
SYMMETRIC EXTERIOR DIFFERENTIATION 
AND FLAT FORMS 

VICTOR L. SHAPIRO 

1. Introduction. Let w be a continuous differential r-form defined in a 
bounded domain R of Euclidean n-space, En, where w è 1 and 0 S r ^ n — 1. 
co is called a flat form in R, (3, p. 263), if there exists a constant N such that 
\fdau\ ^ N \a\ for every (r + 1)-simplex a contained in R, where |cr| desig
nates the (r + 1)-volume of <r. For n = 1 and co a zero form, flatness is the 
same thing as the usual Lip 1 condition. As is well known, a necessary and 
sufficient condition that a continuous real-valued function of one variable 
f(x) satisfy a Lip 1 condition over an interval (a, b) is that its upper and 
lower symmetric derivatives be bounded in (a, b) (4, pp. 22, 327). We intend 
to prove the analogue of this result for r-forms. In particular, we shall prove 
the following theorem: 

THEOREM. Let co be a continuous differential r-form defined in a bounded 
domain R of En. A necessary and sufficient condition that co be flat in R is that 
its upper and lower symmetric exterior derivatives be bounded in R. 

For a theorem similar to the above, using a different notion of generalized 
exterior differentiation than that to be given here, we refer the reader to 
(3, p. 268, Theorem 9A). The result given in the present paper is in a certain 
sense an improvement over the result in (3) where the hypothesis is a bounded-
ness assumption for the integral over the boundaries of (r + 1)-dimensional 
intervals parallel to a co-ordinate plane. Here, a much more restricted set of 
geometric figures is used, namely, r-spheres (and the form is assumed con
tinuous). 

2. Symmetric exterior differentiation. We shall suppose that En is 
endowed with the usual Cartesian co-ordinate system, and we shall define 
the symmetric exterior derivative of co in terms of this co-ordinate system. 
Since flatness is defined independently of the co-ordinate system, it will follow 
from the above theorem that if the upper and lower symmetric exterior 
derivatives of co are bounded in one Cartesian co-ordinate system of £w, they 
are bounded in all Cartesian co-ordinate systems of En and possess a bound 
which is independent of the co-ordinate system. 
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Letting x = (x1, . . . , xn) and \x = (/xi, . . . , jUr+i) with /xi < . . . < *xr+i, we 
define the upper symmetric exterior derivative of co at the point x iniî , Z)co(x), 
as follows: 

First define ZJMco(x) to be 

5Mco(x) = lim sup |Z>M(x, 0 |_ 1 I w> 
«->0 J Sp(x,t) 

where 5M(x, £) is the r-sphere with centre x and radius t lying in the (r + 1)-
plane parallel to the xM1 . . . xM1+r-plane, 5M(x, /) is the closed (r + l)-ball 
bounded by SM(x, Z), |£M(x, 2)| is the volume of £M(x, /) and 5M(x, £) is oriented 
as usual with respect to the outer normal. Then, using the notation of (3, 
p, 64), define Dœ (x) to be 

(1) Dœ(x) = £ A.«(x)dxM1V...VdxMr+1-
M<--'<Vr+l 

It is to be noticed that in case co(x) is a zero form, Z)M1co(x) is the usual upper 
symmetric derivative of co in the xM^direction. 

Similarly, using lim inf in place of lim sup above, we define SMco(x), and 
then we define the lower symmetric exterior derivative of co, J9co(x), to be 
the (r + l)-form whose /xth component is i)Mco(x). 

If Z)Mco(x) is finite and D^œÇx) = J9Mco(x), we call the common value D(1ic{x). 
If DMco(x) exists for every (r + l)-tuple /x, we say that the symmetric exterior 
derivative of co, Do) (x), exists at the point x and we set .Deo (x) = Z)co (x) = Z5co (x). 
It is clear that if co is in class C1 in a neighbourhood of the point x, Z)co(x) 
exists and equals dco(x), the usual exterior derivative of co at the point x. 

We say that the upper and lower symmetric exterior derivatives of co are 
bounded in R if there exists a number N such that — N S Z5Mco (x) ^ ZĴ co (x) S N 
for all x in R and (r + l)-tuples ii. 

3. Proof of theorem. Since the proof of the necessity is fairly easy, we 
shall prove the sufficiency first. We shall suppose that co is an r-form with 
0 û r ^ n — 2, the case r = n — 1 being covered essentially in (2, Theorem 
2). In particular, we state the following ^-dimensional analogue of (2, Theorem 
2) as a lemma, the proof being the same for ^-dimensions as two dimensions: 

LEMMA 1. Let R be a bounded domain in En, n ^ 1, and let -q be a continuous 
differential (n — l)-form defined in R. Suppose that 

(i) Di,.mnrj(x) and Di,mmnrj(x) are finite in R. 

