
J. Aust. Math. Soc. 99 (2015), 287–314
doi:10.1017/S1446788715000221

SPECTRUM AND COMPACTNESS OF THE CESÀRO
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Abstract

An investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator C
when acting on the weighted Banach sequence spaces `p(w), 1 < p <∞, for a positive decreasing weight
w, thereby extending known results for C when acting on the classical spaces `p. New features arise in
the weighted setting (for example, existence of eigenvalues, compactness) which are not present in `p.
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1. Introduction

The discrete Cesàro operator C is defined on the linear space CN (consisting of all
scalar sequences) by

Cx :=
(
x1,

x1 + x2

2
, . . . ,

x1 + · · · + xn

n
, . . .

)
, x = (xn)n∈N ∈ C

N. (1.1)

The operator C is said to act in a vector subspace X ⊆ CN if it maps X into itself.
Of particular interest is the situation where X is a Banach space. The fundamental
questions in this case are: is C : X → X continuous and, if so, what is the spectrum
of C : X → X? Amongst the classical Banach spaces X ⊆ CN where precise answers
are known, we mention `p (1 < p <∞) [6, 14], c0 [14, 18] and both c and `∞ [1, 14],
as well as cesp, p ∈ {0} ∪ (1,∞) [8], the Bachelis spaces N p, 2 ≤ p < ∞ [9] and the
spaces of bounded variation bv0 [17] and bounded p-variation bvp, 1 ≤ p <∞ [2]. In
all of these cases, the operator norm of C : X → X equals its spectral radius and C
has at most one eigenvalue, namely, 1. There is no claim that this list of spaces (and
references) is complete.
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The aim of this paper is to investigate the two questions mentioned above for C
acting on the weighted Banach spaces `p(w). To be precise, let w = (w(n))∞n=1 be a
bounded sequence, always assumed to be strictly positive. Define the space

`p(w) :=
{
x = (xn)n∈N ∈ C

N : ‖x‖p,w :=
( ∞∑

n=1

|xn|
pw(n)

)1/p
<∞

}
for each 1 < p <∞, equipped with the norm ‖ · ‖p,w. Observe that `p(w) is isometrically
isomorphic to `p via the linear multiplication operator

Φw : `p(w)→ `p, x = (xn)n∈N → Φw(x) := (w(n)1/pxn)n∈N.

Therefore, each `p(w) is a Banach space. The dual space (`p(w))′ of `p(w) is the
Banach space `p′(v), where 1/p + 1/p′ = 1 (that is, p′ is the conjugate exponent of p)
and v(n) = w(n)−p′/p for n ∈ N. In particular, `p(w) is reflexive and separable for
1 < p < ∞. Moreover, the canonical unit vectors ek := (δkn)n∈N for k ∈ N form an
unconditional basis in `p(w) for 1 < p < ∞. If infn∈N w(n) > 0, then `p(w) = `p with
equivalent norms and we are in the standard situation. Accordingly, we are mainly
interested in the case where infn∈N w(n) = 0.

By Hardy’s inequality [13, Theorem 326, page 239], for every 1 < p < ∞ the
restriction of the Cesàro operator C : CN → CN as given in (1.1) defines a bounded
linear operator from `p into itself with operator norm equal to p′. Denote these
operators by C(p) so that ‖C(p)‖ = p′. In Section 2, where the papers [5, 11, 12] are
relevant, we discuss various aspects of the continuity of C when it is restricted to
`p(w), 1 < p <∞; denote this operator by C(p,w) whenever it is continuous.

For any Banach space X, let I denote the identity operator on X and L(X) denote
the space of all continuous linear operators from X into itself. The spectrum and
the resolvent set of T ∈ L(X) are denoted by σ(T ) and ρ(T ), respectively; see [10,
Ch. VII], for example. The set of all eigenvalues of T , called the point spectrum of
T , is denoted by σpt(T ). The spectral radius r(T ) := sup{|λ| : λ ∈ σ(T )} of T always
satisfies r(T ) ≤ ‖T‖, [10, page 567].

Section 3 is devoted to an analysis of the spectrum of C when acting in `p(w).
The main result is Theorem 3.3; it is complemented by Example 3.5 which clarifies
the scope of this theorem. Unlike for C(p), it can happen that σpt(C(p,w)) , ∅. Actually,
C(p,w) can even have infinitely many eigenvalues; see Proposition 3.6. The final section
deals with the compactness of C(p,w). Of relevance is how fast w decreases to 0; see
Proposition 4.1, Theorem 4.2, Corollary 4.3 and Proposition 4.6. Unlike for C acting
in the classical Banach spaces mentioned in the opening paragraph, it may happen in
`p(w) that r(C(p,w)) < ‖C(p,w)‖; see Proposition 4.1.

2. Continuity of C in weighted `p spaces

Some of the concepts and results from [12] that are quoted in this section actually
have their origins in the paper [11]. We begin with the following fact.
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Lemma 2.1. Let w = (w(n))∞n=1 be a positive sequence and 1 < p <∞. Then the Cesàro
operator C maps `p(w) continuously into itself if and only if

sup
m∈N

( m∑
k=1

w(k)−p′/p
)−1( m∑

n=1

w(n)
np

( n∑
k=1

w(k)−p′/p
)p)

<∞,

that is, if and only if there exists K > 0 such that
m∑

n=1

w(n)
np

( n∑
k=1

w(k)−p′/p
)p
≤ K

( m∑
k=1

w(k)−p′/p
)
, m ∈ N. (2.1)

Moreover, if the constant K satisfying (2.1) is chosen as small as possible, then the
operator norm of C is at most p′K1/p.

Proof. Let Tw : CN → CN denote the linear operator defined by

Twx :=
(w(n)1/p

n

n∑
k=1

w(k)−1/pxk

)
n∈N

x = (xn)n∈N ∈ C
N. (2.2)

Then ΦwC = TwΦw. Since Φw is isometric from `p(w) onto `p, it follows that C maps
`p(w) continuously into itself if and only if Tw maps `p continuously into itself. But,
the matrix of Tw is factorable (cf. [5, Section 4] with an = w(n)1/p/n and bk = w(k)−1/p

for 1 ≤ k ≤ n) and so it follows from [5, Theorem 2] that Tw ∈ L(`p) if and only if (2.1)
holds.

The proof of [5, Theorem 2] yields that the operator norm of C is at most p′K1/p. �

Proposition 2.2. Let w = (w(n))∞n=1 be a positive decreasing sequence and 1 < p <∞.
Then the Cesàro operator C(p,w) ∈ L(`p(w)) and satisfies

1<
( 1
w(1)

∞∑
n=1

w(n)
np

)1/p
≤ ‖C(p,w)‖ ≤ p′. (2.3)

Proof. Fix m ∈ N. Because w is decreasing,
m∑

n=1

w(n)
np

( n∑
k=1

w(k)−p′/p
)p

=

m∑
n=1

(w(n)1/p

n

n∑
k=1

w(k)−p′/p
)p

≤

m∑
n=1

(w(n)1/p

n
·

n
w(n)p′/p

)p
=

m∑
n=1

w(n)−p′/p,

which is precisely (2.1) with K = 1. So, Lemma 2.1 implies that C is continuous on
`p(w) with ‖C(p,w)‖ ≤ p′.

For an alternate proof of the continuity of C(p,w), based directly on Hardy’s
inequality in `p, see [12, Proposition 5.1].

Since Tw = ΦwC(p,w)Φ−1
w , with Φw mapping the closed unit ball of `p(w) onto that

of `p and Φ−1
w mapping the closed unit ball of `p onto that of `p(w), it follows that

‖Tw‖ = ‖C(p,w)‖. Of course,

Φ−1
w x = (w(n)−1/pxn)n∈N, x ∈ `p.
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Substituting x = e1 into (2.2) it follows that

‖C(p,w)‖ = ‖Tw‖ ≥ ‖Twe1‖p =

( 1
w(1)

∞∑
n=1

w(n)
np

)1/p
≥

(
1 +

w(2)
w(1)2p

)1/p
> 1.

See also [12, Proposition 5.5]. �

Some comments regarding Proposition 2.2 are in order. As noted above, for each
1 < p < ∞ we have ‖C(p)‖ = p′ and, for a positive decreasing weight w, (2.3) holds.
These estimates are not the best possible in general. Denote by δp(w) the set of all
decreasing, nonnegative sequences in `p(w) and define

∆p,w(C(p,w)) := sup{‖C(p,w)x‖p,w : x ∈ δp(w), ‖x‖p,w = 1} ≤ ‖C(p,w)‖.

The following result follows from [12, Propositions 6.3, 6.5 and 6.6].

Proposition 2.3. Let 1 < p <∞ and w(n) = 1/nα, n ∈ N, for a fixed α > 0. Then

max{m1,m2} ≤ ∆p,w(C(p,w)) ≤ ‖C(p,w)‖ ≤ M2(r) := [rζ(r + α)]r/p (2.4)

for 1 ≤ r ≤ p, where m1 := p/(p + α − 1) and m2 := ζ(p + α)1/p, with ζ denoting the
Riemann zeta function. Moreover, for α ≤ r < (p + α), it is also the case that

‖C(p,w)‖ ≤ M3(r) :=
( p

p + α − r

)1/p′

ζ
(
1 +

r
p′

+
α

p

)1/p
.

We provide some relevant examples.

Example 2.4.

(i) For w(n) = 1/nα, if α = 0.9 and p = 1.1, then max{m1,m2} ' 1.572 and M2(1) =

M3(0.9) ' 1.663 (see [12, pages 15–16]) and so Proposition 2.3 shows that

1.572 ≤ ‖C(p,w)‖ ≤ 1.663.

