
LMS J. Comput. Math. 19 (Special issue A) (2016) 163–177 C© 2016 Authors

doi:10.1112/S1461157016000309

Computing theta functions in quasi-linear time
in genus two and above

Hugo Labrande and Emmanuel Thomé

Abstract

We outline an algorithm to compute θ(z, τ) in genus two in quasi-linear time, borrowing ideas
from the algorithm for theta constants and the one for θ(z, τ) in genus one. Our implementation
shows a large speed-up for precisions as low as a few thousand decimal digits. We also lay out
a strategy to generalize this algorithm to genus g.

1. Introduction

The θ function is important to several fields of mathematics, such as the resolution of some non-
linear differential equations or the study of complex Riemann surfaces of any genus, including
the important case of complex elliptic and hyperelliptic curves. The numerous properties of
this function underline its connection to deep topics. We refer to [3, 10, 16, 18] and references
therein for the uses of θ in various settings. Specific values of θ, called theta constants, are
also of interest, for instance in the study of modular forms [14, 16]. The problem we consider
in this paper is the multi-precision computation of θ, that is, finding a fast algorithm for
computing any number P of exact bits of θ. This problem has applications in the case of
theta constants [6, 9]; in the more general case of theta-functions, it allows us to compute the
Abel–Jacobi map with large precision, thereby making the algebraic–analytic link effective.
Such a link offers, for example, an alternative way of computing isogenies using embeddings
to the complex numbers.

In the case of genus one, the theta constants exhibit a deep link with the arithmetic–
geometric mean (AGM) [2]. Using the homogeneity of the AGM gives a function which takes a
simple value at the theta constants; Newton’s method can then be used to compute them (see,
for example, [5]). This method has also been generalized in [4] to genus two theta constants,
using the connection to the Borchardt mean; hints of a generalization to genus g are also
given. Both algorithms have a quasi-linear asymptotic running time, that is, they compute the
first P bits of the theta constants in O(M(P) logP) operations, where M(P) is the cost of
multiplying two P -bit numbers. An implementation of the algorithm has been released in the
CMH package [8] and used to compute class polynomials of record size [9].

In [15], we used a similar approach to design an algorithm that computes θ(z, τ) in genus one,
for any arguments z, τ , also in asymptotic quasi-linear time. This required the design of a
function, inspired by the arithmetic–geometric mean, that takes a special value when evaluated
at θ(z, τ) and at the theta constants, and could be evaluated in quasi-linear time. The quasi-
linear complexity beats that of the naive algorithm, which is O(M(P)

√
P); in practice, our

algorithm beats an optimized version of the naive algorithm for precision above a hundred
thousand decimal digits.

Received 21 February 2016.

2010 Mathematics Subject Classification 14K25 (primary), 14H42, 32G81 (secondary).

Contributed to the Twelfth Algorithmic Number Theory Symposium (ANTS-XII), Kaiserslautern, Germany,
29 August–2 September 2016.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

164 h. labrande and e. thomé

In this article, we generalize this strategy to theta functions of any genus. We provide
a careful analysis in the case of genus two, by finding a function similar to the Borchardt
mean that can also be computed with precision P in O(M(P) logP) and then inverting it
using Newton’s method. The algorithm achieves a quasi-linear complexity in P , neglecting the
dependency in z and τ . Numerical experiments show that our implementation is faster than
the naive algorithm for precisions as low as 3000 decimal digits. For higher genera, we outline a
way that one could generalize this algorithm to genus g, with a complexity exponential in g but
quasi-linear in P . Throughout the paper, we deliberately omit dealing with the precision losses;
the full analysis in genus one in [15] shows that, given the argument reduction strategies, the
loss of precision is not significant asymptotically in any of the building blocks (O(logP) for
the most part, at most cP with c < 1). Such a result is expected to hold, for similar reasons,
in genus two and in genus g.

This article is organized as follows. Section 2 lays out the background on genus g theta
functions and algorithms to compute them. We then detail, in § 3, our algorithm for genus two,
while § 4 shows how it could be generalized to arbitrary genus.

Notation 1.1. Throughout the paper, we use the following notation. For a sequence (ai)i,
we denote by ai0,...,in−1

the n-uple (or n-vector) (ai0 , . . . , ain−1
).

2. Background on genus g theta functions

2.1. Definitions

Definition 2.1 [16, § II.1]. The Siegel upper-half space Hg is the set of symmetric g × g
complex matrices τ whose imaginary part is positive definite. We write τ = (τi,j), except in
genus two, where we write τ =

(τ1 τ3
τ3 τ2

)
.

Definition 2.2 (θ function). Let z ∈ Cg and τ ∈ Hg. The θ function and the associated
theta functions with characteristics are defined as

θ(z, τ) =
∑
n∈Zg

exp(iπtnτn) exp(2iπtnz).

For a, b ∈ 1

2
Zg/Zg, θ[a;b](z, τ) =

∑
n∈Zg

exp(iπt(n+ a)τ(n+ a)) exp(2iπt(n+ a)(z + b)).

Finally, theta constants are the values in z = 0 of the functions θ[a;b].

As in [1, 4, 9], we will often write θ[a;b] as θi for the integer i = 2(b0 +2b1 + . . .+2g−1bg−1)+
2g+1(a0 + 2a1 + . . .+ 2g−1ag−1) whose binary expansion is (2a‖2b). We call the fundamental
theta functions θ0, . . . , θ2g−1, that is, the ones with a = 0.

Proposition 2.3 (Quasi-periodicity; [16, pp. 120–123]). For all m ∈ Zg,

θ[a;b](z +m, τ) = exp(2iπtam)θ[a;b](z, τ) (θ[0;b] is invariant by z → z +m),

θ[a;b](z + τm, τ) = exp(−2iπtbm) exp(−iπtmτm) exp(−2iπtmz)θ[a;b](z, τ).

2.2. Fundamental domain

Definition 2.4. Sp2g(Z), the symplectic group of dimension g, is the set of matrices
(
A B
C D

)
∈

M2g(Z), such that tAC = tCA, tBD = tDB and tAD − tCB = Ig.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 165

Proposition 2.5 [14, Proposition I.1.1]. Sp2g(Z) acts on Hg as follows. For M =
(
A B
C D

)
∈

Sp2g(Z) and τ ∈ Hg, M · τ = (Aτ + B)(Cτ + D)−1 ∈ Hg. Furthermore, M defines an
isomorphism of complex tori between Λτ = Cg/τZg + Zg and ΛM ·τ by z 7→ M ·τ z =
t(Cτ +D)−1z; we use the shorthand M · z when the context allows.

