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1. Introduction. In [6] B. H. Neumann proved the following beautiful result: if a
n

group G is covered by finitely many cosets, say G = U */#,, then we can omit from the

union any *,//, for which |G://, | is infinite. In particular, \G:Hj\ is finite, for some
y e { l , . . . ,«}.

In an unpublished result R. Baer characterized the groups covered by finitely many
abelian subgroups, they are exactly the centre-by-finite groups [8]. Coverings by nilpotent
subgroups or by Engel subgroups and by normal subgroups have been studied, for
example, by R. Baer (see [8]), L. C. Kappe [2,1], M. A. Brodie and R. F. Chamberlain
[1], and recently by M. J. Tomkinson [9].

In this paper we study groups covered by finitely many isolators of subgroups.
If H is a subgroup of the group G, the isolator of H in G is, by definition, the subset

lc{H) = {xeG\x"eHfor some n > 0}.

We denote by 36 the class of groups G such that, whenever G = U / c W ) , then
G = lc{Hj) for some j e {1,. . . , n}. '=1

We prove the following results:
THEOREM A. Let A be a normal abelian subgroup of G. If G/A e £, then G e 36. If G

is locally soluble, then G e3i.

From Theorem A, using a result of J. C. Lennox [4], it follows that if G is a finitely
n

generated soluble group and G = U/ o ( / / , ) , then \G:Hj\ is finite, for some ye

THEOREM B. Let G = U / cW) , where Hu. . . ,Hn are abelian subgroups of G.

Then G = IG(Hj) for some j e {1,. . . , n).
n

T h e s a m e c o n c l u s i o n o f T h e o r e m B h o l d s if G = {J IG(Hi), w i t h H u . . . , H n

; = i

subnormal subgroups of G (Theorem C and Corollary 3.2).
Most of the standard notation used comes from [8].
We say that a group G has the isolator property (G has /. P.) if the isolator of every

subgroup of G is itself a subgroup of G.
A subgroup H is called isolated if Ic(H) = H.
Finally, if H, K are subgroups of G, then we write H ~ K to mean IC(H) =
2. Proof of Theorem A. We begin with some preliminary results:

LEMMA 2.1. / / every two generator subgroup of G is in 3c, then so is G.
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n

Proof. Suppose false, and let G = U lG(Hi), where n s 2 is minimal subject to

In \

G =£Ic{Hi) for any / e {1,. . . , «}. By minimality of n, there exists hi e //, - I (J /G(#,) )•
\/=2 /

Similarly there exists h2eH2 such that h2eIG(H}) U/G(//3)U • • • I)IG(Hn). Let J =

(huh2). Then / = U /,(#, n / ) , and by the hypothesis / = /,(//,• n / ) for some i.
i=i

Hence J s /c(//,) for some i, a contradiction.

LEMMA 2.2. 1 = Ql.

Proof. Easily verified.

LEMMA 2.3. Let H^G be such that G = lc{H). Then Gel if and only ifHel.

Proof. Assume G e 1. If H = \J lH(Ki), then G = U /c(*:,), so that /„(*:,) = H for
/ = i *=i

some i.

Conversely, let Hel and suppose G = \JlG(Hi). Then / / = U IH(H n //,•) and
/ = 1 / = 1

H = /«(// D //,) for some /. Hence G = IG{HI) for some i.

We prove now a weaker version of Theorem A.
LEMMA 2.4. Le? G = (au . . . , am, h), where A = (au . . . ,am)G is abelian. Then

Gel.

Proof. If G/A is finite, the result follows easily from 2.3.
Assume G/A = (h) infinite. We prove, by induction on n, that if G = IG(Hi)U

IG(H2) U . . . U IG(Hn) UA, then G = IG(Hj), for some j e {1,. . . , n}. Obviously we can
assume HtA > A, for every /, and so \G :HjA\ is finite. Without loss of generality, we may
assume G = HXA = H2A = ...= HnA. Then H, HA<G, for every i e { 1 , . . . , « } .

We show that G/(A D //, n . . . D Hn) is polycyclic; then G/(A n //, n . . . D //„) is
almost I. P. by a result of Rhemtulla and Wehrfritz [7], and G e 1.

By a theorem of Lennox and Wiegold [5, Theorem B], it suffices to prove that
{(a,h){A n Hx n . . . D Hn))/(A n //] D . . . n //„) is polycyclic for every a e A. Hence,
without loss of generality, we can assume A = (a)c.