On the other hand, p′ = 11 and so Proposition 2.2 only yields ‖C(p,w)‖ ≤ 11.
(ii) Still for w(n) = 1/nα, but now with α = 0.5 and p = 2, we have m1 = 4/3 and

M3(3/4) ' 1.593 (see [12, page 16]) so that Proposition 2.3 reveals that

4
3 ≤ ‖C

(p,w)‖ ≤ 1.593.

In this case, p′ = 2, and so Proposition 2.2 only yields ‖C(p,w)‖ ≤ 2.
(iii) Again for w(n) = 1/nα, with α > 0, it follows (in the notation of Proposition 2.3)

that ( 1
w(1)

∞∑
n=1

w(n)
np

)1/p
=

( ∞∑
n=1

1
np+α

)1/p
= ζ(p + α)1/p = m2.

Hence, the lower bound in (2.3) reduces to m2 ≤ ‖C(p,w)‖ whereas (2.4) yields
max{m1,m2} ≤ ‖C(p,w)‖. Of course, (2.3) applies to more general weights w.
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The following example is not a consequence of Proposition 2.3.

Example 2.5. Let p = 2 and set w(n) = 2−n for n ∈ N. The proof of Proposition 2.2
yields that ‖C(2,w)‖ = ‖Tw‖. Recall, via (2.2), that

Twx =

( 1
n2n/2

n∑
k=1

2k/2xk

)
n∈N

, x = (xn)n∈N ∈ `2.

For every x ∈ `2, it follows via the Cauchy–Schwarz inequality and the identity∑n
k=1 rk = (r − rn+1)/(1 − r), for r , 1, that

‖Twx‖22 =

∞∑
n=1

1
n22n

∣∣∣∣∣ n∑
k=1

2k/2xk

∣∣∣∣∣2 ≤ ∞∑
n=1

1
n22n

( n∑
k=1

2k
)( n∑

k=1

|xk|
2
)

≤ ‖x‖22

∞∑
n=1

1
n22n (2n+1 − 2) = ‖x‖22

∞∑
n=1

2(1 − 2−n)
n2 .

Accordingly, ‖Tw‖ ≤ (
∑∞

n=1 (2(1 − 2−n)/n2))1/2. Observe that
∞∑

n=1

(1 − 2−n)
n2 =

π2

6
−

∫ 1/2

0

−log(1 − t)
t

dt,

because of the fact that π2/6 =
∑∞

n=1 (1/n2) and the identity∫ 1/2

0

−log(1 − t)
t

dt =

∫ 1/2

0

∞∑
n=0

tn

(n + 1)
=

∞∑
n=1

1
n22n .

The function f (t) = (−log(1 − t))/t for t ∈ (0, 1], with f (0) := 1, is positive, continuous
and increasing on [0, 1) and so

1 = f (0) ≤ f (t) ≤ f
( 1

2
)

= 2 log 2 t ∈ [0, 1/2],

which implies that − log 2 ≤ −
∫ 1/2

0 (−log (1 − t))/t dt ≤ −1/2. Consequently,
∞∑

n=1

2(1 − 2−n)
n2 ≤ 2

(
π2

6
−

1
2

)
' 2.2898

and so

‖C(2,w)‖ = ‖Tw‖ ≤

√(
π2

3
− 1

)
' 1.513 < p′ = 2.

Direct calculation yields

‖Twe1‖2 =

(
2
∞∑

n=1

1
n22n

)1/2
≥

(
2

3∑
n=1

1
n22n

)1/2
' 1.073

and so

1.073 ≤ ‖C(2,w)‖ ≤

√(
π2

3
− 1

)
' 1.513;

see also Proposition 2.2.
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3. Spectrum of C(p,w)

The aim of this section is to provide some detailed knowledge of the spectrum of
C(p,w). Unlike for the classical Cesàro operators C(p) ∈ L(`p) for 1 < p <∞, it can now
happen that eigenvalues appear.

Given a (strictly) positive bounded sequence w = (w(n))n∈N and 1 < p < ∞, let
S w(p) := {s ∈ R :

∑∞
n=1 (1/nsw(n)p′/p) <∞}. For S w(p) , ∅ we define sp := inf S w(p).

Note that p′/p = 1/(p − 1) for every 1 < p < ∞. Moreover, let Rw := {t ∈ R :∑∞
n=1 ntw(n) <∞}. For Rw , R we define t0 := sup Rw.
Fix 1 < p < ∞ and let w(n) = 2−np/p′ for n ∈ N. Then S w(p) = ∅, that is, it can

happen that S w(p) is empty. However, in the event that S w(p) , ∅, then sp ≥ 1. Indeed,
for any fixed s ∈ R,

∞∑
n=1

1
nsw(n)p′/p ≥ ‖w‖

−p′/p
∞

∞∑
n=1

1
ns . (3.1)

So, whenever s ∈ S w(p) it follows that
∑∞

n=1 (1/ns) < ∞, that is, s > 1. Hence,
S w(p) ⊆ (1,∞), which implies that sp ≥ 1. Moreover, for any r > s ∈ S w(p) we have

∞∑
n=1

1
nrw(n)p′/p <

∞∑
n=1

1
nsw(n)p′/p

and so also r ∈ S w(p). Accordingly, whenever S w(p) , ∅, it is an infinite interval, that
is, S w(p) = [sp,∞) or S w(p) = (sp,∞) with sp ≥ 1. It is a consequence of (3.1) that
1 < S w(p) for all 1 < p <∞ and all positive bounded sequences w.

In the event that aw := infn∈N w(n) > 0, it follows that necessarily sp = 1. Indeed, in
this case, w(n)−p′/p ≤ a−p′/p

w , n ∈ N, which implies that 1/nsw(n)p′/p ≤ a−p′/p
w /ns for all

n ∈ N and s ∈ R. Hence, (1,∞) ⊆ S w(p), and so sp ≤ 1. Since we are assuming that
S w(p) , ∅, we already know that sp ≥ 1. Accordingly, sp = 1.

Let 1 < p < ∞ and fix α > 0. For w(n) = 1/nαp/p′ and any s ∈ R it follows that∑∞
n=1 (1/nsw(n)p′/p) =

∑∞
n=1 (1/ns−α) <∞ precisely when s > (1 + α) and so sp = 1 + α.

Hence, given any β > 1 and 1 < p <∞, there exists a positive decreasing weight w ↓ 0
such that S w(p) = (β,∞), that is, sp = β.

Concerning the set Rw, a similar discussion applies. For w(n) = 2−n it turns out
that Rw = R with t0 = ∞. However, if Rw , R, then t0 is finite with t0 ≥ −1 and
Rw = (−∞, t0) or Rw = (−∞, t0]. Moreover, Rw = ∅ is not possible as

∑∞
n=1 ntw(n) ≤

‖w‖∞
∑∞

n=1 nt < ∞ whenever t < −1. If aw > 0, then necessarily t0 = −1, but −1 < Rw
as

∑∞
n=1 ntw(n) ≥ aw

∑∞
n=1 nt for all t ∈ R.

The following result clarifies the connection between sp and t0.

Proposition 3.1. Let w = (w(n))n∈N be a bounded, strictly positive sequence.

(i) For each 1 < p <∞ such that S w(p) , ∅,

t0 ≤
sp p
p′

= (p − 1)sp.

In particular, Rw , R whenever there exists p ∈ (1,∞) with S w(p) , ∅.
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(ii) If Rw , R, then S w(p) ⊆ [1 + (t0/(p − 1)),∞) for every 1 < p <∞.
(iii) Suppose that 1 < p <∞ satisfies S w(p) , ∅. Then

S w(p) ⊆ S w(q), q ∈ [p,∞).

In particular, S w(q) , ∅ and sq ≤ sp whenever q ≥ p.
(iv) If S w(p) = ∅ for some 1 < p <∞, then S w(q) = ∅ for all 1 < q ≤ p.

Proof. (i) Suppose that S w(p) , ∅. Fix s > sp. Since
∑∞

n=1 (1/nsw(n)p′/p) < ∞, there
exists N ∈ N such that 1/nsw(n)p′/p ≤ 1 for n ≥ N and hence nsp/p′w(n) ≥ 1 for n ≥ N.
So, the series

∑∞
n=1 nsp/p′w(n) diverges, which yields that t0 ≤ sp/p′. Accordingly,

t0 ≤ sp p/p′. In particular, Rw , R.
(ii) Fix p ∈ (1,∞) and any t < t0, in which case

∑∞
n=1 ntw(n) < ∞. Hence, there

exists K ∈ N such that nt ≤ 1/w(n) for n ≥ K, that is, ntp′/p ≤ 1/w(n)p′/p for n ≥ K. So,
for any s ∈ R (as 1/ns > 0 for n ∈ N),

1
ns−(tp′/p) =

ntp′/p

ns ≤
1

nsw(n)p′/p , n ≥ K.

Choose now s ≤ 1 + (tp′/p). It follows from the previous inequality that∑∞
n=1 (1/nsw(n)p′/p) diverges. Hence,

∑∞
n=1 (1/nsw(n)p′/p) diverges whenever s ≤

1 + (tp′/p) for some t < t0, that is, whenever s ∈ (−∞, 1 + (t0 p′/p)). So, S w(p) ⊆
[1 + (t0 p′/p),∞) = [1 + (t0/(p − 1)),∞).