Proposition 2.6 [14, Definition I.3.1]. The fundamental domain of the action of Sp2g(Z)
on Hg is the set Fg ⊂ Hg, defined as the matrices satisfying the conditions:

– Im(τ) is Minkowski-reduced, that is, tv Im(τ)v > Im(τk,k) for all integral v with
(vk, . . . , vn) = 1 and Im(τk,k+1) > 0 for all k;

– |Re(τk,l)| 6 1
2 for all k, l ∈ {1, . . . , n}, k 6 l; and

– |det(Cτ +D)| > 1 for all
(
A B
C D

)
∈ Sp2g(Z).

The last condition can be replaced by a finite set of inequalities. However, an explicit
description of those inequalities is not known, in general, which means that reducing a matrix
to the fundamental domain is technically not feasible. The case g = 2 has been solved in [11],
which gives nineteen necessary and sufficient inequalities.

Theorem 2.7. Let M =
(
A B
C D

)
∈ Sp2g(Z) and (z, τ) ∈ Cg ×Hg.

θi(M · z,M · τ) = ζM
√

det(Cτ +D)eiπ
t(M ·z)(Cz)θσM (i)(z, τ), (2.1)

where σM is a permutation and ζM is an eighth root of unity.

This theorem is proved in [16, § II.5], in a special case, and in [13, Chapter 5, Theorem 2];
an outline of the proof can also be found in [1, Proposition 3.1.24].

2.3. Algorithms for theta

A naive algorithm for computing the θ function for any genus with arbitrary precision simply
involves computing the series until the remainder is small enough. This naive approach is
studied, for instance, in [3, 4]. Results giving the number of terms to compute usually require
some assumptions, such as τ ∈ Fg, or that the quasi-periodicity has been used to make z
small. The complexity of this method is, in general, O(M(P)P g/2) for P bits of precision, as
we prove in § 4.

Fast algorithms to compute theta constants in the cases g = 1 and g = 2 are known; these
algorithms require O(M(P) logP) operations. Here we give a brief outline of these algorithms;
more details can be found in [4, 5, 9]. The idea of both algorithms is to construct a function
F such that (using Notation 1.1)

F

(
θ1,...,2g−1(0, τ)2

θ0(0, τ)2

)
= F

(
θ1(0, τ)2

θ0(0, τ)2
, . . . ,

θ2g−1(0, τ)2

θ0(0, τ)2

)
=

1

θ0(0, τ)2
.

The function F is the arithmetic–geometric mean in genus one and the Borchardt mean B2
(as defined and studied in [4]) in genus two. One then uses equation (2.1) to find other quotients
of theta constants such that evaluating F at those points allows one to compute τi,j . For
instance, in genus two, the following holds for τ within a large domain

B2
(
θ8,4,12(0, τ)2

θ0(0, τ)2

)
= B2

(
θ8(0, τ)2

θ0(0, τ)2
,
θ4(0, τ)2

θ0(0, τ)2
,
θ12(0, τ)2

θ0(0, τ)2

)
=

1

(τ212 − τ11τ22)θ0(0, τ)2
.

This also means that one must be able to compute all the theta constants from the fundamental
theta constants. In the end, we get a function computing τ from the quotients of fundamental

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

166 h. labrande and e. thomé

theta constants; Newton’s method is then applied to give an algorithm for computing the theta
constants.

The algorithm’s complexity relies on computing F efficiently, since Newton’s method, while
doubling the working precision at each step, does not add any extra asymptotic complexity.
The efficiency stems from a fast speed of convergence.

Definition 2.8. A sequence (an) is said to be quadratically convergent to ` if it is convergent
to ` and there is a C > 0 such that, for n large enough,

|an+1 − an| 6 C|an − an−1|2.

It has been known since Gauss that the arithmetic–geometric mean converges quadratically
(see, for example, [2]), provided one does not pick the ‘wrong’ sign for the square root an infinite
number of times; in genus two, the Borchardt mean also converges quadratically provided
similar conditions are met [4]. These technical requirements were shown to hold in genus one
for τ within the fundamental domain; a similar property is conjectured to hold in genus two as
well [9, Conjecture 5.7 and Remark 5.9]. In both cases, this gives a O(M(P) logP) algorithm
to evaluate F to P bits; a modification of the algorithm can remove the dependency of the
complexity in z, τ .

We successfully generalized this strategy to the computation of the genus one function θ(z, τ)
in [15]. The function F is more complex, since the generalization of the AGM we consider
does not converge quadratically. Instead, a related sequence, obtained after considering
homogenization, does. We obtained a O(M(P) logP) complexity, which does not depend on
z, τ . We released an GNU MPC [7] implementation of the algorithm, which is faster than the
naive algorithm for precisions larger than 100 000 bits.

3. Computing the genus two theta function

In this section, we outline an algorithm for computing θ(z, τ), where z ∈ C2 and τ ∈ H2, with
precision P in O(M(P) logP) operations.

3.1. Argument reduction

For our purposes, we will not require τ to belong to the fundamental domain; weaker conditions
are sufficient. Let z = (z1, z2) and τ =

(τ1 τ3
τ3 τ2

)
. First, we require τ to belong to the domain F ′2,

defined by the inequalities

0 6 2 Im(τ3) 6 Im(τ1) 6 Im(τ2), |Re(τi)| 6 1
2 , Im(τ1) >

√
3/2. (3.1)

The first inequality corresponds to Im(τ) being Minkowski-reduced. This domain is called B
in [17], but we choose to highlight the genus in the name. We also require that z satisfy

|Re(zi)| 6
1

2
, |Im(z1)| 6 Im(τ1) + Im(τ3)

2
, |Im(z2)| 6 Im(τ2) + Im(τ3)

2
. (3.2)

Given any τ , reducing z so as to satisfy the above condition follows easily from the quasi-
periodicity of θ (Proposition 2.3). One can write z = x + τy with x, y ∈ R2 explicitly by
solving the system formed by z = x+ τy and z = x+ τy; one can then subtract multiples of
one and τ from the first argument so as to get |xi|, |yi| 6 1

2 .
Reducing τ to the domain F ′2 instead of F2 is a coarser notion, which has the advantage of

being generalizable to arbitrary genus, unlike the reduction to the fundamental domain Fg; we
discuss this generalization in § 4.1. In genus two, the strategy for this reduction is described
in [17, § 6.3]: this gives a quasi-linear time algorithm for reducing τ to F ′2.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 167

3.2. Naive algorithm

Let qj = eiπτj and wj = eiπzj . We have |θ[a;b](z, τ)| 6
∑
m,n∈Z |qm

2

1 qn
2

2 q2mn3 w2m
1 w2n

2 |, using
the triangular inequality. Since τ ∈ F ′2 and z satisfies (3.2),

|w1|+ |w−11 | 6 2eπ(3/4) Im(τ1), |w2|+ |w−12 | 6 2eπ(3/4) Im(τ2).

