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A FUNCTIONAL CENTRAL LIMIT THEOREM
FOR SPATIAL BIRTH AND DEATH PROCESSES
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Abstract

We give a functional central limit theorem for spatial birth and death processes based on the
representation of such processes as solutions of stochastic equations. For any bounded
and integrable function in Euclidean space, we define a family of processes which is
obtained by integrals of this function with respect to the centered and scaled spatial birth
and death process with constant death rate. We prove that this family converges weakly to
a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates
to have a finite range of interaction. Instead, we require that the birth rates have a range
of interaction that decays polynomially. In order to show the convergence of the finite-
dimensional distributions of the above processes, we extend Penrose’s multivariate spatial
central limit theorem. An example of the asymptotic normalities of the time-invariance
estimators for the birth rates of spatial point processes is given.
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1. Introduction

Central limit theorems (CLTs) for interacting particle systems have a long history. Holley
and Stroock (1979) investigated large-scale behavior of certain classes of interacting particle
systems on Z

d and proved that, upon being averaged over increasingly large blocks of sites,
these processes converge weakly to Gaussian processes. Kesten and Lee (1996) proved a CLT
for weighted minimal spanning trees on random points. They applied a martingale CLT to
a sum of martingale differences. One of the key points in their approach was the use of the
monotonicity property for minimal spanning trees, which was extended to the stabilization
property in Lee (1997). The stabilization property states that if a homogeneous rate 1 Poisson
process is constructed by successively adding Poisson points in annuli centered at the origin
then the local structure of the successive minimal spanning trees eventually stabilizes. The
martingale method and the stabilization property were developed to give a CLT for functionals
of lattice-indexed white noise in Penrose (2001). Let X = (Xx, x ∈ Z

d) be a family of
independent, identically distributed white noises. Penrose considered a family of random
variables {H(X,B) : B over all the finite subsets of integer points}. For each finite subset B
of Z

d , H(X,B) is a function of (Xx, x ∈ B). He gave the CLT for H(X,B) as the set B
became large. Roughly speaking, his stabilization condition is that the effect on the functionals
of changing the value of the lattice system at a single site is local. Penrose (2005) established a
multivariate CLT for a general lattice system. The basic setting was similar to Penrose (2001),
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but Xx was not assumed to be Gaussian, and B was over all bounded subsets in R
d with zero

Lebesgue measure boundary. A novel feature of Penrose (2005) is that one more stabilization
condition was added. However, he used the assumption that the random variables H(X,B)
depend only on a finite collection of Xx . Since we are mainly concerned with functionals of
spatial birth and death processes, which do not satisfy the assumption, we prove a multivariate
CLT without it by adding the third stabilization condition.

In this paper we consider spatial birth and death processes in R
d , where d is a positive integer.

We identify the countable subset of points in R
d with the counting measure η given by assigning

unit mass to each point, that is, η(B) denotes the number of points in a set B ∈ B(Rd) (where
B(Rd) denotes the Borel subsets of R

d ). In Garcia and Kurtz (2006) spatial birth and death
processes were obtained as solutions of a system of stochastic equations. The processes are
required to be locally finite, but may involve an infinite population over the full (noncompact)
type space. A key point in this paper is that we apply our CLT to the stochastic equations of
Garcia and Kurtz (2006) to obtain functional CLTs for integrals of all bounded and integrable
functions with respect to the spatial birth and death processes.

After having completed this paper, we noticed the recent paper of Penrose (2007). There is an
overlap between these two papers. Penrose considered more general processes and also handled
processes with nonconstant death rate and even with immigration. However, in Penrose (2007)
the assumption of finite-range interaction was essential, which is used to prove the existence
of the Markov processes and to prove the CLT. In this paper we do not require finite-range
interaction, instead we assume a polynomial rate of decay of dependence.

The two main theorems are stated in Section 2 and their proofs are given in Sections 3
and 4. In Section 5 we present an example of the asymptotic normalities of the time-invariance
estimators for the birth rates of spatial point processes.

2. Definitions and main results

First we introduce some notation from Penrose (2005) which we will use throughout this
paper. For x = (x1, . . . , xd) ∈ R

d , write |x| for the Euclidean norm of x and ‖x‖ :=
max1≤i≤d |xi |. For A ⊆ R

d , l ∈ R, and y ∈ R
d , let lA denote the scaled set {lx : x ∈ A}, and

let τy(A) denote the translated set {y + x : x ∈ A}. Let ∂(A) denote the boundary of A. If A is
Lebesgue measurable, write |A| for its Lebesgue measure. Let Ã denote the discretization of
A given by Ã := {z ∈ Z

d : Bρ(z) ∩ A �= ∅}, where ρ ≥ √
d is a constant and Bρ(z) denotes

the open ball with center z and radius ρ.
Let R(Rd) denote the collection of Riemann measurable subsets (bounded measurable

subsets of R
d with zero Lebesgue boundary) of R

d . Let

X = (Xz, z ∈ Z
d)

be a family of independent, identically distributed random elements, and let

H = {Hl(X,A) : l ≥ 1, A ∈ R(Rd)}
be a collection of random variables where, for each l ≥ 1 and A ∈ R(Rd), Hl(X,A) is a
function of (Xz, z ∈ Z

d). We call H a random set function. We write Hl(X,A) as Hl(A)
whenever there is no possibility of confusion. For example, in this paper Hl(A) = ηt (lA). We
are interested in the weak convergence to a normal distribution of the family

l−d/2(Hl(A)− E[Hl(A)]), l ≥ 1.
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Penrose (2005) considered the case in which Hl(A) was a function of (Xz, z ∈ l̃C0), where
C0 is a Riemann measurable subset of R

d . Hence,Hl(A) depends only on a finite collection of
elements in (Xz, z ∈ Z

d). But the spatial birth and death processes in this paper do not satisfy
this condition. Hence, we extend the CLT to the case in which Hl(A) depends on the whole
system. We add one more condition to the conditions given in Penrose (2005).

Let X∗ be a copy of Xo and independent of the family X, where o is the origin of Z
d . Let

H = {Hl(A) = Hl(X,A) : l ≥ 1, A ∈ R(Rd)} be a random set function. For y, z ∈ Z
d , write

y ≺ z if y precedes z in the lexicographic ordering on Z
d , and write y � z if either y ≺ z or

y = z. Let Fy = ∨
z∈Zd , z�yσ {Xz}. For l ≥ 1 and y ∈ Z

d , define Hl,y(A) := Hl(τyX,A),
where τyX denotes the shifted family (Xz+y, z ∈ Z

d). For any y ∈ Z
d , define Xy to be the

family X with the value Xy at y replaced by the independent copy X∗, but with the values at
all the other sites the same. Let �Hl,y(A) = Hl,y(X,A)−Hl,y(X

o,A).

Condition 2.1. (Stabilization conditions.) There exists a random variable �H∞ such that, for
any sequence {(ln, yn) | ln ≥ 1, yn ∈ Z

d} and any A ∈ R(Rd),

�Hln,yn(A)
p−→ �H∞ if lim inf

n→∞ (τyn(lnA)) = R
d , (2.1)

�Hln,yn(A)
p−→ 0 if lim inf

n→∞ (τyn(ln(A
c))) = R

d , (2.2)

where ‘ p−→’denotes convergence in probability, and, for each A ∈ R(Rd), there existsKA > 0
(depending on A) such that

lim
l→∞

1

ld

∑
y∈Z

d

‖y‖≥lKA

E[(�Hl,y(A))2] = 0. (2.3)

Condition 2.2. (Moment condition.) There exists γ > 2 such that

sup{E[|�Hl,−y(A)|γ ] : A ∈ R(Rd), l ≥ 1, y ∈ Z
d} < ∞. (2.4)

Theorem 2.1. Suppose thatH 1, . . . , Hk are random set functions and are integrable for each
l ≥ 1 and A ∈ R(Rd). Each of them satisfies Conditions 2.1 and 2.2 for some γ > 2. Let the
k × k matrix (σ ∗

ij )
k
i,j=1 be given by

σ ∗
i,j := E[E[�Hi

∞ | Fo] E[�Hj

∞ | Fo]],
where o is the origin in Z

d . Then, if A1, . . . , Ak ∈ R(Rd), we have

lim
l→∞ l

−d cov(H i
l (Ai),H

j
l (Aj )) = σ ∗

i,j |Ai ∩ Aj |,

and, as l → ∞,

(l−d/2(H i
l (Ai)− E[Hi

l (Ai)]))ki=1
d−→ N (o, σ ∗

i,j |Ai ∩ Aj |)ki,j=1,

where ‘ d−→’ denotes convergence in distribution.

Remarks 2.1. (a) In Penrose (2005), Condition 2.1 contained only (2.1) and (2.2). However,
the Hl(A) were required to depend only on a finite number of random elements in the family
(Xz, z ∈ Z

d). We do not require this restriction here.
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(b) Suppose thatH satisfies, for every l ≥ 1, y ∈ R
d , and A ∈ R(Rd),Hl(X,A) = F(X, lA),

where {F(X,A) : A ∈ R(Rd)} is a collection of random variables, each of which is a function
of X. If F is translation invariant, that is, F(τy(X),A) = F(X, τy(A)), then the following
conditions imply (2.1) and (2.2). There exists a random variable�H∞ such that, for any sequence
{An ∈ R(Rd) : n = 1, 2, . . . },

F(X,An)− F(Xo,An)
p−→ �H∞ if lim inf

n→∞ (An) = R
d ,

F (X,An)− F(Xo,An)
p−→ 0 if lim inf

n→∞ (Ac
n) = R

d .

The result follows from the observation that

�Hl,y(A) = Hl,y(X,A)−Hl,y(X
o,A) = F(X, τy(lA))− F(X0, τy(lA)).

In this paper we take Hl(A) = ηt (lA), which satisfies the above conditions.

Let N (Rd) be the collection of counting measures on R
d . The state space of the spatial

birth and death processes will be some subset of N (Rd). All processes and random variables
are defined on a complete probability space (�,F ,P). The spatial birth and death process is
specified in terms of nonnegative functionsλ : R

d×N (Rd) → [0,+∞) andb : R
d×N (Rd) →

[0,+∞). Here λ(x, η) denotes the birth rate and b(x, η) denotes the death rate. If the point
configuration at time t is η ∈ N (Rd) then the probability that a point in a setA ⊂ R

d is added to
the configuration in the next time interval of length �t is approximately

∫
A
λ(x, η) dx�t , and

the probability that a point x ∈ η is deleted from the configuration in the next time interval of
length �t is approximately b(x, η)�t . Under these assumptions, the generator of the process
should be of the form

Af (η) =
∫

Rd

(f (η + δx)− f (η))λ(x, η) du+
∫

Rd

(f (η − δx)− f (η))b(x, η)η(dx)

for f in an appropriate domain, where δx denotes the point set which contains only one point
at x. Now we give our main theorem. For l ≥ 1, define

Y (l)(f, t) = 1

ld/2

(∫
Rd

f

(
x

l

)
ηt (dx)− E

[∫
Rd

f

(
x

l

)
ηt (dx)

])

for t ≥ 0 and f ∈ L1(Rd)∩L∞(Rd). Suppose that there exists a measurable function a(x, y)
on R

d × R
d satisfying

a(x, y) ≥ sup
η

|λ(x, η + δy)− λ(x, η)|.

Theorem 2.2. Assume that the birth rate λ is bounded by some positive number L and that it
is translation invariant. Suppose that η0 is a Poisson random measure on R

d with constant
intensity µ1. Suppose that

a(x, y) ≤ b

1 + |x − y|2d+δ (2.5)

for some constants b > 0 and δ > 0. Assume that there exists a positive function c(x) such
that

M = sup
x∈Rd

∫
Rd

c(x)a(x, y)

c(y)
dy < ∞, (2.6)

https://doi.org/10.1239/aap/1222868185 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868185


A CLT for spatial birth–death processes 763

and that c(x) is bounded in a neighborhood of the origin in R
d , i.e.

∫
Rd
(1/c(x)1/3) dx < ∞.

Then Y (l) converges to a Gaussian processW indexed by (L1(Rd)∩L∞(Rd))× [0,∞) in the
sense that, for any finite collection {f1, . . . , fn} of the functions in L1(Rd) ∩ L∞(Rd),

(Y (l)(f1, ·), . . . , Y (l)(fn, ·)) d−→ (W(f1, ·), . . . ,W(fn, ·))
as l → ∞ inDRn [0,∞). In addition, for each f ∈ L1(Rd)∩L∞(Rd),W(f, ·) has continuous
sample paths.

Remarks. (a) If inequality (2.5) is satisfied for some constant δ > d , all the conditions on
c(x) can be derived from (2.5). In fact, we can take c(x) = 1 + |x|2d+δ . Then 1/c(x)1/3 is
integrable and

M = sup
x∈Rd

∫
Rd

c(x)a(x, y)

c(y)
dy

= sup
x∈Rd

∫
Rd

(1 + |x|2d+δ)a(x, y)
1 + |y|2d+δ dy

= sup
x∈Rd

∫
Rd

(1 + |x − y + y|2d+δ)a(x, y)
1 + |y|2d+δ dy

≤ sup
x∈Rd

∫
Rd

b(1 + 22d+δ−1(|y|2d+δ + |x − y|2d+δ))
(1 + |y|2d+δ)(1 + |x − y|2d+δ) dy

≤ sup
x∈Rd

∫
Rd

22d+δ−1b(1 + |y|2d+δ + 1 + |x − y|2d+δ)
(1 + |y|2d+δ)(1 + |x − y|2d+δ) dy

≤ sup
x∈Rd

∫
Rd

22d+δ−1b

1 + |x − y|2d+δ dy +
∫

Rd

22d+δ−1b

1 + |y|2d+δ dy

≤ 22d+δb
∫

Rd

1

1 + |y|2d+δ dy

< ∞.