(iii) Fix s ∈ S w(p), that is,
∑∞

n=1 (1/nsw(n)p′/p) <∞. For every 1 < q <∞,

∞∑
n=1

1
nsw(n)q′/q =

∞∑
n=1

1
nsw(n)p′/p · w(n)(p′/p)−(q′/q) ≤ ‖w‖(p′/p)−(q′/q)

∞

∞∑
n=1

1
nsw(n)p′/p ,

which is finite provided that p′/p ≥ q′/q. This is equivalent to (p′ − 1) ≥ (q′ − 1), that
is, to q ≥ p. Hence, whenever q ≥ p we have S w(p) ⊆ S w(q), which clearly implies
S w(q) , ∅ and sq ≤ sp.

(iv) Follows immediately from part (iii). �

Define Σ := {1/n : n ∈ N} and let Σ0 := {0} ∪ {1/n : n ∈ N} be its closure. The
following inequalities will be needed later.

Lemma 3.2.

(i) Let λ ∈ C \ Σ0 and set α := Re(1/λ). Then there exist constants d > 0 and D > 0
(depending on α) such that

d
nα
≤

n∏
k=1

∣∣∣∣∣1 − 1
kλ

∣∣∣∣∣ ≤ D
nα
, n ∈ N. (3.2)

(ii) For each m ∈ N,

(n − 1)!
(n − m)!

' nm−1 for all large n ∈ N. (3.3)
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(iii) Let 1 < p <∞ and w = (w(n))n∈N be a positive decreasing sequence. Then

(nmw(n))n∈N ∈ `p ∀m ∈ N (3.4)

if and only if
(nmw(n)1/p)n∈N ∈ `p ∀m ∈ N. (3.5)

Proof. (i) The inequalities in (3.2) follow as in [18, proof of Lemma 7], where the
restriction α < 1 is assumed. Indeed, with (1/λ) = α + iβ (for α, β ∈ R), and using
1 + x ≤ ex for x > 0,

n∏
k=1

∣∣∣∣∣1 − 1
kλ

∣∣∣∣∣ =

n∏
k=1

(
1 −

2α
k

+
α2 + β2

k2

)1/2

≤ exp
n∑

k=1

(
−
α

k
+

C
k2

)
≤ exp(−α log(n) + v) ≤

D
nα
.

An application of Taylor’s formula to x 7→ (1 + x)−1/2 for x > −1 yields

n∏
k=1

∣∣∣∣∣1 − 1
kλ

∣∣∣∣∣−1
=

n∏
k=1

(
1 −

2α
k

+
α2 + β2

k2

)−1/2
≤

n∏
k=1

(
1 +

α

k
+

C′

k2

)
≤ exp

n∑
k=1

(
α

k
+

C′

k2

)
≤ exp(α log(n) + v′) = d−1nα.

(ii) Fix m ∈ N. Then, for all large n > m,

(n − 1)!
(n − m)!

= (n − 1) · · · (n − m + 1) = nm−1
(
1 −

1
n

)
· · ·

(
1 −

m − 1
n

)
' nm−1.

(iii) Suppose that (3.4) holds. Fix m ∈ N. Let k ∈ N satisfy k ≥ (2 + mp). Since
(nkw(n))n∈N ∈ `p, there exists N ∈ N such that

w(n) ≤
1
nk ≤

1
n2+mp , n > N.

It follows that
∞∑

n=1

nmpw(n) ≤
N∑

n=1

nmpw(n) +

∞∑
n=N+1

nmp
( 1
n2+mp

)
<∞,

that is, (nmw(n)1/p)n∈N ∈ `p. Accordingly, (3.5) is satisfied.
Conversely, suppose that (3.5) holds. Since (nw(n)1/p)n∈N ∈ `p, there exists K ∈ N

such that w(n) ≤ 1 for n ≥ K and hence w(n) ≤ w(n)1/p for n ≥ K. Fix m ∈ N. Then
nmw(n) ≤ nmw(n)1/p for n ≥ K. Since (nmw(n)1/p)n∈N ∈ `p, we can conclude that also
(nmw(n))n∈N ∈ `p. Hence, (3.4) is satisfied.

This concludes the proof. �
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If S w(p) , ∅, then sp ≥ 1 and so p′/2sp ≤ p′/2, which is relevant for the following
results. Also relevant is that ‖C(p,w‖ < p′ is possible; see Section 2.

We now come to the main result of this section.

Theorem 3.3. Let w = (w(n))n∈N be a positive decreasing sequence.

(i) Suppose that S w(p) , ∅ for some 1 < p < ∞. Then for the dual operator
(C(p,w))′ ∈ L((`p(w))′) of C(p,w),{

λ ∈ C :
∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ < p′

2sp

}
∪ Σ ⊆ σpt((C(p,w))′) (3.6)

and

σpt((C(p,w))′) \ Σ ⊆

{
λ ∈ C :

∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ ≤ p′

2sp

}
. (3.7)

For the Cesàro operator C(p,w) itself,{
λ ∈ C :

∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ ≤ p′

2sp

}
∪ Σ ⊆ σ(C(p,w)) (3.8)

and

σ(C(p,w)) ⊆
{
λ ∈ C :

∣∣∣∣∣λ − p′

2

∣∣∣∣∣ ≤ p′

2

}
∩

{
λ ∈ C : |λ| ≤ ‖C(p,w)‖

}
. (3.9)

(ii) Suppose that Rw , R, that is, t0 <∞. Then, for every 1 < p <∞,{ 1
m

: m ∈ N, 1 ≤ m <
t0
p

+ 1
}
⊆ σpt(C(p,w)) ⊆

{ 1
m

: m ∈ N, 1 ≤ m ≤
t0
p

+ 1
}
.

(3.10)
If Rw = R, then

σpt(C(p,w)) = Σ ∀1 < p <∞. (3.11)

Proof. The proof is via a series of steps.
(i) By Proposition 2.2, C(p,w) ∈ L(`p(w)) with ‖C(p,w)‖ ≤ p′. The dual operator

A := (Cp,w)′ ∈ L(`p′(w−p′/p)) also satisfies ‖A‖ ≤ p′ and is given by

Ay =

( ∞∑
k=n

yk

k

)
n∈N

, y = (yn)n∈N ∈ `p′(w−p′/p).

Step 1. We show 0 < σpt(A).
Observe that Ay = 0 for some y ∈ `p′(w−p′/p) implies that zn :=

∑∞
k=n (yk/k) = 0 for

all n ∈ N. Hence, yn = n(zn − zn+1) = 0 for n ∈ N, and so A is injective.

Step 2. We show Σ ⊆ σpt(A).
Let λ ∈ Σ, that is, λ = 1/m for some m ∈ N. Via (3.12) below, the nonzero vector

y = (yn)n∈N, defined via y1 ∈ C \ {0} arbitrary, yn := y1
∏n−1

k=1(1 − (1/λk)) for 1 < n ≤ m
and yn := 0 for n > m, which belongs to `p′(w−p′/p), satisfies Ay = λy.
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Step 3. We show {λ ∈ C : |λ − (p′/2sp)| < p′/2sp} ⊆ σpt(A).
Let λ ∈ C \ {0}. Then Ay = λy for some nonzero y ∈ `p′(w−p′/p) if and only if

λyn =
∑∞

k=n (yk/k) for all n ∈ N. This yields, for every n ∈ N, that λ(yn − yn+1) = yn/n
and so yn+1 = (1 − (1/λn))yn. It follows that

yn+1 = y1

n∏
k=1

(
1 −

1
λk

)
, n ∈ N, (3.12)

with y1 , 0. In particular, each eigenvalue of A is simple.
Now let λ ∈ C \ Σ satisfy |λ − (p′/2sp)| < p′/2sp (equivalently, α := Re(1/λ) >

sp/p′, that is, αp′ = Re(p′/λ) > sp). For such a λ, the vector y = (yn)n∈N ∈ C
N defined

by (3.12) actually belongs to `p′(w−p′/p). Indeed, via Lemma 3.2(i) there exists
c = c(λ) > 0 such that

n∏
k=1

∣∣∣∣∣1 − 1
λk

∣∣∣∣∣p′ ≤ cn−Re(p′/λ), n ∈ N.

It then follows from (3.12) that
∞∑

n=1

|yn|
p′w(n)−p′/p = |y1|

p′w(1)−p′/p + |y1|
p′
∞∑

n=2

n∏
k=1

∣∣∣∣∣1 − 1
λk

∣∣∣∣∣p′w(n)−p′/p

≤ |y1|
p′w(1)−p′/p + c|y1|

p′
∞∑

n=2

n−Re(p′/λ)w(n)−p′/p,

where the series
∑∞

n=2 n−Re(p′/λ)w(n)−p′/p converges because Re(p′/λ) ∈ S w(p), that is,
y ∈ `p′(w−p′/p). Hence, λ ∈ σpt(A).

Step 4. We show σpt(A) \ Σ0 ⊆ {λ ∈ C : |λ − (p′/2sp)| ≤ p′/2sp}.
Fix λ ∈ σpt(A) \ Σ0. According to (3.2), there exists β = β(λ) > 0 such that

n∏
k=1

∣∣∣∣∣1 − 1
λk

∣∣∣∣∣p′ ≥ β · n−Re(p′/λ), n ∈ N. (3.13)

But, as argued in Step 2 (for any y1 ∈ C \ {0}), the eigenvector y = (yn)n∈N

corresponding to the eigenvalue λ of A, which necessarily belongs to `p′(w−p′/p),
that is,

∑∞
n=1 |yn|

p′w(n)−p′/p < ∞, is given by (3.12). Then (3.13) implies that
also

∑∞
n=1 (1/nRe(p′/λ)w(n)p′/p) < ∞, that is, Re(p′/λ) ∈ S w(p), and so Re(p′/λ) ≥ sp.

Equivalently, Re(1/λ) ≥ sp/p′, that is, λ ∈ {µ ∈ C : |µ − (p′/2sp)| ≤ p′/2sp}.