Hence (|w2m
1 |+ |w−2m1 |)(|w2n

2 |+ |w−2n2 |) 6 4eiπ((3/2)m Im(τ1)+(3/2)n Im(τ2)). Also

|qm
2

1 qn
2

2 q2mn3 | 6 |qm
2

1 qn
2

2 q−m
2−n2

3 | 6 |qm
2/2

1 q
n2/2
2 |.

Hence, if SB denotes the sum of the series defining θ with m,n ∈ [−B,B], a calculation very
similar to the one in [15, Proposition 2.6] proves that

|θ(z, τ)− SB | 6
∑
m>B

|qm
2

1 |(|w2m
1 |+ |w−2m1 |)

+
∑
n>B

|qn
2

2 |(|w2n
2 |+ |w−2n2 |) + 4

∑
m,n>B−2

|qm
2/2

1 q
n2/2
2 |

6
4

1− |q1|
(|q1|(B−2)

2/2−2 + |q1|(B−2)
2−4)

6 5(|q1|(B−2)
2/2−2 + |q1|2(B−2)

2−4).

This means that B = O(
√
P/Im(τ1)) terms sum to an approximation that is accurate to 2−P .

Following and extending the strategy in [15, § 2.2.2] or [9, § 5.1], we use induction relations to

compute terms more efficiently. Let Q(m,n) = qm
2

1 qn
2

2 q2mn3 and T (m,n) = Q(m,n)(w2m
1 w2n

2 +
w−2m1 w−2n2). With minor rewriting,

θi(z, τ) =
∑
m,n∈N

s(i,m, n)(T (m,n) + T (m,−n)),

where s(i,m, n) is 1
4 for m = n = 0, ±12 along the axes (m, 0) and (0, n) and ±1 elsewhere.

We have the following recurrence relations.

(w2
1 + w−21)T (m,n) = q−2m−11 q−2n3 T (m+ 1, n) + q2m−11 q2n3 T (m− 1, n), (3.3)

(w2
2 + w−22)T (m,n) = q−2n−12 q−2m3 T (m,n+ 1) + q2n−12 q2m3 T (m,n− 1). (3.4)

We propose an algorithm, Algorithm A.1 (cf. Appendix A), that uses these induction
relations in such a way that the memory needed is onlyO(1): it consists of iteratively computing
the terms T (m,n) for n ∈ {−1, 0, 1}, using equations (3.3), and then using those values as soon
as they are computed to initialize the other induction, using equations (3.4). We implemented
it in Magma and will discuss timings in § 3.6.

Even if the complexity of the naive algorithm is worse asymptotically than the complexity of
the quasi-linear algorithm that we outline in the next sections, it is still an important building
block, used for two purposes: to provide an initial approximation of the result, which is needed
to initialize Newton’s method, and to determine the sign of Re(θ) or Im(θ), which allows us
to choose correct square roots for computing the function F , which we now define.

3.3. The function F

Proposition 3.1 (Duplication formula, [1, formula (3.13)]). For all a, b ∈ 1
2Z

g/Zg,

θ[a;b](z, τ)2 =
1

2g

∑
β∈(1/2)Zg/Zg

e−4iπ
taβθ[0;b+β]

(
z,
τ

2

)
θ[0;β]

(
0,
τ

2

)
. (3.5)

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

168 h. labrande and e. thomé

The definition above prompts us to define the following function, crafted so that
Proposition 3.2 holds, as a direct consequence of Proposition 3.1. The definition below is
ambiguous (because of square roots), an issue we deal with in what follows.

F : C8 → C8

a0...3, b0...3 7→
(√

a0
√
b0 +

√
a1

√
b1 +

√
a2

√
b2 +

√
a3

√
b3

4
,

√
a0

√
b1 +

√
a1

√
b0 +

√
a2

√
b3 +

√
a3

√
b2

4
,

√
a0

√
b2 +

√
a1

√
b3 +

√
a2

√
b0 +

√
a3

√
b1

4
,

√
a0

√
b3 +

√
a1

√
b2 +

√
a2

√
b1 +

√
a3

√
b0

4
,

b0 + b1 + b2 + b3
4

,
2
√
b0
√
b1 + 2

√
b2
√
b3

4
,
2
√
b0
√
b2 + 2

√
b1
√
b3

4
,
2
√
b0
√
b3 + 2

√
b1
√
b2

4

)
.

Proposition 3.2. For a suitable choice of square roots,

F (θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2) = (θ0,1,2,3(z, 2τ)2, θ0,1,2,3(0, 2τ)2).

Bad, good and correct choices of square roots. We discuss what we mean above by a suitable
choice of square roots. Two different notions must be considered.

– ‘Good choices’ in the sense of [2, 4], that is, such that Re(
√
ai/
√
aj),Re(

√
bi/
√
bj) > 0.

Note that not all tuples of complex numbers admit a set of ‘good’ square roots. In
genus one, having an infinite number of bad choices means that the sequence converges
(at least linearly) to zero; to avoid this case, we need them to all be good after a
while, which, in addition, ensures that we have quadratic convergence. This is key to
our strategy to get a quasi-linear running time.

– The choice of signs that corresponds to θ, that is, given two quadruples that are
(proportional to) approximations of θ0,1,2,3(z, τ)2 and θ0,1,2,3(0, τ)2, the ones which
approximate well the values θ0,1,2,3(z, τ) and θ0,1,2,3(0, τ). We call these the ‘correct’
choices, which need not be ‘good’ choices. We need this in order to compute the right
value of θ in the end.

Fortunately, the notions of ‘good’ and ‘correct’ choices overlap very often. In genus one, [2]
proves that, for z = 0 and τ within a large domain that includes the fundamental domain, the
correct choice is always good. In [15], we proved a similar result for arbitrary z. In genus two,
we do not determine an explicit domain for which correct choices are good. Although one can
try to improve on the approach of § 3.2 to establish such a result, the mere requirement that
τ be in F ′g is already too strict for our further use (in particular in § 3.4), so that proofs are
difficult to obtain.

