COVERING A GROUP WITH ISOLATORS OF FINITELY MANY SUBGROUPS

by PATRIZIA LONGOBARDI, MERCEDE MAJ and AKBAR H. RHEMTULLA

(Received 28 January 1992)

Dedicated to Professor B. H. Neumann for his 80th birthday

1. Introduction. In [6] B. H. Neumann proved the following beautiful result: if a

group G is covered by finitely many cosets, say $G = \bigcup_{i=1}^{n} x_i H_i$, then we can omit from the union any $x_i H_i$ for which $|G:H_i|$ is infinite. In particular, $|G:H_j|$ is finite, for some $j \in \{1, ..., n\}$.

In an unpublished result R. Baer characterized the groups covered by finitely many abelian subgroups, they are exactly the centre-by-finite groups [8]. Coverings by nilpotent subgroups or by Engel subgroups and by normal subgroups have been studied, for example, by R. Baer (see [8]), L. C. Kappe [2, 1], M. A. Brodie and R. F. Chamberlain [1], and recently by M. J. Tomkinson [9].

In this paper we study groups covered by finitely many isolators of subgroups.

If H is a subgroup of the group G, the *isolator* of H in G is, by definition, the subset

$$I_G(H) = \{x \in G \mid x^n \in H \text{ for some } n > 0\}.$$

We denote by \mathfrak{X} the class of groups G such that, whenever $G = \bigcup_{i=1}^{n} I_G(H_i)$, then $G = I_G(H_i)$ for some $j \in \{1, \ldots, n\}$.

We prove the following results:

THEOREM A. Let A be a normal abelian subgroup of G. If $G/A \in \mathfrak{X}$, then $G \in \mathfrak{X}$. If G is locally soluble, then $G \in \mathfrak{X}$.

From Theorem A, using a result of J. C. Lennox [4], it follows that if G is a finitely generated soluble group and $G = \bigcup_{i=1}^{n} I_G(H_i)$, then $|G:H_j|$ is finite, for some $j \in \{1, \ldots, n\}$.

THEOREM B. Let $G = \bigcup_{i=1}^{n} I_G(H_i)$, where H_1, \ldots, H_n are abelian subgroups of G. Then $G = I_G(H_j)$ for some $j \in \{1, \ldots, n\}$.

The same conclusion of Theorem B holds if $G = \bigcup_{i=1}^{n} I_G(H_i)$, with H_1, \ldots, H_n subnormal subgroups of G (Theorem C and Corollary 3.2).

Most of the standard notation used comes from [8].

We say that a group G has the *isolator property* (G has I.P.) if the isolator of every subgroup of G is itself a subgroup of G.

A subgroup H is called *isolated* if $I_G(H) = H$.

Finally, if H, K are subgroups of G, then we write $H \sim K$ to mean $I_G(H) = I_G(K)$.

2. Proof of Theorem A. We begin with some preliminary results:

LEMMA 2.1. If every two generator subgroup of G is in \mathfrak{X} , then so is G.

Glasgow Math. J. 35 (1993) 253-259.

Proof. Suppose false, and let $G = \bigcup_{i=1}^{n} I_G(H_i)$, where $n \ge 2$ is minimal subject to $G \ne I_G(H_i)$ for any $i \in \{1, ..., n\}$. By minimality of n, there exists $h_1 \in H_1 - \left(\bigcup_{i=2}^{n} I_G(H_i)\right)$. Similarly there exists $h_2 \in H_2$ such that $h_2 \in I_G(H_1) \cup I_G(H_3) \cup \cdots \cup I_G(H_n)$. Let $J = \langle h_1, h_2 \rangle$. Then $J = \bigcup_{i=1}^{n} I_i(H_i \cap J)$, and by the hypothesis $J = I_J(H_i \cap J)$ for some i.

Hence $J \subseteq I_G(H_i)$ for some *i*, a contradiction.

LEMMA 2.2. $\mathfrak{X} = Q\mathfrak{X}$.

Proof. Easily verified.

LEMMA 2.3. Let $H \leq G$ be such that $G = I_G(H)$. Then $G \in \mathfrak{X}$ if and only if $H \in \mathfrak{X}$.

