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Regulation of fluid flow by deformations of the surrounding elastic structure is observed in
many natural and artificial system, such as in the cardiovascular system. As the first step to
study the regulation of oscillating flows, we consider synchronization of vortex shedding
past a cylinder within an elastic structure with a sinusoidal external forcing. We use
phase-reduction theory to evaluate the synchronization characteristics of the oscillating
fluid–structure coupled dynamics. We find that the phase-sensitivity function, which
characterizes the phase-response of the oscillation, is significantly affected by the Cauchy
number and slightly affected by the fluid-to-structure density ratio and Poisson’s ratio of
the structure material, for fixed model configuration and Reynolds number. The predicted
synchronization characteristics are in close agreement with results from direct numerical
simulations. The synchronization region is maximized when the sinusoidal perturbation is
applied near the downstream end of the cylinder. These findings open further possibility for
the utilization of phase-reduction theory to characterize synchronization in other practical
problems exhibiting fluid–structure coupled dynamics, such as in biological systems and
the control of microfluidics.

Key words: nonlinear dynamical systems, low-dimensional models, vortex shedding

1. Introduction

Self-sustained oscillations can be observed in many natural phenomena, such as oscillatory
chemical reactions (Kuramoto 1984), spiking neurons (Ermentrout & Terman 2010),
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cardiac cells (Kojima, Kaneko & Yasuda 2006) and vortex shedding (Zdravkovich
1996). Such systems can be interpreted as limit-cycle oscillators. One interesting
phenomenon observed in oscillating dynamics is synchronization (Kuramoto 1984;
Pikovsky, Rosenblum & Kurths 2001; Ermentrout & Terman 2010). Although such
dynamical systems are generally nonlinear and can be infinite-dimensional, their periodic
nature allows the dynamics to be represented in a simplified manner using phase-reduction
theory, which is a powerful tool that allows synchronization characteristics to be analysed
by considering only the phase dynamics of the system (Kuramoto 1984; Pikovsky et al.
2001; Ermentrout & Terman 2010; Nakao 2016).

Phase-reduction theory has been extended for many different kinds of oscillatory
dynamics such as in time-delayed systems and hybrid systems (Kotani et al. 2012;
Novičenko & Pyragas 2012; Shirasaka, Kurebayashi & Nakao 2017). In the field of fluid
mechanics, recent work by Kawamura & Nakao (2013, 2015) considers the extension of
phase-reduction theory for periodic spatiotemporal patterns to analyse Hele-Shaw flows.
More recently, a computational study for the lock-on of vortex shedding to oscillatory
actuation was considered in the work of Taira & Nakao (2018) and Khodkar & Taira
(2020).

In cases where the oscillating fluid flow comes into contact with an elastic structure,
the dynamics need to be considered as a problem of fluid–structure interaction (FSI).
The surrounding structure displacement will cause movement of the fluid boundaries.
Conversely, the fluid flow exerts force on the fluid–structure interface, causing structural
displacements (Richter 2017). A common example of an oscillatory phenomenon involving
FSI is a vibrating flexible structure within vortex shedding (Gomes & Lienhart 2013).
Self-oscillation induced by FSI is also observed in the study of micro-electromechanical
systems (Ducloux et al. 2007). In biological systems, it is known that the efferent activity
of the sympathetic nervous system on vascular smooth muscle alters the contractility
of blood vessels, which in turn modulates the periodic blood flow (Kotani et al. 2005;
Shiogai, Stefanovska & McClintock 2010). Theoretical formulation using phase-reduction
for elastohydrodynamic synchronization of beating flagella has been considered in the
work of Kawamura & Tsubaki (2018). However, much remains unknown about oscillation
and synchronization in fluid–structure coupled dynamics.

In this work, we present the utilization of phase-reduction for FSI dynamics as the first
step to understand how oscillatory flow can be regulated by weak perturbation on the
surrounding structure. We describe the model problem of vortex shedding past a cylinder
within an elastic structure as well as the phase-reduction theory in § 2. The dependence of
the phase-response property on the material types and the location of the perturbation
as well as the synchronization characteristics are discussed in § 3. Finally, concluding
remarks are given in § 4. The method presented here can be seen as a simplified yet
powerful approach to analyse a complex dynamical system involving multiphysics, such
as FSI, by reducing it into single scalar phase dynamics.