It is clear that Steps 1–4 establish the two containments in (3.6) and (3.7).
For every T ∈ L(X) with X a Banach space, it is known that σpt(T ′) ⊆ σ(T ) [10,

page 581] with σ(T ) a closed subset of C. Accordingly, (3.8) follows from (3.6).

Step 5. We show σ(C(p,w)) ⊆ {λ ∈ C : |λ − (p′/2)| ≤ p′/2}.
It suffices to show that every λ ∈ C with |λ − (p′/2)| > p′/2 belongs to ρ(C(p,w)). To

do this, we argue as in [7]. We recall the formula for (C − λI)−1 : CN → CN whenever
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λ < Σ0 [18, page 266]: for n ∈ N, the nth row of the matrix for (C − λI)−1 has the
entries

−1
nλ2 ∏n

k=m
(
1 − 1

λk
) , 1 ≤ m < n,

n
1 − nλ

=
1

1
n − λ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(C − λI)−1 = Dλ −
1
λ2 Eλ, (3.14)

where the diagonal operator Dλ = (dnm)n,m∈N is given by dnn := 1/((1/n) − λ) and
dnm := 0 if n , m. The operator Eλ = (enm)n,m∈N is then the lower triangular matrix with
e1m = 0 for all m ∈ N and every n ≥ 2, with enm := 1/n

∏n
k=m(1 − (1/λk)) if 1 ≤ m < n

and enm := 0 if m ≥ n.
If λ < Σ0, then d(λ) := dist(λ,Σ0) > 0 and |dnn| ≤ 1/d(λ) for n ∈ N. Hence, for every

x ∈ `p(w),

‖Dλ(x)‖p,w =

( ∞∑
n=1

|dnnxn|
pw(n)

)1/p

≤
1

d(λ)

( ∞∑
n=1

|xn|
pw(n)

)1/p
=

1
d(λ)
‖x‖p,w.

This means that Dλ ∈ L(`p(w)). So, by (3.14), it remains to show that Eλ ∈ L(`p(w))
whenever λ ∈ C satisfies |λ − (p′/2)| > p′/2. To this end, we note that if λ ∈ C \ Σ0
then with α := Re(1/λ), it follows from (3.2) that

|en1| ≤
d−1

n1−α , n ≥ 2,

|enm| ≤
d−1D′

n1−αmα
, 2 ≤ m < n,

for some constants d > 0 and D′ > 0 depending on λ. So, for every λ ∈ C \ Σ0, there
exists c = c(λ) > 0 such that

|(Eλ(x))n| ≤ c(Gλ(|x|))n, x ∈ CN, n ∈ N, (3.15)

where (Gλ(x))n :=
∑n

k=1 (xk/n1−αkα) with α := Re(1/λ) and for all x ∈ CN and n ∈ N.
Clearly, (3.15) implies that Eλ ∈ L(`p(w)) whenever Gλ ∈ L(`p(w)).

Claim. The operator Gλ ∈ L(`p(w)) whenever λ ∈ C satisfies |λ − (p′/2)| > p′/2.
To establish this claim, fix λ ∈ C with |λ − (p′/2)| > p′/2. Then, necessarily, λ < Σ0

with α := Re(1/λ) < 1/p′ and so (1 − α)p > 1. This implies that α < 1. Observe that
Gλ ∈ L(`p(w)) if and only if the operator G̃λ : CN → CN given by

(G̃λ(x))n = w(n)1/p
n∑

k=1

w(k)−1/p

n1−αkα
xk, x ∈ CN, n ∈ N
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defines a continuous linear operator on `p (the proof of this is along the lines of that of
Lemma 2.1). To prove that indeed G̃λ ∈ L(`p), we need to distinguish the three cases
(a) α = 0, (b) α < 0 and (c) 0 < α < 1 and establish relevant inequalities in each case.

Case (a). Since w is decreasing, for every n ∈ N,

n∑
k=1

1
w(k)1/(p−1)kαp/(p−1) =

n∑
k=1

1
w(k)1/(p−1) ≤

n
w(n)1/(p−1)

and hence, for every m ∈ N,

m∑
n=1

(w(n)1/p

n

n∑
k=1

1
w(k)1/(p−1)

)p
≤

m∑
n=1

1
w(n)1/(p−1) . (3.16)

Case (b). Observe that for every n ∈ N,

n∑
k=1

1
w(k)1/(p−1)kαp/(p−1)

≤
1

w(n)1/(p−1)

∫ n+1

1
x−αp/(p−1) dx

=
1

w(n)1/(p−1)

((n + 1)−(αp/(p−1))+1 − 1)
−

αp
p−1 + 1

≤
(p − 1)

(p(1 − α) − 1)
(n + 1)(p(1−α)−1)/(p−1)

w(n)1/(p−1) .

Setting c := (p − 1)/(p(1 − α) − 1) > 0 it follows, for every m ∈ N, that

m∑
n=1

(w(n)1/p

n1−α

n∑
k=1

1
w(k)1/(p−1)kαp/(p−1)

)p

≤ cp
m∑

n=1

(n + 1)p(p(1−α)−1)/(p−1)

w(n)1/(p−1)n(1−α)p

≤ 2p(p(1−α)−1)/(p−1)cp
m∑

n=1

1
w(n)1/(p−1)nαp/(p−1) . (3.17)

Case (c). For every n ∈ N, still with c = (p − 1)/(p(1 − α) − 1),

n∑
k=2

1
w(k)1/(p−1)kαp/(p−1) ≤

1
w(n)1/(p−1)

∫ n

1

1
xαp/(p−1) dx

=
c

w(n)1/(p−1) (n(p(1−α)−1)/(p−1) − 1).
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Since (1 − α)p > 1 (that is, (1 − α)p − 1 > 0) and αp > 0 with 1/w(1) ≤ 1/w(n), this
implies, for every n ∈ N, that(w(n)1/p

n1−α

n∑
k=1

1
w(k)1/(p−1)kαp/(p−1)

)p

≤

[ w(n)1/p

n1−αw(1)1/(p−1) +
w(n)1/pc

n1−αw(n)1/(p−1) (n(p(1−α)−1)/(p−1) − 1)
]p

≤

[ w(n)1/p

n1−αw(n)1/(p−1) +
w(n)1/pc

n1−αw(n)1/(p−1) (n(p(1−α)−1)/(p−1) − 1)
]p

=

[
(1 − c)

w(n)1/p

n1−αw(n)1/(p−1) +
w(n)1/pc

n1−αw(n)1/(p−1) n(p(1−α)−1)/(p−1)
]p

=

(
−αp

p(1 − α) − 1
w(n)1/p

n1−αw(n)1/(p−1) +
w(n)−1/p(p−1)c

n1−α n(p(1−α)−1)/(p−1)
)p

≤

(w(n)−1/p(p−1)c
n1−α n(p(1−α)−1)/(p−1)

)p

= cpw(n)−1/(p−1)n−αp/(p−1).

Hence, for every m ∈ N,
m∑

n=1

(w(n)1/p

n1−α

n∑
k=1

1
w(k)1/(p−1)kαp/(p−1)

)p
≤ cp

m∑
n=1

1
w(n)1/(p−1)nαp/(p−1) . (3.18)

The inequalities (3.16)–(3.18) imply that G̃λ ∈ L(`p); indeed, in each case, suitable
choices of an and bk (with p = q) allow us to apply [5, Theorem 2(ii)]. This establishes
the claim and hence also Step 5.

Step 6. We note that σ(C(p,w)) ⊆ {λ ∈ C : |λ| ≤ ‖C(p,w)‖}.
This is well known, [10, Ch. VII Lemma 3.4].

Steps 5 and 6 clearly yield (3.9). The proof of part (i) is thereby complete.

(ii) Suppose first that Rw , R. Fix any 1 < p <∞.

Step 7. Both of the inclusions in (3.10) are valid.
The Cesàro operator C(p,w) is clearly injective. So, 0 < σpt(C(p,w)). Let λ ∈ C \ {0}.

Consider the equation (λI − C)x = 0 with x = (xn)n∈N ∈ C
N \ {0}. Then x1 = λx1

and (2λ − 1)x2 = x1 and (nλ − 1)xn = λ(n − 1)xn−1 for all n ≥ 3. If m ∈ N denotes
the smallest positive integer such that xm , 0, then it follows that λ = 1/m and so
xn = ((n − 1)/(n − m))xn−1 for all n > m. Thus,

xn = xm+(n−m) =
(n − 1)!

(m − 1)!(n − m)!
xm, n ≥ m. (3.19)

According to (3.3), we have ((n − 1)!/((m − 1)!(n − m)!)) ' (1/(m − 1)!)nm−1 for each
m ∈ N. So, x ∈ `p(w) if and only if the series

∑∞
n=m+1 n(m−1)pw(n) converges. But the
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series
∑∞

n=m+1 n(m−1)pw(n) converges precisely when (m − 1)p ∈ Rw. In this case, (m −
1)p ≤ t0, that is, m ≤ (t0/p) + 1. So, σpt(C(p,w)) ⊆ {1/m : m ∈ N, 1 ≤ m ≤ (t0/p) + 1}.

Conversely, if m < (t0/p) + 1 for some m ∈ N, that is, (m − 1)p < t0, then (m − 1)p ∈
Rw as t0 = sup Rw. Then the vector x ∈ CN defined according to (3.19), with x1 = · · · =

xm−1 = 0 and for any arbitrary xm , 0, belongs to `p(w). Therefore, 1/m ∈ σpt(C(p,w)).

