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Z. Knežević and A. Milani, eds.

c© 2004 International Astronomical Union
DOI: 10.1017/S1743921304008853

Bifurcations of periodic orbits and potential
stability regions in Kuiper belt dynamics

Thomas A. Kotoulas and George Voyatzis

Section of Astrophysics,Astronomy and Mechanics, Department of Physics, University of
Thessaloniki, GR-541 24 Thessaloniki, Greece

email: tkoto@skiathos.physics.auth.gr, voyatzis@auth.gr

Abstract. In the framework of the restricted three body problem, the resonant periodic orbits
associated with the Kuiper belt dynamics are studied. Particularly, all the first, second and third
order exterior mean motion resonances with Neptune located up to 50A.U. and the asymmetric
resonances (beyond the 48 A.U.) are considered. We present the bifurcation points of families of
periodic orbits of the planar circular problem from which families of periodic orbits are generated
in the planar elliptic and in the 3D circular problem. Similarities and differences between the
various resonant cases are noticed. The relation between the distribution of the bifurcation
points and the population of small bodies at the particular resonances is discussed.
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1. Introduction
An interesting problem in Solar System science is the study of the dynamical evo-

lution of small bodies beyond the orbit of Neptune, in the so called Edgeworth-Kuiper
(E-K) belt. More than 700 trans-Neptunian objects (TNOs) have been observed up to
now and are included in the associated list of the Minor Planet Center (http://cfa-
www.harvard.edu/iau/ mpc.html). Most of the TNOs move in low eccentric orbits (e ≈
0.1) but a significant portion of them shows relatively high eccentric motion. The exis-
tence of high inclined orbits is also evident. A recent review about the structure of the
Edgeworth-Kuiper belt was given by Morbidelli et al. 2003.

Many numerical and theoretical works were done to investigate the dynamics of TNOs
in the framework of the restricted three body problem (RTBP) (e.g. Knežević et al.
(1991), Levison and Duncan (1993), Holman and Wisdom (1993), see also references in
Morbidelli (1999)). Even the simplest model, namely the planar circular restricted three-
body problem, reveals interesting dynamical features (Malhotra (1996)). For models of
few degrees of freedom, the existence and stability of periodic orbits determine critically
the phase space structure. Therefore the regions round stable periodic orbits are possible
places to host TNOs revolving in regular orbits. We studied the families of periodic orbits
in many resonances in E-K belt and in the present work we discuss about their properties
with respect to the bifurcation points and stability of the generating periodic orbits. In
Section 2 we present the main features of the families of symmetric periodic orbits in
the planar circular RTBP, while in Section 3 we present the bifurcation points of each
family from the planar circular to the planar elliptic and to the 3D circular RTBP. The
resonances of the type n/n′ = 1/q, q = 2, 3, ..., the so-called asymmetric resonances, are
discussed in Section 4.
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2. Families of symmetric periodic orbits in the planar circular RTBP
We consider the rotating orthogonal frame of reference xOy where the Sun and the

secondary body, particularly the Neptune, define the Ox-axis. For the mass of Neptune
we have chosen the value µ=5.178×10−5 and the orbital period of Neptune around the
Sun is equal to 2π. In the above rotating frame, the system has families of symmetric
periodic orbits (y(0) = 0, ẋ(0) = 0) classified in two different kinds:
• Families of circular orbits (first kind) : The periodic orbits correspond to nearly

circular orbits for the small body. The ratio n/n′ varies along each family.
• Resonant Families (second kind) : The periodic orbits correspond to elliptic orbits

for the small body. The eccentricity increases along the family but the ratio n/n′ is almost
constant and rational n/n′ ≈ p/q, p, q ∈ Z.
For the exterior resonances, studied in this paper, it is q > p and the difference q − p
defines the order of the resonance. The multiplicity of a periodic orbit is defined as the
number of crosses of the orbit with the axis y = 0 in the same direction (ẏ > 0 or ẏ < 0) in
a period. For each resonance there exist two different families (I and II) differing in phase.
On family I the small body is initially at perihelion and on family II it is at aphelion.
Both of them originate from the circular family. For the high order resonances (e.g. 1/3,
3/5, 1/4, 4/7) the continuation of the family of the circular orbits is possible for µ >0
and the resonant families bifurcate from the circular family where n/n′ = p/q. For the
first order resonances (e.g. 1/2, 2/3, 3/4, 4/5) the above mentioned continuation is not
possible (Hadjidemetriou and Ichtiaroglou (1984)). The resonant families join smoothly
the circular family, which shows a gap at the position of the first order resonance for
µ �= 0. A detailed study on the 1/2, 2/3 and 3/4 resonant families is given in Kotoulas
and Hadjidemetriou (2002).

In all resonances, family I starts as unstable; a collision orbit with Neptune takes
place at a specific value of eccentricity where the relation a(1 − e) ≈ 1 holds. After the
collision orbit the family I becomes stable and the multiplicity increases by one. In all
resonances except for the asymmetric ones, family II is stable except for a small area in
which a collision between the small body and Neptune occurs. Along both families the
eccentricity increases starting from zero and we stopped following the families because
of numerical difficulties at very high values where collision with Sun takes place.

