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A DECOMPOSITION ANALYSIS
OF DIFFUSION OVER A LARGE

NETWORK
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Diffusion over a network refers to the phenomenon of a change of state of a cross-
sectional unit in one period leading to a change of state of its neighbors in the
network in the next period. One may estimate or test for diffusion by estimating
a cross-sectionally aggregated correlation between neighbors over time from data.
However, the estimated diffusion can be misleading if the diffusion is confounded
by omitted covariates. This paper focuses on the measure of diffusion proposed by
He and Song (2022, Preprint, arXiv:1812.04195v4 [stat.ME]), provides a method
of decomposition analysis to measure the role of the covariates on the estimated
diffusion, and develops an asymptotic inference procedure for the decomposition
analysis in such a situation. This paper also presents results from a Monte Carlo
study on the small sample performance of the inference procedure.

1. INTRODUCTION

Diffusion of people’s or firms’ choices over a social or an industrial network
has drawn attention in economics, sociology, and marketing. Examples include
diffusion of technology or product recommendations over social or industrial
networks. (See, e.g., Leskovec, Adamic, and Huberman (2007), Conley and Udry
(2010), Banerjee et al. (2013), and de Matos, Ferreira, and Krackhardt (2014) to
name but a few.)1

Disentangling the role of covariates from the true causal effects has been a
primary concern in almost every study of causal inference. For example, the
propensity score method in program evaluations attempts to measure the effect
of a social program after “eliminating the confounding effect” of covariates. (See
Rosenbaum and Rubin (1983). See also Imbens and Wooldridge (2009) for a
literature review on program evaluations.) In such situations, the role of a covariate
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is determined by its influence on the program participation by the individual to
which the covariate belongs. However, in studies of social interactions or social
networks, what matters for causal inference is the relation between covariates
and outcomes not only for the sample unit that the covariates belong to, but also
of their neighboring units. Such a relation arises when the network is formed
based on homophily on the covariates. For example, suppose a network is formed
among students roughly based on their parents’ income, so that a student from
a high-income family is more likely to be a friend of another student from a
high-income family than from a low-income family. When one observes the
purchase of an expensive smartphone of a particular brand by students over
two periods, the correlation of purchases between friends over time does not
necessarily indicate diffusion of purchases over the network; this can merely be
due to the fact that the purchases mostly come from students from high-income
families.

Spurious diffusion caused by covariates has received attention in the literature.
For example, Aral, Muchnik, and Sundararajan (2009) attempt to distinguish
influence-based contagion and homophily-based diffusion. They find that the peer
influence is generally overestimated when homophily effect is ignored. Shalizi
and Thomas (2011) point out challenges arising from the confounding of social
contagion, homophily, and the influence of individual traits. It is not hard to
see that failing to condition on covariates that play a crucial role in network
formation through homophily and individual’s decisions would lead to bias in the
measurement of diffusion.

This paper’s goal is to develop a method for a decomposition analysis that can be
used to gauge the significance of covariates in measuring diffusion. The main idea
is analogous to the idea of using a Hausman test to check the omitted variable bias
in a linear regression model. Suppose that the parameter of interest is a coefficient
in the linear regression model, and one would like to see whether there is any
impact of omitting a subset of regressors on the estimated parameter of interest.
For this, one can compare the two estimated parameters, one with all the regressors
included and the other with a subset of regressors omitted, to see the role of the
omitted regressors.

In the same spirit, in this paper, we define relational diffusion �S as follows:2

�S = Identified Diffusion with Omitted Covariates−True Diffusion,

that is, �S represents the difference between the identified diffusion with omitted
covariates and the true diffusion.3 The relational diffusion, �S, gauges the impact
of omitting a covariate upon the measurement of diffusion. This will reveal whether
a specific covariate is a significant source of relational diffusion. However, it

2I thank Peter Phillips for suggesting this terminology. Relational diffusion captures the cross-sectional dependence
of outcomes that is either due to their diffusion caused by covariates which are related to each other causally or due
to the noncausal cross-sectional dependence of covariates which influence the outcomes.
3As will be clear later, the subscript S denotes the index set of omitted covariates, i.e., S is such that Xi,s,s ∈ S, is
omitted, where Xi,k is the kth entry of the covariate vector Xi ∈ Rd .
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is not immediately clear how to disentangle the role of covariates in this way.
Here, unlike the omitted variable bias in a linear regression model, the magnitude
of relational diffusion is related to the cross-sectional dependence structure of
covariates. (For example, students from high-income families are friends to each
other.) One idea would be to compare two conditional covariances, both between
observed outcomes and previous-period outcomes of their neighbors, where one
is conditioned on the full set of covariates and the other on the set of covariates
with the covariate of interest omitted. The main difficulty with this approach is that
inference requires knowledge of the cross-sectional dependence structure among
the covariates of different cross-sectional units, but this dependence structure is
rarely known in practice. In many applications, there is no reason to believe that
this dependence structure coincides with the network over which the diffusion
arises.

In order to overcome this difficulty, we adopt the approach of Kuersteiner and
Prucha (2013) and use conditional probabilities for inference, where we condition
on the entire cross section of covariates so that our inference is robust to the
unknown cross-sectional dependence structure of covariates. For the concreteness
of the procedure, we focus on the measure of diffusion called average diffusion
at the margin (ADM), which was recently introduced by He and Song (2022) and
shown to be identified by a spatiotemporal dependence measure. For the analysis
of relational diffusion, we decompose the spatiotemporal dependence measure
constructed with some covariates omitted into the ADM and the gap (denoted
by �S). If the omission of the covariates causes no relational diffusion, we must
have �S = 0. Thus, the role of covariates is determined by whether �S is zero
or not. This paper develops asymptotic inference on �S for each index set S
of omitted covariates, and shows that it is asymptotically valid under regularity
conditions. We also provide a multiple testing procedure that selects the covariates
such that �s �= 0 with the asymptotic control of the familywise error rate (FWER).
(See Section 9.1 of Lehmann and Romano (2005) for the definition of FWER.)
This framework of decomposition analysis is carefully designed so that all the
quantities are defined conditional on the covariates so that the unknown cross-
sectional dependence structure of covariates does not affect the asymptotic validity
of inference.

This paper provides results from a small-scale Monte Carlo simulation
study. The study investigates the finite sample performance of asymptotic
confidence intervals using networks generated according to the preferential
attachment random graph generation model of Barabási and Albert. (See
Jackson (2008, Sect. 5.2).) The results show a reasonably stable behavior of
finite sample coverage probabilities. The simulation studies also show that the
more aligned the cross-sectional dependence structure of covariates is to the
contact network over which diffusion arises, the larger the relational diffusion
becomes.

The literature of epidemiology, sociology, and economics studied diffusion of
various phenomena such as disease, information, and technology. (See Chapter 17
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of Newman (2010) for a review of the models and the literature.) Recent contri-
butions in economics that study diffusion over a network include Banerjee et al.
(2019), Akbarpour, Malladi, and Saberi (2020), Beaman et al. (2021), and Sadler
(2020). This paper’s study of diffusion as a causal parameter is closely related to the
recent literature on causal inference with network interference. See van der Laan
(2014), Aronow and Samii (2017), and Leung (2020). (We refer the readers to He
and Song (2022) for a more extensive literature review in this area.) This paper’s
causal inference framework basically follows He and Song (2022), but departs
from the paper by developing a formal way of quantifying the role of covariates in
causing the spuriousness of diffusion. This requires a substantial modification of
their procedure.

The paper is organized as follows. The next section explains the causal frame-
work for analysis of diffusion, introduces a spatiotemporal dependence measure
for each set of covariates, and provides a decomposition of the measure into a
component due to the covariates and a residual. The section then concludes by
establishing identification of diffusion and explaining the role of cross-sectional
dependence of covariates in creating relational diffusion. Section 3 focuses on
inference on diffusion decomposition. The section offers asymptotic inference
on the component that is due to the covariates and provides conditions for its
asymptotic validity. Section 4 presents and discusses results from a Monte Carlo
simulation study. Section 5 concludes. Mathematical proofs are collected in the
Appendix.

2. DIFFUSION OVER A NETWORK AND IDENTIFICATION
OF CAUSAL EFFECTS

2.1. Diffusion over a Contact Network

Let us consider a generic model of diffusion of binary actions over a large network
of people as follows. There are two states, 0 and 1, and everybody starts with
the default state of 0. For example, the diffusion may be about that of a certain
farming technology over a network of farmers, where the state of 0 represents the
nonadoption of the technology, and 1 represents its adoption. Each person’s binary
action Ai,t = 1 at time t records a switch of the state at time t from state 0 to state 1.
We assume that the switched state is irreversible in the sense that the switch of the
state can happen only once. Hence, if Ai,t = 1 at some time t ≥ 0, we have Ai,s = 0,
for all s > t. This is the case, especially when the switch of the state is defined to
be the switch of a state for the first time. The binary actions spread over a network
over time.