2. Methods

2.1. Model definition
In this study, we define a model of two-dimensional laminar incompressible flow past a
cylinder within a channel surrounded by an elastic structure, as shown in figure 1. The
cylinder itself is considered as a static rigid body with diameter d = 0.1 m centred at
(x, y) = (0.2 m, 0.1 m). The fluid and structure are fully coupled (Horn & Turek 2006;
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Flow synchronization by a perturbed surrounding structure
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Figure 1. The model used in this study. The elastic structure domain surrounding the fluid domain is marked
by the hatched pattern. The cylinder is centred at (x, y) = (0.2 m, 0.1 m).

Richter 2017). Numerical simulations are conducted based on the finite element method
using COMSOL Multiphysics 5.5.

The fluid flow is governed by the incompressible Navier–Stokes equations in the
arbitrary Lagrangian–Eulerian (ALE) formulation (Quarteroni, Tuveri & Veneziani 2000;
Horn & Turek 2006) such that

ρf

{
∂uf

∂t
+ [(uf − um) · ∇]uf

}
= ∇ · {−pI + μ

[∇uf + (∇uf )
T]}

and ∇ · uf = 0,

(2.1a,b)

where ρf , μ, p, uf , um and I represent fluid density, dynamic viscosity, pressure, fluid
flow velocity, spatial coordinate velocity and identity matrix. The external volume forces
are assumed to be zero. The fluid flows inside the channel from left to right. The outlet
is prescribed with zero-pressure boundary condition. A no-slip boundary condition is
prescribed at the fluid–structure interface and around the cylinder wall. A parabolic
velocity profile is prescribed at the inlet such that u(0, y) = Ūf 6y(H − y)/H2, where Ūf
is the mean inlet velocity and H = 0.2 m is the channel width.

The surrounding structure is modelled as an isotropic linear elastic material. The
dynamics is governed by

ρs

(
∂2ws

∂t2
+ α

∂ws

∂t

)
= ∇ ·

(
PT + β

∂PT

∂t

)
+ εηs(x, t), (2.2)

where ρs, ws, α, β and P represent structure density, displacement, mass damping
coefficient, stiffness damping coefficient and the first Piola–Kirchoff stress tensor
(Formato et al. 2019). The stress tensor P is characterized by Young’s modulus E and
Poisson’s ratio ν of the structure material according to Hooke’s law. In this work, we
define α = 0.2 s−1 and β = 0.1 s. The width of the elastic structure is set at 0.02 m for
both the top and bottom sides. Zero displacement is prescribed at the left and right edges
of the structure. The perturbation εηs(x, t) is defined as a localized force at the upper
boundary of the structure, as shown in figure 1, such that

εηs(x, t) = −εδ (x − x0) η(t)êy and δ (x − x0) = 1√
2πσx

exp

[
−1

2

(
x − x0

σx

)2
]
,

(2.3a,b)
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where x is the spatial coordinate, δ(x − x0) describes the spatial impulse profile and êy
is the unit vector in the y direction, while the negative sign signifies that the perturbation
is applied in the direction into the structure domain. The time-varying component η(t) is
defined as

η(t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2πσt

exp

[
−1

2

(
t − t0
σt

)2
]
, for impulse perturbation,

sin(ωf t), for sinusoidal perturbation.

(2.4)

Both the spatial and temporal impulse profiles are approximated as Gaussian functions
with σx = 0.01 m and σt = 0.01 s. We use the impulse perturbation to evaluate the
phase-sensitivity function of the oscillating flow, which is necessary in the phase-reduction
analysis, and the sinusoidal perturbation to evaluate synchronization of the oscillating flow
(more later in § 2.2). The perturbation amplitudes are chosen such that ε = 0.001 N for the
case of impulse perturbation and ε ∈ [0, 25] N for the case of periodic perturbation.