If the birth rate has a finite-interaction range, that is, a(x, y) = 0 if |x − y| is bigger than some
fixed constant which does not depend on x and y, then it satisfies (2.5) for any δ > 0.

(b) If c(x) is a positive function satisfying the conditions in Theorem 2.2 and a(x, y) satisfies
(2.5), then c(x) ∨ 1 = max{c(x), 1} also satisfies the conditions in Theorem 2.2. In fact,
defining c̃(x) = c(x) ∨ 1, we have∫

Rd

1

c̃(x)1/3
dx ≤

∫
Rd

1

c(x)1/3
dx < ∞

and

sup
x∈Rd

∫
Rd

c̃(x)a(x, y)

c̃(y)
dy ≤ sup

x∈Rd

∫
Rd

(c(x)+ 1)a(x, y)

c̃(y)
dy

≤ sup
x∈Rd

∫
Rd

c(x)a(x, y)

c̃(y)
dy + sup

x∈Rd

∫
Rd

a(x, y)

c̃(y)
dy

≤ sup
x∈Rd

∫
Rd

c(x)a(x, y)

c(y)
dy + sup

x∈Rd

∫
Rd

a(x, y) dy
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≤ sup
x∈Rd

∫
Rd

c(x)a(x, y)

c(y)
dy +

∫
Rd

b

1 + |y|2d+δ dy

< ∞.

Hence, we can choose c(x) to be a function bounded from below by a positive number; so
1/c(x) is bounded and, hence, 1/c(x)α is integrable for all α ≥ 1

3 .

Let E be the Schwartz space in R
d . Let E′ be its dual space.

Corollary 2.1. Suppose that the conditions of Theorem 2.2 are satisfied. Define a family of
E′-valued processes {ξ (l)t : t ≥ 0, l ≥ 1}. For any f ∈ E, the value of ξ (l)t at f is given by

ξ
(l)
t (f ) = 1

ld/2

(∫
Rd

f

(
x

l

)
ηt (dx)− E

[∫
Rd

f

(
x

l

)
ηt (dx)

])
.

Then the ξ (l) are E′-valued processes with sample paths in DE′ [0,∞) and there exists an
E′-valued process ξ with sample paths in CE′ [0,∞) such that ξ (l) → ξ weakly.

Proof. The result follows immediately from Theorem 2.2 and Theorem 5.3 of Mitoma
(1983).

3. Proof of Theorem 2.1

Let Hk = ∨
y∈Zd , ‖y‖≥k σ {Xy}, where k is a nonnegative integer. Then H0 is the σ -field

generated by all (Xz)z∈Zd .
In Penrose (2005) theHl(A)were assumed to depend only on a finite collection ofXy ; hence,

Hl(A)−E[Hl(A)] could be written as a sum of finite martingale differences. In this paper we do
not make this assumption. We writeHl(A)−E[Hl(A)] as the sum ofHl(A)−E[Hl(A) | H[lKA]]
and E[Hl(A) | H[lKA]]−E[Hl(A)], whereKA is a fixed positive number and [lKA] denotes the
largest integer number less than or equal to lKA. The second terms will be shown to converge
to 0 inL2(P) and the first terms can be written as a sum of finite martingale differences. Then we
follow the steps of the proof of Theorem 2.1 of Penrose (2005) to show the weak convergence
of the first terms. The following two technical lemmas are needed in our proof.

Lemma 3.1. Let (�,F ,P) be a probability space, and let (Dn, n ≥ 0) be a decreasing
sequence of sub-σ -fields of F . If E is another sub-σ -field independent of D0 then⋂

n

(E ∨ Dn) = E ∨
⋂
n

Dn

up to P-negligible sets.

Proof. It is easy to see that E ∨ ⋂
nDn ⊂ ⋂

n(E ∨ Dn). We prove the other direction.
For any C ∈ E and D ∈ D0, define a bounded backward martingale Yn = E[1C∩D | E
∨ Dn] = 1C E[1D | Dn], where 1C is the indicator function of C. Since Yn converges to
E[1C∩D | ⋂

n(E ∨ Dn)] almost surely (a.s.) and E[1D | Dn] converges to E[1D | ⋂
nDn]

a.s., we have E[1C∩D | ⋂
n(E ∨ Dn)] = 1C E[1D | ⋂

nDn] a.s., that is, E[1C∩D | ⋂
n(E ∨

Dn)] has a version which is E ∨⋂
nDn-measurable. By the π -λ theorem, we can show that, for

any B ∈ E ∨ D0, E[1B | ⋂
n(E ∨ Dn)] has an E ∨ ⋂

nDn-measurable version. Therefore,
B ∈ ⋂

n(E ∨ Dn) differs from an E∨⋂
nDn-measurable set by a negligible set. This completes

the proof.
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Lemma 3.2. The σ -field
⋂∞
k=1 Hk is trivial, that is, each of the sets in

⋂∞
k=1 Hk has probability

either 0 or 1.

Proof. The result is essentially Kolmogorov’s zero-one law.

Proof of Theorem 2.1. First we prove the theorem for the one-dimensional case. We can see
that if (2.3) is true for some KA > 0 then it is true for any number bigger than KA; hence, we
can choose KA > 0 such that (2.3) is true for KA and

A ⊂
{
x ∈ R

d

∣∣∣∣ ‖x‖ < KA

2

}
. (3.1)

Since

l−d/2(Hl(A)− E[Hl(A)])
= l−d/2(Hl(A)− E[Hl(A) | H[lKA]])+ l−d/2(E[Hl(A) | H[lKA]] − E[Hl(A)]).

If we can show that the second term on the right-hand side of the above equality converges to 0
in L2(P) and that the first term converges weakly to the required normal distribution, then we
are done.

For each y ∈ Z
d , let �l,y(A) = �l,y(X,A) := Hl(τy(X),A) − Hl(τy(X

o), A) and
�̃l,y(A) = Hl(X,A) − Hl(X

y,A). Then �̃l,y(A) = �l,−y(τy(X),A). By (2.1), there exists
a random variable �∞,y such that, for any sequence {(ln) ≥ 1} and any B ∈ R(Rd),

�̃ln,y(B) = �ln,−y(τy(X), B)
p−→ �∞,y if lim inf

n→∞ (τ−y(lnB)) = R
d ,

and the definition of �∞,y in terms of τy(X) is the same as that of �∞ in terms of X.
Firstly, we show that l−d/2(E[Hl(A) | H[lKA]] − E[Hl(A)]) converges to 0 in L2(P) as

l → ∞. Fix l. For any n ≥ [lKA], let {y(n)1 , . . . , y
(n)
mn } be the collection of all the points y ∈ Z

d

such that ‖y‖ = n. Then

E[(E[Hl(A) | Hn] − E[Hl(A) | Hn+1])2]

=
mn∑
i=1

E

[(
E

[
Hl(A)

∣∣∣∣ Hn+1

∨
1≤j≤i

σ {X
y
(n)
j

}
]

− E

[
Hl(A)

∣∣∣∣ Hn+1

∨
1≤j≤i−1

σ {X
y
(n)
j

}
])2]

=
mn∑
i=1

E

[(
E

[
Hl(X,A)−Hl(X

y
(n)
i , A)

∣∣∣∣ Hn+1

∨
1≤j≤i

σ {X
y
(n)
j

}
])2]

=
mn∑
i=1

E

[(
E

[
�̃
l,y

(n)
i

(A)

∣∣∣∣ Hn+1

∨
1≤j≤i

σ {X
y
(n)
j

}
])2]

≤
mn∑
i=1

E[(�̃
l,y

(n)
i

(A))2]

=
mn∑
i=1

E[(�
l,−y(n)i (τy(n)i (X),A))

2]
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=
mn∑
i=1

E[(�
l,−y(n)i (A))

2]

=
mn∑
i=1

E[(�
l,y

(n)
i

(A))2],

where the first equality follows from the martingale property and the last equality is true because
the two sets {y(n)1 , . . . , y

(n)
mn } and {−y(n)1 , . . . ,−y(n)mn } are the same. Since

{l−d/2 E[Hl(A) | Hn] : n ≥ [lKA]}
is a backward martingale with respect to {Hn : n ≥ [lKA]} and converges to

l−d/2 E

[
Hl(A)

∣∣∣∣ ⋂
n

Hn

]
a.s.,

which is equal to l−d/2 E[Hl(A)] by Lemma 3.2, we have

l−d E[(E[Hl(A) | H[lKA]] − E[Hl(A)])2]
≤ lim
n→∞ l

−d E[(E[Hl(A) | H[lKA]] − E[Hl(A) | Hn])2]

= lim
n→∞ l

−d
n−1∑

j=[lKA]
E[(E[Hl(A) | Hj ] − E[Hl(A) | Hj+1])2]

≤ l−d
∞∑

n=[lKA]

mn∑
i=1

E[(�H
l,y

(n)
i

(A))2]

= 1

ld

∑
y∈Z

d

‖y‖≥lKA

E[(�Hl,y(A))2],

which goes to zero by (2.3). The first inequality follows from Fatou’s Lemma. Therefore,
l−d/2(E[Hl(A) | H[lKA]] − E[Hl(A)]) → 0 in L2(P).

Now we use Penrose’s idea to prove that l−d/2(Hl(A)− E[Hl(A) | H[lKA]]) converges to a
normal distribution. Let {z1, . . . , znl } be the set of all the points z ∈ Z

d such that ‖z‖ < [lKA]
is ordered by lexicographic ordering on Z

d from the smallest to the largest. Then

Hl(A)− E[Hl(A) | H[lKA]]

=
nl∑
i=1

(
E

[
Hl(A)

∣∣∣∣ H[lKA]
∨

1≤j≤i
σ {Xzj }

]
− E

[
Hl(A)

∣∣∣∣ H[lKA]
∨

1≤j≤i−1

σ {Xzj }
])

=
nl∑
i=1

E

[
�̃l,zi (A)

∣∣∣∣ H[lKA]
∨

1≤j≤i
σ {Xzj }

]

=
nl∑
i=1

E[�̃l,zi (A) | H[lKA] ∨ Fzi ].
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Let Dlzi = E[�̃l,zi (A) | H[lKA] ∨ Fzi ], and let Dz = E[�∞,z | Fz] for each z ∈ Z
d . Then

{Dlzi | i = 1, . . . , nl} are martingale differences and the definition of Dz in terms of τz(X) is
the same as that of Do in terms of X.

Now we show that

l−d
nl∑
i=1

(Dlzi )
2 L1−→ E[E[(�∞ | Fo)

2]]|A|.

Set
sup{E[|�Hl,−y(B)|γ ] : B ∈ R(Rd), l ≥ 1, y ∈ Z

d} = M1 < ∞,

and note that

l−d
nl∑
i=1

(Dlzi )
2 = l−d

( ∑
zi∈(lA)

|zi−∂(lA)|>
√
l

(Dlzi )
2 +

∑
zi �∈(lA)

|zi−∂(lA)|>
√
l

(Dlzi )
2 +

∑
|zi−∂(lA)|≤

√
l

(Dlzi )
2
)
.

First, we show that

lim
l→∞ sup

zi∈(lA)
|zi−∂(lA)|>

√
l

| E[(Dlzi )2] − E[(Dzi )2]| = 0 and lim
l→∞ sup

zi �∈(lA)
|zi−∂(lA)|>

√
l

| E[(Dlzi )2]| = 0.

Let {(ln, znin) | ln ≥ 1, znin ∈ Z
d , n ≥ 1} be a sequence such that limn→∞ ln = ∞, znin ∈

lnA, and |znin − ∂(lnA)| > √
ln. Because {y ∈ R

d : |y − znin | ≤ √
ln} ⊂ lnA, we have {y ∈

R
d : |y| ≤ √

ln} ⊂ lnA − znin and, hence, lim infn→∞(lnA − znin) = R
d . By (2.1) and (2.4),

E[(�ln,−znin (A)−�∞)2] → 0. Now we compute

E[(Dln
znin

−Dznin
)2]

= E[(E[�̃ln,znin (A) | H[lnKA] ∨ Fznin
] − E[�∞,znin

| Fznin
])2]

≤ E[(E[�̃ln,znin (A) | H[lnKA] ∨ Fznin
] − E[�∞,znin

| H[lnKA] ∨ Fznin
]

+ E[�∞,znin
| H[lnKA] ∨ Fznin

] − E[�∞,znin
| Fznin

])2]
≤ 2 E[(E[�̃ln,znin (A)−�∞,znin

| H[lnKA] ∨ Fznin
])2]

+ 2 E[(E[�∞,znin
| H[lnKA] ∨ Fznin

] − E[�∞,znin
| Fznin

])2]
≤ 2 E[(�̃ln,znin (A)−�∞,znin

)2]
+ 2 E[(E[�∞,znin

| H[lnKA] ∨ Fznin
] − E[�∞,znin

| Fznin
])2]

= 2 E[(�ln,−znin (τznin (X),A)−�∞(τznin (X)))
2]

+ 2 E[(E[�∞,znin
| H[lnKA] ∨ Fznin

] − E[�∞,znin
| Fznin

])2]
= 2 E[(�ln,−znin (A)−�∞)2] + 2 E[(E[�∞ | Gn ∨ Fo] − E[�∞ | Fo])2],

whereGn = σ {Xy | 0 ≺ y, ‖y+znin‖ ≥ [lnKA]} is independent ofFo. Since znin ∈ lnA, by (3.1)
we have ‖znin‖ < [lnKA]/2. Hence, if ‖y + znin‖ ≥ [lnKA] then ‖y‖ ≥ [lnKA]/2 ≥ [lnKA/2],
and we have Gn ⊂ H[lnKA/2] ∩ σ {Xy | 0 ≺ y}. On the other hand, if ‖y‖ ≥ 2[lnKA] then
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‖y + znin‖ ≥ [lnKA], and we have H2[lnKA] ∩ σ {Xy | 0 ≺ y} ⊂ Gn. Because ln → ∞, we can
choose a subsequence of Gn, which is decreasing. Without loss of generality, we assume that
Gn is itself a decreasing sequence. By Lemma 3.2,

⋂
n Gn ⊂ ⋂

nH[lnKA/2] is trivial; hence,⋂
n(Gn ∨ Fo) = (

⋂
n Gn) ∨ Fo = Fo up to negligible sets, by Lemma 3.1. Therefore, we have

E[(E[�∞ | Gn ∨ Fo] − E[�∞ | Fo])2] → 0, by the backward martingale theorem. Now we
have E[(Dln

znin
−Dznin

)2] → 0 and

| E[(Dlnzin )2] − E[(Dznin )
2]| = | E[(Dlnzin −Dznin

)(Dlnzin
+Dznin

)]|
≤ (E[(Dlnzin −Dznin

)2] E[(Dlnzin +Dznin
)2])1/2

≤ 2M1/γ
1 (E[(Dlnzin −Dznin

)2])1/2
→ 0,

where the last inequality follows from Condition 2.2 and Jensen’s inequality. Hence,

lim
l→∞ sup

zi∈lA
|zi−∂(lA)|>

√
l

| E[(Dlzi )2] − E[(Dzi )2]| = 0,

and, similarly, we can show that

lim
l→∞ sup

zi �∈lA
|zi−∂(lA)|>

√
l

| E[(Dlzi )2]| = 0.