To formalize this process, suppose that there is a directed network called a
contact network over a set N = {1, . . . ,n} of people, where each neighborhood of a
person represents the set of people whose influence person is directly exposed to.
More specifically, we denote the contact network by Gctt = (N,Ectt) (with subscript
“ctt” mnemonic for “contact”). The edge set Ectt consists of edges ij, where the
presence of an edge ij in Ectt means that person i is exposed to the direct influence
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from j.4 We denote the in-neighborhood of person i by5

Nctt(i) = { j ∈ N : ij ∈ Ectt}, (2.1)

which represents the set of people whose influence person i is directly exposed to.
The contact network describes whose actions in one period potentially affect whose
actions in the next period. Thus, each person i’s binary action Ai,t ∈ {0,1} is
a function of (Aj,t−1)j∈Nctt(i) for a set Nctt(i) of neighbors in Gctt, and her own
state vector Ui,t ∈ Rd: for t = 1,2,3, . . . ,T ,

Ai,t =
{

ρi,t
(
(Aj,t−1)j∈Nctt(i),Ui,t

)
, if Ai,s = 0, for all s = 0,1, . . . ,t −1,

0, otherwise,
(2.2)

for some map ρi,t. Here, Ai,t = 1 represents the switch of the state of person i
(i.e., an “action” by person i) at time t. Suppose that person i has switched the
state at some time s = 0,1, . . . ,t − 1, so that Ai,s = 1. Since this switched state is
irreversible, no further switch of the state is allowed for this person after time t−1.
Hence, this person should have Ai,t = 0.

The diffusion process in (2.2) is a generalized version of a threshold model
of diffusion studied in the literature. (See Granovetter (1978). See also a recent
contribution by Acemoglu, Ozdaglar, and Yildiz (2011) for an example.) A special
case of this model is a linear threshold model where the map ρi,t is given by

ρi,t
(
(Aj,t−1)j∈Nctt(i),Ui,t

) = 1

⎧⎨
⎩

∑
j∈Nctt(i)

pijAj,t−1 ≥ Ui,t

⎫⎬
⎭, (2.3)

where pij is a weight that individual i gives to j.

2.2. The Researcher’s Observation

The researcher observes each person’s state at time t = 0, which is denoted by Yi,0,
and her state at time t = t1, which is denoted by Yi,1. These observed binary states
are related to the state-switches as follows:

Yi,0 = Ai,0, and Yi,1 =
t1∑

s=0

Ai,s. (2.4)

Recall that Yi,0 = Ai,0 ∈ {0,1}. By the irreversibility of state-switches, each person
can switch the state at most once, which implies that Yi,1 ∈ {0,1}. Hence, Yi,1 = 1
if and only if person i is in state 1 at time t1. When Yi,1 = 0, this means that the
person i has never switched the state including the initial period. The researcher

4The notion of a directed edge ij from j to i is taken from the notation in Newman (2010) where the graph is represented
by an adjacency matrix A and its (i,j)th entry Aij is 1 if and only if there is an edge from j to i.
5The in-neighborhood in a directed graph refers to a set of neighbors whose edges with the person i are from the
neighbors to the person i.
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does not observe the diffusion process in real time. The researcher observes the
states of people at two time periods t = 0 and t1 = 1.

Our setting accommodates information diffusion where Aj,0 represents the
indicator of a person j who receives information first in the network, and Ai,t, t ≥ 1,
the indicator of certain binary action (such as purchase of a good) by person i in
time t. However, we require that both Yi,0 and Yi,1 as defined in (2.4) are observed at
some time t1 for each person i. We exclude the situation where there is information
diffusion and we do not know who the initial receivers of the information are.

Let us introduce a graph that represents the causal connections between
observed actions Yi,0’s and Yi,1’s. We can trace the actions at a given time t1
back to the initial actions at time 0. To see this, first let Ncau(i) denote the set of
people such that each j ∈ Ncau(i) is connected to i along the contact network Gctt,
i.e., there exist i1,i2, . . . ,it−1,it = i such that j ∈ Nctt(i1) and

is−1 ∈ Nctt(is), for s = 2, . . . ,t1. (2.5)

The sets Ncau(i), i ∈ N, define a network, say, Gcau = (N,Ecau), where ij ∈ Ecau

if and only if j ∈ Ncau(i). The set Ncau(i) represents all the people whose initial
actions potentially have influenced person i’s decision at time t1 indirectly through
the influences of neighbors in the contact network.6 We call the graph Gcaus the
causal graph for (Y0,Y1), where Y0 = (Y0,i)i∈N and Y1 = (Y1,i)i∈N .

The researcher, however, does not observe the causal graph (or the contact
network). Instead, she observes a graph Gobs. With regard to the relation between
Gcau and Gobs, we make the following assumption:

Assumption 2.1. The observed graph Gobs contains Gcau as a subgraph.

This assumption does not require that the observed graph Gobs “approximates”
the causal graph Gcau in any sense. Neither is it required to contain the directional
information in the causal relations in Yj,0 and Yi,1. In fact, the assumption is
satisfied if Gobs contains an undirected supergraph of Gcau as a subgraph. This is
convenient, because the observed graph may not capture the direction of causality
accurately in practice. The essence of Assumption 2.1 is that it requires the
observed graph to capture the cross-sectional dependence among Yi,1’s. This
assumption is substantially weaker than the assumption for the networks, for exam-
ple, used in linear-in-means models (e.g., Manski, 1993; Bramoullé, Djebbari, and
Fortin, 2009). In these models, it is not enough to assume that the observed network

6Suppose that Actt is the adjacency matrix of the contact network Gctt such that its (i,j)th entry is given by
[Actt]ij = 1 {ij ∈ Ectt}, for each i,j ∈ N, i.e., there is an edge from j to i in Gctt if and only if the (i,j)th entry of
Actt is one. Then, for i �= j, we have j ∈ Ncau(i) if and only if

t1∑
m=1

[Am
ctt]ij > 0.

Recall that the (i,j)th entry of Am
ctt, denoted by [Am

ctt]ij here, counts the number of the walks of length m from j to i.
Hence, for i �= j, we have j ∈ Ncau(i) if and only if there is a walk of length less than or equal to m from j to i in the
contact network.
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contains the true network as a subgraph. (See de Paula, Rasul, and Souza (2020)
and Lewbel, Qu, and Tang (2021) for approaches that do not require network data
at all.)7

Let F be the σ -field generated by X and the adjacency matrices of Gctt and Gobs,
where X = (Xi)i∈N is the collection of covariate vectors, Xi ∈ Rp. Throughout the
paper, we assume that the covariates, and the graphs Gobs and Gctt are stochastic.
We also allow the graphs Gobs and Gctt to be a large connected graph, where
every pair of people is connected directly or indirectly. However, for asymptotic
inference, we require the graphs to be not too dense. We make this assumption
precise later.

2.3. Average Diffusion at the Margin

We introduce the causal parameter of interest following the potential outcome
approach in program evaluations. By recursively applying the equation in (2.2),
we can rewrite Yi,1 as a function of (Yk,0)k∈Ncau(i) and unobserved heterogeneities:

Yi,1 =
{

ρ̃i
(
(Yk,0)k∈Ncau(i),Vi

)
, if Ai,s = 0, for all s = 0,1, . . . ,t1 −1,

0, otherwise,
(2.6)

where the vector Vi,t consists of components Uj,s with j ∈ Ncau(i) ≡ Ncau(i)∪ {i}
and s ≤ t, and ρ̃i,t is determined as the compositions of maps ρj,s with j ∈ Ncau(i)
and s ≤ t.

For d ∈ {0,1}, i ∈ N, and j ∈ Ncau(i), we introduce a potential outcome Y∗
ij(d)

which is the same as Yi,1 except that Yj,0 in ρ̃i on the right-hand side of (2.6) is
replaced by d. (If j /∈ Ncau(i), then Y∗

ij(d) is simply taken to be Yi,1.) This is the
state of person i in period t1, when the initial action of person j is counterfactually
fixed to be d ∈ {0,1}. Our focus is on the ADM at t = t1:

ADM = 1

n

∑
j∈N

∑
i∈N

E
[
Y∗

ij(1)−Y∗
ij(0) | F]

. (2.7)

The ADM was introduced by He and Song (2022). It measures the expected
increase in the number of switchers when one additional randomly chosen indi-
vidual j switches her state in the initial period, whereas other people choose their
initial actions according to the randomness of the event Ai,0 = 1. The impact
of a randomly selected person j changing the initial action from 0 to 1 on the
number of the total switchers until time t1 is measured after integrating out the
conditional distribution of other people’s initial actions Ai,0, i �= j, given F . Hence,
the “average” in the ADM is twofold. The first “average” refers to the expectation
over the conditional distribution of Yk,0, k �= j, givenF , and then the second average
is over the random selection of j.