First, we show that G/(Hj D A) is polycyclic, for some j e {I,. . . ,n}.
For every i e N there exists a e N such that (ah1)" e Hx U H2 U. . . U Hn. Then there

are /, seM, s>l, such that h'aeIG(Hj), h^a e IG{H.) for the same j e { 1 , . . . , « } .
Hence, for a suitable j8 e N, (A'a)* = / I ' V ^ . . . . ah'a eH/ and (A"a)" =
/i^a" . . . a" a e Hh from which a a " . . . a h a . . . a" a eADHj. But s >
1, and so i(fr - 1) > w(/3 - 1). Therefore we have a*"*"V"1. . . a* V e H j D A , with a,
suitable integers, i < a, < i(fis - 1), from which ah^'2). . . ah°'"a eHjDA and am) e Hj D
A, where/(A) is a polynomial over Z with leading coefficient and constant term equal to
1. Therefore G/(A DHj) is polycyclic [3]. Assume/= 1; then G/(A H//,) is polycyclic.

If n = 1, the result follows. Assume n > 1. Let l < / < « be maximum such that
G/(A Pi Hi (1... H Hi) is polycyclic. Assume for a contradiction / < n. Write B = A D
//, n . . . n #, and let g e G - (4 U /c(// ,) U . . . U lG{Hn.x)). Thus g = c/i*, for some
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ceA, seZ, s=£0. Put K = B{g>, then from B </ / , it follows Kn/c(//,) = B for every
1 <*•</, and K = BUIK(HH.lnK)l). . .UIK(Hnr\K). Notice that B is finitely gen-
erated as a /C-group. By induction, K = IK(Ht D /C) for some / < n, and tf = /*(//„ n AT)
since g <M U/G(//,) • • • U/<;(//„_,). Arguing as before we get ((b,g)(B n Hn))/(B n
//„) polycyclic for every beB, and then {(b,dh){B D Hn))l{B C\Hn) is polycyclic for
every d e A Hence ((b,x)(B DHn))/(B D Hn) is polycyclic for every 6 e B , x e C and
G/(Bf)Hn) is polycyclic by a theorem of Lennox and Wiegold [5, Theorem B],
contradicting the maximality of /.

Now we can prove Theorem A.

Proof of Theorem A. Suppose A < G, A abelian, G/A e 3£, and for a contradiction

Let n be the least integer >1 such that G = \J /G(/f,), //, < G, but G #/ c( / / , ) for
any / e {1,. . . ,n} . '=1

First remark that we may assume

(I) G = \JIC(HI), G^lciHi) for any ie{l,...,n}, G =AHX =. . .= AH,, A<
i— 1

n-1

Pi H,+ i, where 1 < / < n. Moreover A D / / ,<G, /or any i.

For, if lc{AHx)=tG, then replace //, by ̂ 4//,; if lc{AHx) = G, then replace G by

AHX and for i # l , replace H, by AHX^H,. Observe that (J lAHi(AHx D//,) = >!//, D
/i

\JIc(Hi)=AHu and, by our minimal choice of n, IA^AH^H^^AH^ for any i.
i

Furthermore the given normal abelian subgroup A is still contained in the new G, HX>A
or AHX = G, and, in both cases. AC\HX<^G. There exists i e {1,.. . ,n} such that
/c(/4//,) = G, because C M € X. We may assume i = 1 and G = .4/ / , .

Now suppose we have made the adjustment for the first r subgroups / / , , . . . , Hr and
for the group G such that:

(*) A is contained in the new G, either H, >A or AHt = G, for any 1 < / < r.

Remark that then A D Ht<\G, for any 1 < i < r.
If IG(AHr+i)i=G, then replace / / r + , by AHr+i and observe that (*) is satisfied for

//r+1 as well. If IG(AHr+i) = G, then replace G by G, =/4//r+1 and //, by HjC\AHr+l for
all i. If j = r + l, then // r +i satisfies (*); if i<r and AHt = G, then /4//, n ,4 / / r + 1 =
/!(//, n AHr+l) = G; if i < r and >i < //,, then ^ < //, n / l / / r + 1 . Hence (*) holds for H,,
for any i s r + l.

Thus we have made the adjustment for the first r+ 1 subgroups Hx,. . . ,Hr+1 to
satisfy (*). Continue this process until r = n. As a result of the above adjustment we may
assume (I).

Write M =/inn//,-.
1 = 1

Passing, if necessary, to the quotient group G/M, we have, without loss of
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generality,

(ii) /tnn//, = i.

The next step is to show that

(III) A is periodic.

If not, then let (a) be infinite, aeA. By (II), ( a ) n / / , = l for some i, say i = l.

Also, by minimality of n, there exists heHx such that h £ U lc(Hj). Let H - (a,h).