Proof. Assume $G \in \mathfrak{X}$. If $H = \bigcup_{i=1}^{n} I_H(K_i)$, then $G = \bigcup_{i=1}^{n} I_G(K_i)$, so that $I_H(K_i) = H$ for some *i*.

Conversely, let $H \in \mathfrak{X}$ and suppose $G = \bigcup_{i=1}^{n} I_G(H_i)$. Then $H = \bigcup_{i=1}^{n} I_H(H \cap H_i)$ and $H = I_H(H \cap H_i)$ for some *i*. Hence $G = I_G(H_i)$ for some *i*.

We prove now a weaker version of Theorem A.

LEMMA 2.4. Let $G = \langle a_1, \ldots, a_m, h \rangle$, where $A = \langle a_1, \ldots, a_m \rangle^G$ is abelian. Then $G \in \mathfrak{X}$.

Proof. If G/A is finite, the result follows easily from 2.3.

Assume $G/A \cong \langle h \rangle$ infinite. We prove, by induction on *n*, that if $G = I_G(H_1) \cup I_G(H_2) \cup \ldots \cup I_G(H_n) \cup A$, then $G = I_G(H_j)$, for some $j \in \{1, \ldots, n\}$. Obviously we can assume $H_iA > A$, for every *i*, and so $|G: H_iA|$ is finite. Without loss of generality, we may assume $G = H_1A = H_2A = \ldots = H_nA$. Then $H_i \cap A \triangleleft G$, for every $i \in \{1, \ldots, n\}$.

We show that $G/(A \cap H_1 \cap \ldots \cap H_n)$ is polycyclic; then $G/(A \cap H_1 \cap \ldots \cap H_n)$ is almost I. P. by a result of Rhemtulla and Wehrfritz [7], and $G \in \mathfrak{X}$.

By a theorem of Lennox and Wiegold [5, Theorem B], it suffices to prove that $(\langle a, h \rangle (A \cap H_1 \cap \ldots \cap H_n))/(A \cap H_1 \cap \ldots \cap H_n)$ is polycyclic for every $a \in A$. Hence, without loss of generality, we can assume $A = \langle a \rangle^G$.

First, we show that $G/(H_j \cap A)$ is polycyclic, for some $j \in \{1, \ldots, n\}$.

For every $i \in \mathbb{N}$ there exists $\alpha \in \mathbb{N}$ such that $(ah^i)^{\alpha} \in H_1 \cup H_2 \cup \ldots \cup H_n$. Then there are $i, s \in \mathbb{N}, s > 1$, such that $h^i a \in I_G(H_j)$, $h^{is} a \in I_G(H_j)$ for the same $j \in \{1, \ldots, n\}$. Hence, for a suitable $\beta \in \mathbb{N}$, $(h^i a)^{\beta s} = h^{i\beta s} a^{h^{i(\beta s-1)}} \ldots a^{h^i} a \in H_j$ and $(h^{is} a)^{\beta} = h^{is\beta} a^{h^{is(\beta-1)}} \ldots a^{h^i} a \in H_j$, from which $a^{-1}a^{-h^i} \ldots a^{-h^{i(\beta s-1)}}a^{h^{is(\beta-1)}} \ldots a^{h^{is}} a \in A \cap H_j$. But s > 1, and so $i(\beta s - 1) > is(\beta - 1)$. Therefore we have $a^{h^{i(\beta s-1)}}a^{h^{is(\beta-1)}} \ldots a^{h^{is}}a^{h^i} \in H_j \cap A$, with α_l suitable integers, $i < \alpha_l < i(\beta s - 1)$, from which $a^{h^{i(\beta s-2)}} \ldots a^{h^{is_l}-1}a \in H_j \cap A$ and $a^{f(h)} \in H_j \cap A$, where f(h) is a polynomial over \mathbb{Z} with leading coefficient and constant term equal to 1. Therefore $G/(A \cap H_j)$ is polycyclic [3]. Assume j = 1; then $G/(A \cap H_1)$ is polycyclic.