7It is possible to relax this assumption into He and Song (2022) called Dependency Causal Graphs. However, we do
not pursue this more general framework here.
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Suppose that there is no diffusion in the sense that the map ρi,t in (2.2) does not
depend on (Aj,t−1)j∈Nctt(i), that is,

Ai,t =
{

ρi,t
(
Ui,t

)
, if Ai,s = 0, for all s = 0,1, . . . ,t −1,

0, otherwise.
(2.8)

Then, Y∗
ij(1)−Y∗

ij(0) = 0, for all i ∈ N and j ∈ Ncau(i). Hence, in this case, ADM = 0.
When the conditional probability of an initial switch, P{Aj,0 = 1 | F}, is very

small, this does not necessarily make the ADM small, because the ADM compares
the expected number of switches between two counterfactual scenarios (one with
a randomly chosen j being an initial switcher and the other not), and the two
scenarios use the same conditional distribution Aj,0 given F . However, if P{Aj,0 =
1 | F} is very small, it may affect the quality of the asymptotic inference that we
introduce later.

2.4. Identification of the ADM

As mentioned before, we assume that the researcher observes the initial actions,
each person’s states by time t = t1, covariates and observed graph Gobs. That is,
the researcher observes (Yi,0,Yi,1,Gobs,X) for each i ∈ N.

For the initial actions Ai,0 and unobserved heterogeneity Ui = (Ui,1,Ui,2, . . . ,Ui,T),
we make the following assumption that describes the conditional cross-sectional
independence given F .

Assumption 2.2. (Ui,Yi,0)’s are conditionally independent across i’s given F .

The assumption requires that the cross-sectional dependence among (Ui,Yi,0)’s
comes solely from the cross-sectional dependence of Xi’s or characteristics of
networks Gctt and Gobs. For example, this condition is satisfied if, at each period,
the action Ai,t is determined by the neighbor’s actions Aj,t−1 in the previous
period, and idiosyncratic unobserved heterogeneities Ui,t that are cross-sectionally
independent once one condition on the whole covariate vector X and the graphs
Gctt and Gobs. The covariate Xi can include network characteristics of Gobs such
as average degrees of agent i or of her neighbors. It can also include an average of
the characteristics of the neighbors.

We also assume an analog of an unconfoundedness condition in program
evaluations as follows.

Assumption 2.3. For all i,j ∈ N, i �= j, (Y∗
ij(1),Y∗

ij(0),Gctt) is conditionally
independent of Yj,0 given (Gobs,X).

This condition is satisfied, for example, if the initial actions are determined
solely by (Gobs,X) and some other random events that are independent of all other
components. See He and Song (2022) for a detailed discussion on this assumption.

For the purpose of the decomposition analysis in this paper, we generalize the
notion of the above unconfoundedness condition to accommodate the situation
where one omits some covariates. First, let us introduce notation for subvectors
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of covariates. Recall that Xi ∈ Rp, for each i ∈ N, and let Xi,k be the kth entry
of Xi. Let S = {1, . . . ,p}. For each S ⊂ S, let Xi,S = (Xi,k)k∈S, Xi,−S = (Xi,k)k∈S\S,
XS = (Xi,S)i∈N , and X−S = (Xi,−S)i∈N . Let us introduce the following notion of
unconfoundedness condition.

Definition 2.1. For each S ⊂ S, we say that S-unconfoundedness holds, if, for
all i,j ∈ N, i �= j, (Y∗

ij(1),Y∗
ij(0),Gctt,XS) is conditionally independent of Yj,0 given

(Gobs,X−S).

The S-unconfoundedness condition is stronger than the unconfoundedness con-
dition in Assumption 2.3. In fact, the S-unconfoundedness satisfies a monotonicity
property: if S ⊂ S′, the S′-unconfoundedness implies the S-unconfoundedness.8

Hence, the larger the set S is, the S-unconfoundedness condition becomes stronger.
Especially, the ∅-unconfoundedness corresponds to the unconfoundedness in
Assumption 2.3 used by He and Song (2022). At the other extreme, the S-
unconfoundedness corresponds to the randomized control trial where the covari-
ates are entirely irrelevant in the treatment assignment (i.e., the variables Yj,0 here).

The rest of the section is devoted to presenting the result that the ADM is
identified using only (Y0,Y1,Gobs,X−S), Y0 = (Yi,0)i∈N and Y1 = (Yi,1)i∈N , under
the S-unconfoundedness condition. In other words, if the S-unconfoundedness
condition holds, then one can identify the ADM with covariates XS omitted.
Hence, omitting XS does not cause any relational diffusion. Later we develop a
decomposition method to quantify the magnitude of relational diffusion, which
can be used to test whether the S-unconfoundedness holds or not.

To facilitate the identification analysis, let us make the following assumption on
the initial actions Yj,0, and covariates.

Assumption 2.4. (i) There exist a known distribution function F : R → [0,1]
and unknown parameter γ0 ∈ Rp such that for all j ∈ N,

E[Yj,0|Gobs,X] = F(X�
j γ0), (2.9)

F is nonconstant and has density bounded away from zero.
(ii) For all j ∈ N, the support of Xj is not contained in any proper linear subspace

of Rp, and for any proper subset S ⊂ S, there exists c0 > 0 such that for all n ≥ 1,

1

n

∑
j∈N

λmin(Xj,−SX�
j,−S) ≥ c0,

where λmin(A) for a symmetric matrix A denotes the minimum eigenvalue of A.
(iii) There exists c1 ∈ (0,1/2) such that c1 < F(X�

j γ0) < 1− c1 for all j ∈ N.

Assumption 2.4(i) requires that the initial action Yj,0 be conditionally indepen-
dent of X−j given Xj for each j ∈ N. As in the literature of program evaluations

8This monotonicity does not hold if one considers instead an alternative, weaker notion of S-unconfoundedness:
for all i,j ∈ N, i �= j, (Y∗

ij (1),Y∗
ij (0),Gctt) is conditionally independent of Yj,0 given (Gobs,X−S). The failure of

nonmonotonicity in sets S follows from the results in Phillips (1988).

https://doi.org/10.1017/S026646662200024X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200024X


1230 KYUNGCHUL SONG

(e.g., Imbens and Wooldridge, 2009), one can view F(X�
j γ0) as the parameterized

propensity score of person j, i.e., the propensity of the person j to switch the
state at time 0. As we explained before, this assumption is not as strong as
it appears in our context because one can include other people’s covariates as
part of Xj, such as the average of the characteristics of the neighbors in the
observed graph Gobs. While it is possible to extend our framework to other
forms of parametric or semiparametric specifications, the specification (2.9) is
most commonly used in practice, and simplifies the proposal of this paper in
terms of both exposition and implementation. Assumption 2.4(ii) is typical in the
literature of index models, often invoked for identification of γ0. (See, e.g., 2.1 of
Horowitz (2009).) Assumption 2.4(iii) is analogous to the overlap condition used
in the literature of program evaluations, which requires that the probability of the
initial switch of actions is bounded away from zero and one. (See, e.g., Imbens
and Wooldridge, 2009.) This condition can be violated, when Xj has unbounded
support or the dimension of Xj is large. In our context, the assumption is not
plausible especially when the diffusion starts with only a very small number of
“seed people.” The analysis in Khan and Tamer (2010) who focused on i.i.d.
observations can potentially be extended to this case. However, a full development
in this direction is outside of the scope of this paper.

He and Song (2022) introduced a spatiotemporal dependence measure of
(Y0,Y1) as follows:

C = 1

n

∑
j∈N

∑
i∈N:ij∈Eobs

Cov(Yj,0,Yi,1 | F)

Var(Yj,0 | F)
, (2.10)

and showed that

ADM = C,

under Assumptions 2.1–2.3. They developed asymptotic inference for C under
the parametric propensity score assumption in Assumption 2.4(i). In this paper,
we analyze the consequence of omitting covariates in the construction of C and
develop ways to measure the impact of the omission.

Let us introduce an analog of C with XS omitted. For each S ⊂ S, we let

μj,0,−S = F
(
X�

j,−Sγ
∗
−S

)
,

where

γ ∗
−S = arg max

γ−S∈Rp−|S|
QS (γ−S)

and

QS(γ−S) =
∑
j∈N

E
[
Yj,0 logF

(
X�

j,−Sγ−S
)+ (1−Yj,0) log

(
1−F

(
X�

j,−Sγ−S
)) | F]

.

It is not hard to see that under the S-unconfoundedness condition, γ ∗
−S = γ0,−S,

where γ0,−S is equal to γ0 except that the entries with indices in S are eliminated.
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We have defined μj,0,−S using γ ∗
−S instead of γ0,−S so that it is well defined

regardless of whether the S-unconfoundedness condition holds or not. Then, the
analog of the measure C with covariates XS omitted can be written as follows:

C−S = 1

n

∑
j∈N

∑
i∈N:ij∈Eobs

E
[
(Yj,0 −μj,0,−S)Yi,1 | F]

Var(Yj,0 | F)
. (2.11)

The quantity C−S captures the covariation between Yi,1 and the “residuals” from
projecting the local weighted average of the period 0 actions Yj,0 over in-neighbors
on the covariates X−S. The quantity C−S is different from C, due to the subtraction
by μj,0,−S in the conditional covariance. When S = ∅, i.e., no covariate is omitted
from the vector Xi, C−S is reduced to C.

