analytical methods for

the determination of DA in seafood, liquid chro-

matography with ultra-violet detection is used bymost

regulatory agencies. The permitted limit of 20 mg DA/

g shellfish tissue has been generally adopted [74]. DA

is a tricarboxylic amino acid and analysis is compli-

cated somewhat by the presence of isomers of DA,

as well as tryptophan, in naturally contaminated

samples [75]. There have been many worldwide

reports of DA contamination of seafood and mor-

talities to marine animals and birds [76]. An event that

generated worldwide publicity was when 70 sea lions

were washed up onto beaches in California. It was

evident that they were suffering from neurological

problems including seizures and 47 animals died. DA

was identified in faecal samples from these animals

and in anchovies collected nearby [9].

In 1991, an outbreak of DA poisoning was reported

in Monterey Bay, California, USA, where pelicans

and cormorants were behaving strangely, e.g. vomit-

ing, exhibiting unusual head movements, scratching,

with many deaths [77]. In this case the vector was the

northern anchovy and it is probable that the making

of the Alfred Hitchcock film The Birds was prompted

by a similar event that happened in the summer of

1961, near Santa Cruz in California. Flocks of shear-

waters began acting erratically, flying into houses and

cars, pecking people, breaking windows and vomit-

ing. These ‘strange’ events were reported in local

newspapers and these clippings were included with

Alfred Hitchcock’s studio proposal to make the film,

based on Daphne duMaurier’s novella. In subsequent

years, several similar incidents occurred along the

same coastline which have been attributed to DA

produced by blooms of Pseudonitzschia spp. [78].

Soon after the establishment of monitoring

programmes in Europe, DA was found in shellfish

from Galicia, Spain [79], Ireland [80], Portugal [81],

Scotland [82] and France [83]. In Ireland, only the

king scallop (Pecten maximus) exhibited high levels of

toxin. Although a record high level of DA (2820 mg

DA/g) was found in the digestive glands of scallops,

the adductor muscle and gonad contained levels be-

low or just over the regulatory limit of 20 mg DA/g

[71]. It would therefore be a prudent and simple food

safety measure to recommend the non-consumption

of the digestive glands of these shellfish to reduce the

risk of exposure of humans to ASP. DA has also been

found in shellfish from New Zealand, Australia and

Chile, but there have been no major toxic incidents

involving humans. Further information regarding

ASP and DA can be found in a recent review [84].

Azaspiracid shellfish poisoning (AZP)

AZP is the most recently discovered toxic syndrome

from shellfish consumption and several analogues

belonging to this new class of toxins were identified in

contaminated mussels [85–87]. The first confirmed

event was in 1995 in The Netherlands and was caused
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by the consumption of mussels (M. edulis) that were

cultivated in Killary Harbour in the west of Ireland.

At least eight individuals were affected and the

symptoms, nausea, vomiting, diarrhoea and abdomi-

nal cramps were similar to DSP. Azaspiracid (AZA1)

was isolated from these mussels and the structure was

later modified following the total synthesis of AZA1

(Fig. 3e) [88]. Several other AZP outbreaks occurred

in the following years due to the consumption of

mussels cultivated in Ireland (Table 1) [89]. Following

the development of sensitive LC–MS methods for

their determination [90–92], azaspiracids were ident-

ified in five other European countries, including the

UK, Norway [93], France, Spain [94] and Denmark

[47], as well as throughout the western coastline of

Ireland [95]. Azaspiracids have also recently been

found in North Africa [96] and Japan [97]. More than

20 analogues of AZA1 have been identified in shellfish

[86, 87, 98, 99], which complicates the regulatory

control of these toxins as most have not yet been

toxicologically evaluated.

Toxicological studies have indicated that azaspir-

acids can induce widespread organ damage in mice

and that they are probably more dangerous than

previously known classes of shellfish toxins [100, 101].

AZA1 is distinctly different from DSP toxins as its

target organs include liver, spleen, the small intestine

and it has also been shown to be carcinogenic. Using

oral administration to mice, multiple organ damage

was observed; (a) fatty change and single-cell necrosis

in liver, (b) erosion epithelial cells of small intestinal

villi and (c) lymphocyte necrosis in the thymus and

spleen. In the most severe cases, inflammation and

oedema in the lungs and stomach occurred. The

chronic study showed tumour formation in lungs and

malignant lymphomas. All mice used in these studies

developed interstitial pneumonia and had shortened

small intestinal villi, even at low doses (1 mg/kg)

[100, 101]. Cytotoxicity studies using neuroblastoma

cells showed that AZA1 disrupts cytoskeletal struc-

ture, inducing a time- and dose-dependent decrease in

F-actin pools. A link between F-actin changes and

diarrhoeic activity has been suggested and this may

explain the severe gastrointestinal disturbance in AZP

outbreaks. Azaspiracids were found to induce a sig-

nificant increase in intracellular Ca2+ concentration

in lymphocytes. Elevation of intracellular Ca2+ levels

can lead to cell death [102–104].