If n = 1, the result follows. Assume n > 1. Let $1 \le l \le n$ be maximum such that $G/(A \cap H_1 \cap \ldots \cap H_l)$ is polycyclic. Assume for a contradiction l < n. Write $B = A \cap H_1 \cap \ldots \cap H_l$ and let $g \in G - (A \cup I_G(H_1) \cup \ldots \cup I_G(H_{n-1}))$. Thus $g = ch^s$, for some

 $c \in A$, $s \in \mathbb{Z}$, $s \neq 0$. Put $K = B \langle g \rangle$, then from $B \leq H_i$ it follows $K \cap I_G(H_i) = B$ for every $1 \leq i \leq l$, and $K = B \cup I_K(H_{i+1} \cap K) \cup \ldots \cup I_K(H_n \cap K)$. Notice that B is finitely generated as a K-group. By induction, $K = I_K(H_j \cap K)$ for some $j \leq n$, and $K = I_K(H_n \cap K)$ since $g \notin A \cup I_G(H_1) \ldots \cup I_G(H_{n-1})$. Arguing as before we get $(\langle b, g \rangle (B \cap H_n))/(B \cap H_n)$ polycyclic for every $b \in B$, and then $(\langle b, dh \rangle (B \cap H_n))/(B \cap H_n)$ is polycyclic for every $d \in A$. Hence $(\langle b, x \rangle (B \cap H_n))/(B \cap H_n)$ is polycyclic for every $b \in B$, $x \in G$ and $G/(B \cap H_n)$ is polycyclic by a theorem of Lennox and Wiegold [5, Theorem B], contradicting the maximality of l.

Now we can prove Theorem A.

Proof of Theorem A. Suppose $A \leq G$, A abelian, $G/A \in \mathfrak{X}$, and for a contradiction $G \notin \mathfrak{X}$.

Let *n* be the least integer >1 such that $G = \bigcup_{i=1}^{n} I_G(H_i), H_i \leq G$, but $G \neq I_G(H_i)$ for any $i \in \{1, \ldots, n\}$.

First remark that we may assume

(I) $G = \bigcup_{i=1}^{n} I_G(H_i), \quad G \neq I_G(H_i) \text{ for any } i \in \{1, \dots, n\}, \quad G = AH_1 = \dots = AH_i, \quad A \leq \bigcap_{i=1}^{n-l} H_{l+1}, \text{ where } 1 \leq l \leq n. \text{ Moreover } A \cap H_i \triangleleft G, \text{ for any } i.$

For, if $I_G(AH_1) \neq G$, then replace H_1 by AH_1 ; if $I_G(AH_1) = G$, then replace G by AH_1 and for $i \neq 1$, replace H_i by $AH_1 \cap H_i$. Observe that $\bigcup_{i=1}^n I_{AH_1}(AH_1 \cap H_i) = AH_1 \cap H_i$

 $\bigcup_{i=1}^{n} I_G(H_i) = AH_1, \text{ and, by our minimal choice of } n, I_{AH_1}(AH_1 \cap H_i) \neq AH_1 \text{ for any } i.$ Furthermore the given normal abelian subgroup A is still contained in the new $G, H_1 \geq A$ or $AH_1 = G$, and, in both cases. $A \cap H_1 \triangleleft G$. There exists $i \in \{1, \ldots, n\}$ such that $I_G(AH_i) = G$, because $G/A \in \mathfrak{X}$. We may assume i = 1 and $G = AH_1$.

Now suppose we have made the adjustment for the first r subgroups H_1, \ldots, H_r and for the group G such that:

(*) A is contained in the new G, either $H_i \ge A$ or $AH_i = G$, for any $1 \le i \le r$.

Remark that then $A \cap H_i \triangleleft G$, for any $1 \leq i \leq r$.

If $I_G(AH_{r+1}) \neq G$, then replace H_{r+1} by AH_{r+1} and observe that (*) is satisfied for H_{r+1} as well. If $I_G(AH_{r+1}) = G$, then replace G by $G_1 = AH_{r+1}$ and H_i by $H_i \cap AH_{r+1}$ for all *i*. If i = r + 1, then H_{r+1} satisfies (*); if $i \leq r$ and $AH_i = G$, then $AH_i \cap AH_{r+1} = A(H_i \cap AH_{r+1}) = G$; if $i \leq r$ and $A \leq H_i$, then $A \leq H_i \cap AH_{r+1}$. Hence (*) holds for H_i , for any $i \leq r + 1$.

Thus we have made the adjustment for the first r + 1 subgroups H_1, \ldots, H_{r+1} to satisfy (*). Continue this process until r = n. As a result of the above adjustment we may assume (I).

Write $M = A \cap \bigcap_{i=1}^{n} H_i$.