Iterates of F . In any genus, limk→∞ (θ[0;b](z, 2
kτ)/θ[0;b′](z, 2

kτ)) = 1, which easily implies
that correct choices are good for large enough τ . Therefore, given an 8-uple X that
approximates (θ0,1,2,3(z, τ)2, θ0,1,2,3(z, τ)2), computing iterates Fn(X) and making correct
choices consistently is bound to coincide with good choices after a finite number of iterations.
To ensure that the first few choices are indeed the correct ones, it suffices to rely on low-
precision approximations of θ, so that we know the sign of either Re(θ) or Im(θ). The number
of terms and the precision needed to achieve this do not asymptotically depend on P , but
only on z and τ ; since we neglect the dependency in z, τ in the complexity of our algorithm†,
determining the correct square root requires only a constant number of operations. We used
this strategy in our implementation; furthermore, it generalizes easily to genus g.

Lemma 3.3. Let (a
(0)
0,1,2,3, b

(0)
0,1,2,3) ∈ C8 and let (a

(n+1)
0,1,2,3, b

(n+1)
0,1,2,3) = F (a

(n)
0,1,2,3, b

(n)
0,1,2,3) for any

integer n ∈ N. Assume that there exists α, β ∈ C∗ and n0 ∈ N such that Re(a
(n0)
i /α) > 0

†To extend this work into an algorithm whose complexity is uniform in z, τ , one could follow the approach
of [4, 15], since we have again a naive algorithm with complexity that decreases as Im(τ1) increases.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 169

and Re(b
(n0)
i /β) > 0 for all i ∈ {0, 1, 2, 3}. Then there exists positive real constants c, C such

that for all n > n0, for all i ∈ {0, 1, 2, 3}, c 6 |a(n)i |, |b
(n)
i | < C, assuming that all choices of

square roots from iteration n0 onwards are good.

Proof. The upper bound result follows trivially from the definition. For the lower bound,

let us assume, without loss of generality, that |α| = |β| = 1 and let c = min(Re(a
(n0)
0,1,2,3/α),

Re(b
(n0)
0,1,2,3/β)). For good choices of square roots and any i, j, Re

(√
a
(n0)
i /α

√
b
(n0)
j /β

)
>

min(Re(a
(n0)
i /α),Re(b

(n0)
j /β)) > c (for a proof, see, for example, [4, Lemme 7.3]). This implies,

from the definition, that |a(n0+1)
i | > Re(a

(n0+1)
i /

√
αβ) > c and, similarly, for b

(n0+1)
i . The

result follows by induction (with
√
αβ, of modulus one, playing the role of α at the next

iteration).

An important remark is that the ‘low-precision’ strategy described above is sufficient to
ensure that the conditions of Lemma 3.3 hold after a few steps.

A Karatsuba-like trick to compute F . Proposition 3.4 computes F in four products and
four squares instead of the twenty-two products in its definition. Section 4 extends this to
genus g.

Proposition 3.4. Put H =
(
1 1
1 −1

)
and H2 = H ⊗ H. Let t(m0,1,2,3) = H2

t
(√

a
(n)
0,1,2,3

)
and t(s0,1,2,3) = H2

t
(√

b
(n)
0,1,2,3

)
. We have t(a

(n+1)
0,1,2,3) = 1

16H2
t(m0,1,2,3 ∗ s0,1,2,3) (∗ being the

termwise product) and t(b
(n+1)
0,1,2,3) = 1

16H2
t(s20,1,2,3).

3.4. Constructing and inverting the F function

The following homogeneity property of F is a trivial fact.

Proposition 3.5. Let

(a0,1,2,3
(n), b0,1,2,3

(n)) = Fn(θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2),

(a′0,1,2,3
(n)
, b′0,1,2,3

(n)
) = Fn(λθ0,1,2,3(z, τ)2, µθ0,1,2,3(0, τ)2).

Then a′0
(n)

= εnλ
1/2nµ1−1/2na

(n)
0 (where ε2

n

n = 1) and b′0
(n)

= µb
(n)
0 .

Proposition 3.6. Let (a
(0)
0,1,2,3, b

(0)
0,1,2,3) within a neighborhood of diameter 2−P0 of a pair of

two quadruples proportional to (θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2). Define G as

G(a
(0)
0,1,2,3, b

(0)
0,1,2,3) =

(
lim
n→∞

(a0
(n)/b0

(n))2
n

× b(n)0 , lim
n→∞

b
(n)
0

)
,

using the approximations at precision P0 of θ to choose the correct signs (assuming the
neighborhood is narrow enough). Then G(λθ0,1,2,3(z, τ)2, µθ0,1,2,3(0, τ)2) = (λ, µ).

As discussed earlier, the precision P0 that is needed above to define G depends only on z, τ ,
and not on the precision P desired for G. We prove, in § 3.5, that G can be computed in
O(M(P) logP) operations.

Next, we build F from G. The idea is to evaluate G at approximations of well-chosen theta
functions, selected according to the action of (JMi)

2. This gives values of λ and µ which are
the given by the following proposition.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

170 h. labrande and e. thomé

Proposition 3.7. Define J =
(0 −I2
I2 0

)
and Mi =

(I2 mi

0 I2

)
, with m1 =

(
1 0
0 0

)
, m2 =

(
0 0
0 1

)
,

m3 =
(
0 1
1 0

)
(as in [4, Chapter 6]). Then

θ0,1,2,3((JM1)2 · z, (JM1)2 · τ)2 = −τ1e2iπz
2
1/τ1θ8,9,0,1(z, τ)2,

θ0,1,2,3((JM2)2 · z, (JM2)2 · τ)2 = −τ2e2iπz
2
2/τ2θ4,0,6,2(z, τ)2,

θ0,1,2,3((JM3)2 · z, (JM3)2 · τ)2 = (τ23 − τ1τ2)e2iπ((z
2
1τ2+z

2
2τ1−2z1z2τ3)/det(τ))θ0,8,4,12(z, τ)2.

This proposition is a direct consequence of equation (2.1)†. Note that (JMi)
2 ·τ 6∈ F ′g, which

prevents us from generalizing proofs which worked for genus one to make ‘good choices’ and
‘correct choices’ coincide. However, it is still possible to determine the sign in the computation
of G using low-precision approximations.

In order to use Proposition 3.7, we need to compute θ2[a;b](z, τ) for a 6= 0. Following

[9, Algorithm 10], we define θ[0;b](z, τ/2) and θ[0;b](0, τ/2) as our input values and obtain
θ2[a;b](z, τ) and θ2[a;b](0, τ) with equation (3.5). Then evaluating G at selected quadruples

(for example, θ8,9,0,1) gives proportionality factors which are inverses of the factors in
Proposition 3.7.