Now we have
l−d

∑
zi∈lA

|zi−∂(lA)|>
√
l

| E[(Dlzi )2] − E[(Dzi )2]| → 0, (3.2)

l−d
∑
zi �∈lA

|zi−∂(lA)|>
√
l

E[(Dlzi )2] → 0, (3.3)

l−d
∑

|zi−∂(lA)|≤
√
l

E[(Dlzi )2] → 0. (3.4)

Equation (3.4) holds by the moment condition and the fact that the Lebesgue measure of ∂A
is 0. By the ergodic theorem,

l−d
∑
zi∈lA

|zi−∂(lA)|>
√
l

(Dzi )
2 L1−→ E[E[(�∞ | F0)

2]]|A|,

and by (3.2)–(3.4) we have

l−d
nl∑
i=1

(Dlzi )
2 L1−→ E[E[(�∞ | F0)

2]]|A|. (3.5)

Because

E
[(

max
1≤i≤nl

(l−d/2|Dlzi |)
)γ ]

≤ l−γ d/2 E

[ nl∑
i=1

|Dlzi |γ
]

≤ (2[lKA] + 1)dM1

lγ d/2
→ 0 as l → ∞,
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we have

sup
l≥1

E
[

max
1≤i≤nl

(l−d/2|Dlzi |)2
]

≤ sup
l≥1

[
E
[(

max
1≤i≤nl

(l−d/2|Dlzi |)
)γ ]]2/γ

< ∞, (3.6)

l−d/2 max
1≤i≤nl

|Dlzi | → 0 in probability. (3.7)

Hence, by (3.5)–(3.7) and Theorem (2.3) of McLeish (1974), we have the required CLT. For
the multidimensional case, we can prove the CLT for any linear combination by the same
martingale argument as the one-dimensional case. Then by the Cramer–Wold device we can
obtain the multidimensional CLT.

4. Proof of Theorem 2.2

We will prove our functional CLT by the following steps. Firstly, we will prove the CLT
for ηt (lA) as l → ∞, where A is any Riemann measurable subset, and t ≥ 0. In order to
do this, we apply Theorem 2.1 to the stochastic equations of Garcia and Kurtz (2006). Note
that ηt (lA) can be written as

∫
Rd

1A(x/l)ηt (dx). Hence, by using the linear combinations
of indicator functions of Riemann measurable subsets to approximate a general bounded and
integrable function f , we can prove the weak convergence of finite-dimensional distributions
of Y (l)(f, t). Secondly, we will prove the relative compactness of

{(Y (l)(f1, t), . . . , Y
(l)(fn, t)) : l ≥ 1}.

In Garcia and Kurtz (2006) spatial birth and death processes were obtained as solutions of
a system of stochastic equations. The processes were required to be locally finite, that is, the
number of points in each compact subset was finite. But there could be infinitely many points
over the full (noncompact) space. The state space and its topology for the processes are given
as follows. We will use them in this paper.

Let F1 ⊂ F2 ⊂ · · · satisfy
⋃
k Fk = R

d , and let ck be bounded continuous functions on R
d

which satisfy ck ≥ 0 and infx∈Fk ck(x) > 0. Define the state space

S =
{
ξ ∈ N (Rd) :

∫
Rd

ck(x)ξ(dx) < ∞, k = 1, 2, . . .

}
.

Assume that c1 ≤ c2 ≤ · · · . Let

C = {f ∈ C̄(Rd) : |f | ≤ ack for some k and a > 0},
and topologize S by the weak topology generated by C. Then S is a separable metric space.
Here DS[0,∞) will denote the space of càdlàg S-valued functions, i.e. those which are right
continuous and have left limits, with the Skorokhod (J1) topology.

In this paper we assume that the death rate is equal to a nonnegative constant b0. If b0 = 0,
the process is the spatial pure-birth process. Let N denote a Poisson random measure on
R
d × [0,∞)3 with mean measure dx × ds × e−r dr × du independent of η0. Here η0 is the

initial point process in Theorem 2.2. Let η̂0 be the point process on R
d × [0,∞) obtained by

associating to each ‘count’ in η0 an independent, unit exponential random variable. Then the
spatial birth and death process ηt satisfies a stochastic equation of the form

ηt (A) =
∫
A×[0,t]×[0,+∞)2

1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)N(dx, ds, dr, du)

+
∫
A×[0,∞)

1(b0t,∞)(r)η̂0(dx, dr). (4.1)
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The following two conditions given in Garcia and Kurtz (2006) guarantee that the integral on
the right-hand side of (4.1) exists and determines an S-valued process with sample paths in
DS[0,∞).

Condition 4.1. (Garcia and Kurtz (2006).) For each compact K ⊂ S,

sup
ζ∈K

∫
Rd

ck(x)λ(x, ζ ) dx < ∞, k = 1, 2, . . . .

Condition 4.2. (Garcia and Kurtz (2006).) If limn→∞
∫

Rd
ck(x)|ζn − ζ |(dx) = 0 for each

k = 1, 2, . . . then λ(x, ζ ) = limn→∞ λ(x, ζn).

We say that N is compatible with respect to a filtration {Ft } if, for any measurable subset A
in R

d × [0,∞)2, N(A, [0, t]) is Ft -measurable and N(A, (t, s]) is independent of Ft , where
0 ≤ t < s. A solution of (4.1) is a process satisfying the following properties.

(i) It is a process with sample paths in DS[0,∞).

(ii) It is adapted to a filtration {Ft } with respect to which N is compatible such that (4.1)
holds a.s. for all Borel subsets A and t ≥ 0 (allowing ∞ = ∞).

The following theorem is a combination of Theorem 2.13 and Lemma 3.14 of Garcia and
Kurtz (2006).

Theorem 4.1. (Garcia and Kurtz (2006).) Assume that λ is translation invariant and satisfies
Conditions 4.1 and 4.2, and that η0 is translation invariant. Suppose that there exists a
measurable function a(x, y) on R

d × R
d satisfying

a(x, y) ≥ sup
η

|λ(x, η + δy)− λ(x, η)|

and that there exists a positive and bounded function h(x) such that

M ′ = sup
x∈Rd

∫
Rd

h(x)a(x, y)

h(y)
dy < ∞.

Then there exists a unique solution to (4.1) and ηt is translation invariant.

Remarks 4.1. (a) The boundedness of h(x) was not included in Garcia and Kurtz (2006).
However, in the proof of the above theorem in Garcia and Kurtz (2006) the finiteness of the
supremum of the product ofh(x) and some integral was used implicitly, which cannot be derived
without the boundedness of h(x).

(b) The following inequality is Lemma 2.15 of Garcia and Kurtz (2006): for any η1, η2 ∈ S,

|λ(x, η1)− λ(x, η2)| ≤
∫

Rd

a(x, y)|η1 − η2|(dy),

where |η1 − η2|(dy) denotes the total variation of η1 − η2. We will use this inequality in the
following.
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(c) In Theorem 2.2 we assume that λ(x, ζ ) is bounded. We set ck(x) to be integrable. Then
Condition 4.1 is satisfied. Moreover, we set c1(x) to be 1/(1 + |x|2d+δ). For each x, we can
find a number k(x) which depends only on x, such that

a(x, y) ≤ k(x)c1(y) for all y.

Then Condition 4.2 is satisfied. In fact, if limn→∞
∫
S
c1(x)|ζn − ζ |(dx) = 0,

|λ(x, ζ )− λ(x, ζn)| ≤
∫
S

a(x, y)|ζn − ζ |(dy) ≤ k(x)

∫
S

c1(y)|ζn − ζ |(dy) → 0.

(d) From the proof in Garcia and Kurtz (2006), we can see that the unique solution is adapted
to the filtration generated by N and η̂.

Here we only prove the theorem for a unit death rate because, for other positive constants,
the proof is the same and, for the spatial pure-birth process, the proof is similar and simpler.
Under the conditions of Theorem 2.2, λ is bounded byL and supx

∫
Rd
a(x, y) dy < ∞. Hence,

we can set h(x) = 1. Then we have supx
∫

Rd
(h(x)a(x, y)/h(y)) dy < ∞ and, by Theorem 4.1

and Remarks 4.1, the stochastic equation (4.1) has a unique solution which has the same
distribution as our spatial birth and death process ηt . We can just assume that ηt is the solution
of (4.1). By Remark 4.1(d), ηt is adapted to the filtration generated by N and η̂0. For any
set E ⊂ R

d × [0,∞)3 (or R
d × [0,∞)), we use N |E (or η̂0|E) to denote the restriction of N

(or η̂0) to E. Let B0 = ∏d
i=1[− 1

2 ,
1
2 ) be the unit cube with its center at the origin in R

d . Then
B0 + z is the unit cube with its center at z ∈ Z

d . We define a family of independent, identically
distributed random elements X = (Xz, z ∈ Z

d), where

Xz = (τ−z(N |(B0+z)×[0,∞)3), τ−z(η̂0|(B0+z)×[0,∞)))

and τ−z denotes the shift operator. Let N0 be a Poisson random measure on B0 × [0,∞)3

independent of N which has the same distribution as N |B0×[0,∞)3 , and let N0 be the Poisson
random measure obtained from N by replacing N |B0×[0,∞)3 with N0. Let η̂0,0 be a random
measure independent of η̂0, having the same distribution as η̂0|B0×[0,∞), and let η̂0

0 be η̂0 with
the restriction to B0 × [0,∞) replaced by η̂0,0. Let X∗ = (N0, η̂0,0). Then X∗ has the same
distribution asX0 and is independent of (Xz). LetXo be the familyX withX0 replaced byX∗
and all other entries the same as X.

Since the function c(x) in the conditions of Theorem 2.2 is bounded in a neighborhood of
the origin in R

d , without loss of generality, we assume that c(x) is bounded in B0. Otherwise,
we can replace the lattice Z

d by εZd for a sufficiently small ε > 0.
Let

ξ
(l)
t (A) = 1

ld/2
(ηt (lA)− E[ηt (lA)]),

where 1 ≤ l < ∞. For any 0 ≤ t1 ≤ · · · ≤ tn and Riemann measurable sets A1, . . . , An,
we will use Theorem 2.1 to show that (ξ (l)t1 (A1), . . . , ξ

(l)
tn
(An)) converges weakly to some

multivariate normal distribution. Let Hl(X,A) = ηt (lA), where t ≥ 0 and A is a Riemann
measurable set in R

d , and, for any z ∈ Z
d , let Hl,z(X,A) = Hl(τz(X),A) = ηt (lA + z).

Therefore,

�Hl,z(A) = Hl,z(X,A)−Hl,z(X
o,A) = ηt (lA+ z)− η0

t (lA+ z),

where η0
t is the unique solution of (4.1) with N replaced by N0. We have to check that

Theorem 2.1 satisfies Conditions 2.1 and 2.2.
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Lemma 4.1. Suppose that λ is bounded byL and that supx
∫

Rd
a(x, y) dy < ∞. Then, for any

t ≥ 0, we have

sup
x∈Rd

c(x)E

[∫
Rd

a(x, y)|ηt − η0
t |(dy)

]
≤ 2(L+ µ1)

[
sup
z∈B0

c(z)
]
etM .

Proof. For any x ∈ R
n, we have

E

[∫
a(x, y)|ηt − η0

t |(dy)
]

≤ E

[∫ t

0

∫
Bc

0×[0,+∞)2
a(x, y)| 1[0,λ(y,ηs−)](u)− 1[0,λ(y,η0

s−)](u)|

× 1(t−s,∞)(r)N(dy, ds, dr, du)

]

+ E

[∫ t

0

∫
B0×[0,+∞)2

a(x, y) 1[0,λ(y,ηs−)](u) 1(t−s,∞)(r)N(dy, ds, dr, du)

]

+ E

[∫ t

0

∫
B0×[0,+∞)2

a(x, y) 1[0,λ(y,η0
s−)](u) 1(t−s,∞)(r)N

0(dy, ds, dr, du)

]

+ E

[∫
B0×[0,∞)

a(x, y) 1(t,∞)(r)η̂0(dy, dr)

]

+ E

[∫
B0×[0,∞)

a(x, y) 1(t,∞)(r)η̂
0
0(dy, dr)

]

≤
∫ t

0

∫
Rd

a(x, y)E[|λ(y, ηs)− λ(y, η0
s )|]e−(t−s) dy ds

+ 2L
∫ t

0

∫
B0

a(x, y)e−(t−s) dy ds

+ E

[∫
B0

a(x, y)η0(dy)

]
+ E

[∫
B0

a(x, y)η0
0(dy)

]

≤
∫ t

0

∫
a(x, y)E

[∫
a(y, z)|ηs − η0

s |(dz)
]

e−(t−s) dy ds + 2(L+ µ1)

∫
B0

a(x, y) dy.