Passing, if necessary, to the quotient group G/M, we have, without loss of

generality,

(II)
$$A \cap \bigcap_{i=1}^{n} H_i = 1.$$

The next step is to show that

(III) A is periodic.

If not, then let $\langle a \rangle$ be infinite, $a \in A$. By (II), $\langle a \rangle \cap H_i = 1$ for some *i*, say i = 1. Also, by minimality of *n*, there exists $h \in H_1$ such that $h \notin \bigcup_{i=2}^n I_G(H_i)$. Let $H = \langle a, h \rangle$. Clearly $H = \bigcup_{i=1}^n I_H(H_i \cap H)$ and $H \neq I_H(H_i \cap H)$ for any *i*. But, by Lemma 2.4, $H \in \mathfrak{X}$, a contradiction.

Now, let T be a subset of $\{1, \ldots, n\}$ of largest cardinality such that $AK \sim G$, where $K = \bigcap_{i \in T} H_i$. For any $j \notin T$, let $K_j = K \cap H_j$. By (I), $|T| \ge 1$. Pick any $a \in A$.

For each $g \in K - \bigcup_{i \notin T} I_G(K_i)$ some power g^m of g centralizes a modulo $H_j \cap A$ for some $j \in T$. For, if $|(\langle a^{\langle g \rangle} \rangle (H_j \cap A))/(H_j \cap A)| = \infty$, then $ag^r \notin I_G(H_j)$ for any non-zero integer r. If this happens for all $j \in T$, then ag^r , $ag^s \in I_G(H_i)$ for some $i \notin T$, $r, s \in \mathbb{N}$, $r \neq s$. From this we get a contradiction to $g \notin \bigcup_{i \neq T} I_G(K_i)$.

Let $C_j = \langle g \in K \mid [a,g] \in H_j \rangle$. Then $K \sim \bigcup_{i \notin T} K_i \cup \bigcup_{j \in T} C_j$, and $K \cap A \leq C_j$ for all $j \in T$. Since $AK \sim G$, $AK/A \sim G/A \in \mathfrak{X}$ and so $K/(K \cap A) \simeq AK/A \in \mathfrak{X}$. Hence either $(A \cap A) = K/A \in \mathfrak{X}$.

Since AK = 0, $AK/A = 0/A \in \mathcal{X}$ and so $K/(K+iA) = AK/A \in \mathcal{X}$. Hence entries (\mathcal{A}) $K/K_i \sim K$ for some $i \notin T$ (alternative (\mathcal{A})) or $C_i \sim K$ for some $j \in T$ (alternative (\mathcal{B})).

If (\mathcal{A}) holds, then $A(A \cap K)K_i \sim AK \sim G$, so that $AK_i \sim G$, contradicting the maximality of the set T.

So assume (B). For each $a \in A$, let T_a be the subset of T such that $C_i = C_i(a) \sim K$ for all $i \in T_a$. Then $T_a \neq \emptyset$. For each $j \in T$, let $E_j = \{a \in A \text{ such that } j \notin T_a\}$. Observe that if a, $b \in E_j$, then $ab \in E_j$, for $T_{ab} \supseteq T_a \cap T_b$. Also $a \in E_j$ if and only if $a^{-1} \in E_j$. Thus $E_j \leq A$, and $A = \bigcup_{j \in T} E_j$. Furthermore $E_j \triangleleft G$, for any $j \in T$. By B. H. Neumann's result $|A:E_j| \leq |T|$, for some $j \in T$, say $|A:E_1| \leq |T|$ (and $1 \in T$). Then for any $g \in K$, $a \in A$, we have $[a, g^s] \in E_1$, for some s > 0, and, for a suitable r > 0, $[a, g', g'] \in H_1 \cap A$: thus, if |a| = k, then $[a, g^{rk}] \in H_1 \cap A$. Therefore $E_1 = A$, so that for any $a \in A$, any $g \in K$, $g' \in C_1(a)$ for some r > 0, and hence $[g', a] \in H_1 \cap A$, so that some suitable power of aglies in H_1 . This gives $AK \subseteq I_G(H_1)$ and $G = I_G(H_1)$, a contradiction.

Then $G \in \mathfrak{X}$.