Defining F (that is, defining which complex numbers we derive from the proportionality
factors computed above) so that it is locally invertible and Newton’s method can be used,
requires some care. In genus one, we simply compute z and τ , which gives a C2 → C2 function.
However, in higher genus, this approach leads to a function from C2g+1−2 to Cg(g+3)/2, and we
cannot apply Newton’s method to recover the quotients of theta. In genus two, the function is
from C6 to C5. There are two possible workarounds. A natural idea would be to add an extra
equation: the equation of a variety on which the theta lie. In [10], the equation of the Kummer
surface is given. Generalizing this approach to higher genus is, unfortunately, cumbersome. An
approach which actually works just as well is to define F so that it outputs a few values of λ
and µ computed by different means, instead of z, τ . In our case, we choose to compute three
pairs of (λ, µ), so that

F

(
θ1,2,3(z, τ/2)

θ0(z, τ/2)
,
θ1,2,3(0, τ/2)

θ0(0, τ/2)

)
= (e2iπ(z

2
1/τ1), e2iπ(z

2
2/τ2), e2iπ((z

2
1τ2+z

2
2τ1−2z1z2τ3)/det(τ)), τ1, τ2, τ

2
3 − τ1τ2).

Our function F is defined in short form in Algorithm 1 through the action it has on the
particular values that are quotients of theta functions. The calculations involved are valid for
any 6-uple of complex numbers, and a complete description is easy to obtain. We do so in
Algorithm B.1 (Appendix B).

We conjecture the following, which holds experimentally.

Conjecture 3.8. The Jacobian of F is invertible.

To finish, we describe how we use Newton’s method to get an approximation of θ with
precision p − δ, where δ is a small constant, from an approximation with precision p/2.
We compute an approximation of ∂Fi/∂xj with precision p using finite differences, that is,
(Fi(x+ εj)− Fi(x))/‖εj‖, where εj is a perturbation of 2−p on the jth coordinate. We prove, in
the next section, that computing F with precision p costs O(M(p) log p) for any arguments; this
implies that applying one step of Newton’s method costs O(M(p) log p). Thus, as in [4, 9, 15],
we can compute an approximation of θ with precision P0 using the naive algorithm and then
use Newton’s method to refine it into a value of θ with precision P ; the total cost of this
algorithm is O(M(P) logP).

†Note that the result appears different from [4], only because the tables for M1 and M2 (p. 146) have been
switched by mistake; and it differs from [9] because their M2 is our M3, and vice-versa.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 171

Algorithm 1 Compute F
(
θ1,2,3
θ0

(z, τ/2),
θ1,2,3
θ0

(0, τ/2)
)

(see also Appendix B).

1: Compute θi(z,τ)
2

θ0(z,τ/2)θ0(0,τ/2)
, θi(0,τ)

2

θ0(0,τ/2)2
using equation (3.5).

2: Compute G
(

θ0,1,2,3(z,τ)
2

θ0(z,τ/2)θ0(0,τ/2)
,
θ0,1,2,3(0,τ)

2

θ0(0,τ/2)2

)
=
(

1
θ0(z,τ/2)θ0(0,τ/2)

, 1
θ0(0,τ/2)2

)
.

3: Compute λ1, µ1 = G (θ28,9,0,1(z, τ), θ28,9,0,1(0, τ)).

4: Compute λ2, µ2 = G (θ24,0,6,2(z, τ), θ24,0,6,2(0, τ)).

5: Compute λ3, µ3 = G (θ20,8,4,12(z, τ), θ20,8,4,12(0, τ)).

6: return (µ1/λ1, µ2/λ2, µ3/λ3,−1/µ1,−1/µ2, 1/µ3).

3.5. Proof of quasi-linear time

Theorem 3.9. One can compute G(a
(0)
0,1,2,3, b

(0)
0,1,2,3) = (λ, µ) with precision P in

O(M(P) logP) operations, assuming that the choice of signs is always good.

The result if the arguments are (λθ20,1,2,3(z, τ), µθ20,1,2,3(0, τ)) is merely a consequence of

the quadratic convergence of (θ(z, 2kτ))k∈N. However, we need to prove the result for any
arguments to apply it to the computation of the Jacobian.

Proof. By Lemma 3.3, 0 < c 6 |a(n)i |, |b
(n)
i | 6 C for any i, for n large enough (independent of

P). The sequence dn = maxi,j |b(n)i − b
(n)
j | converges quadratically to zero [4, Proposition 7.1].

So µ can be computed in time O(M(P) logP).
Now let A > 0 and n1 be large enough so that dn+1 6 Ad2n for all n > n1 and, additionally,

so that dn1
< 1/2A. This implies that dn 6 (1/A)2−2

n−n1
for any n > n1. The |a(n)i − a(n)j |

can be linked to dn. For instance, for any n > n1,∣∣a(n+1)
0 − a(n+1)

1

∣∣ =
|m1s1 +m3s3|

2
6 2C(|s1|+ |s3|) (using the notation of Proposition 3.4)

6 4C(|
√
b0 −

√
b1|+ |

√
b2 −

√
b3|)

6 8C
√
A
√
dn using |

√
bi −

√
bj | 6 |

√
bi +

√
bj |.

Calculus also shows that

∣∣∣a(n+1)
0 −

√
a
(n)
0 b

(n)
0

∣∣∣ =
1

8

∣∣∣∣ 3∑
i=1

(
√
ai −

√
a0)(
√
bi +
√
b0) + (

√
ai +

√
a0)(
√
bi −
√
b0)

∣∣∣∣
6 K

√
dn for some explicit constant K.

Superscripts (n) have been omitted from the right-hand sides above for brevity. For both
inequalities, we used the fact that the choices of roots are good.

We now show that λn = (a
(n)
0 /b

(n)
0)2

n

converges quadratically. Let qn = (a
(n+1)
0 /b

(n+1)
0)2/

(a
(n)
0 /b

(n)
0), so that λn+1 = λnq

2n

n . Given the bounds established above, it is relatively easy to
check that |qn+1−1| is also bounded by K ′

√
dn for an explicit constant K ′. It follows, from an

unsurprising calculation done in [15, § 3.4], that the sequence λn also converges quadratically.
This concludes the proof that only a logarithmic number of steps are needed to compute the
values taken by G, and hence by F, to precision P .