Step 8. Assume now that Rw = R. Then (3.11) is valid.
Fix 1 < p < ∞. As argued in Step 7, the point 1/m ∈ σpt(C(p,w)) if and only if

(m − 1)p ∈ Rw. But, for Rw = R, this is satisfied for every m ∈ N and so Σ ⊆ σpt(C(p,w)).
On the other hand, it is also shown in the proof of Step 7 that every eigenvalue λ of
C : CN → CN must have the form λ = 1/m for some m ∈ N. Since every eigenvalue of
C(p,w) is also an eigenvalue of C (as `p(w) ⊆ CN), it follows that σpt(C(p,w)) ⊆ Σ. �

Remark 3.4.

(i) If sp < S w(p) for some 1 < p < ∞, then the argument of Step 4 in the proof of
Theorem 3.3 implies that (3.6) reduces to the equality

σpt((C(p,w))′) =

{
λ ∈ C :

∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ < p′

2sp

}
∪ Σ.

Also, if t0 < Rw, then (3.10) reduces to the equality

σpt(C(p,w)) =

{ 1
m

: m ∈ N, 1 ≤ m <
t0
p

+ 1
}
, 1 < p <∞.

(ii) For w(n) = 1, for all n ∈ N, in which case `p(w) = `p and sp = 1, we have that
C(p,w) = C(p) for all 1 < p <∞ with ‖C(p,w)‖ = ‖C(p)‖ = p′. Then (3.8) and (3.9)
imply the known fact

σ(C(p)) =

{
λ ∈ C :

∣∣∣∣∣λ − p′

2

∣∣∣∣∣ ≤ p′

2

}
. (3.20)

Since t0 = −1, we also recover from (3.10) the known fact σpt(C(p)) = ∅.
(iii) According to (3.8), for w positive, decreasing and with S w(p) , ∅,

p′

sp
≤ max

{
1,

p′

sp

}
≤ ‖C(p,w)‖ ≤ p′. (3.21)

In particular, whenever sp = 1 (see, for example, Example 3.5(i) below), the
inequalities in (3.21) imply that necessarily ‖C(p,w)‖ = p′ is as large as possible.
For the special case where w(n) = 1/nα, n ∈ N, for some α > 0, direct calculation
yields sp = 1 + (αp′/p) and so S w(p) , ∅ for all 1 < p <∞. It follows that

p′

sp
=

p
α + p − 1

= m1,

where m1 occurs in the lower bound for ‖C(p,w)‖ as given in (2.4); see
Proposition 2.3. Hence, (3.21) yields m1 ≤ ‖C(p,w)‖. Combined with Example
2.4(iii) we can conclude that

max{m1,m2} ≤ ‖C(p,w)‖.

This provides an alternate proof to that in [12] of the same estimate in (2.4).
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(iv) An examination of the argument for Step 2 in the proof of Theorem 3.3(i) shows
that the assumption S w(p) , ∅ is not used there, that is, we always have

Σ ⊆ σpt((C(p,w))′)

for every 1 < p <∞ and every positive decreasing weight w.

We now present some relevant examples.

Example 3.5.

(i) Suppose that w(n) = 1/(log(n + 1))γ for n ∈ N with γ ≥ 0. Then
∞∑

n=1

1
nsw(n)p′/p <∞

if and only if s > 1 and hence sp = 1 for every 1 < p < ∞. In view of
Remark 3.4(iii) we have that ‖C(p,w)‖ = p′. Moreover,

∑∞
n=1 ntw(n) < ∞ if and

only if t < −1 or t ≤ −1 for γ > 1. Hence, t0 = −1. According to Theorem 3.3,
for each 1 < p <∞,

σ(C(p,w)) =

{
λ ∈ C :

∣∣∣∣∣λ − p′

2

∣∣∣∣∣ ≤ p′

2

}
, σpt(C(p,w)) = ∅.

In particular, equality may occur in (3.9). For the case where γ = 0 (so that
w(n) = 1 for n ∈ N), we recover the known result about the spectrum of C(p) ∈

L(`p) for 1 < p <∞ [6, 14].
(ii) More generally, suppose that w(n) = 1/nβ(log(n + 1))γ for n ∈ N with β ≥ 0 and

γ ≥ 0. Then
∑∞

n=1 (1/nsw(n)p′/p) < ∞ if and only if s > (βp′/p) + 1 and so
sp = (βp′/p) + 1 for every 1 < p <∞. Moreover,

∑∞
n=1 ntw(n) <∞ if and only if

t < (β − 1) or t ≤ (β − 1) for γ > 1. Hence, t0 = β − 1. According to Theorem 3.3,
for each 1 < p <∞,{

λ ∈ C :
∣∣∣∣∣λ − p′

2((βp′/p) + 1)

∣∣∣∣∣ ≤ p′

2((βp′/p) + 1)

}
∪ Σ ⊆ σ(C(p,w))

and
σpt(C(p,w)) =

{ 1
m

: m ∈ N, 1 ≤ m <
β − 1

p
+ 1

}
.

In particular, σpt(C(p,w)) = ∅ whenever β ∈ [0, 1]. We claim that actually{
λ ∈ C :

∣∣∣∣∣λ − p′

2((βp′/p) + 1)

∣∣∣∣∣ ≤ p′

2((βp′/p) + 1)

}
∪ Σ = σ(C(p,w)), (3.22)

which shows that equality may occur in (3.8).
Keeping in mind the argument for Step 5 in the proof of Theorem 3.3, to verify
(3.22) it suffices to prove that every λ ∈ C \ {0} satisfying

|λ − (p′/2((βp′/p) + 1))| > p′/2((βp′/p) + 1)
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belongs to ρ(C(p,w)), that is, the operator G̃λ ∈ L(`p). So, fix such a λ and note
that

α := Re
(

1
λ

)
<

(
β

p′

p
+ 1

)
/p′ =

β

p
+

1
p′
.

We also observe, for our particular w, that the operator G̃λ is given by

(G̃λ(x))n =
1

n1−α+(β/p) logγ/p(n + 1)

n∑
k=1

xk

kα−(β/p) log−γ/p(k + 1)

for x = (xn)n∈N ∈ C
N. So, G̃λ is given by the factorable matrix with an :=

n−(1−α+(β/p)) log−γ/p(n + 1) and bk := k−(α−(β/p)) logγ/p(k + 1), where α < (β/p) +

(1/p′) = (β/p) + 1 − (1/p) implies that 1 − α + (β/p) > 1/p and(
1 − α +

β

p

)
+

(
α −

β

p

)
= 1 =

1
p

+
1
p′

and also that (γ/p) + (−γ/p) = 0. According to [5, Corollary 9(ii)], it follows
that G̃λ ∈ L(`p) and the claim is proved.
Finally, since sp = (β + p − 1)/(p − 1), it follows from (3.21) that

p′ ·
p − 1

β + p − 1
≤ ‖C(p,w)‖ ≤ p′, 1 < p <∞,

with (p − 1)/(β + p − 1) ↑ 1 for β ↓ 0. This example also shows that the
inequality t0 ≤ sp p′/p (cf. Proposition 3.1(i)) can be strict. For β ↓ 0 it follows
from (3.8) and (3.9) that

σ(C(p,w)) ↑
{
λ ∈ C :

∣∣∣∣∣λ − p′

2

∣∣∣∣∣ < p′

2

}
,

whose closure equals σ(C(p)) = σ(C(p,w)) for w as in (i).

It is clear from (3.10) that C(p,w) has at most finitely many eigenvalues whenever
t0 ∈ R. The following result characterizes the case where σpt(C(p,w)) is an infinite
set; see also Remark 3.8(i) below. Recall that a sequence u = (un)n∈N ∈ C

N is rapidly
decreasing if (nmun)n∈N ∈ `1 for every m ∈ N. The space of all rapidly decreasing,
C-valued sequences is usually denoted by s.

Proposition 3.6. Let w = (w(n))n∈N be a positive decreasing sequence.

(i) The following assertions are equivalent.

(1) Rw = R.
(2) (nmw(n))n∈N ∈ `1 for all m ∈ N.
(3) (nmw(n))n∈N ∈ c0 for all m ∈ N.
(4) w ∈ s.

(ii) For each 1 < p <∞, the following assertions are equivalent.

(5) Σ ⊆ σpt(C(p,w)).
(6) (nmw(n))n∈N ∈ `p for all m ∈ N.
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(iii) Any one of the equivalent assertions (1)–(4) implies that both (5) and (6) are
valid for every 1 < p <∞.

(iv) If (6) holds for some 1 < p <∞, then each assertion (1)–(4) is satisfied.

Proof. (i) That (1) if and only if (2) follows from the definition of Rw. That (2)
implies (3) is immediate from `1 ⊆ c0. Assume (3). Fix t ∈ N and set m = t + 2. Then
(nmw(n))n∈N ∈ c0 implies that supn∈N nmw(n) <∞. Accordingly,

∞∑
n=1

ntw(n) =

∞∑
n=1

1
n2 nmw(n) ≤

π2

6
sup
n∈N

nmw(n) <∞.

Since t is arbitrary, we can conclude that (2) holds. That (2) if and only if (4) is clear
from the definition of the space s.

(ii) Since C(p,w) is injective, 0 < σpt(C(p,w)). By (3.3) and (3.19), λ ∈ C \ {0} is an
eigenvalue of C(p,w) if and only if λ = 1/m for some m ∈ N with the corresponding
one-dimensional eigenspace generated by a vector x[m] = (x[m]

n )n∈N ∈ C
N satisfying

x[m]
n ' nm−1. So, Σ ⊆ σpt(C(p,w)) if and only if (nm−1)n∈N ∈ `p(w) for all m ∈ N, that

is, if and only if (nmw(n)1/p)n∈N ∈ `p for all m ∈ N, which is equivalent to (6) via
Lemma 3.2(iii).