The kinematic and dynamic coupling conditions are satisfied at the fluid–structure
interface Ω (Richter 2017), that is,

uf

∣∣∣∣
Ω

= us

∣∣∣∣
Ω

= ∂ws

∂t

∣∣∣∣
Ω

and F n

∣∣∣∣
Ω

= ên · {−pI + μ[∇uf + (∇uf )
T]}

∣∣∣∣
Ω

, (2.5a,b)

where us is the velocity of the structure displacement, F n is the normal force per unit area
exerted on the structure by the fluid and ên is a unit vector normal to the fluid–structure
interface.

We characterize the model problem by the cylinder-diameter-based Reynolds number
Re, Cauchy number CY and fluid-to-structure density ratio M (DeNayer et al. 2018), which
are defined as

Re = ρf Ūf d
μ

, CY =
ρf Ū2

f

E
and M = ρf

ρs
. (2.6a–c)

Table 1 shows the material properties that are considered in this study. Using properties
of material type 1, but by modifying the value of μ, it is found that limit-cycle oscillation
occurs for 90 ≤ Re ≤ 300. For all material types defined, the fluid properties are chosen
such that Re = 100. Material type 1 is used as base values for comparisons. For types 2
and 3, the value of CY is modified by changing E with a ratio of 1.25 times the base value.
For types 4 and 5, the value of M is modified by changing ρs with a ratio of 1.25 times
the base value. For types 6 and 7, ν is modified with a ratio of 1.2 times the base value to
keep it within the range for an isotropic linear elastic material (−1.0 < ν < 0.5). For type
8, both fluid and structure properties are changed while keeping the values of Re, CY , M
and ν equal to the base values.

The computational domain is discretized using a distributed quadrilateral mesh with a
total number of 2864 elements. The elements around the cylinder and the fluid–structure
interface are more refined with maximum size limit at 6.72 × 10−3 m and minimum size
limit at 9.6 × 10−5 m. Implicit time stepping is used and the simulation output is stored
every t = 0.0005 s.

2.2. Phase-reduction
Here, we briefly describe the phase-reduction theory and its use for analysing
synchronization characteristics (Nakao 2016; Taira & Nakao 2018). Let us write the
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Flow synchronization by a perturbed surrounding structure

ρf (kg m−3) Ūf (m s−1) μ (Pa s) ρs (kg m−3) E (Pa) ν CY M
Type 1 2.0 0.500 0.001 7850 5.60 × 106 0.40 8.93 × 10−8 0.00025
Type 2 2.0 0.500 0.001 7850 4.48 × 106 0.40 11.16 × 10−8 0.00025
Type 3 2.0 0.500 0.001 7850 7.00 × 106 0.40 7.14 × 10−8 0.00025
Type 4 2.0 0.500 0.001 6280 5.60 × 106 0.40 8.93 × 10−8 0.00032
Type 5 2.0 0.500 0.001 9812.5 5.60 × 106 0.40 8.93 × 10−8 0.00020
Type 6 2.0 0.500 0.001 7850 5.60 × 106 0.48 8.93 × 10−8 0.00025
Type 7 2.0 0.500 0.001 7850 5.60 × 106 0.33 8.93 × 10−8 0.00025
Type 8 1.6 0.625 0.001 6280 7.00 × 106 0.40 8.93 × 10−8 0.00025

Table 1. The types of fluid and structure material properties considered in this study.

governing dynamics of an oscillating FSI dynamics that is perturbed by an external force
as

∂

∂t
X (x, t) = F {X } + εη(x, t), (2.7)

where X = [uf ,ws] is the system state, F {X } is the system dynamics and the perturbation
εη(x, t) is sufficiently small. We assume that the system has an exponentially stable
limit-cycle solution X 0 with frequency ωn, such that X 0(x, t + 2π/ωn) = X 0(x, t) is
satisfied. A phase functional Θ[X ] that maps the system state to a scalar phase
value θ ∈ [0, 2π) can be introduced (Nakao, Yanagita & Kawamura 2014), such that
the phase of the system θ = Θ[X ] always increases with a constant frequency as
θ̇ (t) = ∫

(δΘ/δX ) · F {X } dx = ωn in the basin of the limit cycle when the perturbation
is absent, where δΘ/δX is the functional derivative of Θ[X ] at X = X (x, t). At
the lowest-order approximation (neglecting the higher-order-terms), δΘ/δX can be
approximately evaluated at X = X 0(x, θ/ωn) on the limit cycle and the phase dynamics
under weak perturbation can be found as