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

172 h. labrande and e. thomé

3.6. Implementation results

Our Magma implementation of Algorithm A.1 and our quasi-linear time algorithm is at http:
//www.hlabrande.fr/pubs/fastthetasgenus2.m

We compared this with Magma’s general-purpose Theta function. Assuming that the latter
computes each term by exponentiation, its complexity would be O(M(P)P logP). However,
practice reveals that it behaves much worse. Table 1 shows that, for precision above 1000
decimal digits, our algorithm, which outputs eight values, is faster than one call to Magma’s
Theta function, which only computes θ(z, τ). Furthermore, it is also faster than Algorithm A.1
for precisions greater than 3000 digits. This cut-off is much lower than in genus one, which
is expected since the complexity of the naive algorithm is O(M(P)

√
P) in genus one and

O(M(P)P) in genus two. Our results are consistent with the situation for theta constants,
studied in [9]†

Table 1. Times (in s) of different methods.

Prec (digits) Magma Algorithm A.1 This work

1 000 0.42 0.38 0.38
2 000 2.58 1.86 1.86
4 000 18.4 9.51 6.65
8 000 128 53.9 13.2

16 000 889 303 25
32 000 6 368 1535 50
64 000 46 566 8798 120

4. Extending the algorithm to higher genera

This section outlines ideas for extending the previous strategy to the case g > 2. The
complexity of such an algorithm will certainly be exponential (or worse) in g; we do not
make any attempt at lowering this complexity and, in fact, we do not even evaluate it fully.
However, the complexity in P would still be O(M(P) logP), which is desirable.

4.1. Argument reduction

We extend the domain F ′2 to genus g as follows. F ′g is the set of τ such that

Re(τi,j) 6 1
2 , Im(τ) is Minkowski-reduced, Im(τ1,1) >

√
3/2.

Note that Fg ⊂ F ′g, since N0 =
(Ig−δ1,1 −δ1,1

δ1,1 Ig−δ1,1

)
, where δ1,1 is the g × g Kronecker matrix,

which is symplectic and such that |det(Cτ +D)| = |τ1,1|. The algorithm to reduce τ is similar
to [17, Algorithm 6.8]; this is Algorithm 2.

Algorithm 2 Reduce τ . Input: τ ∈ Hg Output: τ ′ ∈ F ′g.

1: τ ′ ← Minkowski reduction of τ .
2: Subtract an integer matrix to τ ′ so that |Re(τ ′i,j)| 6 1

2 .
3: If |τ ′1,1| 6 1, do τ ′ ← N0 · τ ′ and go back to Step 2.
4: return τ ′.

Proposition 4.1. Algorithm 2 terminates.

†Compared with [9], we compute more, and we do it in Magma, not in C. Hence the slower timings.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

http://www.hlabrande.fr/pubs/fastthetasgenus2.m
http://www.hlabrande.fr/pubs/fastthetasgenus2.m
https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 173

Proof. We generalize the lemmas in [17, § 6.4]; the proof is rather technical. Lemma 6.9
holds in genus g; Lemma 6.14 becomes

(m2 . . .mg)(Im(M(Z))) 6 c1(g) max{m1(Y)−1, (m2 . . .mg)(Y)}
where c1(g) is the constant in Minkowski’s inequality [14, Proposition I.2.1, p. 13].

We generalize Lemma 6.12, as follows. Let Rg be the set of Minkowski-reduced matrices and
let Q′g(t) be defined as in [14, Definition I.2.3]. Then the remark after [14, Definition I.2.2]
and [14, Proposition I.2.2] proves that there is a t′ > 2 such that Rg ⊂ Q′g(t

′). Consider the
set of matrices τ ′ obtained during the execution of Algorithm 2 for which y1 > 1/t′; this set
injects in the set Lg(t

′), defined in [14, Definition I.3.2]. Applying [14, Theorem I.3.1] yields
the result that there are only a finite number of steps in which y1 > 1/t′; note that c is the
number of such steps (that is, the cardinality of the set in [14, Theorem I.3.1]).

Lemma 6.11, with the bound y1 6 1/t′, holds in genus g, since t′ > 2. Combining all the
lemmas, as in [17, Propisition 6.13], proves termination since, after k iterations,

2k−c 6 c1(g)3 max{m1(Y0)−3(m2 . . .mg)(Y0)−1, (m2 . . .mg)(Y0)m1(Y0)−1}.
Bounding the number of steps in the algorithm requires making a few theorems explicit,

namely, [14, Proposition I.2.2] (making t′ explicit) and [14, Theorem I.3.1] (determining c).
We believe that the number of steps is exponential in g. Furthermore, each step requires

computing the Minkowksi reduction of a g×g matrix, which has a cost of O(21.3g
3

) arithmetic
operations [12]. Hence the running time of this reduction is exponential in g.

The conditions on z, which can be met using Proposition 2.3, are

|Re(zi)| 6
1

2
, |Im(zi)| 6

∑
j∈[1..2g] |Im(τi,j)|

2
.

We note that [3] uses another approach, the so-called Siegel reduction, with weaker conditions
than the ones we impose here, for example using LLL reduction instead of Minkowski reduction.
It is apparently enough to limit the number of terms in the naive algorithm.

4.2. Naive algorithm

In [3], the authors compute an ellipsoid containing the indices of the terms one needs to sum
to get an approximation of θ(z, τ) up to ε. Its size depends on R, defined as the solution to
the equation ε = (g/2)(2g/ρg)Γ(g/2, (R − ρ/2)2), where Γ is the incomplete gamma function
and ρ is the smallest vector after an orthogonal change of basis.

Neglecting the dependency in τ and z, we get the rather coarse bound of O(Rg) terms
needed. We complete the analysis in [3] by computing an explicit estimate on R.

Proposition 4.2. Treating z, τ (and hence ρ) as constants, we have R = O(
√
P), that is,

summing O(P g/2) terms is sufficient to get a result accurate to P bits.

Proof. Assuming that g is even (which we can do since Γ is growing in the first parameter
for R large enough), we use integration by parts g/2 times to prove that

Γ(g/2, d) = (g/2− 1)!e−d +

g/2∑
i=1

(g/2− 1) . . . (g/2− i)dg/2−ie−d

6
g

2
(g/2− 1)!dg/2−1e−d 6 e−d+g/2(log d+log(g/2)).

Hence
g

2

2g

ρg
Γ(g/2, d)6 2−d log2 e+g/2(log d+log(g/2))+log(g/2)+g log(2/ρ).

Asymptotically, that is, for R large enough, taking d = P log2 e+g logP+g log(2/ρ)+g = O(P)

is enough for the right-hand side to be smaller than 2−P . Hence R = O(
√
P).