The theorem below shows that under the S-unconfoundedness condition, ADM
is identified as C−S′ for all S′ ⊂ S.

THEOREM 2.1. Suppose that Assumptions 2.2–2.4 hold, and the S-uncon-
foundedness is satisfied for some S ⊂ S. Then, for all S′ ⊂ S,

ADM = C−S′ . (2.12)

Suppose that there is no diffusion (i.e., (2.8)) and the S-unconfoundedness is
satisfied for some S ⊂ S. Then, ADM = C−S′ = 0 for all S′ ⊂ S. In practice, the
S-unconfoundedness condition can be too strong. If the condition fails, equation
(2.12) is not guaranteed to hold. In other words, the estimated ADM with XS

omitted can be away from zero significantly, even when the true ADM is zero.
The omission of XS creates relational diffusion in this case. By measuring the
discrepancy between the ADM and C−S, one can check whether omitting the
covariates XS causes relational diffusion, and quantify its magnitude. In the next
subsection, we elaborate this idea.

2.5. Relational Diffusion and Decomposition Analysis

Suppose that the researcher omits XS from the covariate vectors, and identifies the
ADM by C−S. When the S-unconfoundedness fails, the omitted covariates XS may
create what seems like a diffusion phenomenon even when there is no diffusion in
reality. To see this more explicitly, let us define

�S ≡ C−S −ADM.

Then, we can write

�S = 1

n

∑
j∈N

∑
i∈N:ij∈Eobs

E[Yi,1δj,S | F] (2.13)

with

δj,S = μj,0 −μj,0,−S

μj,0(1−μj,0)
, (2.14)
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Figure 1. Illustration of relational diffusion: The figure illustrates relational diffusion that arises due
to the cross-sectional dependence of the covariates. In both figures, the absence of an arrow between a
pair of vertices represents the absence of causal relations. Cross-sectional dependence between Xj,S and
Xi,S can arise due to the causal relation between them, or because there is a common factor (denoted
Ci,j here) which affects both random variables. In either case, nonzero correlation between Yj,0 and Yi,1

can arise, and contribute to the estimated diffusion, even though there is no causal relation between
Yj,0 and Yi,1.

and μj,0 = F(X�
j γ0). Hence, �S constitutes the remainder term in the decomposi-

tion as follows:

C−S = ADM+�S. (2.15)

By Theorem 2.1, we have �S = 0 under the S-unconfoundedness condition.
However, when the S-unconfoundedness condition fails, the estimated version of
C−S can be nonzero, even when ADM is zero. This relational diffusion can be
measured by �S.

Omitted variable bias in a linear regression model arises when omitted vari-
ables are correlated with other regressors. This correlation is the correlation
within the same sample unit. In contrast, relational diffusion arises from the
cross-sectional dependence of covariates. (This is illustrated in Figure 1.) Our
Monte Carlo simulation results show that the cross-sectional dependence of
covariates can play a significant role in determining the magnitude of relational
diffusion.

3. INFERENCE ON THE RELATIONAL DIFFUSION

3.1. Estimation of �S

Let us consider estimating the magnitude of the relational diffusion, �S. We use a
sample analog of �S as an estimator. First, define

μ̂j,0 = F(X�
j γ̂ ), and μ̂j,0,−S = F(X�

j,−Sγ̂−S), (3.1)
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where γ̂ is estimated using maximum likelihood estimator (MLE), i.e.,

γ̂ = argmax
γ

Q̂(γ ), (3.2)

and

Q̂(γ ) =
∑
j∈N

(
Yj,0 logF(X�

j γ )+ (1−Yj,0) log(1−F(X�
j γ ))

)
.

Similarly, we obtain γ̂−S after removing Xj,S from the index X�
j γ in the above

maximization.
Then, we construct an estimator of �S as follows:

�̂S = 1

n

∑
j∈N

∑
i∈N:ij∈Eobs

Yi,1δ̂j,S, (3.3)

where

δ̂j,S = μ̂j,0 − μ̂j,0,−S

μ̂j,0(1− μ̂j,0)
.

3.2. Asymptotic Inference on �S

We first establish the asymptotic linear representation of
√

n(�̂S − �S). Let us
introduce some notation to simplify the expression of the representation. Let

fj = f (X�
j γ0), fj,−S = f (X�

j,−Sγ
∗
−S), and f ′

j,−S = f ′(X�
j,−Sγ

∗
−S),

where f ′ denotes the first-order derivative of f and f is the density of F that appears
in Assumption 2.4. Define

�j = fj
σ 2

j,0

Xj, and �j,S = fj,−S

σ 2
j,0

Xj,−S, (3.4)

where σ 2
j,0 = μj,0(1−μj,0), and

Ũj = −H−1εj,0�j, and Ũj,S = −H−1
S εj,0,−S�j,S, (3.5)

with εj,0 = Yj,0 −μj,0, εj,0,−S = Yj,0 −μj,0,−S,

H = −1

n

∑
i∈N

f 2
i XiX�

i

μi,0(1−μi,0)
, and

HS = 1

n

∑
i∈N

(
μi,0(f ′

i,−Sμi,0,−S − f 2
i,−S)

μ2
i,0,−S

− (1−μi,0)(f ′
i,−S(1−μi,0,−S)+ f 2

i,−S)

(1−μi,0,−S)2

)

Xi,−SX�
i,−S.
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(Note that HS is analogous to the hessian matrix in the misspecified MLE.) Later,
we show that under regularity conditions,

σ−1
S

√
n(�̂S −�S) →d N(0,1), (3.6)

where

σ 2
S = Var

(
1√
n

∑
i∈N

qi,S | F
)

,

and (with δj,S defined in (2.14))

qi,S = κ1,SŨi −κ2,SŨi,S +
⎛
⎝ ∑

j∈Nobs(i)

δj,S

⎞
⎠Yi,1, (3.7)

with μi,1 = E[Yi,1 | F],

κ1,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

(
δj,S(2μj,0 −1)+1

)
��

j

⎞
⎠μi,1, and

κ2,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

��
j,S

⎞
⎠μi,1.

However, consistent estimation of σ 2
S is not feasible in our context. To see this, we

rewrite

σ 2
S = 1

n

∑
i∈N

∑
j∈Nobs(i)

E
[(

qi,S −E[qi,S | F]
)(

qi,S −E[qi,S | F]
) | F]

. (3.8)

In order to estimate this quantity consistently, we should be able to consistently
estimate E[qi,S | F]. However, this latter term involves X and is heterogeneous
across i’s. Furthermore, we cannot simply model this as a parametric function
given Xi, because Yi,1 involved in qi,S potentially depends on X in a complex
form due to the latent contact network in the diffusion process. Instead, we adopt
a conservative inference procedure by using the linear projection of the sample
version of [q1,S, . . . ,qn,S]� onto the range space of [X1, . . . ,Xn]� in the euclidean
space Rn. (See (3.9) and (3.10).)

First, we define a sample analog of qi,S. Let

f̂j = f (X�
j γ̂ ), f̂j,−S = f (X�

j,−Sγ̂−S), and f̂ ′
j,−S = f ′(X�

j,−Sγ̂−S),

and define

�̂j = f̂j
σ̂ 2

j,0

Xj, and �̂j,S = f̂j,−S

σ̂ 2
j,0

Xj,−S,
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where f is the density of F that appears in Assumption 2.4, and σ̂ 2
j,0 = μ̂j,0(1−μ̂j,0),

and

Ûj = Ĥ−1ε̂j,0�̂j, and Ûj,S = Ĥ−1
S ε̂j,0,−S�̂j,S,

with ε̂j,0 = Yj,0 − μ̂j,0, ε̂j,0,−S = Yj,0 − μ̂j,0,−S,

Ĥ = −1

n

∑
i∈N

f̂ 2
i XiX�

i

μ̂i,0(1− μ̂i,0)
, and

ĤS = 1

n

∑
i∈N

(
μ̂i,0(f̂ ′

i,−Sμ̂i,0,−S − f̂ 2
i,−S)

μ̂2
i,0,−S

− (1− μ̂i,0)(f̂ ′
i,−S(1− μ̂i,0,−S)+ f̂ 2

i,−S)

(1− μ̂i,0,−S)2

)

Xi,−SX�
i,−S.

Then, the sample analog of qi,S is given by

q̂i,S = κ̂1,SÛi − κ̂2,SÛi,S +
⎛
⎝ ∑

j∈Nobs(i)

δ̂j,S

⎞
⎠Yi,1,

with

κ̂1,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

(
δ̂j,S(2μ̂j,0 −1)+1

)
�̂�

j

⎞
⎠Yi,1, and

κ̂2,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

�̂�
j,S

⎞
⎠Yi,1.