Now assume G locally soluble, we prove that $G \in \mathfrak{X}$. By Lemma 2.1 it suffices to show that every 2-generator subgroup of G is in \mathfrak{X} . Thus, without loss of generality, we can assume G soluble, and the result follows easily by induction on the derived length.

COROLLARY 2.5. Let G be a finitely generated soluble group.

If $G = I_G(H_1) \cup I_G(H_2) \cup \ldots \cup I_G(H_n)$, with H_1, H_2, \ldots, H_n subgroups of G, then $|G:H_i|$ is finite for some $i \in \{1, \ldots, n\}$.

Proof. We have $G = I_G(H_i)$, for some $i \in \{1, \ldots, n\}$, and, by a result of J. Lennox [4], $|G:H_i|$ is finite.

3. Groups covered by isolators of finitely many abelian subgroups.

Proof of Theorem B. We argue by induction on *n*. Obviously the result is true for n = 1; assume n > 1, and, for a contradiction, $I_G(H_i) \not \leq \bigcup_{j \neq i} I_G(H_j)$, for any *i*.

First we show that we may assume

(1)
$$H_i \cap H_j = 1$$
, for $i \neq j$.

For, if $T \leq G$ and $T \not \leq I_G(H_i)$ for any *i*, then for every (h, k), $h \neq k$, $T \cap$ $\langle H_h, H_k \rangle \not \subseteq I_G(H_i)$ for any *i*. In fact, if $T \cap \langle H_h, H_k \rangle \subseteq I_G(H_i)$ for some *i*, then $T \cap H_h$, $T \cap H_k \subseteq I_G(H_i)$ with either $i \neq h$ or $i \neq k$. Assume for example $i \neq h$. Then T = $\bigcup_{i \neq h} I_T(T \cap H_i) \text{ and, by induction, } T = I_T(T \cap H_s) \subseteq I_G(H_s) \text{ for some } s, \text{ a contradiction.}$

Now write $X = \bigcap_{1 \le i \ne i \le n} \langle H_i, H_j \rangle$. Then it is easy to see that $X \not \subseteq I_X(H_i \cap X)$ for any *i*,

and we can assume G = X, so that $H_i \cap H_j \triangleleft G$ for any $i \neq j$. Put $Y = \prod_{1 \leq i \neq j \leq n} (H_i \cap H_j)$. Then $Y \triangleleft G$ and Y is soluble. If $G/Y \subseteq I_{G/Y}(H_iY/Y)$ for some $j \in \{1, \ldots, n\}$, then $G \sim H_i Y$. But $H_i Y$ is soluble, thus, by Theorem A, $H_i Y \sim H_s \cap H_i Y$ for some $s \in$ $\{1, \ldots, n\}$ and $G \sim H_s$, a contradiction. Then we can assume Y = 1 and (I) holds.

Now we prove that

(II) for every $i \in \{1, ..., n\}$ and for every $g \in G$, there exists $\alpha = \alpha(i, g) \in \mathbb{N}$ such that $\langle H_i, H_i^{g^*} \rangle \subset I_G(H_i).$

Let $a \in H_i - \left(\bigcup_{i \neq j} I_G(H_j) \right)$. Then, for some $h, k, h < k, a^{g^h}$ and a^{g^k} are in $I_G(H_s)$ for a

suitable $s \in \{1, ..., n\}$. Hence, for some $\gamma \in \mathbb{Z} - \{0\}$, we have $(\alpha^{\gamma})^{g^h}$, $(a^{\gamma})^{g^k} \in H_s$, and $\langle (a^{\gamma})^{g^h}$, $(a^{\gamma})^{g^k} \rangle$ is abelian. Thus $\langle a^{\gamma}, (a^{\gamma})^{g^{h-k}} \rangle$ is abelian, so that there exists $j \in \{1, ..., n\}$ for which $\langle a^{\gamma}, (a^{\gamma})^{g^{h-k}} \rangle \subseteq I_G(H_j)$. Obviously j = i, since $a^{\gamma} \in I_G(H_i)$ and $H_i \cap H_j = 1$ for $i \neq j$, by (I). Then $a^{g^{h-k}} \in I_G(H_i)$ and obviously $a^{g^{h-k}} \notin \bigcup_{j \neq i} I_G(H_j)$. For any $a_1 \in H_i$, $\langle a^{g^{h-k}}, a_1^{g^{h-k}} \rangle$ abelian it follows, arguing as before, $\langle a^{g^{h-k}}, a_1^{g^{h-k}} \rangle \subseteq I_G(H_i)$; hence