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

174 h. labrande and e. thomé

The terms can be computed using induction relations, which exist whatever the genus: if g−1
indices are fixed, there exists a relationship between three consecutive terms for the remaining
index. However, exploiting those relationships gets increasingly complicated and harder to
code efficiently as the genus grows. We assume that such induction relations are used in the
naive algorithm: that is, that the cost of computing each term is only O(M(P)) and that the
memory needs are O(1) or O(g). Under this assumption, the cost of the naive algorithm is
O(M(P)P g/2) operations, which agrees with our analyses in genus one and genus two.

4.3. The function F

We use, once again, the τ -duplication formula (equation (3.5)) with a = 0

θi(z, 2τ)2 =
1

2g

∑
k∈{0,...,2g−1}

θi⊕k(z, τ)θk(0, τ),

where ⊕ is the bitwise XOR. This gives us a function

F : C2g+1

→ C2g+1

((θ2[0;b](z, τ)), (θ2[0;b](0, τ))) 7→ ((θ2[0;b](z, 2τ)), (θ2[0;b](0, 2τ))).

Just as in genus two, we solve the problem of computing the correct square root by evaluating
θ at low precision; this requires a number of operations independent of P .

The trick used in Proposition 3.4 can be generalized, using Hg = H ⊗ . . . ⊗ H (g times).
Hence F can be computed with 2g+1 multiplications, which is better than 22g+1.

4.4. Extending the quasi-linear time algorithm

4.4.1. Defining F. We can study the homogeneity of the formulas defining F ;

equation (3.5) gives, for instance, θ(z, 2τ)2 =
∑2g−1
i=0

√
θi(z, τ)2

√
θi(0, τ)2. Combined with

the expression of the Borchardt mean, it is then easy to generalize G in the same way as it is
defined in Proposition 3.6. We conjecture that Theorem 3.9 generalizes.

Conjecture 4.3. If all the choices of sign are good, G can be evaluated to P bits of precision
in O(logP) steps.

Finally, defining F so that Newton’s method is applicable requires finding 2g − 1 symplectic
matrices M such that

θj(M · z,M · τ)2 = fM (τ)e2iπgM (z,τ)θσM (j)(z, τ)2,

where fM , gM are rational functions and σM is a permutation. We then define the function F
with Algorithm 3.

Algorithm 3 Compute F (θ1,...,2g−1(z, τ/2)/θ0(z, τ/2), θ1,...,2g−1(0, τ/2)/θ0(0, τ/2)).

1: Compute θi(z,τ)
2

θ0(z,τ/2)θ0(0,τ/2)
, θi(0,τ)

2

θ0(0,τ/2)2
using equation (3.5).

2: Compute G
(θ0,...,2g−1(z,τ)

2

θ0(z,τ/2)θ0(0,τ/2)
,
θ0,...,2g−1(0,τ)

2

θ0(0,τ/2)2

)
=
(

1
θ0(z,τ/2)θ0(0,τ/2)

, 1
θ0(0,τ/2)2

)
.

3: for M within a set of 2g − 1 well-chosen symplectic matrices do

4: Set σM as in Theorem 2.7 (for example, [13, Chapter 5, Theorem 2]).

5: Compute λM , µM = G (θσM (0),...,σM (2g−1)(z, τ)2, θσM (0),...,σM (2g−1)(0, τ)2).

6: return (λM , µM).

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 175

4.4.2. The final algorithm. We can compute λi, µi from z, τ using equation (2.1) in
O(2gM(P) logP) operations. We can then apply Newton’s method to F to compute the
quotients of theta functions and theta constants, but only if the Jacobian of the system is
invertible. We conjecture that one can choose matrices M to ensure this, as in genus one and
genus two.

The total complexity of this method is the same as the complexity of evaluating F,
since Newton’s method (when doubling the working precision at each step) does not add
any asymptotic complexity. The complexity of the evaluation of F is O(4gM(P) logP) bit
operations. Although this is exponential in the genus g, this is quasi-linear in the precision P .
Hence, as was the case between genus one and genus two, we expect the precision for which
our algorithm is better than a naive approach to be smaller as the genus grows.

Appendix A. Naive algorithm in genus two

Algorithm A.1 computes θ(z, τ) in genus two using the partial evaluation of the series and
induction relations (3.3) and (3.4) to speed up the computation of each term.

Algorithm A.1 Naive algorithm for θ(z, τ) in genus two.
Input: z, τ and B a summation bound. Output: θi(z, τ), θi(0, τ) for i ∈ {0..3}.

1: a← (1, 1, 1, 1); b← (1, 1, 1, 1) . These arrays will store θi(z, τ) and θi(0, τ).
2: Compute R(m,n) = Q(m,n) +Q(−m,n) for m,n ∈ {0, 1}.
3: Compute T (m,n) for m ∈ {0, 1} and n ∈ {−1, 0, 1}.
4: Add contributions for (0, 1) to a and b, with the correct sign.

5: u← w2
1 + w−21 , v ← w2

2 + w−22

6: for n = 1 to B − 1 do

7: R(0, n+ 1)← q2n+1
2 R(0, n)

8: Add contribution for (0, n+ 1) to b, with the correct sign.

9: T (0, n+ 1)← q2n+1
2 vT (0, n)− q4n2 T (0, n− 1)

10: Add contributions for (0, n+ 1) to a, with the correct sign.

11: for m = 1 to B do

12: ρm ← q2m3 + q−2m3 . can be computed inductively

13: Add contributions for (m, 0) and (m, 1) to a and b, with the correct sign.
14: for n = 1 to B − 1 do . One may refine the bound depending on m

15: R(m,n+ 1)← q2n+1
2 ρmR(m,n)− q4n2 R(m,n− 1)

16: Add contribution for (m,n+ 1) to b, with the correct sign.

17: T (m,n+ 1)← q2n+1
2 q2m3 vT (m,n)− q4n2 q4m3 T (m,n− 1)

18: T (m,−(n+ 1))← q2n+1
2 q−2m3 vT (m,−n)− q4n2 q−4m3 T (m,−(n− 1))

19: Add contributions for (m,n+ 1) to a, with the correct sign.

20: R(m+ 1, 0)← q2m+1
1 R(m, 0)

21: R(m+ 1, 1)← q2m+1
1 (q23 + q−23)R(m, 1)− q4m1 R(m− 1, 1)

22: T (m+ 1, 0)← q2m+1
1 uT (m, 0)− q4m1 T (m− 1, 0)

23: T (m+ 1, 1)← q2m+1
1 q23uT (m, 1)− q4m1 q43T (m− 1, 1)

24: T (m+ 1,−1)← q2m+1
1 q−23 uT (m,−1)− q4m1 q−43 T (m− 1,−1)

25: return a, b.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000309

176 h. labrande and e. thomé

In this algorithm, terms of the form qki as well as products thereof must also be computed by
induction. We did so in our implementation, but this is deliberately omitted here for brevity.
Also, despite the use of notation T (m,n), it shall be understood that only constant storage
is used by this algorithm, as can be seen by inspecting where values are actually used. Note
that further speed-ups are possible if one tolerates using O(

√
P) extra memory, for instance,

by caching the qm1 and the qn2 .