To construct a confidence interval, we take the square of the standard error to
be

σ̂ 2
S = 1

n

∑
i1,i2∈N:Nobs(i1)∩Nobs(i2)�=∅

(q̂i1,S − ĥi1,S)(q̂i2,S − ĥi2,S), (3.9)

where Nobs(i) = Nobs(i)∪{i} with Nobs(i) = { j ∈ N : ij ∈ Eobs},

ĥi,S = X�
i λ̂S, and λ̂S =

(
1

n

∑
i∈N

XiX
�
i

)−1
1

n

∑
i∈N

Xiq̂i,S. (3.10)

Then, the (1−α)-level confidence interval for �S is given by

C1−α =
[
�̂S − z1−α/2σ̂S√

n
, �̂S + z1−α/2σ̂S√

n

]
, (3.11)

where z1−α/2 is the 1− (α/2) percentile of N(0,1).
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3.3. Asymptotic Theory

For the asymptotic validity of the confidence interval C1−α , we use the following
set of assumptions.

Assumption 3.1. (Nondegeneracy) There exists a small c2 > 0 such that the
following is satisfied for all n ≥ 1 and all S ⊂ S:

σ 2
S ≡ Var

(
1√
n

∑
i∈N

qi,S | F
)

> c2. (3.12)

Assumption 3.1 requires the nondegeneracy of the distribution of the test
statistics. This condition requires that the randomness of qi (conditional on F)
does not disappear as n → ∞. Since it is unlikely in practice that the finite sample
conditional distribution (given F) of

1√
n

∑
i∈N

(
qi,S −E[qi,S | F]

)
is degenerate, it appears to be reasonable to use Assumption 3.1 in deriving its
asymptotic approximation.

We require conditions for the observed graph Gobs as follows.

Assumption 3.2. There exists k > 0 such that

max
i∈N

|Nobs(i)| = OP((log(n))k),

as n → ∞.

Assumption 3.2 requires that the observed network is not too dense. See He
and Song (2022) for conditions for a generic network formation model such that
Assumption 3.2 is satisfied.

The next set of conditions are regularity conditions used to deal with the
estimation error of the MLE γ̂ and the quasi-MLE γ̂−S. Define

H0(γ ) = −1

n

∑
i∈N

f 2(X�
i γ )XiX�

i

F(X�
i γ )(1−F(X�

i γ ))
, and

H0,S(γ−S) = 1

n

∑
i∈N

(
μi,0

(
f ′(X�

i,−Sγ−S)F(X�
i,−Sγ−S)− f 2(X�

i,−Sγ−S)
)

F2(X�
i,−Sγ−S)

)
Xi,−SX�

i,−S

− 1

n

∑
i∈N

(
(1−μi,0)

(
f ′(X�

i,−Sγ−S)(1−F(X�
i,−Sγ−S))+ f 2(X�

i,−Sγ−S)
)

(1−F(X�
i,−Sγ−S))2

)

Xi,−SX�
i,−S.

The quantities H0(γ ) and H0,S(γ−S) are the “hessians” of population MLE and
quasi-MLE objective functions conditional on X. The following conditions are
similar to conditions used in the literature of MLE or MLE under misspecification.
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Assumption 3.3. For each S ⊂ S, the following conditions are satisfied.

(i) The parameter space � for γ0 is compact, and γ0 and γ ∗
−S lie in the interior

of �.
(ii) There exists c3 > 0 such that for all n ≥ 1,

λmin (−H0(γ0)) ≥ c3, and λmin
(−H0,S(γ

∗
−S)

) ≥ c3, (3.13)

with probability one.
(iii) The density f of F is log-concave.
(iv) F is three times continuously differentiable with bounded derivatives, and for

any compact set K ⊂ R, there exists a constant cK > 0 that depends only on
K such that

inf
z∈K

F(z)(1−F(z)) > cK .

The assumption below puts a condition on the covariate vector Xi. As our object
of interest �S is defined in terms of conditional probability given X, we do not
require any condition on the cross-sectional dependence structure of Xi’s.

Assumption 3.4. There exists constant C > 0 such that for all n ≥ 1,

max
j∈N

‖Xj‖ ≤ C. (3.14)

The bounded support condition on Xi has been used in the literature. (See, e.g.,
Hirano, Imbens, and Ridder (2003).) The following theorem establishes that the
confidence interval C1−α defined in (3.11) is asymptotically valid.

THEOREM 3.1. Suppose that Assumptions 2.2–3.4 hold. Then, for each S ⊂ S,

liminf
n→∞ P{�S ∈ C1−α} ≥ 1−α.

The central part of the asymptotic validity result in Theorem 3.1 comes from
the asymptotic normality result in (3.6). To see how this asymptotic normality
arises, first, note that we have the following asymptotic linear representation (see
Theorem A.1 in the Appendix):

√
n(�̂S −�S) = 1√

n

∑
i∈N

(qi,S −E[qi,S | F])+oP(1), (3.15)

where qi,S is as defined in (3.7). Let us define the graph G∗
obs = (N,E∗

obs) and
E∗

obs = {i1i2 : Nobs(i1) ∩ Nobs(i2) �= ∅,i1 �= i2}. Under Assumptions 2.1 and 2.2,
the quantities qi,S can be shown to have graph G∗

obs as a conditional dependency
graph given F .9 Then, we can apply the central limit theorem to the right-hand side
of (3.15), as long as the observed graph Gobs is not too dense, using Theorem 2.4

9A triangular array ξi,n, i ∈ N, is said to have a graph G∗
obs = (N,E∗

obs) as a conditional dependency graph given F ,
if, for any two subsets A and B of N such that no two nodes i ∈ A and j ∈ B are adjacent in G∗

obs, (ξin)i∈A and (ξjn)j∈B

are conditionally independent given F .
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of Penrose (2003) or Corollary 3.1 of Lee and Song (2019). The required condition
for the observed graph Gobs is fulfilled by Assumption 3.2.

3.4. A Step-Down Procedure for Detecting the Sources of Relational
Diffusion

One might be interested in detecting which set of covariates cause relational
diffusion. In this section, we develop a multiple testing procedure that detects the
set of such covariates with asymptotic control of FWER. First, let us introduce an
individual hypothesis for each covariate index s ∈ S:

H0,s : �s = 0, and H1,s : �s �= 0. (3.16)

Define

SP = {s ∈ S : �s �= 0}, (3.17)

where the subscript P is placed as a reminder that this quantity depends on the
conditional distribution of Yi,1 given F . Then, we would like to find a data-
dependent random set Ŝ ⊂ S such that

limsup
n→∞

P
{

Ŝ �⊂ SP

}
≤ α. (3.18)

We declare the set Ŝ to be the set of covariates which causes relational diffusion,
i.e., �s �= 0. The probability on the left-hand side of (3.18) is the FWER, which is
the probability that there is at least one covariate Xs, with s ∈ Ŝ, which is falsely
declared to be causing a relational diffusion.

Let us consider the following step-down procedure inspired by Romano and
Shaikh (2010). For each subset S ⊂ S, letZS,b, b = 1, . . . ,B, be i.i.d. random vectors
in R|S|, drawn from N(0,I|S|), and let ̂S be an |S|× |S| matrix whose entries are
given by

σ̂s1,s2 = 1

n

∑
i1,i2∈N:Nobs(i1)∩Nobs(i2)�=∅

(q̂i1,s1 − ĥi1,s1)(q̂i2,s2 − ĥi2,s2), s1,s2 ∈ S,

(3.19)

and q̂i,s and ĥi,s are entries of q̂i,S and ĥi,S corresponding to the covariate index s.
Then, we construct c1−α(S) to be the 1−α percentile of {ŴS,b : b=1, . . . ,B}, where

ŴS,b = max
s∈S

[
|̂1/2

S ZS,b|
]

s

σ̂s
(3.20)

and
[
|̂1/2

S ZS,b|
]

s
denotes the s-entry of the vector whose elements are equal to the

absolute value of the elements of ̂
1/2
S ZS,b.
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Setting R̂1 = S, we recursively define

R̂t+1 =
{

s ∈ S :

√
n|�̂s|
σ̂s

≤ c1−α(R̂t)

}
, t = 1,2, . . . ,

and we stop when R̂t+1 = R̂t, and take Ŝ = S\ R̂t.
Let us present our result that shows asymptotic control of FWER. Let qi,S be the

|S|-dimensional vector whose entries are given by qi,s, s ∈ S. Define

S,i = E
[
(qi,S −E[qi,S | F])(qi,S −E[qi,S | F])� | F]

. (3.21)

We introduce a condition under which the conditional distribution of qi,S given F
is not degenerate uniformly over 1 ≤ i ≤ n and over n ≥ 1.

Assumption 3.5. There exists c4 > 0 such that min1≤i≤n λmin(S,i) > c4 for all
n ≥ 1.

The following theorem shows that this set Ŝ controls the FWER asymptotically.