(iii) Follows immediately from parts (i) and (ii) and the fact that (2) implies (6),
since `1 ⊆ `p for every 1 < p <∞.

(iv) Immediate from `p ⊆ c0 for every 1 < p <∞. �

Given a decreasing sequence w = (w(n))n∈N of positive real numbers, set αn :=
−log w(n) for n ∈ N. Then w(n) = e−αn for n ∈ N. Moreover, αn →∞ for n→∞ if
and only if w(n)→ 0 for n→∞.

Corollary 3.7. Let w = (w(n))n∈N be a positive decreasing sequence.

(i) If w ∈ s, then limn→∞ (log n)/αn = 0.
(ii) If limn→∞ (log n)/αn = 0 and w(N) < 1 for some N, then w ∈ s.

Proof. (i) Since w ∈ s, condition (3) in Proposition 3.6 implies that

∀m ∈ N ∃nm ∈ N ∀n ≥ nm : nmw(n) =
nm

eαn
< 1,

that is, that
∀m ∈ N ∃nm ∈ N ∀n ≥ nm : nm < eαn .

It follows that
∀m ∈ N ∃nm ∈ N ∀n ≥ nm : m log n < αn.

This implies that necessarily αn > 0 for all n ≥ nm, and so

∀m ∈ N ∃nm ∈ N ∀n ≥ nm :
log n
αn

<
1
m
.

This means precisely that limn→∞ (log n)/αn = 0.
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(ii) Fix m ∈ N. Then there is n0 ∈ N with n0 ≥ N such that (log n)/αn < 1/(m + 1)
for all n ≥ n0. Since w(N) < 1 implies that αn = −log w(n) > 0 for all n ≥ n0, we
can conclude that (m + 1) log n < αn, that is, nm+1w(n) < 1 for all n ≥ n0. So,
supn∈N nm+1w(n) <∞. It follows that

nmw(n) ≤
1
n

sup
r∈N

rm+1w(r), n ∈ N,

with (1/n) supr∈N rm+1w(r)→ 0 as n→ ∞. By the equivalence of (3) and (4) in
Proposition 3.6(i), it follows that w ∈ s. �

Remark 3.8.

(i) Concerning condition (5) in Proposition 3.6 (for any given 1 < p <∞), we claim
that the entire set Σ ⊆ σpt(C(p,w)) whenever σpt(C(p,w)) is an infinite set. To see
this, suppose that 1/m ∈ σpt(C(p,w)) for some m ∈ N. According to the argument
in Step 7 of the proof of Theorem 3.3, we can conclude that (nm−1)n∈N ∈ `p(w).
So, for all 1 ≤ k < m, it follows that

∞∑
n=1

(nk)pw(n) ≤
∞∑

n=1

(nm−1)pw(n) <∞

and hence, via (3.3), that the vector (xn)n∈N ∈ C
N given by (3.19), with k in place

of m, also belongs to `p(w), that is, it is an eigenvector of C(p,w) corresponding
to λ = 1/k. This shows that {1/k}mk=1 ⊆ σpt(C(p,w)) whenever 1/m ∈ σpt(C(p,w)),
which clearly implies the stated claim.

(ii) Let 1 < p0 <∞. The constant vector 1 := (1, 1, . . .) ∈ CN satisfies C1 = 1 and so
1 ∈ σpt(C(p0,w)) if and only if 1 ∈ `p0 (w), that is, if and only if w ∈ `1. In this
case, 1 ∈ σpt(C(p,w)) for every 1 < p < ∞. Then Theorem 3.3(ii) implies that
necessarily t0 ∈ (0,∞].

(iii) Let w(n) = 1/nα, for all n ∈ N and some α > 0. Then
∑∞

n=1 ntw(n) < ∞ if and
only if t < (α − 1), and so t0 = (α − 1). In particular, Rw , R. Moreover, for any
1 < p <∞,{ 1

m
: m ∈ N, 1 ≤ m <

t0
p

+ 1
}

=

{ 1
m

: m ∈ N, 1 ≤ m <
(α − 1)

p
+ 1

}
.

So, given any 1 < p <∞, it is possible to choose an appropriate α > 0 such that
σpt(C(p,w)) is a finite set with any preassigned cardinality; see (3.10).

(iv) Condition (1) of Proposition 3.6, that is, Rw = R, implies that necessarily S w(p) =

∅ for every 1 < p <∞; see Proposition 3.1(i).

Let w = (w(n))n∈N be any (strictly) positive decreasing sequence and let 1 < p <∞.
The Cesàro operator C(p,w) is similar (via an isometry) to an operator Tw ∈ L(`p)
which is defined by the factorable matrix A(w) = (ank)n,k∈N with entries ank = anbk =

(w(n)1/p/n) · w(k)−1/p for 1 ≤ k ≤ n and ank = 0 for k > n (see the proof of Lemma 2.1).
In particular, σ(C(p,w)) = σ(Tw). Moreover, the matrix A(w) satisfies the following two
conditions:
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(i) supn∈N
∑∞

k=1 |ank| = supn∈N (w(n)1/p/n)
∑n

k=1 w(k)−1/p ≤ 1, because w decreasing
implies that

∑n
k=1 w(k)−1/p ≤ nw(n)−1/p, n ∈ N; and

(ii) fk := limn→∞ ank = w(k)−1/p limn→∞ (w(n)1/p/n) = 0, k ∈ N, because w ∈ `∞.

If, in addition, the matrix A(w) also satisfies the condition:

(iii) α := limn→∞
∑∞

k=1 ank = limn→∞ (w(n)1/p/n)
∑n

k=1 w(k)−1/p exists;

then the linear operator corresponding to A(w) is a selfmap of c, the space of all
convergent sequences, that is, A(w) is conservative, [19, page 112].

Suppose now that the matrix A(w) satisfies condition (iii) with α = 1. Then A(w) is
regular and the linear operator corresponding to A(w) is limit preserving over c, [19,
page 114]. Define η := lim supn→∞ anbn. For the operator Tw (which is similar to the
Cesàro operator C(p,w)) it turns out that η = 0 and so a result of Rhoades and Yildirim
[19, Theorem 3] yields {

λ ∈ C :
∣∣∣λ − 1

2

∣∣∣ ≤ 1
2
}
⊆ σ(C(p,w)) (3.23)

after noting that S := {anbn : n ∈ N} = Σ0 ⊆ {λ ∈ C : |λ − 1
2 | ≤

1
2 }.

It is worthwhile to compare (3.8) with (3.23). So, let 1 < p < ∞ and let w be a
positive decreasing sequence such that S w(p) , ∅. Then{

λ ∈ C :
∣∣∣∣∣λ − 1

2

∣∣∣∣∣ ≤ 1
2

}
⊆

{
λ ∈ C :

∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ ≤ p′

2sp

}
⊆ σ(C(p,w))

with the first inclusion holding if and only if sp ≤ p′. Observe that if (w(n)−1/p/n)n∈N ∈

`p′ , then sp ≤ p′ is valid and, conversely, if sp < p′, then (w(n)−1/p/n)n∈N ∈ `p′ . In this
case, (3.8) is a better inclusion than (3.23). For instance, if w(n) := 1/nr for all n ∈ N
and some r > 0, then (w(n)−1/p/n)n∈N ∈ `p′ if and only if r < 1. On the other hand, the
reverse inclusion {

λ ∈ C :
∣∣∣∣∣λ − p′

2sp

∣∣∣∣∣ ≤ p′

2sp

}
⊆

{
λ ∈ C :

∣∣∣∣∣λ − 1
2

∣∣∣∣∣ ≤ 1
2

}
holds if and only if p′ ≤ sp. Observe that if (w(n)−1/p/n)n∈N < `p′ , then p′ ≤ sp is
valid and, conversely, if p′ < sp, then (w(n)−1/p/n)n∈N < `p′ . In this case, modulo the
additional requirement that α = 1 (see condition (iii)), in which case (3.23) is actually
valid, we see that (3.23) is a better inclusion than (3.8).

The following example shows that condition (iii) above and the property S w(p) , ∅
can be compatible.

Example 3.9. Fix 1 < p <∞. For each n ∈ N set w(n) = 1/(log(n + 1))p, in which case
w(n) ↓ 0. Then S w(p) = (1,∞) and{

λ ∈ C :
∣∣∣∣∣λ − p′

2

∣∣∣∣∣ ≤ p′

2

}
= σ(C(p,w)) with σpt(C(p,w)) = ∅;
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see Example 3.5(i) with γ = p. Moreover, concerning condition (iii), observe that

w(n)1/p

n

n∑
k=1

w(k)−1/p =
1

n log(n + 1)

n∑
k=1

log(k + 1), n ∈ N.

The inequalities

((n + 1) log(n + 1) − n) ≤
n∑

k=1

log(k + 1) ≤ ((n + 2) log(n + 2) − n − 2 log 2), n ∈ N

then imply that

α = lim
n→∞

w(n)1/p

n

n∑
k=1

w(k)−1/p = 1.

Note also that (w(n)−1/p/n)n∈N = ((log(n + 1))/n)n∈N ∈ `p′ .

We conclude this section with some comments about the mean ergodicity and the
linear dynamics of C(p,w). For X a Banach space, recall that T ∈ L(X) is mean ergodic
if its sequence of Cesàro averages T[n] := (1/n)

∑n
m=1 T m for n ∈ N converges to some

operator P ∈ L(X) for the strong operator topology, that is, limn→∞ T[n]x = Px for
each x ∈ X, [10, Ch. VIII]. Since (1/n)T n = T[n] − ((n − 1)/n)T[n−1] for n ∈ N (with
T[0] := I), a necessary condition for T to be mean ergodic is that limn→∞ (1/n)T n = 0
(in the strong operator topology).