By iteration, for any positive integer n, we have

E

[∫
a(x, y)|ηt − η0

t |(dy)
]

≤ 2(L+ µ1)

(∫
a(x, y) dy +

∫ t

0
e−(t−s) ds

∫ ∫
B0

a(x, y)a(y, y1) dy1 dy + · · ·

+
∫ t

0

(t − s)n

n! e−(t−s) ds
∫

· · ·
∫
B0

a(x, y)a(y, y1) · · · a(yn−1, yn) dyn · · · dy1 dy

)
+ Rn,
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where

Rn =
∫

· · ·
∫
B0

a(x, y)a(y, y1) · · · a(yn−1, yn)

×
∫ t

0
E

[∫
a(yn, yn+1)|ηt − η0

t |(dyn+1)

]
(t − s)n

n! e−(t−s) ds dyn+1 dyn · · · dy1 dy

is the remainder term. We estimate Rn. Let K = supx
∫

Rd
a(x, y) dy < ∞. Because

E

[∫
a(yn, yn+1)|ηt − η0

t |(dyn+1)

]

≤ E

[∫
a(yn, yn+1)(ηt (dyn+1)+ η0

t (dyn+1))

]

≤ 2 E

[∫
a(yn, yn+1)ηt (dyn+1)

]

= E

[∫ t

0

∫
Rd×[0,+∞)2

a(yn, yn+1) 1[0,λ(yn+1,ηs−)](u) 1(t−s,∞)(r)N(dyn+1, ds, dr, du)

]

+ E

[∫
Rd×[0,∞)

a(yn, yn+1) 1(t,∞)(r)η̂0(dyn+1, dr)

]

≤ (L+ µ1)

∫
a(yn, yn+1) dyn+1

≤ (L+ µ1)K,

we have

Rn =
∫

· · ·
∫
B0

a(x, y)a(y, y1) · · · a(yn−1, yn)

×
∫ t

0
E

[∫
a(yn, yn+1)|ηt − η0

t |(dyn+1)

]
(t − s)n

n! e−(t−s) ds dyn+1 dyn · · · dy1 dy

≤ K

∫ t

0

(t − s)n

n! e−(t−s) ds
∫

· · ·
∫
a(x, y)a(y, y1) · · · a(yn−1, yn) dyn · · · dy1 dy

≤ Kn+2
∫ t

0

(t − s)n

n! e−(t−s) ds

→ 0 as n → ∞.

For any 0 ≤ k ≤ n,

∫
· · ·

∫
B0

a(x, y)a(y, y1) · · · a(yk−1, yk) dyk · · · dy1 dy

≤
∫

· · ·
∫
a(x, y)a(y, y1) · · · a(yk−2, yk−1)

1

c(yk−1)

×
∫
B0

c(yk−1)a(yk−1, yk)

c(yk)
dyk sup

z∈B0

c(z) dyk−1 · · · dy1 dy
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≤ M
[

sup
z∈B0

c(z)
] ∫

· · ·
∫
a(x, y)a(y, y1) · · · a(yk−3, yk−2)

1

c(yk−2)

×
∫
c(yk−2)a(yk−2, yk−1)

c(yk−1)
dyk−1 dyk−2 · · · dy1 dy

≤ · · ·
≤ Mk

[
sup
z∈B0

c(z)
] 1

c(x)

∫
c(x)a(x, y)

c(y)
dy

≤ Mk+1
[

sup
z∈B0

c(z)
] 1

c(x)

and ∫ t

0

(t − s)k

k! e−(t−s) ds ≤
∫ t

0

(t − s)k

k! ds = tk+1

(k + 1)! .
Therefore,

E

[∫
a(x, y)|ηt − η0

t |(dy)
]

≤ 2(L+ µ1)

n∑
k=1

(tM)k+1

(k + 1)!
[

sup
z∈B0

c(z)
] 1

c(x)
+ Rn,

and, hence,

E

[∫
a(x, y)|ηt − η0

t |( dy)

]
≤ 2(L+ µ1)

∞∑
k=1

(tM)k+1

(k + 1)!
[

sup
z∈B0

c(z)
] 1

c(x)

≤ 2(L+ µ1)e
tM

[
sup
z∈B0

c(z)
] 1

c(x)
.

Now we have

sup
x∈Rd

c(x)E

[∫
Rd

a(x, y)|ηt − η0
t |(dy)

]
≤ 2(L+ µ1)

[
sup
z∈B0

c(z)
]
etM .

Condition 2.1 follows by the next lemma.

Lemma 4.2. Under the condition
∫

Rd
(1/c(x)1/3) dx < ∞, we have

sup{E[(|ηt − η0
t |(B))3] : B is a bounded measurable set in R

d} < ∞.

Proof. Fix t ≥ 0. For 0 ≤ t ′ ≤ t and any bounded measurable subset B, we define

ζt ′(B) =
∫
B×[0,t ′]×[0,+∞)2

1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)N(dx, ds, dr, du)

+
∫
B×[0,∞)

1(t,∞)(r)η̂0(dx, dr),

ζ 0
t ′ (B) =

∫
B×[0,t ′]×[0,+∞)2

1[0,λ(x,η0
s−)](u) 1(t−s,∞)(r)N

0(dx, ds, dr, du)

+
∫
B×[0,∞)

1(t,∞)(r)η̂
0
0(dx, dr).
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Note that ζt ′(B) denotes the number of points in B born before and at time t ′ that are still alive
at time t . LetZt ′ = |ζt ′ −ζ 0

t ′ |(B).ThenZt ′ is increasing andZt = |ζt −ζ 0
t |(B) = |ηt −η0

t |(B).
Since the region B is bounded, Zt ′ has only finitely many jumps and �Zt ′ = 0 or 1 a.s. We
have

Z3
t =

∑
0<s≤t

[Z3
s − Z3

s−] + Z3
0

=
∑

0<s≤t
3Z2

s−�Zs +
∑

0<s≤t
3Zs−(�Zs)2 +

∑
0<s≤t

(�Zs)
3 + Z3

0

=
∑

0<s≤t
3Z2

s−�Zs +
∑

0<s≤t
3Zs−�Zs +

∑
0<s≤t

�Zs + Z3
0 . (4.2)

We have Z0 ≤ η0(B0 ∩B)+ η0
0(B0 ∩B), and the right-hand side has a Poisson distribution

with mean 2µ1m(B0 ∩ B), where m is the Lebesgue measure. Hence, E[Z3
0] ≤ 8µ3

1m(B0 ∩
B)3 + 12µ2

1m(B0 ∩ B)2 + 2µ1m(B0 ∩ B) ≤ 8µ3
1 + 12µ2

1 + 2µ1. Now we estimate the first
term on the right-hand side of (4.2):

E

[ ∑
0<s≤t

3Z2
s−�Zs

]

= 3 E

[∫ t

0
Z2
s−

×
∫
B∩Bc

0×[0,+∞)2
| 1[0,λ(x,ηs−)](u)− 1[0,λ(x,η0

s−)](u)|

× 1(t−s,∞)(r)N(dx, ds, dr, du)

]

+ 3 E

[∫ t

0
Z2
s−

∫
B∩B0×[0,+∞)2

1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)

]
N(dx, ds, dr, du)

+ 3 E

[∫ t

0
Z2
s−

∫
B∩B0×[0,+∞)2

1[0,λ(x,η0
s−)](u) 1(t−s,∞)(r)N0(dx, ds, dr, du)

]

= 3 E

[∫ t

0
Z2
s−

×
∫
B∩Bc

0×[0,+∞)2
| 1[0,λ(x,ηs−)](u)− 1[0,λ(x,η0

s−)](u)|

× 1(t−s,∞)(r) dx dse−r dr du

]

+ 3 E

[∫ t

0
Z2
s−

∫
B∩B0×[0,+∞)2

1[0,λ(x,ηs−)](u) 1(t−s,∞)(r) dx dse−r dr du

]

+ 3 E

[∫ t

0
Z2
s−

∫
B∩B0×[0,+∞)2

1[0,λ(x,η0
s−)](u) 1(t−s,∞)(r) dx dse−r dr du

]

≤ 3 E

[∫ t

0
Z2
s

∫
B

|λ(x, ηs)− λ(x, η0
s )|e−(t−s) dx ds

]
+ 6LE

[∫ t

0
Z2
s e−(t−s) ds

]
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≤ 3
∫ t

0

∫
B

E[Z2
t |λ(x, ηs)− λ(x, η0

s )|]e−(t−s) dx ds + 6LE[Z2
t ]

≤ 3(E[Z3
t ])2/3

∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 6L(E[Z3

t ])2/3,

Similarly, for the second term and the third term on the right-hand side of (4.2), we have

3 E

[ ∑
0≤s≤t

3Zs−�Zs
]

≤ 3(E[Z3
t ])1/3

∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3/2)2/3e−(t−s) dx ds + 6L(E[Z3

t ])1/3

≤ 3(E[Z3
t ])1/3

∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 6L(E[Z3

t ])1/3

and

E

[ ∑
0≤s≤t

�Zs

]
≤

∫ t

0

∫
B

E[|λ(x, ηs)− λ(x, η0
s )|]e−(t−s) dx ds + 2L

≤
∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 2L.

Now, we can estimate E[Z3
t ]:

E[Z3
t ] ≤ 3(E[Z3

t ])2/3
∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 6L(E[Z3

t ])2/3

+ 3(E[Z3
t ])1/3

∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 6L(E[Z3

t ])1/3

+
∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds + 2L+ E[Z3

0].

Let x = (E[Z3
t ])1/3, a0 = b0 = 3

∫ t
0

∫
B
(E |λ(x, ηs) − λ(x, η0

s )|3)1/3e−(t−s) dx ds + 6L,
and c0 = a0/3 + E[Z3

0]. Here x, a0, b0, and c0 all depend on B. Now we have the inequality
x3 ≤ a0x

2 + b0x + c0. If we can show that a0, b0, and c0 are all uniformly bounded for all B
then x is uniformly bounded for all B, that is, we have Condition 2.2.

So we calculate∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|3)1/3e−(t−s) dx ds

≤ (2L)2/3
∫ t

0

∫
B

(E |λ(x, ηs)− λ(x, η0
s )|)1/3e−(t−s) dx ds

≤ (2L)2/3
∫ t

0

∫
B

(
E

[∫
a(x, y)|ηs − η0

s |(dy)
])1/3

e−(t−s) dx ds

≤ (2L)2/3
∫ t

0

∫
B

(
1

c(x)
sup
z
c(z)E

[∫
a(z, y)|ηs − η0

s |(dy)
])1/3

e−(t−s) dx ds

≤ (2L)2/3
∫
B

1

c(x)1/3
dx

∫ t

0

(
2(L+ µ1)

[
sup
y∈B0

c(y)
]
esM

)1/3
e−(t−s) ds
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≤ (2L)2/3
∫
B

1

c(x)1/3
dx

∫ t

0

(
2(L+ µ1) sup

y∈B0

c(y)
)1/3

esM/3e−(t−s) ds

≤ (2L)2/3
(∫

Rd

1

c(x)1/3
dx

)
t
(

2(L+ µ1) sup
y∈B0

c(y)
)1/3

etM/3,

which is uniformly bounded for all B, where the fourth inequality follows from Lemma 4.1.
This completes the proof.

Next, we show that Condition 2.1 is satisfied. By a similar calculation as in the proof of
Lemma 4.2, we have

E[|ηt − η0
t |(B)] ≤

∫ t

0

∫
B

E[|λ(x, ηs)− λ(x, η0
s )|]e−(t−s) dx ds + 2(L+ µ1)

∫
B∩B0

dx

≤
∫ t

0

∫
B

E

[∫
a(x, y)|ηs − η0

s |(dy)
]

e−(t−s) ds dx + 2(L+ µ1)

∫
B∩B0

dx

≤
∫ t

0

∫
B

1

c(x)
sup
z
c(z)E

[∫
a(z, y)|ηs − η0

s |(dy)
]

e−(t−s) dx ds

+ 2(L+ µ1)

∫
B∩B0

dx

≤ J
(1)
t

(∫
B

1

c(x)
dx +

∫
B∩B0

dx

)
, (4.3)

where J (1)t is a constant which depends on t , but does not depend onB. By an argument similar
to the proof of Lemma 4.2, we can show that (E[(|ηt − η0

t |(B))2])1/2 is less than a number α
that satisfies the following inequality:

α2 ≤ αJ ′
t

∫
B

1

c(x)1/2
dx + J ′′

t

(∫
B

1

c(x)1/2
dx +

∫
B∩B0

dx +
(∫

B∩B0

dx

)2)
.

Hence, we have

E[(|ηt−η0
t |(B))2] ≤ J

(2)
t

((∫
B

1

c(x)1/2
dx

)2

+
∫
B

1

c(x)1/2
dx+

∫
B∩B0

dx+
(∫

B∩B0

dx

)2)
,

(4.4)
where J (1)t , J (2)t , and J ′

t , J
′′
t are all constants which depend on t , but do not depend on B.