θ̇ (t) = ωn + ε

∫
Z(x, θ) · η(x, t) dx, (2.8)

where Z(x, θ) = [Z f (x, θ),Z s(x, θ)] = δΘ/δX |X=X 0(x,θ/ωn) is known as the phase-
sensitivity function. If Z(x, θ) is known, the influence of any perturbation function
εη(x, t) can be determined through (2.8). In particular, if the perturbation on the structure
is spatially localized in the form η(x, t) = [ηf (x, t), ηs(x, t)] = [0,−δ(x − x0)η(t)êy], the
phase equation reads as θ̇ (t) = ωn + εZy(θ)η(t), where Zy(θ) = ∫

Z s(x0, θ) · [−δ(x−
x0)êy] dx.

In this work, we evaluate Zy(θ) using the direct impulse perturbation approach
(Ermentrout & Terman 2010; Nakao 2016), with the perturbation function εηs(x, t) defined
in (2.3a,b) and (2.4). By introducing the impulse at certain phase θ (determined by t0), the
phase dynamics will be affected, where phase shift will be observed along the limit-cycle
orbit. This asymptotic phase shift is known as the phase-response function g(θ; εêy), which
is dependent on the amplitude, location, direction and phase where it is introduced. Hence,
the phase-sensitivity function at phase θ can be evaluated as

Zy(θ) = lim
ε→0

g(θ; εêy)

ε
≈ g(θ; εêy)

ε
. (2.9)
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Therefore, we can evaluate Zy(θ) by introducing impulse perturbations over the entire
range of θ . By evaluating g(θ; εêy) using appropriate observables showing periodic
oscillations, Zy(θ) can be determined using a limited number of measurements. In this
study, we consider the oscillating lift coefficient CL on the cylinder boundaries as the
observable. The relative phase value of θ = {0, 2π} is defined at the minimum value of
CL oscillation.

The representation in phase dynamics allows further analysis to determine the
conditions in which the original dynamics will synchronize to a periodic perturbation with
period Tf and frequency ωf = 2π/Tf . We consider the phase difference φ(t) between the
phase of the original oscillatory dynamics θ(t) and the periodic perturbation ωf t such that

φ(t) ≡ θ(t)− ωf t. (2.10)

Combining with (2.8) for the case where a perturbation is applied on the structure and by
applying the averaging approximation (Ermentrout & Terman 2010), we can evaluate the
rate of change of φ(t) such that

φ̇(t) = ωn − ωf + εΓ (φ) and Γ (φ) = 1
2π

∫ 2π

0
Zy(φ + ψ) · η(ψ/ωf ) dψ,

(2.11a,b)

where Γ (φ) is known as the phase-coupling function, which is 2π-periodic, and ψ = ωf t.
By conducting stability analysis on the phase dynamics in (2.11a), we can determine

the criteria for which the original oscillating dynamics will synchronize to a periodic
perturbation, that is, when |φ̇| → 0 and ωn converges to ωf . In this case, the original
limit-cycle oscillation exhibits phase-locking to the periodic perturbation asymptotically at
a stable fixed point φ. Through observation of (2.11a), we can find that the phase dynamics
stability is satisfied if

εminΓ (φ) < ωf − ωn < εmaxΓ (φ). (2.12)

Using this stability criterion, we can determine the boundaries of the synchronization
region over the (ωf /ωn)–ε space. These synchronization boundaries are also known as
the Arnold tongue (Pikovsky et al. 2001) and will be discussed later in § 3.