the group $H_i/(H_i \cap H_i^{g^{k-h}})$ is periodic. Write $X = \langle H_i, H_i^{g^{k-h}} \rangle$, then $H_i \cap H_i^{g^{k-h}} \triangleleft X$ and writing $\bar{X} = X/(H_i \cap H_i^{g^{k-h}})$, we have $\bar{X} \subseteq \bigcup_{j \neq i} I_{\bar{X}}(H_j \cap \bar{X})$. It follows by induction that $X \subseteq I_X((H_j \cap X)(H_i \cap H_i^{g^{k-h}}))$ for some $j \in \{1, \ldots, n\}$. From $(H_j \cap X)(H_i \cap H_i^{g^{k-h}})$ soluble it follows, by Theorem A, $(H_i \cap X)(H_i \cap H_i^{g^{k-h}}) \sim H_i \cap (H_i \cap X)(H_i \cap H_i^{g^{k-h}})$ for some t, hence $X \sim H_i \cap X$. Obviously the only possibility is t = i and (II) holds.

Now take $a \in H_1 - \bigcup_{i \neq 1} I_G(H_i)$, $b \in H_2 - \bigcup_{i \neq 2} I_G(H_i)$. Then, by (II), there is $\alpha \in \mathbb{Z} - \{0\}$ such that $\langle H_1, H_1^{b^{\alpha}} \rangle \subseteq I_G(H_1)$, so that, for some $r \in \mathbb{Z} - \{0\}$, $[a^r, b^{\alpha}] \in H_1$ and, for every $s \in \mathbb{Z}$, $[a^r, b^{\alpha}]^s = [a^{rs}, b^{\alpha}] \in H_1$. Also, by (II), there exists $k \in \mathbb{Z} - \{0\}$ such that $\langle H_2, H_2^{\alpha'^k} \rangle \subseteq I_G(H_2)$, hence $[a'^k, b^{\alpha}] \in I_G(H_2)$ and, for some $s \in \mathbb{Z} - \{0\}$, $[\alpha'^k, b^{\alpha}]^s \in H_2$.

Thus $[a^{rks}, b^{\alpha}] = [a^{rk}, b^{\alpha}]^s = [a^r, b^{\alpha}]^{ks} \in H_1 \cap H_2 = 1$, and $\langle a^{rks}, b^{\alpha} \rangle$ is abelian. Then $\langle a^{rks}, b^{\alpha} \rangle \subseteq I_G(H_s)$, for some $s \in \{1, \ldots, n\}$; from $a \in I_G(H_s)$ it follows s = 1 and from $b \in I_G(H_s)$, s = 2, the final contradiction.

In order to prove Theorem C, we need the following easy Lemma:

LEMMA 3.1. Let G be a group, $G = \bigcup_{i=1}^{n} I_G(H_i)$, where $H_i \leq G$, i = 1, ..., n. Assume $G = H_j \times H$, for some j and some $H \leq G$. Then either $G = \bigcup_{i \neq j} I_G(H_i)$, or $G = I_G(H_j)$.

Proof. If $G \neq \bigcup_{i \neq j} I_G(H_i)$, there exists $b \in H_j$, $b \notin \bigcup_{i \neq j} I_G(H_i)$. For any $a \in H$, consider the elements $a^m b$, $m \in \mathbb{N}$. Then there exists $s \in \{1, \ldots, n\}$ such that $a^h b$, $a^k b \in I_G(H_s)$ for $h, k \in \mathbb{N}, h \neq k$. Then $(a^h b)^\beta = a^{h\beta} b^\beta \in H_s$ and $(a^k b)^\beta = a^{k\beta} b^\beta \in H_s$, for a suitable $\beta \in \mathbb{N}$ and $a^{\beta(h-k)} \in H_s$. Thus $a \in I_G(H_s)$ and $b \in I_G(H_s)$, since $a^h b \in I_G(H_s)$, then s = j and $G = I_G(H_i)$, as required.

THEOREM C. Let G be a group, H_1, \ldots, H_n normal subgroups of G such that $G = \bigcup_{i=1}^n I_G(H_i)$.