3. Bifurcation points
3.1. Bifurcations from planar circular RTBP to planar elliptic RTBP

In the elliptic problem, where the eccentricity of secondary body is e′ �= 0, the families
of periodic orbits bifurcate from the resonant families of periodic orbits of the circular
problem (e′ = 0) at those points where the period is a multiple of 2π. The eccentricity
values that correspond to the bifurcation points from the planar circular to planar elliptic
problem are shown in Table 1 and presented in the a − e plane in Fig. 1a. Two pairs of
resonant families bifurcate from each point and are continued for e′ > 0. We call them as
Ep and Ea. In family Ep Neptune is initially at perihelion and in family Ea it is initially
at aphelion. In most of the resonant cases the family Ep is stable while the family Ea

is unstable. In Table 1 the bifurcation points are presented and the symbols S and U
denote stability and instability respectively of the families bifurcating from these points
(the first symbol refers to family Ep and the second one to Ea).

For the particular value e′ = 0.00912 (eccentricity of Neptune’s orbit) the isolated peri-
odic orbits correspond to eccentricity values which are slightly different of that obtained
for e′ = 0. The position of such periodic orbits in the a − e plane are shown in Fig. 2
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Table 1. Eccentricity values of bifurcation points (Bfn) from the planar circular to the planar
elliptic RTBP. The symbols S and U denote the stability type. The first symbol refers to the
generated family Ep and the second one to family Ea .

Resonance ares(A.U.) Period Bf1 Bf2 Bf3 Bf4

2/3 39.40 6π 0.469SU
3/4 36.41 8π 0.329SU
4/5 34.88 10π 0.253SU 0.871SU
5/6 33.95 12π 0.205SU 0.749SU
6/7 33.31 14π 0.172UU 0.649SU 0.960SU
3/5 42.26 10π 0.427US 0.800SU
5/7 37.62 14π 0.278SU 0.562SU 0.778US 0.936SU
7/9 35.54 18π 0.203SU 0.427SU 0.606US 0.766SU
4/7 43.65 14π 0.027UU 0.400UU 0.900SU
5/8 41.12 16π 0.029SU 0.335US 0.800SU
7/10 38.13 20π 0.025SU 0.249US 0.905SU

Table 2. Eccentricity values of bifurcation points (Bfn) from planar to 3D circular RTBP. The
character A or B denotes the symmetry type (see the text) of the orbits of the bifurcating family
and the character S or U denotes the corresponding stability. The 3/5 resonant bifurcations
indicated by an asterisk show exceptional characteristics (see the text).

Res. Bf1 Bf2 Bf3 Bf4 Bf5 Bf6 Bf7 Bf8

2/3 0.421AS 0.450BU 0.968BU
3/4 0.291AS 0.307BU 0.663AU 0.753AU 0.767BS
4/5 0.222AS 0.233BU 0.624BU 0.729AS 0.825BU
5/6 0.179AS 0.188BU 0.525BU 0.652AS 0.686BU
6/7 0.150AS 0.157BU 0.578AS
3/5 0.373AS 0.393* 0.705AS* 0.730AS 0.768BU 0.815BS* 0.820AS
5/7 0.248BS 0.251AU 0.281AS 0.518BS 0.519AU 0.592BU 0.716BU
7/9 0.175BS 0.179AU 0.228AU 0.388BS 0.394AU 0.470BU 0.560AU 0.678AU
4/7 0.051AS 0.064BU 0.359BS 0.369AU 0.727BU 0.808AS 0.860BU
5/8 0.050AS 0.064BU 0.293BS 0.303AU 0.640BU 0.732AS 0.738BU
7/10 0.049AS 0.064BU 0.210BS 0.222AU 0.517BU 0.565BS 0.597AU

where the position of the observed TNO’s, taken from the Minor Planet Center table, is
also indicated. We may notice that the distribution of objects does not exceed the eccen-
tricity values of the periodic orbits at e ≈ 0.4. Especially in the case of 2/3 resonance,
where the periodic orbits are located at e ≈ 0.47, the distribution of objects shows an
extensive spread up to e ≈ 0.35. In Kotoulas and Voyatzis (2004) it is shown that for the
planar elliptic problem and, particularly, for the resonances 2/3 and 3/4, regular orbits
exist for eccentricity values almost up to the position of the unstable periodic orbits. The
4/7 resonance does not possess stable periodic orbits for low and moderate values of the
eccentricity, but, as it is shown in Fig. 2, a large number of objects is observed at low
eccentricities.