On the contrary, periodic phase slip will occur if |φ̇| > 0 and the phase difference φ(t)
will continuously increase over time (Nakao 2016). We can define the frequency of this
periodic phase slip as fslip = 1/Tslip, where Tslip is the interval of the periodic phase slip,
which is calculated as a function of frequency difference ωn − ωf . When the original
oscillating dynamics is phase-locked to the periodic perturbation, the mean frequency of
the oscillation is equal to ωf and fslip ≈ 0. Outside of the phase-locking region, phase slip
will occur and fslip can be calculated as

fslip = 1
Tslip

and Tslip =
∫ 2π

0

dφ
ωn − ωf + εΓ (φ)

. (2.13a,b)

Depending on the frequency difference, the approximated value of fslip can be positive or
negative. The characteristics of the fslip curve over the span of ωn − ωf can be compared
with the results from actual direct numerical simulations (DNS), as seen later in § 3.
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Figure 2. (a) Periodic CL oscillation for material types 1 and 8. (b) Comparison of Zy(θ) for different
perturbation locations. The solid and dotted lines show the results for material types 1 and 8, respectively.
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Figure 3. (a) Comparison of Zy(θ) for different values of CY (shown in units of 1 × 10−8). (b) Comparison
of Zy(θ) for different values of M. (c) Comparison of Zy(θ) for different values of ν.

3. Results and discussion

3.1. Phase-sensitivity analysis
In what follows, we compare the phase-sensitivity function Zy(θ) for different material
types, given that the impulse perturbation defined in (2.3a,b) and (2.4) is introduced. The
findings in this section can be further utilized to evaluate the phase-coupling function and
to analyse the synchronization characteristics. For each material type, 11 actual simulations
were performed at equal phase intervals over θ (shown by markers in figures 2 and 3) and
the in-between values are obtained by the modified Akima interpolation method using
MATLAB.

Figure 2(a) shows a comparison of the CL oscillations between material types 1 and 8 in
which both the fluid and structure properties are changed but all the characteristic numbers
are kept equal. The period of the CL oscillations is found at Tn = 0.403 s for material types
1 to 7, while for material type 8 the period is found at Tn = 0.323 s, showing that the
oscillation is mainly characterized by the fluid properties (see table 1). For all material
types, the vortex shedding frequency is 3.5 times or more higher than the dominant
harmonic frequency of the structure, such that large structural resonance due to the vortex
shedding does not occur. Note that in the present study damping terms are included in the
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structural dynamics, such that the structure harmonic modes have negligible effect on the
limit-cycle oscillation as time goes to infinity.

We confirm that the chosen characteristic numbers used in this study determine the
phase dynamics by the results shown in figure 2(b), where close agreement can be seen
between Zy(θ) evaluated for material types 1 and 8 (shown as solid and dotted lines,
respectively). As shown in figure 2(a), the CL oscillation periods for material types 1 and
8 differ due to the different mean inlet velocities. Nevertheless, when all the values of Re,
CY , M and ν are matched (see table 1), the obtained phase-sensitivity functions are in
close agreement. This shows that for an equal model configuration, the phase dynamics is
characterized by the values of Re, CY , M and ν.

Figure 2(b) also shows that the phase-sensitivity function Zy(θ) is significantly affected
by the perturbation location. We compare the results for perturbations applied in between
the upstream and downstream sides relative to the cylinder centre on the x axis at
x = 0.2 m. Smaller mean and peak-to-peak values are observed for perturbations applied
at the upstream side (x0 < 0.2 m) while larger values are observed for the cases where
perturbations are applied at the downstream side (x0 > 0.2 m). In the upstream region,
flow separation has yet to occur such that the oscillating flow is not fully developed. Hence,
for an equal impulse perturbation amplitude, the phase-response is considerably smaller
than in the case when the perturbation is applied at the downstream side where vortices are
starting to develop. These also suggest that the required periodic perturbation amplitude
and frequency to achieve synchronization, as defined in (2.12), are also dependent on the
perturbation location, which will be studied in the next subsection.

We further investigate the effect of each characteristic number by comparing the
response to impulse perturbation introduced at x0 = 0.25 m. As mentioned in § 2.1, we
modify the Cauchy number CY and the fluid-to-structure density ratio M by changing
the Young’s modulus E and structure density ρs, respectively. Figure 3(a) shows the
comparison for material types 1, 2 and 3, where Zy(θ) is compared for different values
of CY . The mean and peak-to-peak values of Zy(θ) increase as the value of CY increases.
Figure 3(b) shows the comparison for material types 1, 4 and 5, where Zy(θ) is compared
for different values of M. The peak-to-peak value of Zy(θ) increases as the value of
M increases while the mean value is unaffected. Figure 3(c) shows the comparison for
material types 1, 6 and 7, where Zy(θ) is compared for different values of Poisson’s
ratio ν. The mean and peak-to-peak values of Zy(θ) increase as the value of ν decreases.