Then $G = I_G(H_i)$ for some $j \in \{1, ..., n\}$.

Proof. By induction on *n* we may assume $G/H_1 \subseteq I_{G/H_1}(H_jH_1/H_1)$ for some *j*. Let $l \ge 1$ be maximum such that

$$G/(H_1 \cap \ldots \cap H_l) \sim (H_l(H_1 \cap \ldots \cap H_l))/(H_1 \cap \ldots \cap H_l),$$

for some $t \in \{1, ..., n\}$.

If l = n, then the result follows. Assume for a contradiction l < n. Without loss of generality we can assume t = l + 1, so that $G/(H_1 \cap \ldots \cap H_l) \sim (H_{l+1}(H_1 \cap \ldots \cap H_l))/(H_1 \cap \ldots \cap H_l)$. Write $X = H_{l+1}(H_1 \cap \ldots \cap H_l)$, then $X/(H_1 \cap \ldots \cap H_{l+1}) = H_{l+1}/(H_1 \cap \ldots \cap H_{l+1}) \times (H_1 \cap \ldots \cap H_l)/(H_1 \cap \ldots \cap H_{l+1})$, by Lemma 3.1 and by induction, we have $X/(H_1 \cap \ldots \cap H_{l+1}) \sim ((H_s \cap X)(H_1 \cap \ldots \cap H_{l+1}))/(H_1 \cap \ldots \cap H_{l+1})$ for some $s \in \{1, \ldots, n\}$. Thus $G/(H_1 \cap \ldots \cap H_{l+1}) \sim (H_s(H_1 \cap \ldots \cap H_{l+1}))/(H_1 \cap \ldots \cap H_{l+1})$ because $G \sim X$, contradicting the maximality of l.

COROLLARY 3.2(†). Let G be a group, H_1, \ldots, H_n subnormal subgroups of G such that $G = \bigcup_{i=1}^n I_G(H_i)$. Then $G = I_G(H_j)$ for some $j \in \{1, \ldots, n\}$.

Proof. Denote by m_i the subnormal defect of H_i , for any $i \in \{1, \ldots, n\}$. We argue by induction on the sum of the m_i 's. By Theorem C, $G = I_G(H_i^G)$ for some j. But $H_j \triangleleft^{m_j-1} H_j^G$, and $H_i \cap H_j^G \triangleleft^{m_i} H_j^G$ for $i \neq j$. So $H_j^G = I_{H_j^G}(H_i \cap H_j^G)$ for some i and $G = I_G(H_i)$, as required.

REFERENCES

1. M. A. Brodie, R. F. Chamberlain and L.-C. Kappe, Finite coverings by normal subgroups, *Proc. Amer. Math. Soc.*, 104 no. 3 (1988), 669-674.

† The authors wish to thank Professor Howard Smith for this remark.

2. L.-C. Kappe, Finite coverings by 2-Engel groups, Bull. Austral. Math. Soc., 38 (1988), 141-150.

3. A. S. Kirkinskii, Intersection of finitely generated subgroups in metabelian groups, Algebra and Logic, 20 no. 1 (1981), 22–36 (Algebra i Logika, 37–54).

4. J. C. Lennox, Bigenetic properties of finitely generated hyper-(abelian-by-finite) groups, J. Austral. Math. Soc., 16 (1973), 309-315.

5. J. C. Lennox and J. Wiegold, Extension of a problem of Paul Erdös on groups, J. Austral. Math. Soc., Ser. A, 31 (1981), 459-463.

6. B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), 236-248.

7. A. H. Rhemtulla and B. A. F. Wehrfritz, Isolators in soluble groups of finite rank, *Rocky Mountain J. Math.*, 14 no. 2 (1984), 415–421.

8. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, vol. I, II, Springer-Verlag, Berlin-New York, 1972.

9. M. J. Tomkinson, Hypercentre-by-finite groups, Publ. Math. Debrecen 40 (1992), 313-321.

P. LONGOBARDI AND M. MAJ

Dipartimento di Matematica e Applicazioni Universita' degli Studi di Napoli via Cinthia, Monte S. Angelo 80126 Naples-Italy A. H. RHEMTULLA DEPT. OF MATHEMATICS UNIVERSITY OF ALBERTA EDMONTON, ALBERTA CANADA T6G 2G1