THEOREM 3.2. Suppose that Assumptions 2.2–3.5 hold. Then,

limsup
n→∞

P
{

Ŝ �⊂ SP

}
≤ α. (3.22)

4. MONTE CARLO SIMULATIONS

4.1. Data Generating Process

Let us first explain the data generating process we use for our Monte Carlo
simulation study. First, we generate the contact network Gctt. For this, we choose
the adjacency matrix of the contact network as a block diagonal matrix and each
block matrix is generated by the Barabási–Albert model which starts with the 20
households per village with an Erdös–Rényi random graph. We treat each block
matrix as a village and each node as a household. In total, we have 30 villages and
each village has 50 or 200 households. Thus, the total number of the households
is either 30×50 = 1,500 or 30×200 = 6,000.

We generate the observed graph Gobs as follows. The adjacency matrix of the
observed graph is set to be a block diagonal matrix constructed as follows. For each
block matrix B in the adjacency matrix of the contact network Gctt, we form each
block matrix by taking each of its entries to be 1 if and only if the corresponding
entry of the matrix B+B2 +·· ·+Bt1 is nonzero. The graph statistics are presented
in Table 1. We fix the realized contact network and the observed graphs, and
generate outcomes using the same networks across Monte Carlo simulations. As
we are not considering the randomness of the networks in our simulation study,
what matters for our purpose is the shape of the realized networks in finite samples,
rather than the stochastic property of the random graph models that are used to
obtain the realizations.
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Table 1. Characteristics of the networks.

B–A graph Contact network Observed graph

n = 1,500 n = 6,000 n = 1,500 n = 6,000

Max. deg. 14 33 27 95

Ave. deg. 1.0667 1.2633 2.9373 4.3488

Cluster 0.0275 0.0129 0.1110 0.0991

Notes: This table compares the network characteristics of the contact networks and the observed graphs.
Both of them are constructed from 30 independent Barabási–Albert graphs in a block diagonal way.
Each block graph is based on the Erdős–Rényi graph of size 20 with p = 1/19, and contains 50 or 200
nodes. Thus, the size of the contact networks and the observed graphs is either 30 × 50 = 1,500 or
30×200 = 6,000.

We generate the binary actions At = (Ai,t)i∈N as follows. For each j ∈ N, we
specify

Aj,0 = 1
{
F(X�

j γ0) ≥ Uj,0
}
, (4.1)

where Uj,0’s are i.i.d. and follow the uniform distribution on [0,1], and F is the
distribution function of N(0,1). We set p = 4 and γ0 = [0.6, −0.1, −0.3,0.3]�.

The covariates Xj’s constitute an n × p matrix X = [1;X◦], where 1 is a vector
of ones and X◦ is an n× (p−1) matrix which is generated as

X◦ = (αEc + (1−α)Ẽ+ I)X̃◦, α ∈ [0,1],

where X̃◦ is also an n × (p − 1) matrix with i.i.d. entries from the uniform
distribution on [0,1], I is an n×n identity matrix, Ec is the adjacency matrix of the
contact network Gctt, and Ẽ is that of an independently generated Erdös–Rényi
graph with the same scale and average degree as Ec’s.10 The scalar α ∈ [0,1]
captures to what extent the cross-sectional dependence of Xj’s is aligned with
the contact network Gctt. As α gets closer to 1, the cross-sectional dependence
structure of Xi’s is more aligned with the contact network Gctt. When α = 1, Xj and
Xi are correlated if and only if j and i are adjacent in Gctt. When α = 0, the cross-
sectional dependence of Xj’s is determined by an independently generated Erdös–
Rényi graph. We choose α ∈ {0,0.5,1} and see how the choice affects relational
diffusion.

In the simulation, we consider a variant of the linear threshold diffusion model
in (2.3) as follows: for t = 1,2, . . . ,

Ai,t =
{

1{δ0Ai,t−1 +X�
i β0 −Ui,t > 0}, if Ai,t−1 = Ai,t−2 = ·· · = Ai,0 = 0,

0, otherwise,
(4.2)

10We calculate the average degree of Ec by firstly adding up the in-degrees and out-degrees of each node, and then
taking average of the total degrees and dividing by 2. In this way, the two adjacent matrices will be approximately
equally dense so that varying α will not affect the dispersion of Xj’s or the extensiveness of the cross-sectional
dependence substantially.
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Table 2. The true values of ADM and �S.

δ0 = 0 δ0 = 0.5

α = 1.0 α = 0.5 α = 0.0 α = 1.0 α = 0.5 α = 0.0

ADM n = 1,500 0 0 0 0.0374 0.0362 0.0336

n = 6,000 0 0 0 0.0394 0.0373 0.0333

�S n = 1,500 0.2222 0.1625 0.0486 0.2387 0.1765 0.0549

n = 6,000 0.3282 0.2817 0.0603 0.3684 0.3151 0.0701

Notes: We considered 30 villages, where each village is populated by 50 households or 200 households.
When α = 1, the cross-sectional dependence of covariates is shaped by the contact network, and when
α = 0, it is entirely unrelated to the contact network. Recall that when δ0 = 0, there is no diffusion.
However, �S is not zero, exhibiting relational diffusion. Relational diffusion is larger when α = 1,0.5
than when α = 0.0. This confirms that the magnitude of relational diffusion is related to how similar
the cross-sectional dependence structure of the covariates is to the contact network.

where Ui,t’s are i.i.d. and have the distribution function of N(0,1), the covariates
Xi are the same for the same cross-sectional unit across the short period, and

Ai,t−1 = 1

|Nctt(i)|
∑

j∈Nctt(i)

Aj,t−1,

where Nctt(i) is the in-neighborhood of i in the contact network we have generated
before. In addition, we choose δ0 ∈ {0,0.5} and set β0 = [−1,0.3, − 0.4, − 0.1]�.
For the simulations, we have set t1 = 2, and the Monte Carlo simulation number
to be 10,000.

As for the specification of the diffusion model, it is important to note that
although we assume that the researcher knows the specification for (4.1), she
does not know that Ai,t’s are generated as in (4.2). In other words, we allow her
to be entirely agnostic about the specification of Ai,t, except that it is generated
from a generalized diffusion model of the form in (2.2), and hence the estimation
and inference on relational diffusion proposed in this paper does not rely on any
information of this particular specification in (4.2).

As for the omitted covariates, we considered S = {4}, so that we omitted the
last entry of the p-dimensional covariate vector Xi. The true values of ADM
and �S are presented in Table 2. We computed the true values by simulations
using 100,000 simulation draws. Recall that when α = 1, the cross-sectional
dependence of covariates is shaped by the contact network, and when α = 0,
it is entirely unrelated to the contact network. When δ0 = 0, there is no
diffusion. However, we see that �S is not zero, exhibiting relational diffusion.
The relational diffusion is larger when α = 1.0,0.5 than when α = 0.0. This
confirms that the magnitude of relational diffusion is related to how similar
the cross-sectional dependence structure of the covariates is to the contact
network.
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Table 3. Empirical coverage probabilities.

δ0 = 0 δ0 = 0.5

α = 1.0 α = 0.5 α = 0.0 α = 1.0 α = 0.5 α = 0.0

Cov. prob. at 99% n = 1,500 0.9738 0.9777 0.9566 0.9798 0.9771 0.9573

n = 6,000 0.9957 0.9891 0.9867 0.9963 0.9903 0.9849

Cov. prob. at 95% n = 1,500 0.9455 0.9308 0.9035 0.9435 0.9286 0.9038

n = 6,000 0.9834 0.9570 0.9476 0.9842 0.9584 0.9431

Cov. prob. at 90% n = 1,500 0.9001 0.8764 0.8424 0.8991 0.8783 0.8422

n = 6,000 0.9670 0.9150 0.8994 0.9696 0.9149 0.8892

Median CI length n = 1,500 0.3099 0.2440 0.0915 0.3287 0.2335 0.1001

n = 6,000 0.3836 0.2102 0.0672 0.4270 0.2281 0.0753

Notes: We considered 30 villages, where each village is populated by 50 households or 200 households.
When α = 1, the cross-sectional dependence of covariates is shaped by the observed graph, and when
α = 0, it is entirely unrelated to the observed graph. The Monte Carlo number was equal to 10,000.

4.2. Estimation and Results

For the Monte Carlo simulations, we have estimated �̂S as in (3.3). Recall that
F is chosen to be the distribution function of N(0,1). The results of the finite
sample coverage probabilities for the confidence intervals are shown in Table 3.
When we use 50 households per village, the coverage probability exhibits slight
under coverage. However, this coverage probability improves when the number of
households is increased to 200 households.

Interestingly, the effect of increase in the number of the households per vil-
lage depends on α, i.e., whether the cross-sectional dependence structure of the
covariates is similar to the contact network or not. When it is similar to the contact
network (α = 1), the increase in the number of the households increases the length
of the confidence intervals. On the other hand, when it is very different from the
contact network (α = 0), the increase leads to a shorter length of the confidence
intervals. Thus, it appears that when the cross-sectional dependence structure of
the covariates is aligned with the contact network, the increase in the sample size
seems to magnify the standard error in the confidence interval.

Part of this effect should also be coming from the increased neighborhood sizes
as the number of households increases. For example, note that as we increase the
number of households from 50 to 200, the maximum degree and the average degree
of the causal graph increase from 27 and 95 to 2.9373 and 4.3488, respectively.
Hence, as the number of households grows, the cross-sectional dependence also
becomes more extensive.