Clearly H = \J /„(//, n H) and / / # / „ ( / / , D H) for any /. But, by Lemma 2.4, H e 3£, a
/=i

contradiction.
Now, let Tbe a subset of {1,. . . , «} of largest cardinality such that AK~G, where

K = n //,-. For any y $ T, let Kj = K n Hj. By (I), |T| > 1. Pick any oe /1 .
iTieT

For each g e K — U IG(K<) some power gm of g centralizes a modulo H. D /I for some

jeT. For, if \({a<s))(HjnA))/(HtDA)\ = », then agr$IG(Hj) for any non-zero integer
r. If this happens for all / e T, then agr, ags e /C(M) for some i ^ T , r , j e N , r # i . From
this we get a contradiction to g $ U

Let C, = (g e K I [a, g] e //.). Then K ~ U K , U U Q, and K n A < C. for all y e T.
i*T jeT

Since / l /C -G , / l / f M - G M e l and so K/(KnA)=<AK/AeX. Hence either (An
K)Ki ~ AT for some i $ T (alternative (^)) or C, ~ AT for some jeT (alternative (88)).

If (M) holds, then ,4(,4 nK)Ki~AK~G, so that A/C,~G, contradicting the
maximality of the set T.

So assume (58). For each a e A, let Ta be the subset of 7 such that C, = C,(a) ~ K for
all i e Ta. Then Ta * 0 . For each y e 7, let £, = {ae/ l such that y" $ Ta}. Observe that if a,
b e Ej, then a£> e £y, for Tab 2 ra n Tfc. Also a e £y if and only if a~x e £y. Thus Et <A,
and ^ = U Ej. Furthermore E:<\G, for any jeT. By B. H. Neumann's result

jeT

\A:Ej\<\T\, for some j e T, say \A:E{\<\T\ (and 1 e T). Then for any g e K, a eA, we
have [a,gs]eEu for some s > 0 , and, for a suitable r > 0 , [a,gr,gr]eH}(~)A: thus, if
|a| = ^, then [a,grk\eHxC\A. Therefore EX=A, so that for any aeA, any ge/C,
gr e C,(a) for some r > 0, and hence [gr, a] e //i D A, so that some suitable power of ag
lies in Hx. This gives /IK c lc(Hx) and G = 1G{H\), a contradiction.

Then G 6 1 .
Now assume G locally soluble, we prove that Ge£. By Lemma 2.1 it suffices to

show that every 2-generator subgroup of G is in 36. Thus, without loss of generality, we
can assume G soluble, and the result follows easily by induction on the derived length.

COROLLARY 2.5. Let G be a finitely generated soluble group.
If G = 7C(H,) U lc{Hz) U . . . U IG(Hn), with Hx, H2,...,Hn subgroups of G, then

\G\Hi\ is finite for some i e {1 , . . . , n).
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Proof. We have G = /G(// ,) , for some i e { 1 , . . . , « } , and, by a result of J. Lennox
[4], \G:H,\ is finite.

3. Groups covered by isolators of finitely many abelian subgroups.

Proof of Theorem B. We argue by induction on n. Obviously the result is true for

n = 1; assume n > 1, and, for a contradiction, /c(//,-) <£IJIG(HJ), f° r a n y '•

First we show that we may assume

(I) H,nHj = l,fori±j.

For, if T < G and T <£ /G(//,) for any j , then for every (h,k), h±k, T n
(//,,, / O ^ /G(W,) for any i. In fact, if T n <//*, //*) c /G(//,) for some i, then T n //,,,
T C\Hkc. IG(Hj) with either i =£ /i or / # fc. Assume for example i ¥= h. Then T =
U /y(r fl Hi) and, by induction, T = IT(T D //5) c IC(HS) for some 5, a contradiction.

Now write X = C\ {HhHj). Then it is easy to see that X <£ lx{H: n X) for any i,

and we can assume G = X, so that //,-n//-<G for any i # / . Put y = fl (//,-nf/.-).

Then y < G and y is soluble. If G/YcIGIY(HjY/Y) for some ye {1,. . . , / i} , then
G~HjY. But H,y is soluble, thus, by Theorem A, HJY~HSDHJY for some se
{1 , . . . , «} and G ~ Hs, a contradiction. Then we can assume Y = 1 and (I) holds.