(ii) Di_M7](x) ^ L(x) where L(x) is in L1 on R. 
Then Dimm.nri(x) exists almost everywhere in R, is in L1 on every closed subdomain 
of R, and Stokes' Theorem holds with respect to 77 and Drj for every n-simplex 
and n-ball contained in the interior of R. In particular, for every BimmM(x, i) 
contained in R, 

(2) f v = f Dlmm.nV(y)dy. 
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With Do)(x) and Dœ(x) defined as above, see (1), and — N ^ Dtlo)(x) 
S 2)Mco(#) S N for x in R and all (r + 1)-tuples /x, we shall prove the theorem 
by showing that for every (r + 1)-simplex a contained in R, 

IJL-I < U .Ki 
In order to do this, let a be a fixed (r + 1)-simplex contained in i?, and 

let f0 be the distance from a- to the boundary of R. Then with Z7f(cr) = {x, 
dist(x, a) < f} and 0 < f2 < f 1 < fo, construct a localizing function y(x) 
which is non-negative, in class Cœ, and takes the value one in U^(a) and 
the value zero outside of t7fi(o"). Next, set a/(x) = y(x)a>(x) for x in R. Then 
a/(x) is a continuous differential r-form which is equal to co(x) in Uç.2(cr). 
Consequently, in order to establish the theorem it is sufficient to show that 

<3> iI,"isUiK'. 
In order to establish (3), we need the following lemma: 

LEMMA 2. There exists a constant iV3 such that for x in Û^(a), |Z)Ma/(x)|^ iV3 

and |Z5Ma/(x)| ^ Nzfor all (r + 1)-tuples p. 

To prove the lemma, we define Ni and N2 as follows: 
n 

Ni = sup \y(x)\ + ^2 sup \dy(x)/dx3\. 
x in R j=l x in R 

If 03 (x) is a zero form, define 

N2 = sup |co(x)|. 
x in ^ ^ ( " O 

If œ(x) is an r-form with 1 ^ r ^ n — 2 and cox(#) is its Xth component, 
set 

iV2 = X) SU_P |cox(x)|. 
X i < . . . < X r a; in l/j^OO 

We next set Nz = NiN + (r + l)7V2iVi and shall establish the lemma by 
showing that for any fixed point x0 in Û^(a) and any fixed (r + l)-tuple /z, 

(4) |A.«'(*o)| ^ Nz and |£M«'(*o)| ^ # , . 

Observing that t\S^(xo, t)\ = (r + l)|5M(x0, /)|, we obtain that 

(5) J (x;' - xJo)a>x(x)dxM V . . . V dxXr 

I " SM(a:o,0 

(r + l)|5M(xo, 01 SUP |cox(x)| 
a; on S^ixo, 0 

Next, we set 
n 

7(x) = YOO) + 2 dy(x0)/dxJ(x3 - xi) + y'(x) 
3=1 
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where yr(x) = o(\x — x0\) and observe that 

(6) I w(x) = y(x0) I ca{x) 

+ IZ dy(xo)/dx3 I (x3 — x3
0)œ(x) + I y'(x)v(x). 

It follows from (5) and (6) that if w is an r-form with 1 ;S r S n — 2, 
then 

(7) i^Cxo,/)!-1! I w'l ^^I|^M(^O,or1! I «I + 
J SM(a:o,«) J Sn(xo,t) 

[Nifr + 1) + o(l)] E sup |«x(x)| . 
Xi<. ..<Xr ar on S^xo.t) 

(4) follows immediately from (7) and the continuity of a> in case co is not 
a zero form and an obvious modification of (7) in case it is a zero form, and 
the lemma is established. 

To prove the theorem, with no loss in generality since we shall establish 
the result via Fourier analysis, we can assume that R is contained in the 
interior of the ^-dimensional torus, T = {x, — w < Xj ̂  7r, j; = 1, . . . , n}. 
We next define a/(x) throughout T by setting it equal to zero in T — Ry 

thus losing none of its continuity properties since it is already equal to zero 
in R — Uti(<r)- We can consequently consider a/ as a periodic continuous 
differential r-form defined throughout all of En. 

We next define the periodic bounded differential (r + l)-form %(x) with 
components £M(x) where 

(8) &,(*) = limsup {B^x, k~l)\~l I _ «'. 
#->oo J S^X.k l) 

Since a/ is a continuous periodic differential r-form, we see from Lemma 2 
that £M(x) is a periodic bounded Borel function in En for every (r + 1)-tuple 
/i. Furthermore, since 

for x in Uç2(a), o/(x) = w(x) 

we see from the hypotheses of the theorem that 

(9) \%n(x)\ < TV for x in Uç2(a) and every (r + l)-tuple n. 