5. CONCLUSION

In this paper, we develop a method of quantifying the role of the covariates
contributing to relational diffusion. This paper’s proposal can be useful in practice
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especially when there is a concern about potential bias in the estimated diffusion
due to missing covariates. In this situation, one may want to quantify the role
of covariates in the estimated diffusion and see whether the role is statistically
significant. This paper provides a statistical method that is potentially useful in
such a situation.

There are multiple extensions of the paper’s proposal. First, it would be inter-
esting to consider a situation with multiple networks and to measure relational
diffusion along each network. Note that in the context of linear spatial models,
Drukker, Egger, and Prucha (2022) studied situations with multiple networks
and provided asymptotic inference. Second, it could be interesting to investigate
whether there exists inference based on permutation on the diffusion decomposi-
tion. Conditional on X and Gobs, observations are all heterogeneously distributed.
Hence, standard nonparametric bootstrap does not work. (See Kojevnikov (2021)
for a bootstrap method for network dependence processes.) However, there could
be a permutation-based approach that exhibits better finite sample performance
than asymptotic inference. This was shown in the Monte Carlo study of Song
(2018) in estimating the graph concordance. It would be interesting to see if such
a phenomenon extends to this decomposition analysis studied in this paper.

APPENDIX: Mathematical Proofs

Proof of Theorem 2.1. First, we show that ADM = C. Since Yj,0 ∈ {0,1}, we write

Yi,1Yj,0 = Y∗
ij(1)Yj,0, and Yi,1(1−Yj,0) = Y∗

ij(0)(1−Yj,0).

Hence, taking conditional expectations given F , and using Assumption 2.3,

E[Yi,1Yj,0 | F ]

μ∗
j,0

− E[Yi,1(1−Yj,0) | F ]

1−μ∗
j,0

= E[Y∗
ij(1)−Y∗

ij(0) | F ],

where μ∗
j,0 = E[Yj,0 | F ]. By rearranging terms, we find that the left-hand side is equal to

Cov(Yi,1,Yj,0 | F)

μ∗
j,0(1−μ∗

j,0)
,

proving that ADM = C.
If the S-unconfoundedness holds, we have

E[Yj,0|Gctt,Gobs,X−S] = E[Yj,0 | F ].

(See, e.g., Lemma 4.2(ii) of Dawid (1979).) Since F is not constant on the support of X�
j γ0,

and the support of Xj is not contained in a proper linear subspace of Rd by Assumption 2.4,
we have γ0,S = 0, where γ0,S is the vector consisting of entries in γ0 with indexes in S.
Hence, E[Yj,0 | F ] = F(X�

j,−Sγ0,−S). Since both γ0,−S and γ ∗−S maximize QS(γ−S) over

γ−S uniquely, we must have γ0,S = γ ∗−S. Therefore, μj,0,−S = E[Yj,0 |F ]. This means that
C−S = C. Finally, the S-unconfoundedness implies the S′-unconfoundedness for all S′ ⊂ S,
yielding the desired result. �
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The rest of the proofs are devoted to proving Theorems 3.1 and 3.2. Throughout the
auxiliary results below, we assume that the conditions of Theorem 3.2 hold. (In fact,
Assumption 3.5 is used only for the proof of Theorem 3.2.)

LEMMA A.1. For each S ⊂ S, maxi∈N E[q4
i,S |F ] = OP

(
d4

mx

)
, where qi,S is as defined

in (3.7), and

dmx = max
i∈N

|Nobs(i)|.

Proof. The results follows because qi,S involves a sum over j ∈ Nobs(i) and this sum is
bounded by Cdmx for some constant C > 0 that does not depend on n. �

The following lemma gives an asymptotic linear representation of the estimators γ̂ and
γ̂0,−S.

LEMMA A.2.

√
n(γ̂ −γ0) = 1√

n

∑
i∈N

Ũi +oP(1), and (A.1)

√
n(γ̂−S −γ ∗−S) = 1√

n

∑
i∈N

(
Ũi,S −E[Ũi,S | F ]

)
+oP(1).

Furthermore,

max
j∈N

|μ̂j,0 −μj,0| = OP

(
n−1/2

)
, and (A.2)

max
j∈N

|μ̂j,0,−S −μj,0,−S| = OP

(
n−1/2

)
.

Proof. For both statements of (A.1) and (A.2), the proof can proceed in the same way as
in the proof of Lemmas C.5 and C.6 of He and Song (2022). �

We are prepared to present the asymptotic linear representation of
√

n(�̂S −�S).

THEOREM A.1.

√
n(�̂S −�S) = 1√

n

∑
i∈N

(qi,S −E[qi,S | F ])+oP(1),

where qi,S is as defined in (3.7).

Proof. First, let

�̂1 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μ̂j,0

σ̂ 2
j,0

⎞
⎠Yi,1, and �1 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0

σ 2
j,0

⎞
⎠Yi,1.
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Furthermore, we define for S ⊂ S,

�̂S,2 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μ̂j,0,−S

σ̂ 2
j,0

⎞
⎠Yi,1, and �S,2 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0,−S

σ 2
j,0

⎞
⎠Yi,1.

Let us write

√
n(�̂S −�S) = √

n(�̂1 −�1)−√
n(�̂S,2 −�S,2)+√

n�S,3,

where

�S,3 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

δj,S

⎞
⎠εi,1,

where εi,1 = Yi,1 −E[Yi,1 | F ].
First, let us analyze

√
n(�̂1 −�1). We write this as An1 +An2, where

An1 = 1√
n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μ̂j,0 −μj,0

σ 2
j,0

⎞
⎠Yi,1 +oP(1), and

An2 = 1√
n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0

(
1

σ̂ 2
j,0

− 1

σ 2
j,0

)⎞
⎠Yi,1.

The term oP(1) in An1 is due to (A.2), Assumption 3.2, and the assumption that μj,0 ∈
(c1,1−c1) by Assumption 2.4(iii). Using the first-order Taylor expansion F(X�

j γ̂ ) around

F(X�
j γ0), and using Lemma A.2, we obtain that

An1 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

��
j

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj +oP(1).

(Recall the definitions of �j and Ũj in (3.4) and (3.5).) Similarly, as for An2, we obtain that

An2 = 1√
n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0(σ 2
j,0 − σ̂ 2

j,0)

σ 4
j,0(1+oP(1))

⎞
⎠Yi,1

= 1√
n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0(μ̂j,0 −μj,0)(2μj,0 −1)

σ 4
j,0(1+oP(1))

⎞
⎠Yi,1 +oP(1)

= 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0f (X�
j γ0)X�

j (2μj,0 −1)

σ 4
j,0(1+oP(1))

⎞
⎠Yi,1

√
n(γ̂ −γ0)+oP(1).
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Again, using Lemma A.2, we conclude that

An2 = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0f (X�
j γ0)X�

j (2μj,0 −1)

σ 4
j,0

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj +oP(1)

= 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0(2μj,0 −1)

σ 2
j,0

��
j

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj +oP(1).

Hence, we find that

√
n(�̂1 −�1) = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

��
j

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj (A.3)

+ 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0(2μj,0 −1)

σ 2
j,0

��
j

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj +oP(1).

Let us turn to
√

n(�̂S,2 −�S,2). We write this as An1,S +An2,S, where

An1,S = 1√
n

⎛
⎝ ∑

j∈Nobs(i)

μ̂j,0,−S −μj,0,−S

σ 2
j,0

⎞
⎠Yi,1 +oP(1), and

An2,S = 1√
n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0,−S

(
1

σ̂ 2
j,0

− 1

σ 2
j,0

)⎞
⎠Yi,1.

Similarly as before, the term oP(1) in An1,S is due to (A.2) and the assumption that μj,0 ∈
(c1,1− c1) by Assumption 2.4(iii). Using the same arguments as before, we find that

An1,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

��
j,S

⎞
⎠μi,1

1√
n

∑
j∈N

(
Ũj,S −E[Ũj,S | F ]

)
+oP(1), and

An2,S = 1

n

∑
i∈N

⎛
⎝ ∑

j∈Nobs(i)

μj,0,−S(2μj,0 −1)

σ 2
j,0

��
j

⎞
⎠μi,1

1√
n

∑
j∈N

Ũj +oP(1).

(Recall that E[Ũj | F ] = 0 because E[εj,0 | F ] = 0.) Combining these results with (A.3),
we obtain the desired result. �

Let �̂S be the |S|-dimensional vector whose entries are given by �̂s, s ∈ S.

LEMMA A.3.