Let w be a positive decreasing sequence and let 1 < p < ∞ with S p(w) , ∅. If
sp < p′, then it follows from (3.6) that µ := 1

2 (1 + (p′/sp)) ∈ σpt((C(p,w))′) and so
there exists a nonzero vector x′ ∈ `p′(w−p′/p) such that (C(p,w))′x′ = µx′. Choose any
x ∈ `p(w) \ {0} satisfying 〈x, x′〉 , 0. Then〈1

n
(C(p,w))nx, x′

〉
=

1
n
〈x, ((C(p,w))′)nx′〉 =

µn

n
〈x, x′〉, n ∈ N

with µ > 1 and so the set {(1/n)(C(p,w))nx : n ∈ N} is unbounded in `p(w). In particular,
the sequence {(1/n)(C(p,w))n}n∈N cannot converge to 0 for the strong operator topology
inL(`p(w)). Accordingly, C(p,w) fails to be mean ergodic whenever sp < p′. This is the
case when w(n) = 1 for all n ∈ N, in which case sp = 1, and we recover the known fact
that the classical Cesàro operator C(p) fails to be mean ergodic for every 1 < p < ∞;
see [3, Section 4], where it is also shown that the Cesàro operator fails to be mean
ergodic in the classical Banach sequence spaces c0, c, `p (1 < p ≤ ∞), bv0 and bv, but
that it is mean ergodic in bvp (1 < p <∞). For w as in Example 3.5(i), we recall that,
also, sp = 1 for every 1 < p <∞, and so C(p,w) is not mean ergodic.

Concerning the dynamics of a continuous linear operator T defined on a separable
Banach space X, recall that T is hypercyclic if there exists x ∈ X such that the orbit
{T nx : n ∈ N0} is dense in X. If, for some x ∈ X, the projective orbit {λT nx : λ ∈ C, n ∈
N0} is dense in X, then X is said to be supercyclic. Clearly, hypercyclicity always
implies supercyclicity.

Let now w be a positive decreasing sequence and let 1 < p < ∞. According to
Remark 3.4(iv), the infinite set Σ ⊆ σpt((C(p,w))′). Then, by a result of Ansari and
Bourdon [4, Theorem 3.2], C(p,w) is not supercyclic and hence also not hypercyclic.
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4. Compactness of C(p,w)

According to (3.20), for each 1 < p <∞ the classical Cesàro operator C(p) ∈ L(`p)
is surely not compact. However, in the presence of a positive weight w ↓ 0, this may
no longer be the case for C(p,w) acting on `p(w). We begin with the following fact.

Proposition 4.1. Let w be a positive decreasing weight.

(i) For every 1 < p <∞ we have Σ ⊆ σ(C(p,w)).
(ii) Suppose that C(p,w) is a compact operator for some 1 < p <∞. Then

σ(C(p,w)) = Σ0 and σpt(C(p,w)) = Σ. (4.1)

Moreover, w ∈ s and r(C(p,w)) < ‖C(p,w)‖.

Proof. (i) According to Remark 3.4(iv), we have Σ ⊆ σpt((C(p,w))′). But it is always
the case that σpt((C(p,w))′) ⊆ σ(C(p,w)) [10, page 581], and so Σ ⊆ σ(C(p,w)).

(ii) Since C(p,w) is injective, 0 < σpt(C(p,w)). The compactness of C(p,w) then implies
σpt(C(p,w)) = σ(C(p,w)) \ {0} [15, Theorem 3.4.23]. According to the proof of Step 8
for Theorem 3.3, we also have that σpt(C(p,w)) ⊆ Σ. In view of part (i), the equalities
in (4.1) follow.

By Theorem 3.3(ii) we must have Rw = R (if not, then t0 is finite and so (3.10)
would imply that σpt(C(p,w)) is finite, which is a contradiction to (4.1)). Then, via
Proposition 3.6(i), we can conclude that w ∈ s.

It follows from (2.3) and the equality r(C(p,w)) = 1 (see (4.1)) that r(C(p,w)) <
‖C(p,w)‖. �

To decide when C(p,w) is compact, first observe that C(p,w) = Φ−1
w TwΦw (see

Lemma 2.1 and its proof), where Tw ∈ L(`p) is given by (2.2). Given any x ∈ Bp :=
{x ∈ `p : ‖x‖ ≤ 1} and i ∈ N, it follows from Hölder’s inequality that

∞∑
n=i

|(Twx)n|
p =

∞∑
n=i

w(n)
np

∣∣∣∣∣ n∑
k=1

1
w(k)1/p · xk

∣∣∣∣∣p
≤

∞∑
n=i

w(n)
np

( n∑
k=1

1
w(k)p′/p

)p/p′

.

So, Tw (and hence also C(p,w)) will be compact whenever w satisfies the following
compactness criterion:

∞∑
n=1

w(n)
np

( n∑
k=1

1
w(k)p′/p

)p/p′

<∞. (4.2)

Indeed, (4.2) implies that limi→∞
∑∞

n=i |(Twx)n|
p = 0 uniformly with respect to x ∈ Bp,

from which the relative compactness in `p of the bounded set Tw(Bp) ⊆ `p follows,
[10, pages 338–339].
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We introduce some notation. Let w be a positive decreasing sequence. Define

An(p,w) := w(n)p′/p
n∑

k=1

1
w(k)p′/p , n ∈ N, 1 < p <∞.

The compactness criterion (4.2) then states that C(p,w) is a compact operator if∑∞
n=1((An(p,w))p/p′/np) <∞.

Theorem 4.2. Suppose, for some 1 < p < ∞, that there exist constants M > 0 and
0 ≤ α < 1 such that

An(p,w) ≤ Mnα, n ∈ N.

Then C(q,w) is a compact operator for every 1 < q ≤ p. In particular, w ∈ s.

Proof. Observe, for fixed 1 < q ≤ p, that

γ :=
q′

q
−

p′

p
=

1
q − 1

−
1

p − 1
=

p − q
(q − 1)(p − 1)

≥ 0.

For each n ∈ N,
n∑

k=1

1
w(k)q′/q =

n∑
k=1

1
w(k)p′/p · w(k)−γ.

Accordingly, for each n ∈ N,

An(q,w) =
w(n)q′/q

w(n)p′/p · w(n)p′/p
n∑

k=1

1
w(k)p′/p · w(k)−γ

= w(n)p′/p
n∑

k=1

1
w(k)p′/p ·

(w(n)
w(k)

)γ
.

Since w is decreasing, w(n)/w(k) ≤ 1 for all 1 ≤ k ≤ n and so

An(q,w) ≤ w(n)p′/p
n∑

k=1

1
w(k)p′/p = An(p,w) ≤ Mnα.

Accordingly,
∞∑

n=1

(An(q,w))q/q′

nq ≤ Mq/q′
∞∑

n=1

nαq/q′

nq = Mq/q′
∞∑

n=1

1
nq−(αq/q′) .

But q − αq/q′ = q − α(q − 1) = q(1 − α) + α > (1 − α) + α = 1 and so
∞∑

n=1

(An(q,w))q/q′

nq <∞.

Then the compactness criterion yields that C(q,w) is a compact operator.
That w ∈ s is a consequence of Proposition 4.1(ii). �

https://doi.org/10.1017/S1446788715000221 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000221


[23] Spectrum and compactness of the Cesàro operator on weighted `p spaces 309

The following consequence of Theorem 4.2 leads to a rich supply of weights w for
which C(p,w) is compact.

Corollary 4.3. Let w be a positive weight with w ↓ 0. If the limit

l := lim
n→∞

w(n)
w(n − 1)

(4.3)

exists in R \ {1}, then C(p,w) is compact for every 1 < p <∞.

Proof. Fix 1 < p <∞. According to Theorem 4.2 (with α = 0), it suffices to prove that
supn∈N An(p,w) < ∞. Set an :=

∑n
k=1 w(k)−p′/p and bn := w(n)−p′/p for n ∈ N. Since

w ↓ 0, we have bn ↑ ∞. Moreover, the limit

lim
n→∞

an − an−1

bn − bn−1
= lim

n→∞

w(n)−p′/p

w(n)−p′/p − w(n − 1)−p′/p

= lim
n→∞

1
1 − (w(n)/w(n − 1))p′/p =

1
1 − lp′/p

exists in R as l , 1. According to the Stolz–Cesàro criterion [16, Theorem
1.22], it follows that limn→∞ (an/bn) = 1/(1 − lp′/p) ∈ R, that is, limn→∞ An(p,w) =

1/(1 − lp′/p) ∈ R. In particular, supn∈N An(p,w) <∞ is indeed satisfied. �

Remark 4.4.

(i) Let w be a positive decreasing weight.

(a) According to (3.8), if C(p,w) is a compact operator for some 1 < p < ∞,
then S w(p) = ∅.

(b) The condition w ↓ 0 by itself need not imply that S w(p) = ∅ (see, for
instance, Example 3.5).

(ii) Suppose S w(p) , ∅ for some 1 < p <∞. Then C(q,w) fails to be compact for every
q ∈ [p,∞). This follows from part (i)(a) and Proposition 3.1(iii).

(iii) The following examples (a)–(c) all fall within the scope of Corollary 4.3. So, in
each case, w ∈ s and the identities in (4.1) hold; see Proposition 4.1.

(a) For any fixed a > 1 and r ≥ 0 set w(n) := nr/an for n ∈ N. Then

lim
n→∞

w(n)
w(n − 1)

= a−1 , 1.