Now we prove that

(II) for every i e {1, . . . , n} and for every g e G, r/iere exists a = ar(j, g) € N such that

Let aeHi- ( i j Ic(Hj)\ Then, for some h,k,h<k, ag" and a8* are in /c(/fs) for a

suitable s e {1,. . . ,n} . Hence, for some y e Z — {0}, we have (ary)g\ (aY)g"e Hs, and
((ay)s\ (ay)s ) is abelian. Thus (av, (ay)8'' *) is abelian, so that there exists / e
{ l , . . . , n } for which <ay, (fly)g""*) c/G(Hy). Obviously j = i, since aY e 1G(H,) and
// ,n/ / y = l for i * ; , by (I). Then a*"'" e lG(Hi) and obviously a8*"*^LJ/c(^)- For any

/*'
axeHj, {ash" ,a\h'k) abelian it follows, arguing as before, (a**"*, of*"*) c/G(//,); hence
the group //,/(//, D //f*~*) is periodic.

Write Ar=(/ / / , //«*'*>, then //, D Hf~"<X and writing X = X/(//, n //f"A), we have
XcUlxMnX). It follows by induction that X <= Ix((Hj DX)(Hi D Hf"'")) for some

'*'
je{l,...,n}. From (//y n X)(HkC\ Hf"'") soluble it follows, by Theorem A,
(Hj D X)(H,:H Hf'") ~ H, D (/^^n X)(H,,(1 Hf~") for some t, hence X~H,C\X.
Obviously the only possibility is t ='i and (II) holds.

Now take a eHx - U 1G(H,), beH2-{J IG(H,). Then, by (II), there is ae 1 - {0}
l #2

such that <//!,//?*> s W , ) , so that, for some r e Z - { 0 } , K ^ e / f , and, for
every sel, [ar,b"Y = [a",b"]eHl. Also, by (II), there exists kel-{0} such that
(H2,Hf)cIG(H2), hence [arAr,fcff] e/G(//2) and, for some j e Z - { 0 } , [a'^b"]5 eH2.
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Thus [arks,b"] = [ark,b"Y = [ar,ba]kseHlPiH2 = l, and (arks,ba) is abelian. Then
(arks, b") c 1C(HS), for some s e { l «}; from a e IG(HS) it follows s = 1 and from
b e IC(HS), s = 2, the final contradiction.

In order to prove Theorem C, we need the following easy Lemma:
n

LEMMA 3.1. Let G be a group, G = U IG(H{), where H{ < G, i = 1,. . . , n. Assume

G = HjX H, for some j and some H^G. Then either G = \J /c(//,)> or G = IG(Hj).

Proof. If G±\JIG(H,), there exists beHj, b$\JIc(Hi). For any aeH, consider
•*i •*!'

the elements amb, m eN. Then there exists s e { l n} such that a'1/?, a*6 e IG(HS) for
h, keN, h*k. Then (a^f = ahpbp e Hs and {akbY = akpbp eHs, for a suitable 0 e N
and aP{h-k)eHs. Thus aeIG(Hs) and beIc(Hs), since ahbelc(Hs), then s=y and
G = lc(Hj), as required.

THEOREM C. Let G be a group, / / , , . . . , / / „ normal subgroups of G such that

77ien G = IG{HJ) for some / e {1,. . . , M}.

Proo/. By induction on « we may assume G//^ c /c/H|(//y//,///,) for some /.
Let / ^ 1 be maximum such that

G/(//, n... n H,) ~ (//,(//, n... n //,))/(//, n... n //,),
for some f e {1,. . . ,n} .

If / = «, then the result follows. Assume for a contradiction / < « . Without loss of
generality we can assume t = l + l, so that GI{HX D . . . D H,) ~ (/f,+ 1(//, n . . . f~l
/ / , ) ) / ( / / ,n . . . n//,). Write j f = / / ,+ , ( / / ,n . . .n / / , ) , then j f / ( / / ,n . . .n / / ,+ , ) =
Hl+ll(Hx n . . . D //,+1) x ( / / , n . . . n ///)/(//, n . . . n / / / + 1 ) , by Lemma 3.1 and by induc-
tion, we have A7(#, n . . . D Hl+l) ~ ((//, n X)(Ht n . . . n //,+,))/(//, n . . . n ///+1) for
somes e { l , . . . ,n}. ThusG/(//, n . . . n/ / / + 1) - ( / / , ( / / , D. . . n//,+ ,))/(//, D . . . D//;+1)
because G ~ A', contradicting the maximality of /.

COROLLARY 3.2(t). Let G be a group, / / , , . . . , / / „ subnormal subgroups of G such

that G = U /c(//,). T/ien G = /c(//y) /or some ; e { 1 , . . . , « } .

Proof. Denote by m, the subnormal defect of //,-, for any i e { 1 , . . . , n}. We argue
by induction on the sum of the m,'s. By Theorem C, G = IG{Hf) for some /. But
Hj<m'-lHf, and Ht^Hf<\m'Hf for i * / . So / / f = /«c(//, n / / f ) for some i and
G = IG(Hi), as required.
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