We next introduce the Fourier series 

X i(m,x) 

am e 
H i(m,x) 
' me 

(10) «£(*) - Z 

(ii) &.(*) - £ & 
where am = ( 2 7 r ) - w / ^ ^ V x ( x ) d x and bm* = (2ir)~nJre-^^^^dx with w 
designating an integral lattice point in En and (m, x) designating the usual 
scalar product. (If a/(x) is a zero form, it is understood that W(x) = a/(x). 
Otherwise, a>\ (x) represents the Xth component of a/(x).) 
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We next propose to show that 
r+1 

. / " M l . . . M ; . . . M r + 1 (i2) c-Mr+1 = ij: ( - i ) ^ -v^ 
3=1 

where /xi . . . /x; . . . nr+i is an r-tuple with \Xj missing. 
Let /J. be fixed, and let PM(x0) designate the plane parallel to the xM1 . . . xMr+ 1-

plane going through the point x0. Then by Lemma 2 and the fact that a/ (x) 
is zero in T — Û^(a)y we have that both |SMa/(x)| ^ iV3 and |Z5Mo/(x)| ^ iV3 

for all x on PM(xo). Observing that for x on PM(xo), Sfi{xJ t) and .BM(x, £) are 
both point sets on PM(x0), we see that Lemma 1 also applies to a/. Conse
quently, for almost every x on PM(x0), D^'ix) exists. Furthermore, Z)Mco'(x) 
is in Ll on every bounded domain of PM(x0), and for every x on PM(x0), 

f co' = f Dlv'{yWl...dfr+\ 

But from the definition of Z>Ma/(x) and from (8), we see that wherever J9Mo/(x) 
exists, it must equal £M(x). We conclude that 

(13) f a/ = f ^ ( y ) ^ / 1 . . . ^ / ^ 1 iorxonPM(xo) 
•J Sp(x,t) JBp(x,t) 

and * > 0. 
Now cox'0*0 and £M(x) are periodic functions on PM(x0). Consequently, letting 

PM(x0) be the (r + 1)-dimensional toruii obtained by intersecting PM(x0) with 
P, that is, PM(x0) = {x; x on PM(x0) and — w < x"? ^ ir, j = 1, . . . , r + 1}, 
we can expand oo\ (x) and £M(x) in a Fourier series on PM(x0) as follows: 

(14) «£(*) ~ E aU^Y^^ 

-«•""•^d*" aU*S') = (27r)"(r+1) f a>l(x)é 

%,(*«') = (2x)-(r+1) f ^(x)e-i(""'^W 
* ' T„ ( rn) Tp(xo) 

where p! is the complementary [n — (r + l)]-tuple to M with 

/xi < . . . < Mi-(r+i), xM
0' - (xM

0\ . . . , x?'n- ( r+ l )), 

and 
dxM = dx" . . . dx/xr+1. 

We next notice that both sides of (13) are periodic functions on PM(x0) 
and that by (14) 

(27r)-^+i) f e - W ^ \ f ^ . . ^ . . . ^ O O ^ ' ' 1 V . . . -(r+1) 

J TpiXQ) L 

dyir+1aiV"îîy-/ïr+1(xS') 

d/'' . . . V d/r+1 da" = eXKnr'vndtfl . . . d / ' V . . . V 
VsM[OM(a;o),«] 
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where 0M(xo) is the point on PM(x0) whose /^-co-ordinate is zero, k = 1, . . . , 
r + 1. But 

= (-l)^V^ f e^'^df. 

Consequently, the mMth Fourier coefficient of the left side of (13) is given 
by 

(15) iJ2 ( - l )^W m V-^' - M r + 1 W) f e*(wM'yMV. 

Similar considerations show that the mMth Fourier coefficient of the right 
side of (13) is given by 

(16) bUx"o) f et(m"^dy". 
*JBp[OHxo,t)] 

If m* is not the zero integral lattice point, then for every t > 0, the integral 
in (15) and (16) by (1, p. 177) is a non-zero multiple of J(r+i)/2[(mtl, mrft] 
where Jr

(r+i) /2(0 is the Bessel function of the first kind of order (r + l ) /2 . 
Since this function has only a countable number of zeros, we conclude from 
(13), (15), and (16) that 

(17) bh(*ti) = i Z ( - l ) y - V ^ V " ^ - ^ + 1 W ) . 

Since the integral in (15) and (16) is clearly not equal to zero if m" is the 
zero integral lattice point, we see that (17) also holds in this case. 