Azaspiracids have been identified in two dino-

flagellates, Protoperidinium crassipes [105] and a new

species, Azadinium spinosum [106]. AZA2 has also

recently been found in a sponge (Echinoclathria sp.)

in Japan, representing the first report of this class

of toxins in Asia [97]. Although confirmed reports

of AZP have only been associated with mussel

consumption, several other types of bivalve shellfish

species have been found to accumulate these toxins,

including oysters, clams and scallops [95]. The

exclusive reliance on the DSP live animal bioassays,

recommended by the EU, to monitor azaspiracids

contamination of shellfish failed to prevent human

intoxications [89]. This was a consequence of poor

sensitivity of the assay and the incorrect assumption

that azaspiracids were exclusively concentrated in the

shellfish digestive glands that were used for testing

[107]. Most regulatory agencies in Europe now com-

ply with a strict regulatory control of azaspiracids in

shellfish (<0.16 mg/g edible tissues) by frequent test-

ing of shellfish using sensitive LC–MS/MS analytical

methods, as outlined in recent reviews [4, 108].

GLOBAL INCREASE IN HABs

There has been an apparent global increase in the

occurrence of algal toxins in shellfish, with several

new toxin classes identified in recent years. However,

the reasons behind the apparent expansion in HABs

and shellfish toxicity remain unclear with a number of

factors being implicated including, climate change,

anthropogenic activities, changes in shellfish culti-

vation, eutrophication, increased global marine traf-

fic, improved toxin detection and better food control

and toxin monitoring programmes [15, 109–112].

Projected increases in ocean temperatures are pre-

dicted to change global circulation that may lead

to an increase of HABs. Moreover, the increased

concentrations of greenhouse gases are expected

to reduce pH, increase surface-water temperatures

and affect vertical mixing and upwelling [113].

Phytoplankton growth is dependent on the avail-

ability of nitrogen. Atmospheric deposition of nitro-

gen, from agricultural and urban sources, can lead

to increased algal blooms [3, 114]. Most marine HABs

are comprised of dinoflagellates. The mobility

characteristics of dinoflagellates allow them to swim

under stratified layers of the water column to access

nutrients in deeper layers. This may give dino-

flagellates a competitive edge over other phyto-

plankton that cannot swim [113]. The potential

consequences of these changes for HABs have re-

ceived relatively little attention and are not well

understood. Several studies have emphasized the
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relevance of coastal eutrophication to increased

HABs and this is especially relevant to shellfish pro-

duction and intoxication [110]. Increased coastal

aquaculture activities can lead to local nutrient en-

richment and eutrophication which not only increases

the growth of toxic algae but also acts as the main

vector for increased exposure of humans to toxins.

A remarkable example of the positive effects of re-

ducing nutrient loading was in Hong Kong harbour

where the frequency of algal blooms declined after

several years of nutrient reduction [115]. However,

many algal blooms are not due to national anthro-

pogenic activities and toxic algae can be transported

from remote oceanic regions to affect coastal regions

which have normally pristine waters. Thus, in Europe,

the major shellfish toxicity from HABs occurs along

the western Atlantic coastline, affecting Scotland,

Norway, Ireland, France, Spain and Portugal, but the

Mediterranean region which has a high nutrient

loading, has a low incidence of such problems. It is

therefore prudent to caution against a rush to judge-

ment until there has been an extensive database

of algal population flux over an extended period of

years.

The emergence of non-indigenous toxic algal

species in various geographical locations has been

linked to an increase in global marine traffic. In par-

ticular, the release of ballast waters has been shown to

be responsible for invasions of exotic species, includ-

ing algae, bacteria and zooplankton. Algal cysts

in ballast waters have been identified as the cause of

new PSP events in regions of Australia that were

previously unaffected and led to new ballast water

guidelines to limit exposure to exotic species [8, 116].

Recent evidence of an increased global expansion

of HABs includes the first reports of palytoxin and

tedrodotoxin in European waters and the discovery of

azaspiracids in Japan [97]. An outbreak of respiratory

illness in people exposed to marine aerosols occurred

in Genoa, Italy, in 2005 and a palytoxin analogue

was identified as the probable causative agent [117].

Ostreopsis spp. are widely distributed in tropical and

subtropical areas, but recently these dinoflagellates

have also started to appear in the Mediterranean

where they produce palytoxins [118, 119].

Tetrodotoxin is a well known paralytic toxin that

is found in pufferfish and causes fatalities in Japan

almost annually [120]. Once again, a toxin that is

usually found in tropical and sub-tropical waters

appeared in a trumpet shellfish (Charonia sauliae),

harvested from the Atlantic coastline of Portugal. An

individual was hospitalized and suffered general par-

alysis, including the respiratory muscles, a few min-

utes after the consumption of several grams of this

shellfish [121]. The investigation of the extent and

implications of these new toxic problems in Europe is

currently the subject of a collaborative EU project

(ATLANTOX) [122].

CONCLUSIONS

The impact on human health from the consumption

of biotoxins in shellfish has apparently increased in

recent decades. There is evidence, although not con-

clusive, that the increase in HABs is a consequence of

large-scale ecological changes from anthropogenic

activities, especially increased eutrophication, marine

transport and aquaculture. Global climate change has

also been implicated. Recent improvements in toxin

detection methods and increased toxin surveillance

programmes are positive developments in limiting

human exposure to shellfish toxins. However, there is

a requirement for the development of clinical tests to

improve the correct diagnosis of shellfish poisoning in

humans.
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