Let {Cn} be a sequence of bounded measurable subsets of R
d satisfying lim infn→∞ Cn =

R
d . We will show that {ηt (Cn)− η0

t (Cn) | n = 1, 2, 3, . . .} is a Cauchy sequence in L1(P).
For any two positive integers m and n, by (4.3),

| E[(ηt (Cn)− η0
t (Cn))− (ηt (Cm)− η0

t (Cm))]|
≤ E[|ηt − η0

t |(Cn \ Cm)] + E[|ηt − η0
t |(Cm \ Cn)]

≤ J
(1)
t

(∫
Cn�Cm

1

c(x)
dx +

∫
(Cn�Cm)∩B0

dx

)
,

where Cn�Cm is the symmetric difference of Cn and Cm which converges to ∅ asm, n → ∞.
Therefore, {ηt (Cn) − η0

t (Cn) | n = 1, 2, 3, . . .} converges in L1(P). This proves the first
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stabilization condition by Remark 2.1(b). The second stabilization condition can be proved by
the same argument.

Now we show that the third stabilization condition is true. Let A be any given Riemann
measurable subset in R

d . Choose a large positive number KA such that supx∈A ‖x‖ < KA/2.
For any l ≥ 1 and any y ∈ Z

d such that ‖y‖ ≥ lKA, we have (lA + y) ∩ {x ∈ R
d : ‖x‖ ≤

lKA/2} = ∅. Hence, for all large enough l, we have (lA+ y) ∩ B0 = ∅ and∫
lA+y

1

c(x)1/2
dx ≤

∫
‖x‖≥lKA/2

1

c(x)1/2
dx ≤ 1.

By (4.4),

1

ld

∑
y∈Z

d

‖y‖≥lKA

E[(�Hl,y(A))2] ≤ 1

ld

∑
y∈Z

d

‖y‖≥lKA

E[(|ηt − η0
t |(lA+ y))2]

≤ 1

ld

∑
y∈Z

d

‖y‖≥lKA

J
(2)
t

((∫
lA+y

1

c(x)1/2
dx

)2

+
∫
lA+y

1

c(x)1/2
dx

+
∫
(lA+y)∩B0

dx +
(∫

(lA+y)∩B0

dx

)2)

≤ 1

ld

∑
y∈Z

d

‖y‖≥lKA

J
(2)
t

(∫
lA+y

1

c(x)1/2
dx +

∫
lA+y

1

c(x)1/2
dx

)

≤ 2

ld

∑
y∈Z

d

‖y‖≥lKA

J
(2)
t

∫
lA+y

1

c(x)1/2
dx

≤ 2J (2)t

ld

∑
y∈Z

d

‖y‖≥lKA

∑
z∈Z

d

(z+B0)∩lA�=∅

∫
B0+z+y

1

c(x)1/2
dx

= 2J (2)t

ld

∑
z∈Z

d

(z+B0)∩lA�=∅

∑
y∈Z

d

‖y‖≥lKA

∫
B0+z+y

1

c(x)1/2
dx

≤ 2J (2)t

ld

∑
z∈Z

d

(z+B0)∩lA�=∅

∫
‖x‖≥lKA/2−2

1

c(x)1/2
dx

≤ 2J (2)t

ld
(lKA + 2)d

∫
‖x‖≥lKA/2−2

1

c(x)1/2
dx

→ 0 as l → ∞,

where the penultimate inequality is true because, for any x ∈ B0+z+y, ‖x‖ ≥ ‖y‖−‖z‖−1 ≥
lKA/2 − 2. Hence, the third stabilization condition is true. Now we can derive the following
theorem from Theorem 2.1.
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Theorem 4.2. Assume that the birth rate λ is bounded by some positive number L and that
it is translation invariant. Suppose that η0 is a Poisson random measure on R

d with con-
stant intensity and that there exists a positive function c(x) such that (2.6) is satisfied. The
function c(x) is bounded in a neighborhood of the origin in R

d , i.e.
∫

Rd
(1/c(x)) dx < ∞ and∫

Rd
(1/c(x)1/3) dx < ∞. Suppose that

sup
x

∫
Rd

a(x, y) dy < ∞.

Let ξ (l)t (A) = (1/ld/2)(ηt (lA) − E[ηt (lA)]), where 1 ≤ l < ∞. For any 0 ≤ t1 ≤ · · · ≤ tn
and Riemann measurable sets A1, . . . , An, (ξ (l)t1 (A1), . . . , ξ

(l)
tn
(An)) converges weakly to a

multivariate normal distribution and the variance-covariance matrix of the limit distribution
can be given in terms of �∞, as in Theorem 2.1.

Recall that we defined Y (l), l ≥ 1, as

Y (l)(f, t) = 1

ld/2

(∫
Rd

f

(
x

l

)
ηt (dx)− E

[∫
Rd

f

(
x

l

)
ηt (dx)

])

for t ≥ 0 and f ∈ L1(Rd) ∩ L∞(Rd).
We will show, by using Theorem 8.6 of Ethier and Kurtz (1985), that, for any sequence

{ln} such that ln → ∞ as n → ∞, the sequence {Y (ln)(f, ·) : n ≥ 1} is relatively compact in
DR[0,∞). Let Ft be the σ -field generated by N |Rd×[0,t]×[0,∞)2 and η̂0|Rd×[0,t].

Lemma 4.3.

et
∫

Rd×[0,∞)

f

(
x

l

)
1(t,∞)(r)η̂0(dx, dr), t ≥ 0,

is an (Ft )-martingale for any l ≥ 1. Its quadratic variation is∫
Rd×[0,∞)

e2rf 2
(
x

l

)
1[0,t](r)η̂0(dx, dr), t ≥ 0.

Proof. Let {τx : x ∈ R
d} be a family of independent unit exponentials, independent of η0

and N . Then η̂0 = ∑
x∈η0

δ(x,τx). Let Zxt = 1[τx>t]. Then

et
∫

Rd×[0,∞)

f

(
x

l

)
1(t,∞)(r)η̂0(dx, dr) =

∑
x∈η0

f

(
x

l

)
etZxt .

Because
∫

Rd
|f (x/l)|η0(dx) is an integrable random variable, the series on the right-hand side

is absolutely convergent. On the other hand, we have

Ft ⊆ σ {N |Rd×[0,t]×[0,∞)2} ∨ σ {η0} ∨ σ {Zxr : r ≤ t, x ∈ R
d}.

It is easy to check that etZxt is a σ {Zxr : r ≤ t}-martingale and, hence, that it is a σ {Zxr : r ≤
t, x ∈ R

d}-martingale. Let Mt denote σ {Zxr : r ≤ t, x ∈ R
d}. Let 0 ≤ s < t . Since σ {η0}

and Ms are independent, for any E ∈ σ {η0} and F ∈ Ms , we have∫
E∩F

∑
x∈η0

f

(
x

l

)
etZxt dP =

∫
E∩F

∑
x∈η0

f

(
x

l

)
E[etZxt | Ms] dP

=
∫
E∩F

∑
x∈η0

f

(
x

l

)
esZxs dP.
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By the π − λ theorem,

E

[∑
x∈η0

f

(
x

l

)
etZxt

∣∣∣∣ σ {η0} ∨ σ {Zxr : r ≤ t, x ∈ R
d}

]
=

∑
x∈η0

f

(
x

l

)
esZxs .

Since σ {N |Rd×[0,t]×[0,∞)2}, σ {η0}, and σ {Zxr : r ≤ t, x ∈ R
d} are independent, we have

E

[∑
x∈η0

f

(
x

l

)
etZxt

∣∣∣∣ σ {N |Rd×[0,t]×[0,∞)2} ∨ σ {η0} ∨ σ {Zxr : r ≤ t, x ∈ R
d}

]

= E

[∑
x∈η0

f

(
x

l

)
etZxt

∣∣∣∣ σ {η0} ∨ σ {Zxr : r ≤ t, x ∈ R
d}

]

=
∑
x∈η0

f

(
x

l

)
esZxs .

Hence,

E

[∑
x∈η0

f

(
x

l

)
etZxt

∣∣∣∣ Fs

]

= E

[
E

[∑
x∈η0

f

(
x

l

)
etZxt

∣∣∣∣ σ {N |Rd×[0,t]×[0,∞)2} ∨ σ {η0}

∨ σ {Zxr : r ≤ t, x ∈ R
d}

] ∣∣∣∣ Fs

]

= E

[∑
x∈η0

f

(
x

l

)
esZxs

∣∣∣∣ Fs

]

=
∑
x∈η0

f

(
x

l

)
esZxs .

Now we have proved that et
∫

Rd×[0,∞)
f (x/l) 1(t,∞)(r)η̂0(dx, dr) is an Ft -martingale. Fur-

thermore, it is a purely discontinuous martingale, so its quadratic variation is just the sum of
its squared jumps.

Lemma 4.4. Suppose that λ is bounded by a constant L and that

a(x, y) ≤ b

1 + |x − y|2d+δ
for some constants b > 0 and δ > 0. Then

sup
x,y∈R

d

s,t≤T

(1 ∨ |x − y|d+δ)| E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]| < ∞

for any T > 0, where 1 ∨ |x − y|d+δ denotes max{1, |x − y|d+δ}.
Proof. Let x �= y ∈ R

d , and let

Cxy = {z ∈ R
d : |z− x| < |z− y|}.
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Then Cxy is a half-space in R
d , which is closer to x than to y. Similarly, we define Cyx , the

half-space in R
d , which is closer to y than to x. Let Ux and Uy be the σ -fields generated by

the restriction ofN to Cxy ×[0,∞)3 and Cyx ×[0,∞)3, respectively, and the restriction of η̂0
to Cxy ×[0,∞) and Cyx ×[0,∞), respectively. Let η′

t be the unique solution of the stochastic
differential equation (4.1) with N replaced by another Poisson random measure N ′, which is
obtained by replacingN |Cc

xy×[0,∞)3 by an independent copy and keepingN |Cxy×[0,∞)3 the same,

and with η̂0 replaced by η̂′
0, which is obtained by replacing η̂0|Cc

xy×[0,∞) by an independent
copy and keeping η̂0|Cxy×[0,∞) the same. Let η′′

t be the unique solution of the stochastic
differential equation (4.1) with N replaced by another Poisson random measure N ′′, which
is obtained by replacing N |Cc

yx×[0,∞)3 by an independent copy and keeping the restriction of
N to Cyx × [0,∞)3 the same, and with η̂0 replaced by η̂′′

0 , which is obtained by replacing
η̂0|Cc

yx×[0,∞) by an independent copy and keeping the restriction of η̂0 to Cyx × [0,∞) the
same. Then we have

E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux] + E[λ(x, ηs) | Ux]

− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )]) | Ux]]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])E[(λ(y, ηt )− E[λ(y, ηt )]) | Ux]]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])E[(λ(y, ηt )− E[λ(y, ηt ) | Uy]) | U]]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt ) | Uy]) | Ux]]
= E[(λ(x, ηs)− E[λ(x, ηs) | Ux])(λ(y, ηt )− E[λ(y, ηt )])]

+ E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt ) | Uy])]
= E[(λ(x, ηs)− λ(x, η′

s))(λ(y, ηt )− E[λ(y, ηt )])]
+ E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− λ(y, η′′

t ))],
where the fifth equality is true because Uy and Ux are independent, hence,

E[E[λ(y, ηt ) | Uy] | Ux] = E[λ(y, ηt )].
Therefore,

| E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]|
= | E[(λ(x, ηs)− λ(x, η′

s))(λ(y, ηt )− E[λ(y, ηt )])]|
+ | E[(E[λ(x, ηs) | Ux] − E[λ(x, ηs)])(λ(y, ηt )− λ(y, η′′

t ))]|
≤ 2LE[|λ(x, ηs)− λ(x, η′

s)|] + 2LE[|λ(y, ηt )− λ(y, η′′
t )|].

Define
f (z, s) = E[|λ(z, ηs)− λ(z, η′

s)|].
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Note that |f (z, s)| ≤ L for all (z, s) pairs. Then we have

f (z, s) = E[|λ(z, ηs)− λ(z, η′
s)|]

≤ E

[∫
Rd

a(z, z1)|ηs − η′
s |(dz1)

]

= E

[∫ s

0

∫
Cxy×[0,∞)2

a(z, z1)| 1[0,λ(z,ηs1 )](u)− 1[0,λ(z,η′
s1
)](u)|

× 1(s−s1,∞)(r) dz1 ds1e−r dr du

]

+ E

[∫ s

0

∫
Cc
xy×[0,∞)2

a(z, z1)(1[0,λ(z,ηs1 )](u)

+ 1[0,λ(z,η′
s1
)](u)) 1(s−s1,∞)(r) dz1 ds1e−r dr du

]

+ E

[∫
Cc
xy×[0,∞)

a(z, z1) 1(s,∞)(r)η̂0(dx, dr)

]

+ E

[∫
Cc
xy×[0,∞)

a(z, z1) 1(s,∞)(r)η̂
′
0(dx, dr)

]

= E

[∫ s

0

∫
Cxy

a(z, z1)|λ(z, ηs1)− λ(z, η′
s1
)| exp(−(s − s1)) dz1 ds1

]

+ E

[∫ s

0

∫
Cc
xy

a(z, z1)(λ(z, ηs1)+ λ(z, η′
s1
)) exp(−(s − s1)) dz1 ds1

]

+ E

[∫
Cc
xy×[0,∞)

a(z, z1) 1(s,∞)(r)η̂0(dz1, dr)

]

+ E

[∫
Cc
xy×[0,∞)

a(z, z1) 1(s,∞)(r)η̂
′
0(dz1, dr)

]

≤ E

[∫ s

0

∫
Cxy

a(z, z1)|λ(z, ηs1)− λ(z, η′
s1
)| exp(−(s − s1)) dz1 ds1

]

+ 2L
∫
Cc
xy

a(z, z1) dz1 + E

[∫
Cc
xy

a(z, z1)η0(dz1)

]
+ E

[∫
Cc
xy

a(z, z1)η
′
0(dz1)

]

= 2(L+ µ1)

∫
Cc
xy

a(z, z1) dz1 +
∫ s

0

∫
Cxy

a(z, z1)f (z1, s1) exp(−(s − s1)) dz1 ds1.