3.2. Bifurcations from planar circular RTBP to 3D circular RTBP
The three dimensional families of symmetric periodic orbits in the circular problem bi-
furcate from the vertical critical orbits of the corresponding planar circular problem
(Hénon (1973)). The bifurcation points from the planar circular problem to the corre-
sponding 3D one are presented in Fig.1b and in Table 2. The families consist of periodic
orbits which are symmetric to xz-plane (y(0) = ẋ(0) = ż(0) = 0, type A) or to x-axis
(y(0) = ẋ(0) = z(0) = 0, type B). For both symmetries, families with stable (S) or
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Figure 1. Bifurcation points a) from planar circular to planar elliptic problem b) from planar
circular to 3D circular problem. Circles, squares and triangles refer to 1st, 2nd and 3rd order
resonances, respectively.

unstable (U) periodic orbits exist. The multiplicity may change many times along the
families. In Table 2 the type of symmetry and the stability of the bifurcating family is
indicated. For the 1st order resonances the stability type does not change at least up to
i = 20o. For the 3/5 resonance some exceptions were found. From the bifurcation point
at e = 0.393 two families are generated; one has symmetry of type A and is stable (S)
and the other one has symmetry of type B and is unstable. Moreover, the bifurcating
families at e = 0.705 and e = 0.815 start as stable but they become doubly unstable for
i ≈ 9o and i ≈ 25o, respectively. We should remark that for e < 0.5 all resonances have
stable families which are of symmetry type A. Additionally, the second and third order
resonances have families of stable orbits of symmetry type B too. A detailed study for
the resonant cases 1/2, 2/3 and 3/4 is given in Kotoulas and Hadjidemetriou (2002).

4. Asymmetric resonances
We recall that the asymmetric resonances are of the form n/n′ = 1/q, q = 2, 3, ... and

located beyond the 47 A.U. In all such resonances and in the framework of the planar
circular RTBP, the family I presents the same characteristics as in the case of low or
high-order resonances studied in the previous section. But along the family II a different
structure is obtained. The family II of asymmetric resonances starts as stable; it becomes
unstable at a certain value of eccentricity and then becomes again stable at a very high
value of it. The critical points, where the stability changes, correspond to bifurcations to
asymmetric periodic orbits (Voyatzis et al. (2004)). This scenario is valid for 1/2, 1/3,
1/4 and 1/6 mean motion resonances with Neptune. The eccentricity values of the above
bifurcation points are given in Table 3. An exceptional case is the 1/5 resonance where a
collision orbit is obtained along the family II. Asymmetric periodic orbits exist but their
complete localization needs further investigation.

The bifurcation points from the planar circular to planar elliptic problem and the
stability type of the generated families of periodic orbits are presented in Table 4 using
the notation Bfeln. Checking the vertical stability of periodic orbits of the corresponding
planar circular problem, we found that there exist vertically critical orbits along the
families of the resonances 1/2 and 1/3. These points are presented in Table 4 too and
using the notation Bf3Dn.
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Figure 2. The distribution of TNOs on the a− e plane and the position of the isolated periodic
orbits of the planar elliptic problem for e′ = 0.00912. Solid and empty symbols refer to the
periodic orbits of the families Ep and Ea respectively.

Table 3. Eccentricity values of bifurcation points for asymmetric periodic orbits in the planar
circular RTBP

Resonance ares(A.U.) Bf1 Bf2

1/2 47.78 0.035 0.960
1/3 62.53 0.123 0.972
1/4 75.75 0.201 0.978
1/5 87.90 ? �1.0
1/6 99.26 0.322 0.984

Table 4. Eccentricity values of bifurcation points from the circular to the elliptic planar
RTBP (Bfeln) and from planar to 3D circular RTBP (Bf3Dn)

Resonance a(A.U.) Bfel1 Bfel2 Bfel3 Bf3D1 Bf3D2

1/2 47.78 0.070UU 0.637UU 0.059AU 0.066BU
1/3 62.53 0.135UU 0.759UU 0.950UU 0.112AU 0.595AS
1/4 75.75 0.815UU
1/5 87.90
1/6 99.26 0.870UU

5. Conclusions
We studied the resonant families of periodic orbits and presented the bifurcation points

from the planar circular to planar elliptic and to three-dimensional circular one for all the
first, second and third order E-K belt resonances. In most cases of the elliptic problem
the bifurcating families appear in pairs, one with stable orbits and one with unstable
orbits. The stability type does not change up to e′ = 0.1. The 3D circular problem shows
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Figure 3. Bifurcation points and the distribution of TNOs at the region of the asymmetric res-
onances. Solid symbols refer to bifurcation points from the planar circular to the planar elliptic
problem. Empty symbols refer to bifurcation points from the planar circular to the 3D circu-
lar problem. The dotted vertical lines indicate the eccentricity range where stable asymmetric
periodic orbits can be found.

also both stable and unstable families. Generally, in this case, the families extend up
to moderate or high inclination values preserving their stability type. The asymmetric
resonances show bifurcation points from the planar circular to planar elliptic problem
except the 1/5 one. Bifurcations from the planar circular to the three-dimensional circular
problem were found only for the cases 1/2 and 1/3.
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