Appendix B. Generic implementation of F

Algorithm 1 defines F in terms of quotients of theta functions for clarity. Algorithm B.1 below
shows how the function F is implemented generically, that is, how it operates on general
arguments.

Algorithm B.1 Computation of F(a1,2,3, b1,2,3).
Input: a1,2,3, b1,2,3 ∈ C6 and a pair z, τ ∈ C2 ×H2.

We assume that a1,2,3, b1,2,3 belong to a narrow enough neighborhood of
(θ1,2,3

θ0
(z, τ/2),

θ1,2,3
θ0

(0, τ/2)
)
, to some constant base precision P0. These coarse estimates serve as a guide

to choose the correct signs of square roots when computing G.

1: (a0, b0)← (1, 1).
2: for i = 0 to 15 do
3: v ← i (mod 4), u = i−v

4 .

4: xi ← 1
4

∑3
j=0(−1)u·jav⊕jbj .

5: yi ← 1
4

∑3
j=0(−1)a·jbb⊕jbj .

6: (λ0, µ0)← G(x0,1,2,3, y0,1,2,3), . guide with low-precision approximations

7: (x0,...,15, y0,...,15)← (1
λ0
x0,...,15,

1
µ0
y0,...,15).

8: (λ1, µ1)← G(x8,9,0,1, y8,9,0,1), . guide with low-precision approximations

9: (λ2, µ2)← G(x4,0,6,2, y4,0,6,2), . guide with low-precision approximations

10: (λ3, µ3)← G(x0,8,4,12, y0,8,4,12), . guide with low-precision approximations

11: return (µ1/λ1, µ2/λ2, µ3/λ3,−1/µ1,−1/µ2, 1/µ3).

Acknowledgement. We thank the anonymous reviewers for the high quality of their
feedback.

References

1. R. Cosset, ‘Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques’, PhD
Thesis, Université Henri Poincaré-Nancy I, 2011.

2. D. A. Cox, ‘The arithmetic-geometric mean of Gauss’, Enseign. Math. 30 (1984) no. 2, 275–330.
3. B. Deconinck, M. Heil, A. Bobenko, M. Van Hoeij and M. Schmies, ‘Computing Riemann theta

functions’, Math. Comp. 73 (2004) no. 247, 1417–1442.

4. R. Dupont, ‘Moyenne arithmético-géométrique, suites de Borchardt et applications’, PhD Thesis, École
polytechnique, Palaiseau, 2006, http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these soutenance.
pdf.

5. R. Dupont, ‘Fast evaluation of modular functions using Newton iterations and the AGM’, Math. Comp.
80 (2011) no. 275, 1823–1847.

6. A. Enge, ‘The complexity of class polynomial computation via floating point approximations’, Math.
Comp. 78 (2009) no. 266, 1089–1107.

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
https://doi.org/10.1112/S1461157016000309

computing theta in quasi-linear time 177

7. A. Enge, M. Gastineau, P. Théveny and P. Zimmerman, ‘GNU MPC. INRIA, September 2012.
Release 1.0.1’, http://mpc.multiprecision.org/.

8. A. Enge and E. Thomé, ‘CMH — Computation of Igusa Class Polynomials, Version 1.0’, 2014,
http://cmh.gforge.inria.fr/.

9. A. Enge and E. Thomé, ‘Computing class polynomials for abelian surfaces’, Exp. Math. 23 (2014) no. 2,
129–145.

10. P. Gaudry, ‘Fast genus 2 arithmetic based on theta functions’, J. Math. Cryptol. 1 (2007) no. 3, 243–265.
11. E. Gottschling, ‘Explizite bestimmung der randflächen des fundamentalbereiches der modulgruppe

zweiten grades’, Math. Ann. 138 (1959) no. 2, 103–124.
12. B. Helfrich, ‘Algorithms to construct Minkowski reduced and Hermite reduced lattice bases’, Theoret.

Comput. Sci. 41 (1985) 125–139.
13. J.-I. Igusa, Theta functions (Springer, Berlin, Heidelberg, 1972).
14. H. Klingen, Introductory lectures on Siegel modular forms (Cambridge University Press, Cambridge,

1990).
15. H. Labrande, ‘Computing Jacobi’s θ in quasi-linear time’, Preprint, 2015, arXiv:1511.04248 [math.NT].
16. D. Mumford, Tata lectures on theta, vol. I (Birkhäuser, Boston, 1983).
17. M. Streng, ‘Computing Igusa class polynomials’, Math. Comp. 83 (2014) no. 285.
18. P. Van Wamelen, ‘Equations for the Jacobian of a hyperelliptic curve’, Trans. Amer. Math. Soc. 350

(1998) no. 8, 3083–3106.

Hugo Labrande
Université de Lorraine
LORIA (UMR CNRS 7503)
INRIA Nancy
615 rue du jardin botanique
54602 Villers-lès-Nancy Cedex
France

and
University of Calgary
Department of Computer Science
2500 University Dr NW
Calgary, Alberta
Canada T2N 1N4

hugo.labrande@inria.fr

Emmanuel Thomé
Université de Lorraine
LORIA (UMR CNRS 7503)
INRIA Nancy
615 rue du jardin botanique
54602 Villers-lès-Nancy Cedex
France

emmanuel.thome@inria.fr

https://doi.org/10.1112/S1461157016000309 Published online by Cambridge University Press

http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://cmh.gforge.inria.fr/
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
http://www.arxiv.org/abs/1511.04248
https://doi.org/10.1112/S1461157016000309

	1 Introduction
	2 Background on genus g theta functions
	2.1 Definitions
	2.2 Fundamental domain
	2.3 Algorithms for theta

	3 Computing the genus two theta function
	3.1 Argument reduction
	3.2 Naive algorithm
	3.3 The function F
	3.4 Constructing and inverting the F function
	3.5 Proof of quasi-linear time
	3.6 Implementation results

	4 Extending the algorithm to higher genera
	4.1 Argument reduction
	4.2 Naive algorithm
	4.3 The function F
	4.4 Extending the quasi-linear time algorithm
	4.4.1 Defining F
	4.4.2 The final algorithm

	Appendix A Naive algorithm in genus two
	Appendix B Generic implementation of F
	References