By iteration, we obtain

f (x, s) = E[|λ(x, ηs)− λ(x, η̂′
s)|]

≤ 2(L+ µ1)

(∫
Cc
xy

a(x, z1) dz1 +
∫
Cxy

∫
Cc
xy

a(x, z1)a(z1, z2) dz2 dz1

+ 1

(n− 1)!
∫
Cxy

· · ·
∫
Cxy

∫
Cc
xy

a(x, z1) · · · a(zn−2, zn−1)

× a(zn−1, zn) dzn dzn−1 · · · dz1

)
+ Rn, (4.5)
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where the reminder term

Rn = 1

(n− 1)!
∫ s

0

∫
Cxy

· · ·
∫
Cxy

a(x, z1) · · · a(zn−1, zn)f (zn, sn) exp(−(s − sn))

× (s − sn)
n−1 dzn dzn−1 · · · dz1 dsn

≤ 1

(n− 1)!
(

sup
z

∫
Rd

a(z, z1) dz1

)n
L

∫ s

0
exp(−(s − sn))(s − sn)

n−1 dsn

≤ 1

(n− 1)!
(∫

Rd

b

1 + |x|2d+δ dx

)n
L

∫ s

0
exp(−(s − sn))(s − sn)

n−1 dsn

→ 0 as n → ∞.

Now we estimate the other terms in (4.5). In order to simplify the notation, we just cal-
culate the term for n = 3. Let Kn = |x − y|/2n, and recall that we have defined K =
supz

∫
Rd
a(z, z1) dz1 in the proof of Lemma 4.1. Since it is easy to check that

{z1 ∈ Cxy, z2 ∈ Cxy, z3 ∈ Cc
xy} ⊂ {|z1 − x| ≥ K3} ∪ {|z2 − z1| ≥ K3} ∪ {|z3 − z2| ≥ K3},

we have
1

2!
∫
Cxy

∫
Cxy

∫
Cc
xy

a(x, z1)a(z1, z2)a(z2, z3) dz3 dz2 dz1

≤ 1

2!
∫

Rd

a(x, z1)

∫
Rd

a(z1, z2)

∫
|z3−z2|≥K3

a(z2, z3) dz3 dz2 dz1

+ 1

2!
∫

Rd

a(x, z1)

∫
|z2−z1|≥K3

a(z1, z2)

∫
Rd

a(z2, z3) dz3 dz2 dz1

+ 1

2!
∫

|z1−x|≥K3

a(x, z1)

∫
Rd

a(z1, z2)

∫
Rd

a(z2, z3) dz3 dz2 dz1

≤ 1

2!
∫

Rd

a(x, z1)

∫
Rd

a(z1, z2)

∫
|z3−z2|≥K3

b

|z3 − z2|2d+δ dz3 dz2 dz1

+ 1

2!K
∫

Rd

a(x, z1)

∫
|z2−z1|≥K3

b

|z1 − x|2d+δ dz2 dz1

+ 1

2!K
2
∫

|z1−x|≥K3

b

|z1 − x|2d+δ dz1

≤ 1

2!
wdb

(d + δ)Kd+δ
3

∫
Rd

a(x, z1)

∫
Rd

a(z1, z2) dz2 dz1

+ 1

2!
wdb

(d + δ)Kd+δ
3

K

∫
Rd

a(x, z1) dz1 + 1

2!
wdb

(d + δ)Kd+δ
3

K2

≤ 1

2!
3wdbK2

(d + δ)Kd+δ
3

,

where wd is the surface area of the unit ball in R
d . Similarly, the nth term is less than

1

(n− 1)!
nwdbK

n−1

(d + δ)Kd+δ
n

= 1

(n− 1)!
2d+δnd+δ+1wdbK

n−1

(d + δ)|x − y|d+δ .

https://doi.org/10.1239/aap/1222868185 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868185


784 X. QI

Therefore, we have

E[|λ(x, ηs)− λ(x, η′
s)|] ≤

∞∑
n=1

2(L+ µ1)

(n− 1)!
2d+δnd+δ+1wdbK

n−1

(d + δ)|x − y|d+δ = b1

|x − y|d+δ ,

where

b1 =
∞∑
n=1

(L+ µ1)2d+1+δnd+1+δwdbKn−1

(d + δ)(n− 1)! .

Similarly, we can prove the same inequality for E[|λ(y, ηt )− λ(y, η′′
t )|] and, hence, we have

| E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]|
≤ 2(L+ µ1)E[|λ(x, ηs)− λ(x, η′

s)|] + 2(L+ µ1)E[|λ(y, ηt )− λ(y, η′′
t )|]

≤ 4(L+ µ1)b1

|x − y|d .

Since λ is bounded by L, E[(λ(x, ηs) − E[λ(x, ηs)])(λ(y, ηt ) − E[λ(y, ηt )])] is bounded by
4L2. This completes the proof.

Lemma 4.5. Suppose that a(x, y) ≤ b/(1+|x−y|2d+δ), where b > 0 and δ > 0 are constants.
Let f (x) be a bounded and integrable measurable function in R

d with respect to the Lebesgue
measure. Then, for any T > 0,

sup
l≥1
s,t≤T

∣∣∣∣ 1

ld

∫
Rd

∫
Rd

f

(
x

l

)
f

(
y

l

)
E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])] dx dy

∣∣∣∣
≤ wdb1‖f ‖

(
1

d
+ 1

δ

) ∫
Rd

|f (y)| dy,

where b1 is a constant which does not depend on f , wd is the surface area of the unit ball in
R
d , and ‖f ‖ = supx∈Rd |f (x)|.
Proof. Fix T > 0. Then, by Lemma 4.4, there exists a constant b1 such that

| E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])]| ≤ b1

|x − y|d+δ ∨ 1
.

Then we have,∣∣∣∣ 1

ld

∫
Rd

∫
Rd

f

(
x

l

)
f

(
y

l

)
E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])] dx dy

∣∣∣∣
≤ 1

ld

∫
Rd

∫
Rd

b1|f (x/l)||f (y/l)|
|x − y|d+δ ∨ 1

dx dy

= b1

ld

∫ ∫
|x−y|≤1

∣∣∣∣f
(
x

l

)∣∣∣∣
∣∣∣∣f

(
y

l

)∣∣∣∣ dx dy + b1

ld

∫ ∫
|x−y|>1

|f (x/l)||f (y/l)|
|x − y|d+δ dx dy

≤ b1

ld

∫ ∫
|x−y|≤1

‖f ‖
∣∣∣∣f

(
y

l

)∣∣∣∣ dx dy

+ b1l
d

∫ ∫
|x−y|>1

|f (x/l)||f (y/l)|
|x − y|d+δ d

(
x

l

)
d

(
y

l

)
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= wdb1

d
‖f ‖

∫
Rd

|f (y)| dy + b1l
d

∫ ∫
|x−y|>1/l

|f (x)||f (y)|
ld+δ|x − y|d+δ dx dy

= wdb1

d
‖f ‖

∫
Rd

|f (y)| dy + b1l
−δ

∫
Rd

|f (x)|
∫

|x−y|>1/l

‖f ‖
|x − y|d+δ dy dx

= wdb1

d
‖f ‖

∫
Rd

|f (y)| dy + b1l
−δ

∫
Rd

|f (x)|
∫
r>1/l

‖f ‖wd
rd+δ

rd−1 dr dx

= wdb1

d
‖f ‖

∫
Rd

|f (y)| dy + b1l
−δ

∫
Rd

|f (x)| ‖f ‖wd
δl−δ

dx

= wdb1‖f ‖
(

1

d
+ 1

δ

) ∫
Rd

|f (y)| dy.

Lemma 4.6. Fix n. For k = 1, . . . , n, let {Z(k,m) : m = 1, 2, . . .} be a sequence of stochastic
processes whose paths are elements inDR[0,∞) endowed with the Skorokhod topology. If, for
each 1 ≤ k ≤ n, {Z(k,m)} is relatively compact in DR[0,∞) and all its limits have continuous
paths a.s., then the sequence Z(m) = (Z(1,m), . . . , Z(n,m)) is relatively compact in DRn [0,∞)

and, hence, Z(1,m) + · · · + Z(n,m) is relatively compact in DR[0,∞).

Proof. For every δ > 0, T > 0, and x ∈ DR[0,∞) or DRn [0,∞), we define

ω′(δ, x, T ) = inf
{

max
1≤i≤r

sup
ti−1≤s≤t<ti

|xt − xs | : 0 = t0 < · · · < tr−1 < T ≤ tr ,

min
1≤i≤r(ti − ti−1) > δ

}
.

Let X(m) be Z(m) or Z(k,m) for some k. Then X(m) is relatively compact if and only if

lim
M3→∞ sup

m
P(|X(m)t | > M3) = 0 and lim

δ→0
sup
m

P(ω′(δ,X(m), T ) > ε) = 0

for any t ≥ 0, T > 0, and ε > 0. The first condition can be checked easily for Z(m). Now we
check the second condition for Z(m). We have

ω′(δ, Z(m), T ) ≤ 2 sup
0≤s,t≤(T+1)

|t−s|≤δ
|Z(m)t − Z(m)s |

≤
n∑
k=1

2 sup
0≤s,t≤(T+1)

|t−s|≤δ
|Z(k,m)t − Z(k,m)s |

≤
n∑
k=1

2
(

2ω′(δ, Z(k,m), T + 1)+ sup
0≤t≤(T+1)

|�Z(k,m)t |
)

≤
n∑
k=1

(
4ω′(δ, Z(k,m), T + 1)+ 2 sup

0≤t≤T+1
|�Z(k,m)t |

)
,

and sup0≤t≤T+1 |�xt | is a measurable function in DR[0,∞) and continuous at any x ∈
CR[0,∞). Because, for each k, all the limits of {Z(k,m)} have continuous paths a.s.,

sup
0≤t≤T+1

|�Z(k,m)t |
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converges to 0 in distribution and, hence, in probability. Therefore, we have

lim
n

sup
m

P(ω′(δ, Z(m), L) > ε) ≤
n∑
k=1

(
lim
n

sup
m

P

(
ω′(δ, Z(k,m), L) > ε

8n

)

+ lim
n

sup
m

P

(
sup

0≤t≤L
|�Z(k,m)t | > ε

4n

))
= 0.

Therefore, Z(m) is relatively compact.

Recall that we defined Y (l), l ≥ 1, as

Y (l)(f, t) = 1

ld/2

(∫
Rd

f

(
x

l

)
ηt (dx)− E

[∫
Rd

f

(
x

l

)
ηt (dx)

])

for t ≥ 0 and f ∈ L1(Rd) ∩ L∞(Rd).
Let

Ũ
(l)
t = 1

ld/2

∫ t

0

∫
Rd×[0,+∞)2

f

(
x

l

)
1[0,λ(x,ηs−)](u)N(dx, ds, dr, du),

Ṽ
(l)
t = 1

ld/2

∫ t

0

∫
Rd×[0,+∞)2

f

(
x

l

)
1[0,λ(x,ηs−)](u) 1[0,t−s](r)N(dx, ds, dr, du)

= 1

ld/2

∫
{(x,s,r,u) : r≥0, s≥0, s+r≤t}

f

(
x

l

)
1[0,λ(x,ηs−)](u)N(dx, ds, dr, du),

H
(l)
t = 1

ld/2

(∫
Rd×[0,∞)

f

(
x

l

)
1(t,∞)(r)η̂0(dx, dr)

− E

[∫
Rd×[0,∞)

f

(
x

l

)
1(t,∞)(r)η̂0(dx, dr)

])
,

and
U
(l)
t = Ũ

(l)
t − E[Ũ (l)t ], V

(l)
t = Ṽ

(l)
t − E[Ṽ (l)t ].

Note that
∫ t

0

∫
A×[0,+∞)2

1[0,λ(x,ηs−)](u)N(dx, ds, dr, du) denotes the total number of points
which are born before and at time t in A: it is actually a spatial pure-birth process. We denote
by ∫ t

0

∫
A×[0,+∞)2

1[0,λ(x,ηs−)](u) 1[0,t−s](r)N(dx, ds, dr, du)

the total number of points which are not only born but also die before time t in A. We have

Y (l)(f, t) = H
(l)
t + U

(l)
t − V

(l)
t .

Lemma 4.7. Suppose that λ is bounded by L and that a(x, y) ≤ b/(1 + |x − y|2d+δ), where
b > 0 and � > 0 are constants. Then, for each T > 0, there exist two families {γ (i)l (�) : 0 <
� < 1, l ≥ 1}, i = 1, 2, of nonnegative random variables satisfying

E[(H (l)
t+h −H

(l)
t )

2 | Ft ] ≤ E[γ (1)l (�) | Ft ],
E[(U(l)t+h − U

(l)
t )

2 | Ft ] ≤ E[γ (2)l (�) | Ft ],
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for all 0 ≤ t ≤ T and 0 ≤ h ≤ �; in addition,

lim
�→0

sup
l

E[γ (i)l (�)] = 0.

Proof. First, we estimate (H (l)
t+h −H

(l)
t )

2. By Lemma 4.3, etH (l)
t is an (Ft )-martingale and

its quadratic variation is

1

ld

∫
Rd×[0,∞)

e2rf 2
(
x

l

)
1[0,t](r)η̂0(dx, dr).