We are now in a position to establish (12). Let m be any integral lattice 
point in En. Designate by nV1 the ordered (r + 1)-tuple corresponding to the 
/x-components of m and by m*' the ordered [n — (r + l)]-tuple corresponding 
to the //-components of m. Then from (10), (11), and (14) it follows that 

(18) bl = (27r)-[*-(r+1)] H . . . f ' ^ W O ^ ' ^ W ' ' . • • dx^n~{r+l) 

and 

(19) am = (Z7Tj I . . . I amn(xo )e axo . . . dx0 
J — T J —TT 

But then (12) follows immediately from (17), (18), and (19). 
We say that £M(x) is mean-continuous at the point x0, if 

\Bi...n(xo, O p 1 I ^(x)dx —» £M(x0) as £ —> 0. 
«^Bi . . . n ( a r 0 , t) 

Let ZM = {x, x in £w and £M is not mean continuous at x}. Then, as is well 
known, ZM is of Lebesgue measure zero in En. Let Z = WMZM where the sum
mation is taken over all ordered (r + 1)-tuples. 
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Next we introduce the Abel means of the series (10) and (11), 

«u*,*) = E ay
(m-x)-Mt, t>o, 

M*,t) = E ifctlM*)-imU, t>o. 

It follows from (1) that 

(20) %P(XI t)—* %ii(%) as t—>0 for x not in Z, 

and furthermore since a/(x) is continuous in En that 

(21) u{(x, t) —» co\(x) as t —» 0 uniformly for # in JEW. 

Also, since by Lemma 2, |£M(x)| ^ iV3 for all # in Ew, we have from (1) 
that 

(22) \^(xf t)\ â Nz for t > 0 and all * in En. 

Furthermore, we observe that the functions <a\(x, t) and ^M(x, t) are in class 
C00 on Ew for all (r + l)-tuples /x and r-tuples A. Consequently, we obtain 
from (12) on setting 

co'(x, t) = J2 w'x (*, /)^xXl V . . . V dxr 

Xl<...<Xr 

and 

£(*> 0 = Z &.(*> 0^M 1 V . . . V dx"r+1 

M l < . . . < U r +1 

that 

(23) do>'(x, t) = £(x, t) for / > 0. 

We now prove the theorem, that is, we shall establish (3) for the (r + 1)-
simplex a which has been fixed throughout the discussion. 

Let Pa represent the (r + 1)-dimensional plane in En containing a. Then 
one of two cases arises. Either a Pi Z is a set of (r + 1)-dimensional Lebesgue 
measure zero on Pff or it is not. Let us suppose that the latter case prevails, 
for the reasoning we are about to use will hold in an obvious manner in the 
former case. 

By Fubini's theorem there exists a sequence of points in En, {x;};==i
OT, with 

Xj —» 0 as j —* °o such that on the translated simplices, a + xjt (<x + Xj) ^ Z 
is of (r + 1)-dimensional Lebesgue measure zero on P^+XJ. Furthermore, on 
each such simplex a + xh we have by (23) that for t > 0, 

(24) I c/(x, t) = I £(*,*). 
J d(<r+zj) J a+xj 

But then by the Lebesgue dominated convergence theorem, (20), (21), and 
(22), we conclude from (24) that 

(25) f co' = f f. 
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Since xs —> 0 as j —•<», we see that for j sufficiently large, a + x} lies in 
U(t(o-). Therefore, it follows from (9) and (25) that for j sufficiently large, 

(26) 
Jaw+xj) I V + 1/ 

N\a\. 
fd(a+Xj) 

But since co' is a continuous differential r-form, 

(27) J co' -> I co' as j -> œ. 

(3) follows immediately from (26) and (27), and the proof to the sufficiency 
condition of the theorem is complete. 

To establish the necessity condition of the theorem, we need only show 
that the condition, |J aa-co| ^ N \a\ for every (r + l)-simplex in R implies that 
the following fact holds for a fixed /x, x, and t with B^(x, t) contained in R: 

(28) I f co 
\J SAx,t) 

JV|5M(x,0|-

To establish (28) we use the following well-known fact: 
There exists a sequence of simplicial (r + l)-chaîns {Aj}j=iœ such that 

(i) A3 = Yl aL al non-overlapping for k = 1, . . . , K3. 

(ii) <r{ C B„(x, t) 

(iii) f co = £ ( CO 

(iv) I co —» I co as j 
J dA3 J Sn(xjt) 

(v) | 4 ' | - > |BM(s,/)| as -^ oo. 

Since 

\Aj\ = E Kl, 

it follows from (ii) and (iii) that \fdA
3o>\ ̂  ^ \Aj\. But then (28) follows imme

diately from (iv) and (v), and the proof for the theorem is complete. 
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