Comparisons on the effect of the structure material and fluid–structure coupling
characteristic numbers show that the changes in M and ν have smaller effects on the
phase-sensitivity function than that of CY , even taking into account the narrower range of
ν due to the parameter restriction. The change in CY significantly affects the mean value
of the phase-sensitivity function rather than its waveform. Although the effects of CY , M
and ν are different, these values characterize the overall phase-response to the perturbation
on the elastic structure.

Observation of figures 2 and 3 shows that the impulse perturbation causes phase
advancement to the oscillating flow for all the chosen material types and perturbation
locations. All the resulting phase-sensitivity functions have positive non-zero mean values.
Similar phase-response is typically found in class I neurons (Ermentrout & Terman 2010).
These suggest that, if we periodically push the upper boundary of the structure, then the
perturbation frequency must be higher than the natural frequency of the oscillating flow
in order to achieve synchronization. Such limitation can be avoided if we consider that the
perturbation is in the form of a periodic pushing and pulling action on the upper boundary,
which is defined in this work as a zero-mean sinusoidal function shown in (2.4).
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Figure 4. (a) Comparison of the phase-coupling function Γ (φ) for several perturbation locations. (b) Variation
of Γ (φ) over the perturbation location. (c) Synchronization boundaries for x0 = 0.25 m shown by the solid
lines. Results from DNS for synchronizing and non-synchronizing cases are marked with © and × respectively.
(d) Comparison of the fslip characteristics calculated by (2.13a,b) for x0 = 0.25 m and ε = 10 N with results
obtained from DNS, shown by the solid lines and markers, respectively.

3.2. Synchronization analysis
We consider material type 1 and the periodic sinusoidal perturbation defined in
(2.3a,b) and (2.4) being used for the following synchronization analysis. Given that the
phase-sensitivity function Zy(θ) can be determined, we can evaluate the phase-coupling
function Γ (φ) using (2.11b) for the given perturbation function. The phase-coupling
functions evaluated at different perturbation locations x0 are shown in figure 4(a). As can
be deduced from the peak-to-peak values of Zy(θ) shown in figure 2(b), the evaluated
phase-coupling functions show largest variation over φ when the perturbation is applied
at x0 = 0.25 m. Variation of Γ (φ) over negative and positive values suggests that a
perturbation frequency lower than the natural frequency of the oscillating flow can also
lead to synchronization.

Several other numerical simulations for perturbation locations x0 ∈ [0.1, 0.4] m are
conducted to compare their synchronization regions, as shown in figure 4(b). The
markers indicate locations where simulations are actually performed. By the criterion for
synchronization in (2.12), larger variation of Γ (φ) will result in a wider synchronization
region. For the given model problem, we found that the widest synchronization region is
achieved at 0.30 < x0 < 0.35 m. In general, a wider synchronization region is achieved
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given that the perturbation is applied near the downstream end of the cylinder in which
the vortices are fully developed. The synchronization region shrinks as the perturbation
location goes farther downstream from the cylinder as the vortices start to decay.

In what follows, we consider the case where periodic perturbation is applied at x0 =
0.25 m. Using the synchronization criterion in (2.12), we can construct a representation of
the synchronization region in the form of an Arnold tongue, as shown in figure 4(c). We
compare the approximated synchronization region with results obtained from DNS. For
the actual simulations, the CL oscillation and the periodic perturbation are considered
to be synchronized when their phase difference φ stops growing and exhibits small
fluctuations around a certain value (i.e. phase-locking occurs). It can be seen that the
approximated synchronization region agrees well with the results from actual simulations
of the nonlinear FSI dynamics, especially for smaller values of the perturbation
amplitude ε. The effect of nonlinearities become more apparent for ε ≥ 15 N in which the
actual dynamics starts to deviate from the approximation obtained using phase-reduction
theory. As also noted in the work of Taira & Nakao (2018), the identification of the Arnold
tongue through the phase-coupling function is attractive since we only need to conduct
a small number of numerical simulations over the phase θ ∈ [0, 2π) to determine the
synchronization region.