Therefore,

E[(H (l)
t+h −H

(l)
t )

2 | Ft ]
= e−2(t+h) E[(et+hH(l)

t+h − et+hH(l)
t )

2 | Ft ]
= e−2(t+h) E[(et+hH(l)

t+h − etH (l)
t + etH (l)

t − et+hH(l)
t )

2 | Ft ]
≤ 2e−2(t+h) E[(et+hH(l)

t+h − etH (l)
t )

2 | Ft ] + 2e−2(t+h) E[(etH (l)
t − et+hH(l)

t )
2 | Ft ]

= 2e−2(t+h)

ld
E

[∫
Rd×[0,∞)

e2rf 2
(
x

l

)
1(t,t+h](r)η̂0(dx, dr)

∣∣∣∣ Ft

]
+ 2(1 − e−h)2(H (l)

t )
2

≤ 2

ld
E

[∫
Rd×[0,∞)

f 2
(
x

l

)
1(t,t+h](r)η̂0(dx, dr)

∣∣∣∣ Ft

]
+ 2(1 − e−h)2e2t (H

(l)
t )

2

≤ 2(1 − e−h)
ld

∫
Rd

f 2
(
x

l

)
η0(dx)+ 2(1 − e−h)2e2t (H

(l)
t )

2.

Let

γ
(1)
l (�) = 2(1 − e−�)

ld

∫
Rd

f 2
(
x

l

)
η0(dx)+ 2(1 − e−�)2 sup

0≤t≤T
e2t (H

(l)
t )

2.

Then we have
E[(H (l)

t+h −H
(l)
t )

2 | Ft ] ≤ E[γ (1)l (�) | Ft ]
for all 0 ≤ t ≤ T and 0 ≤ h ≤ �, and

E[γ (1)l (�)] = 2µ1(1 − e−�)
∫

Rd

f 2(x) dx + 2(1 − e−�)2 E
[

sup
0≤t≤T

e2t (H
(l)
t )

2
]

≤ 2µ1(1 − e−�)
∫

Rd

f 2(x) dx + 8(1 − e−�)2 E[e2T (H
(l)
T )

2]

≤ 2µ1(1 − e−�)
∫

Rd

f 2(x) dx + 8µ1T (1 − e−�)2e2T
∫

Rd

f 2(x) dx.

Hence, lim�→0 supl E[γ (1)l (�)] = 0.
Second, we estimate (U(l)t+h − U

(l)
t )

2. For each l, we define a square-integrable martingale

Z
(l)
t = 1

ld/2

∫ t

0

∫
Rd×[0,+∞)2

f

(
x

l

)
1[0,λ(x,ηs−)](u)(N(dx, ds, dr, du)− dxe−r dr du ds)
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and a continuous process

A
(l)
t = 1

ld/2

∫ t

0

∫
Rd

f

(
x

l

)
(λ(x, ηs−)− E[λ(x, ηs−)]) dx ds.

Then
U
(l)
t+h − U

(l)
t = (Z

(l)
t+h − Z

(l)
t )+ (A

(l)
t+h − A

(l)
t ).

Since the quadratic variation of Z(l)t is

[Z(l)]t = 1

ld

∫ t

0

∫
Rd×[0,+∞)2

f

(
x

l

)2

1[0,λ(x,ηs−)](u)N(dx, ds, dr, du),

we have
E[(Z(l)t+h − Z

(l)
t )

2 | Ft ] = E[(Z(l)t+h)2 − (Z
(l)
t )

2 | Ft ]
= E[[Z(l)]t+h − [Z(l)]t | Ft ]

= 1

ld
E

[∫ t+h

t

∫
Rd

f

(
x

l

)2

λ(x, ηs−) dx ds

∣∣∣∣ Ft

]

≤ hL

∫
f 2(x) dx.

By Lemma 4.5, let

sup
l≥1

s,t≤T+1

∣∣∣∣ 1

ld

∫
Rd

∫
Rd

f

(
x

l

)
f

(
y

l

)

× E[(λ(x, ηs)− E[λ(x, ηs)])(λ(y, ηt )− E[λ(y, ηt )])] dx dy

∣∣∣∣
= K5

< ∞,

and, hence, we have

E[(A(l)t+h − A
(l)
t )

2] = E

[(
1

ld/2

∫ t+h

t

∫
Rd

f

(
x

l

)
(λ(x, ηs−)− E[λ(x, ηs−)]) dx ds

)2]

= 1

ld

∫ t+h

t

∫ t+h

t

∫
Rd

∫
Rd

f

(
x

l

)
f

(
y

l

)
× E[(λ(x, ηr)− E[λ(x, ηr)])(λ(y, ηs)− E[λ(y, ηs)])] dx dy ds dr

≤ K5h
2,

and the expectation of the square of the variation of A(l) is(
E

[(∫ t

0
| dA(l)t |

)2])1/2

≤ lim
n→∞

2n∑
k=1

(E[(A(l)kt/2n − A
(l)
(k−1)t/2n)

2])1/2 ≤ √
K5t. (4.6)

By the Kolmogorov criterion (see (2.1) Theorem, Chapter I of Revuz and Yor (2004)),

E

[(
sup

s,t≤T+1
s �=t

|A(l)t − A
(l)
s |

|t − s|1/3
)2]

< ∞,
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and the expectations can be uniformly bounded by a constant which only depends on K5 and
T and does not depend on l. Now let

γ
(2)
l (�) = 2�L

∫
Rd

f 2(x) dx + 2�2/3
(

sup
s,t≤T+1
s �=t

|A(l)t − A
(l)
s |

|t − s|1/3
)2

.

Then

E[(U(l)t,h − E[U(l)t,h])2 | Ft ] ≤ 2 E[(Z(l)t+h − Z
(l)
t )

2 | Ft ] + 2 E[(A(l)t+h − A
(l)
t )

2 | Ft ]
≤ E[γ (2)l (�) | Ft ]

and
lim
�→0

sup
l

E[γ (2)l (�)] = 0.

For any x, y ∈ R
d , we define q(x, y) = |x − y| ∧ 1.

Lemma 4.8. Suppose that λ is bounded by L and that a(x, y) ≤ b/(1 + |x − y|2d+δ), where
b > 0 and δ > 0 are constants. Fix T > 0. Then there exists C > 0 such that

E[q2(V
(l)
t+h, V

(l)
t )q2(V

(l)
t , V

(l)
t−h)] ≤ Ch2

for all 0 ≤ t ≤ T + 1 and 0 ≤ h ≤ t . In addition,

lim
h→0

sup
l

E[(V (l)h )2] = 0.

Proof. Fix t , h, and l. For 0 ≤ t ′ ≤ t + h, let

Xt ′ = 1

ld/2

∫
{(x,s,r,u)|t≤r+s≤t+h, r≥0, 0≤s≤t ′}

f

(
x

l

)
× 1[0,λ(x,ηs−)](u)(N(dx, ds, dr, du)− dx dse−r dr du),

Yt ′ = 1

ld/2

∫
{(x,s,r,u)|t−h≤r+s≤t, r≥0, 0≤s≤t ′}

f

(
x

l

)
× 1[0,λ(x,ηs−)](u)(N(dx, ds, dr, du)− dx dse−r dr du).

Then {Xt ′ , Yt ′ : 0 ≤ t ′ ≤ t + h} are two martingales. Let

B+ = 1

ld/2

∫ t+h

0

∫
Rd

f

(
x

l

)
(λ(x, ηs−)− E[λ(x, ηs−)])(e−(t−s) ∧ 1 − e−(t+h−s)) dx ds

=
∫ t+h

0
(e−(t−s) ∧ 1 − e−(t+h−s)) dA(l)s ,

B− = 1

ld/2

∫ t

0

∫
Rd

f

(
x

l

)
(λ(x, ηs−)− E[λ(x, ηs−)])(e−(t−h−s) ∧ 1 − e−(t−s)) dx ds

=
∫ t

0
(e−(t−h−s) ∧ 1 − e−(t−s)) dA(l)s .
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Then we have

V
(l)
t+h − V

(l)
t = Xt+h + B+ and V

(l)
t − V

(l)
t−h = Yt+h + B− = Yt + B−.

Therefore,

q2(V
(l)
t+h, V

(l)
t )q2(V

(l)
t , V

(l)
t−h) = ((Xt+h + B+)2 ∧ 1)((Yt+h + B−)2 ∧ 1)

≤ 4(X2
t+h ∧ 1 + B2+ ∧ 1)(Y 2

t+h ∧ 1 + B2− ∧ 1)

≤ 4(X2
t+h ∧ 1)(Y 2

t+h ∧ 1)+ 8B2+ ∧ 1 + 8B2− ∧ 1. (4.7)

By (4.6) we have

E[B2+] = E

[∫ t+h

0
(e−(t−s) ∧ 1 − e−(t+h−s)) dA(l)s

]2

,

≤ (1 − e−h)2 E

[(∫ t+h

0
| dA(l)t |

)2]
≤ K5(t + h)2h2

≤ K5(2T + 2)2h2.

Similarly, E[B2−] ≤ K5(2T + 2)2h2.
We define two stopping times

S1 = inf{t ′ : |Xt ′ | ≥ 1} ∧ (t + h) and S2 = inf{t ′ : |Yt ′ | ≥ 1} ∧ (t + h).

Because X0 = Y0 = 0 and the jumps of Xt ′ and Yt ′ are bounded by ‖f ‖/ld/2, the stopped
processes XS1∧t ′ and YS2∧t ′ are bounded martingales and

(X2
t+h ∧ 1)(Y 2

t+h ∧ 1) ≤ X2
S1∧(t+h)Y

2
S2∧(t+h).

By Itô’s formula,

X2
S1∧(t+h)Y

2
S2∧(t+h)

=
∫ S1∧(t+h)

0
2XS1∧t ′−Y 2

S2∧t ′− dXt ′ +
∫ S2∧(t+h)

0
2X2

S1∧t ′−YS2∧t ′− dYt ′

+
∑

t ′≤(t+h)∧(S1∨S2)

(X2
t ′Y

2
t ′ −X2

t ′−Y
2
t ′− − 2Xt ′−Y 2

t ′−�Xt ′ − 2X2
t ′−Yt ′−�Yt ′).

We have

X2
t ′Y

2
t ′ −X2

t ′−Y
2
t ′− − 2Xt ′−Y 2

t ′−�Xt ′ − 2X2
t ′−Yt ′−�Yt ′

= (Xt ′− +�Xt ′)
2(Yt ′− +�Yt ′)

2 −X2
t ′−Y

2
t ′− − 2Xt ′−Y 2

t ′−�Xt ′ − 2X2
t ′−Yt ′−�Yt ′

= (�Xt ′)
2Y 2
t ′− + (�Yt ′)

2X2
t ′− + (�Xt ′)

2(�Yt ′)
2

+ 2Xt ′−(�Yt ′−)2�Xt ′ + 2Yt ′−(�Xt ′−)2�Yt ′ + 4�Xt ′�Yt ′Xt ′−Yt ′−
= (�Xt ′)

2Y 2
t ′− + (�Yt ′)

2X2
t ′−,

where the last equality is true because Xt ′ and Yt ′ have no common jumps. Since∫ S1∧·

0
2XS1∧t ′−Y 2

S2∧t ′− dXt ′ and
∫ S1∧·

0
2X2

S1∧t ′−YS2∧t ′− dYt ′
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are martingales,

E[X2
S1∧(t+h)Y

2
S2∧(t+h)]

= E

[∫ S1∧(t+h)

0
Y 2
S2∧(t ′)− d[X]t ′

]
+ E

[∫ S2∧(t+h)

0
X2
S1∧(t ′)− d[Y ]t ′

]

= 1

ld
E

[∫ S1∧(t+h)

0

∫
Rd×[0,+∞)2

Y 2
S2∧s−f

2
(
x

l

)
1[0,λ(x,ηs−)](u)

× 1(t−s,t+h−s](r)N(dx, ds, dr, du)

]

+ 1

ld
E

[∫ S2∧(t+h)

0

∫
Rd×[0,+∞)2

X2
S1∧s−f

2
(
x

l

)
1[0,λ(x,ηs−)](u)

× 1(t−h−s,t−s](r)N(dx, ds, dr, du)

]

≤ L(1 − e−h)
∫

Rd

f 2(x) dx
∫ t+h

0
E[Y 2

S2∧s] ds

+ L(1 − e−h)
∫

Rd

f 2(x) dx
∫ t+h

0
E[X2

S1∧s] ds.

Because
E[Y 2

S2∧s] ≤ E[Y 2
t+h]

≤ 1

ld
E

[∫ t+h

0

∫
Rd×[0,+∞)2

f 2
(
x

l

)

× 1[0,λ(x,ηs−)](u) 1(t−h−s,t−s](r)N(dx, ds, dr, du)

]

≤ L(1 − e−h)
∫

Rd

f 2(x) dx

and, similarly,

E[X2
S1∧s] ≤ E[X2

t+h] ≤ L(1 − e−h)
∫

Rd

f 2(x) dx,

we have
E[X2

S1∧(t+h)Y
2
S2∧(t+h)]

≤ L(1 − e−h)
∫

Rd

f 2(x) dx
∫ t+h

0
E[Y 2

S2∧s] ds

+ L(1 − e−h)
∫

Rd

f 2(x) dx
∫ t+h

0
E[X2

S1∧s] ds.

≤ 2(t + h)L2(1 − e−h)2
(∫

Rd

f 2(x) dx

)2

≤ 2(T + 1)L2
(∫

Rd

f 2(x) dx

)2

h2.

Now by (4.7) we have

E[q2(V
(l)
t+h, V

(l)
t )q2(V

(l)
t , V

(l)
t−h)] ≤ Ch2,
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where C depends only on T . We can also prove that

lim
h→0

sup
l

E[(V (l)h )2] = 0.