−1/2
S

√
n(�̂S −�S) →d N(0,I|S|), (A.4)

where S is as defined in (3.21).
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Proof. By Theorem A.1, we first write

√
n(�̂S −�S) = 1√

n

∑
i∈N

(qi,S −E[qi,S | F ])+oP(1). (A.5)

Take b ∈ R|S| such that b�b = 1. Recall the definition of G∗
obs

after Theorem 3.1. By
Assumptions 2.1 and 2.2, {qi}i∈N has G∗

obs
as a conditional dependency graph given F ,

which is a special case of conditional neighborhood dependency introduced in Lee and
Song (2019). Let σ 2(b) = b�Sb, and we apply their Corollary 3.1 and Assumption 3.1 to
deduce that

sup
u∈R

∣∣∣∣∣∣P
⎧⎨
⎩ 1

σ(b)
√

n

∑
i∈N

b�(qi,S −E[qi,S | F ]) ≤ u | F
⎫⎬
⎭−�(u)

∣∣∣∣∣∣
≤ C

⎛
⎝

√
d∗

mxd∗
avμ

3
3

n1/4
− log

(
d∗

mxd∗
avμ

3
3√

n

) √
(d∗

mx)
2d∗

avμ
4
4√

n

⎞
⎠,

for some constant C > 0 that does not depend on n, where

μ
p
p = max

i∈N
E

[∣∣∣∣∣b�qi,S −E[b�qi,S | F ]

σ(b)

∣∣∣∣∣p | F
]

.

Thus, the desired result follows from this and Assumption 3.2 and the Cramér–Wold
device. �

Let hi,S denote the population version of ĥi,S which is defined as follows:

hi,S = X�
i λS, and λS =

⎛
⎝1

n

∑
i∈N

XiX
�
i

⎞
⎠

−1
1

n

∑
i∈N

XiE
[
qi,S | F]

.

LEMMA A.4.

1

n

∑
i∈N

(
q̂i,S −qi,S

)2 = OP

(
n−1d4

mx

)
, and

1

n

∑
i∈N

(
ĥi,S −hi,S

)2 = OP

(
n−1d4

mx

)
.

Proof. Inspecting the terms in q̂i,S, we find that the estimation error of q̂i,S comes from
the estimation errors of γ̂ and γ̂−S. It is not hard to see from Lemma A.2 that

κ̂1,S −κ1,S = OP

(
n−1/2d2

mx

)
, and κ̂2,S −κ2,S = OP

(
n−1/2d2

mx

)
.

Furthermore,

max
i∈N

|Ûi − Ũi| = OP

(
n−1/2

)
, and max

i∈N
|Ûi,S − Ũi,S| = OP

(
n−1/2

)
,
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and

max
i∈N

∣∣∣∣∣∣
∑

j∈Nobs(i)

(
δ̂j,S − δj,S

)∣∣∣∣∣∣ = OP

(
n−1/2dmx

)
.

Collecting these rate results, we find that

1

n

∑
i∈N

(
q̂i,S −qi,S

)2 = OP

(
n−1d4

mx

)
.

Thus, from Assumption 3.2, we obtain the first statement of the lemma.
The second statement immediately follows because

∑
i∈N

(
ĥi,S −hi,S

)2 ≤
∑
i∈N

(
q̂i,S −qi,S

)2 .

(See the proof of Lemma B.13 of He and Song (2022).) �

Define

ηi,S = qi,S −hi,S, and η̂i,S = q̂i,S − ĥi,S, (A.6)

where q̂i,S and ĥi,S are the vectors having entries q̂i,s, and ĥi,s, s ∈ S, respectively, and

similarly with hi,S. Let ̃S be the |S|× |S| matrix whose (m,�)th entry for m,� = 1, . . . ,|S|
is given by

1

n

∑
i1,i2∈E

∗
obs

E
[
ηi1,mηi2,� | F]

,

where ηi1,m denotes the mth entry of ηi1,S, and E
∗
obs = {i1i2 : Nobs(i1)∩Nobs(i2) �= ∅}∪

{ii : i ∈ N}. Let the sth diagonal entry of ̃S be denoted by σ̃ 2
s .

LEMMA A.5. ̂S = ̃S +oP(1).

Proof. For m,� = 1, . . . ,|S|, define

Vm� = 1

n

∑
i1,i2∈E

∗
obs

(
η̂i1,mη̂i2,� −ηi1,mηi2,�

)
, and

Wm� = 1

n

∑
i1,i2∈E

∗
obs

(
ηi1,mηi2,� −E[ηi1,mηi2,� | F ]

)
,

where η̂i1,m denotes the mth entry of η̂i1,S. Then, using Assumption 3.2 and Lemma A.4,
and following the same argument as in the proofs of Lemmas B.14 and B.15 of He and Song
(2022), we find that

Vm� +Wm� = oP(1).

Since Vm� +Wm� is the (m,�)th element of ̂S − ̃S, we obtain the desired result. �
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LEMMA A.6.

sup
τ∈R

∣∣∣P{
ŴS,b ≤ τ | H

}
−P

{
W̃S ≤ τ | F

}∣∣∣ = oP(1), (A.7)

where H denotes the σ -field generated by (Gctt,Gobs,X,Y0,Y1), and

W̃S = max
s∈S

[
|̃1/2

S ZS|
]

s
σ̃s

. (A.8)

Proof. First, for each i = 1, . . . ,n and S ⊂ S, we define

̃S,i = E
[
ηi,Sη�

i,S | F
]

.

By the same arguments in the proof of Lemma B.9 of He and Song (2022), we can see that
̃S,i −S,i is positive semidefinite for all 1 ≤ i ≤ n. As in (3.14) of Kojevnikov and Song
(2022), we find that for any υ > 0,

P

{
sup
τ∈R

∣∣∣P{
ŴS,b ≤ τ | H

}
−P

{
W̃S ≤ τ | F

}∣∣∣ > υ

}

≤ C

υ

(
(c2

4n)−1/6 +n−1/2 +P

{
min

1≤i≤n
λmin(̃S,i) < c4

})
,

for some constant C > 0 that does not depend on n, where c4 > 0 is the constant in
Assumption 3.5. Hence, by Assumption 3.5, the last probability in the above display
vanishes as n → ∞. This gives the desired result. �

Define

T̂S = max
s∈S

∣∣∣∣∣
√

n(�̂s −�s)

σ̂s

∣∣∣∣∣ . (A.9)

LEMMA A.7. For any S ⊂ S,

P
{

T̂S ≤ ĉ1−α(S)
}

≥ 1−α +oP(1). (A.10)

Proof. Let c1−α(S) be the 1−α percentile of the conditional distribution of

WS = max
s∈S

[
|1/2

S ZS|
]

s
σ̃s

, (A.11)

given F .
First, we show that for all S ⊂ S,

P
{
ĉ1−α(S) < c1−α(S)

} = o(1). (A.12)

To see this, note that by Assumption 3.2 and Lemma A.5, for each τ ∈ R,

P
{

T̂S ≤ τ | F
}

= P
{

W̃S ≤ τ | F
}

+oP(1). (A.13)
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Since the conditional density of WS given F is bounded uniformly over n, by Assump-
tion 3.5, the term oP(1) is uniform over τ ∈ R. Hence,

sup
τ∈R

∣∣∣P{
T̂S ≤ τ |F

}
−P

{
W̃S ≤ τ | F

}∣∣∣ = oP(1). (A.14)

Since ̃S − S is positive semidefinite, by Theorem 1 of Jensen (1984), we find that for
each τ ∈ R,

P {WS ≤ τ } ≤ P
{

W̃S ≤ τ
}

. (A.15)

Take any ε > 0. On the event that

sup
τ∈R

∣∣∣P{
W̃S ≤ τ | F

}
−P

{
ŴS,b ≤ τ | H

}∣∣∣ ≤ ε,

we have

P
{

W̃S ≤ ĉ1−α(S) | F
}

≥ P
{

ŴS,b ≤ ĉ1−α(S) | H
}

− ε

= 1−α − ε

= P
{
WS ≤ c1−α−ε(S)

}
≥ P

{
W̃S ≤ c1−α−ε(S)

}
,

by (A.15). Hence,

P
{
ĉ1−α(S) < c1−α−ε(S)

} ≤ P

{
sup
τ∈R

∣∣∣P{
ŴS,b ≤ τ | H

}
−P

{
W̃S ≤ τ | F

}∣∣∣ > ε

}
= o(1),

(A.16)

by Lemma A.6. Since the choice of ε was arbitrary, we obtain the desired result of (A.12).
Hence,

P
{

T̂S ≤ ĉ1−α(S)
}

≥ P
{

T̂S ≤ c1−α(S)
}

+o(1) (A.17)

≥ P
{
WS ≤ c1−α(S)

}+o(1) = 1−α +o(1),

by (A.13) and (A.15). �

Proof of Theorem 3.1. Using the same arguments in the proof of Lemmas A.3 and A.5,
we find that

σ̂ 2
S = σ̃ 2

S +oP(1), (A.18)

and

σ
−1/2
S

√
n(�̂S −�S) →d N(0,1). (A.19)

The desired result follows from these two results. �

Proof of Theorem 3.2. Note that ĉ1−α(S) is increasing in S. Hence, the desired result
follows from Lemma A.7 and Theorem 2.1 of Romano and Shaikh (2010). �
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