The elastic structure displacement oscillation in the y direction at x = 0.25 m has a mean
value of −2.77 × 10−6 m and a peak-to-peak value of 0.54 × 10−6 m when the periodic
perturbation is not applied. For the synchronized case where a periodic perturbation with
amplitude ε = 25 N is applied, the displacement has a mean value of −7.97 × 10−6 m
and a peak-to-peak value of 0.004 m. It is also observed that the oscillating displacement
in the y direction of the elastic structure at the bottom side synchronizes with the periodic
perturbation due to the fluid–structure coupling.

We compare the approximated fslip characteristics evaluated using (2.13a,b) with the
results obtained from DNS, as shown in figure 4(d). In this work, the fslip characteristic is
compared for perturbation amplitude ε = 10 N. However, comparisons can be conducted
for any value of ε. The approximated phase-locking region is shown between the dashed
vertical lines. We can see that the fslip characteristics obtained from DNS (shown with the
markers) is in close agreement with the approximated characteristics obtained from the
calculations. However, the actual phase-locking region is slightly biased towards the lower
perturbation frequency. This also agrees with the findings seen in figure 4(c) in which
the actual synchronization region is biased towards the lower perturbation frequency,
especially for larger perturbation amplitudes. These findings further confirm that the linear
approximation using phase-reduction captures the synchronization characteristics of the
original nonlinear oscillating dynamics.

To the best of our knowledge, this is the first study that uses phase-reduction theory
to determine synchronization characteristics of an oscillating flow in FSI dynamics.
Here, we have presented the idea of how synchronization between oscillatory flow and
periodic forcing on the surrounding elastic structure can be achieved, as well as the use of
phase-reduction theory to determine the region of synchronization.

A recent study in the field of microfluidics (Sun et al. 2017) presented a design of
microfluidic oscillators where self-sustained flow oscillation induced by impinging jet flow
on a bluff body is incorporated for mixing of fluids . It is also known that fluid mixing can
be induced by vibration on the wall of the fluid container (Carlsson, Sen & Löfdahl 2005).
Combination of these two concepts might reveal an alternative method to enhance the
mixing performance, and phase-reduction theory can be applied to estimate the required
parameters for obtaining the desired flow regulation, such as presented in this study.
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The understanding of periodic fluid flow regulation by the motion of an elastic structure
is also important for studies of blood pressure regulation due to the movement of vascular
branches induced by the activity of the sympathetic nervous system (Kotani et al. 2005).

There are, of course, other synchronization cases that can be considered, such
as periodic perturbation applied on a structure submerged inside an oscillating fluid
flow. In addition, the approach using phase-reduction theory can also be extended to
analyse the synchronization around harmonic frequencies. Recent experimental work and
mathematical modelling (Barros et al. 2016; Herrmann et al. 2020) show how symmetric
forcing leads to subharmonic synchronization while antisymmetric forcing leads to
harmonic synchronization. These phenomena may also be observed in FSI dynamics
as well, and phase-reduction theory can also be utilized to uncover synchronization
characteristics under symmetric and antisymmetric forcing.

4. Conclusion

We have applied phase-reduction theory to find the synchronization characteristics of
vortex shedding by periodic perturbation on the surrounding elastic structure. We have
conducted parametric studies to observe how several dimensionless parameters known in
FSI dynamics affect the phase dynamics of the limit-cycle oscillation. It is found that
the phase-sensitivity function is significantly affected by the Cauchy number, whereas it
is affected only rather slightly by the fluid-to-structure density ratio and Poisson’s ratio,
given that the model configuration and fluid flow characteristic defined by the Reynolds
number are equal. The perturbation location on the elastic structure also significantly
affects the phase-sensitivity function. Furthermore, it is confirmed that the estimated
synchronization characteristics are in close agreement with the results obtained from DNS
by comparing the synchronization region and the periodic phase slip characteristics. The
synchronization region is maximized given that the sinusoidal perturbation is applied
near the downstream end of the cylinder. Our findings open the further possibility for
the utilization of phase-reduction theory for synchronization analysis in other practical
problems involving oscillations in dynamics governed by fluid–structure interaction, such
as in biological systems and control of microfluidics, using only a limited number of
experiments or simulations.
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