Lemma 4.9. Suppose that {W(n)
l : n ∈ N, l ∈ R, l ≥ 1} and {Wl : l ∈ R, l ≥ 1} are two

families of random variables such that, for each n, {W(n)
l : l ≥ 1} converges weakly to a random

variable V (n) with normal distribution as l → ∞ and

lim
n→∞ sup

l

E[(W(n)
l −Wl)

2] = 0.

Then {Wl : l ∈ R, l ≥ 1} converges weakly to a normal distribution.

Proof. First, we show that {V (n)} converges weakly. For any t ∈ R and any m, n ∈ N, we
have

| E[exp(itV (m))] − E[exp(itV (n))]| = lim
l→∞ | E[exp(itW(m)

l )] − E[exp(itW(n)
l )]|

≤ sup
l

E[| exp(itW(m)
l )− exp(itW(n)

l )|]

≤ sup
l

E[| exp(itW(m)
l )(1 − exp(it (W(n)

l −W
(m)
l )))|]

= sup
l

E[|1 − exp(it (W(n)
l −W

(m)
l ))|]

≤ sup
l

t E[|W(n)
l −W

(m)
l |]

≤ sup
l

t (E[(W(n)
l −W

(m)
l )2])1/2

→ 0 as m, n → ∞.

Note that the above convergence is uniform for t on any finite interval. Hence, {V (n)} converges
weakly. Since all the {V (n)} have normal distributions, the limit has a normal distribution also.
Let V denote a random variable with the limit normal distribution. We want to show that
{Wl : l ∈ R, l ≥ 1} converges weakly to V . Fix t ∈ R. For any n,

| E[exp(itWl)] − E[eitV ]| ≤ | E[exp(itWl)] − E[exp(itW(n)
l )]|

+ | E[exp(itW(n)
l )] − E[exp(itV (n))]|

+ | E[exp(itV (n))] − E[eitV ]|
≤ sup

l

t (E[(Wl −W
(n)
l )2])1/2 + | E[exp(itW(n)

l )] − E[exp(itV (n))]|

+ | E[exp(itV (n))] − E[eitV ]|.
Let l → ∞. Then the second term in the last line disappears. We have

lim sup
l→∞

| E[exp(itWl)] − E[eitV ]| ≤ sup
l

t (E[(Wl −W
(n)
l )2])1/2 + | E[exp(itV (n))] − E[eitV ]|.

Since the left-hand side of the above inequality does not depend on n, we have, letting n → ∞,

lim sup
l→∞

| E[exp(itWl)] − E[eitV ]| → 0.

This completes the proof.
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Proof of Theorem 2.2. First we prove thatH(l), U(l), and V (l) are relatively compact. Using
the estimates in Lemmas 4.7 and 4.8, by Theorems 8.6 and 8.8 of Ethier and Kurtz (1985), it
remains to show that, for each t ≥ 0, the families {H(l)

t : l ≥ 1}, {U(l)t : l ≥ 1}, and {V (l)t : l ≥ 1}
are relatively compact. In order to do this, we show that the finite-dimensional distributions of
Y (l)(f, t) converge weakly to multivariate normal distributions. By Theorem 4.2, if f (x) is the
linear combination of indicator functions of Riemann measurable sets in R

d , then the finite-
dimensional distributions of Y (l)(f, ·) converge weakly to multivariate normal distributions. If
f is a bounded integrable function, we can find a sequence {gn(x) : n = 1, . . .} such that gn is
a linear combination of indicator functions of Riemann measurable sets, and

sup
n

‖gn‖ < ∞ and lim
n

∫
Rd

|gn(x)− f (x)| dx = 0. (4.8)

Equation (4.8) actually implies that

lim
n

∫
Rd

(gn(x)− f (x))2 dx = 0.

Now if we can show that, for any t ≥ 0,

sup
l

E

[
1

ld/2

(∫
Rd

f

(
x

l

)
ηt (dx)− E

[∫
Rd

f

(
x

l

)
ηt (dx)

])

− 1

ld/2

(∫
Rd

gn

(
x

l

)
ηt (dx)− E

[∫
Rd

gn

(
x

l

)
ηt (dx)

])]2

= sup
l

E

[
1

ld

(∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))
ηt (dx)

− E

[∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))
ηt (dx)

])2]
→ 0 as n → ∞,

then, by Lemma 4.9, the finite-dimensional distributions of Y (l)(f, ·) converge weakly to
multivariate normal distributions. We have

E

[
1

ld

(∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))
ηt (dx)− E

[∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))
ηt (dx)

])2]

≤ 3

ld
E

[(∫ t

0

∫
Rd×[0,+∞)2

(
f

(
x

l

)
− gn

(
x

l

))
1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)

× (N(dx, ds, dr, du)− dx dse−r dr du)

)2]

+ 3

ld
E

[(∫ t

0

∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))
(λ(x, ηs−)− E[λ(x, ηs−)])e−(t−s) dx ds

)2]

+ 3

ld
E

[(∫
Rd×[0,+∞)

(
f

(
x

l

)
− gn

(
x

l

))
1(t,∞)(r)η̂(dx, dr)

− E

[∫
Rd×[0,+∞)

(
f

(
x

l

)
− gn

(
x

l

))
1(t,∞)(r)η̂(dx, dr)

])2]
. (4.9)
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In order to compute the first term on the right-hand side of (4.9), we fix t and define a square-
integrable martingale with respect to its natural filtration,

X
(l)

t ′ = 3

ld/2

∫ t ′

0

∫
Rd×[0,+∞)2

(
f

(
x

l

)
− gn

(
x

l

))
1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)

× (N(dx, ds, dr, du)− dx dse−r dr du),

where 0 ≤ t ′ ≤ t . Then the first term on the right-hand-side of (4.9) satisfies

E[(X(l)t )2] = 3

ld

∫ t

0

∫
Rd×[0,+∞)2

(
f

(
x

l

)
− gn

(
x

l

))2

× 1[0,λ(x,ηs−)](u) 1(t−s,∞)(r)N(dx, ds, dr, du)

≤ 3L

ld

∫ t

0

∫
Rd

(
f

(
x

l

)
− gn

(
x

l

))2

e−(t−s) dx ds

≤ 3L
∫

Rd

(f (x)− gn(x))
2 dx

→ 0 as n → ∞
uniformly in l. By Lemma 4.5, the second term on the right-hand side of (4.9) is less
than 3t2wdb1‖f − gn‖(1/d + 1/δ)

∫
Rd

|f (y)− gn(y)| dy, which converges to 0 as n → ∞
uniformly in l. By Lemma 4.3, the third term on the right-hand side of (4.9) is less than

3

ld
E

[∫
Rd×[0,∞)

(f − gn)
2
(
x

l

)
1[0,t](r)η̂0(dx, dr)

]
≤ 3

ld
E

[∫
Rd

(f − gn)
2
(
x

l

)
η0(dx)

]

= 3µ1

ld

∫
Rd

(f − gn)
2
(
x

l

)
dx

= 3µ1

∫
Rd

(f (x)− gn(x))
2 dx

→ 0 as n → ∞
uniformly in l. Therefore, we have proved that the finite-dimensional distributions of Y (l)(f, ·)
converge weakly to multivariate normal distributions. Since we can use similar arguments to
prove the same result as Theorem 4.2 for spatial pure-birth processes, the finite-dimensional
distributions of U(l) converge weakly to multivariate normal distributions. By Lemma 4.3,
etH (l) is an Ft -martingale, we can obtain

E[(H (l)
t )

2] ≤ µ1

∫
Rd

f 2(x) dx.

So {H(l)
t : l ≥ 1} is relatively compact. Now we know that {H(l)

t : l ≥ 1}, {U(l)t : l ≥ 1}, and
{Y (l)(f, t) : l ≥ 1} are relatively compact. Because Y (l)(f, t) = H

(l)
t + U

(l)
t − V

(l)
t , {V (l)t : l ≥

1} is relatively compact. Hence, H(l), U(l), and V (l) are relatively compact in DR[0,∞). For
any sequence {ln} such that ln → ∞ as n → ∞, the jump sizes of H(ln), U(ln), and V (ln)

are bounded by ‖f ‖/l−d/2n → 0; so all the limits of H(ln), U(ln), and V (ln) have continuous
paths. By Lemma 4.6, {Y (ln)(f, ·)} is relatively compact and the limit of {Y (ln)(f, ·)} has
continuous paths. So Y (l)(f, ·) converges weakly to a continuous Gaussian process. By
Lemma 4.6, (Y (l)(f1, ·), . . . , Y (l)(fn, ·)) converges weakly to a continuous Gaussian process.
This completes the proof.
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5. An example from spatial statistics

Ripley (1979) addressed the simulation problem by developing a Markov chain Monte Carlo
algorithm based on identifying a spatial birth and death process whose stationary distribution
gives the desired spatial point process. Baddeley (2000) provided an analogous solution to the
parameter estimation problem with the introduction of his time-invariance estimators.

Let {πθ , θ ∈ �} be a parametric family of models. Typically, � is a subset of Rk , but
that is not necessary. Our problem is to estimate θ from a single observation drawn from πθ .
For each θ , let Aθ be the generator of a Markov process for which πθ is the unique stationary
distribution. Typically, πθ is characterized as the unique probability measure satisfying∫

Aθf dπθ = 0 for all f ∈ D(Aθ ). (5.1)

The domain D(Aθ ) of Aθ is usually a subset of the bounded measurable functions. For a one-
dimensional parameter θ , we choose a function f ∈ ⋂

θ D(Aθ ), and estimate θ by solving

Aθf (η) = 0, (5.2)

where η is the single observation drawn fromπθ . Baddeley (2000) called (5.2) a time-invariance
estimating equation, and called the solution of (5.2) a time-invariance estimator for θ . Since
(5.1) holds, (5.2) is an unbiased estimating equation.

In general, for a multidimensional parameter θ , we choose a collection fi, i = 1, 2, . . . , k,
where fi ∈ ∩θD(Aθ ) and k is the dimension of θ . The estimator for θ then satisfies

Aθfi(η) = 0, i = 1, . . . , k.

We must choose {fi, i = 1, 2, . . . , k} carefully to avoid inconsistencies among these k equa-
tions.

For spatial point processes, the relationships between time-invariance and other methods
of estimation (pseudo-likelihood and Takacs–Fiksel) have been discussed in Baddeley (2000).
Baddeley gave some general discussion on the choice of the functions fi ; however, he did not
provide any systematic discussion of the properties of particular classes of functions. Kurtz
and Li (2003) considered the following two-parameter families.

Nearest-neighbor interactions model. Let the parameter θ = (c1, c2), and let

λθ (x, η) = c1 + c2ρ

(
minxj∈η |x − xj |

t0

)
and bθ (x, η) = 1

be the birth rate and death rate of the spatial birth and death processes, respectively, where
c1 > 0, c1 + c2k > 0, k is a positive constant, ρ is a nonnegative function bounded by k, and t0
is also a known positive constant. Suppose that η has the stationary distribution of the spatial
birth and death process. Kurtz and Li (2003) gave the conditions under which the stationary
distribution was unique. They chose the functions f1 and f2 in the time-invariance estimation
equations to be of the form

f1(η) = |η|, f2(η) = 1

|η|(|η| − 1)

∑
i �=j

i,j=1,...,|η|

ρ∗
( |xi − xj |

t0

)
,
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where |η| denotes the total variation of η and ρ∗ is a measurable function. Then the time-
invariance estimators can be written as

ĉ1 = g1(Y1, Y2, Y3, Y4, Y5) := ((Y1 − 1/|B|)Y4 − Y2Y3)Y1

(Y1 − 1/|B|)(Y4 − Y3Y5)
,

ĉ2 = g2(Y1, Y2, Y3, Y4, Y5) := (Y1Y2 − (Y1 − 1/|B|)Y5)Y1

(Y1 − 1/|B|)(Y4 − Y3Y5)
,

(5.3)

where B is the observation window and |B| is its Lebesgue measure, and

Y1 = |η|
|B| = η(B)

|B| ,

Y2 = 1

|B|
∑
x∈η

∑
y∈η

ρ∗
( |x − y|

t0

)

= 1

|B|
∫
B

∫
B

ρ∗
( |x − y|

t0

)
η(dx)η(dy),

Y3 = 1

|B|
∫
B

ρ

(
minxi∈η |u− xi |

t0

)
du,

Y4 = 1

|B|
∫
B

|η|∑
j=1

ρ∗
( |u− xj |

t0

)
ρ

(
minxi∈η |u− xi |

t0

)
du,

= 1

|B|
∫
B

∫
B

ρ∗
( |u− x|

t0

)
η(dx)ρ

(
minxi∈η |u− xi |

t0

)
du,

Y5 = 1

|B|
∫
B

|η|∑
j=1

ρ∗
( |u− xj |

t0

)
du =

∫
B

∫
B

ρ∗
( |u− x|

t0

)
η(dx) du.

Typically this model does not have explicit forms for the density function. Consequently,
it would be difficult to apply classical methods of estimation to these models. Kurtz and
Li (2003) considered the following problem concerning the consistency of time-invariance
estimators. Assume that the data comes by observing the point process in a finite subregion
of an infinite region. The consistency question then becomes whether or not the parameter
estimates converge to the correct value as data is collected from larger and larger subregions.
They proved the consistency. The asymptotic normality is given in Qi (2007), where the ideas
in this paper were used to prove the CLTs for the following functionals of η:

η(B),

∫
B

∫
B

ρ∗
( |x − y|

t0

)
η(dx)η(dy),

∫
B

ρ

(
minxi∈η |u− xi |

t0

)
du,

and∫
B

∫
B

ρ∗
(
u− x

t0

)
η(dx)ρ

(
minxi∈η |u− xi |

t0

)
du,

∫
B

∫
B

ρ∗
( |u− x|

t0

)
η(dx) du.

As the observation window B goes to the whole space, then we can apply the delta method to
give the asymptotic normality of the time-invariance estimators in (5.3).
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