(b) For any fixed a ≥ 1, the weight w(n) := an/n! for n ∈ N satisfies

lim
n→∞

w(n)
w(n − 1)

= 0 , 1. (4.4)

(c) The weight w(n) := 1/nn for n ∈ N also satisfies (4.4).
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We point out, since w is decreasing, that w(n)/w(n − 1) ∈ (0,1] for all n ∈ N. Hence,
whenever the limit (4.3) exists, then necessarily l ∈ [0, 1].

As an application, suppose that the positive decreasing weight w has the property
that l := limn→∞ (w(n)/w(n − 1)) exists in [0, 1). Then, for each r > 0, the positive
decreasing weight wr : n 7→ w(n)r for n ∈ N satisfies limn→∞ (w(n)r/w(n − 1)r) = lr ∈
[0, 1). Hence, C(p,wr) is a compact operator in lp(wr) for every 1 < p <∞.

(iv) The following criterion is sufficient to ensure that the limit (4.3) exists in R \ {1}.
Hence, both Proposition 4.1 and Corollary 4.3 are applicable to such a weight w.
In particular, w ∈ s.

Let β = (βn)n∈N be a positive increasing sequence with β ↑ ∞ such that
limn→∞(βn − βn−1) = ∞. Then the weight w(n) := e−βn for n ∈ N satisfies l :=
limn→∞ (w(n)/w(n − 1)) = 0 , 1.

It is routine to verify that limn→∞ (w(n)/w(n − 1)) = 0.
For the weight w(n) := a−n for n ∈ N (with a > 1), we have that βn := − log w(n) =

n log(a) ↑ ∞, but (βn − βn−1) log(a) 6→ ∞ for n→∞. So, the above criterion is not
applicable to this weight. However, according to part (iii)(a) of this remark (with
r = 0), the weight w is admissible for Corollary 4.3.

The following examples illustrate that Theorem 4.2 is more general than
Corollary 4.3.

Example 4.5.

(i) Fix 0 < β < 1 and set wβ(n) := e−nβ for n ∈ N, in which case wβ ↓ 0, but

lim
n→∞

wβ(n)
wβ(n − 1)

= lim
n→∞

e(n−1)β−nβ = lim
n→∞

e−β/n
(1−β)

= 1,

as (n − 1)β − nβ = nβ[(1 − 1/n)β − 1] = nβ[1 − β/n + o(1/n) − 1] ' −β/n1−β for
n→ ∞, so Corollary 4.3 is not applicable. We show that Theorem 4.2 does
apply.

Fix 1 < p <∞ and set γ := p′/p. Then, for each n ∈ N,

An(p,wβ) = e−γnβ
n∑

k=1

eγkβ ≤ e−γnβ
∫ n+1

1
eγxβ dx

=
e−γnβ

β

∫ (n+1)β

1
eγtt(1/β)−1 dt ≤

e−γnβ

β

∫ (n+1)β

1
eγttm dt,

where m ∈ N is chosen minimally such that (m − 1) < (1/β) − 1 ≤ m. Integration by
parts (m + 1) times yields∫ (n+1)β

1
eγttm dt ≤ a0 + a1(n + 1)βeγ(n+1)β + a2(n + 1)2βeγ(n+1)β

+ · · · + am(n + 1)mβeγ(n+1)β
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for positive constants a0, a1, . . . , am. It follows that∫ (n+1)β

1
eγttm dt ≤ M(1 + n)mβeγ(1+n)β , n ∈ N,

for some constant M > 0. Accordingly,

An(p,wβ) ≤
M
β

(1 + n)mβeγ((1+n)β−nβ), n ∈ N.

Since (n + 1)β − nβ ' β/n1−β and (1 + n)mβ ' nmβ for n → ∞, there exists K > 0
(independent of n) such that

An(p,wβ) ≤ Knmβ, n ∈ N.

Since (m − 1) < (1/β) − 1 implies that α := mβ ∈ (0, 1), Theorem 4.2 yields that C(p,wβ)

is compact.
For β ≥ 1, the compactness of C(p,wβ) follows from Corollary 4.3. Indeed, if β = 1,

then wβ(n) = e−n for n ∈ N and so Remark 4.4(iii)(a) implies the compactness of C(p,wβ).
For β > 1, observe from above that

lim
n→∞

wβ(n)
wβ(n − 1)

= lim
n→∞

e(n−1)β−nβ = lim
n→∞

e−βnβ−1
= 0

and so the compactness of C(p,wβ) follows again from Corollary 4.3.

(ii) There also exist positive decreasing weights w ∈ s such that the sequence
{w(n)/w(n − 1)}n∈N fails to converge at all, yet C(p,w) is a compact operator for
every 1 < p <∞.

Define w(n) := 1/ j j, n = 2 j − 1, and w(n) := 1/2 j j, n = 2 j, for each j ∈ N. Then w is
(strictly) decreasing to 0. For n j := 2 j, j ∈ N, we have w(n j)/w(n j − 1) = 1

2 for all j ∈ N
and so lim j→∞ (w(n j)/w(n j − 1)) = 1

2 , whereas for nr := 2r + 1, r ∈ N, the subsequence
{w(nr)/w(nr − 1)}r∈N of {w(n)/w(n − 1)}n∈N converges to 0. Accordingly, the sequence
{w(n)/w(n − 1)}n∈N is not convergent and so Corollary 4.3 is not applicable.

Fix 1 < p < ∞ and set γ := p′/p > 0. To establish the compactness of C(p,w),
observe, for every j ∈ N, that

A2 j(p,w) =
1

(2 j j)γ

( j∑
k=1

(kk)γ +

j∑
k=1

(2kk)γ
)

=
1 + 2γ

2γ
1

( j j)γ

j∑
k=1

(kk)γ (4.5)

and that

A2 j−1(p,w) = 1 +
1

( j j)γ

2( j−1)∑
k=1

w(k)−γ = 1 +
( j − 1)( j−1)γ

( j j)γ
A2( j−1)(p,w), (4.6)

with lim j→∞ (( j − 1)( j−1)γ/( j j)γ) = 0. Set a j :=
∑ j

k=1(kk)γ and b j := ( j j)γ for j ∈ N.
Then b j ↑ ∞. Moreover,

lim
j→∞

a j − a j−1

b j − b j−1
= lim

j→∞

( j j)γ

( j j)γ − (( j − 1) j−1)γ
= lim

j→∞

1

1 − ( j−1)( j−1)γ

( j j)γ

= 1.
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According to the Stolz–Cesàro criterion [16, Theorem 1.22], it follows that, also,
lim j→∞ (a j/b j) = 1. So, via (4.5) and (4.6), we obtain lim j→∞ A2 j(p,w) = (1 + 2γ)/2γ

and lim j→∞ A2 j−1(p,w) = 1. In particular, supi∈N Ai(p,w) < ∞ and so Theorem 4.2
applies (with α = 0). Hence, C(p,w) is compact and w ∈ s.

The following result is a comparison-type criterion for compactness. One knows
something about the compactness of C(p,w) in `p(w) for a certain weight w and
1 < p < ∞ and one has a second weight v whose growth relative to w is controlled.
Then, also, C(p,v) ∈ L(`p(v)) is compact.

Proposition 4.6. Let w be a positive decreasing sequence. Suppose, for some 1 <
p <∞, that there exists 0 ≤ α < 1 such that

An(p,w) ≤ Mnα, n ∈ N (4.7)

for some constant M > 0.
Let v be any positive decreasing sequence such that {v(n)/w(n)}n∈N ∈ `∞ and

satisfying
w(n) ≤ Knβv(n), n ∈ N (4.8)

for some 0 ≤ β < (p − 1)(1 − α) and some constant K > 0. Then C(q,v) ∈ L(`q(v)) is a
compact operator for every 1 < q ≤ p.

Proof. Let L := supn∈N (v(n)/w(n)). Then, for each n ∈ N, we have via (4.7) and (4.8)
that

An(p, v) = v(n)p′/p
n∑

k=1

1
v(k)p′/p =

( v(n)
w(n)

)p′/p
w(n)p′/p

n∑
k=1

1
w(k)p′/p ·

(w(k)
v(k)

)p′/p

≤ Lp′/pw(n)p′/p
n∑

k=1

1
w(k)p′/p (Kkβ)p′/p

≤ (LK)p′/pw(n)p′/p
n∑

k=1

1
w(k)p′/p nβp′/p

= (LK)p′/pnβp′/pAn(p,w) ≤ M(LK)p′/pnα+(βp′/p).

Moreover, α + (βp′/p) = α + (β/(p − 1)) < 1 because 0 ≤ β < (p − 1)(1 − α) implies
β/(p − 1) < (1 − α) which implies α + (β/(p − 1)) < 1. So, Theorem 4.2 applied to
v (with α + (β/(p − 1)) in place of α) implies that C(q,v) ∈ L(`q(v)) is compact for all
1 < q ≤ p. �

Example 4.7. Let v(n) := 1/enβ logγ(n + 1) for n ∈ N, where 0 < β < 1 and γ > 0.
Then C(p,v) ∈ L(`p(v)) is compact for every 1 < p < ∞. Observe that limn→∞

(v(n)/v(n − 1)) = 1 and so Corollary 4.3 is not applicable.
So, fix 1 < p < ∞. Define w(n) := e−nβ for n ∈ N. According to Example 4.5(i),

there exist constants M > 0 and 0 < α < 1 such that

An(p,w) ≤ Mnα, n ∈ N.
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Since v(n) ≤ w(n) for n ∈ N, it is clear that {v(n)/w(n)}n∈N ∈ `∞. Choose any r ∈
(0, (p − 1)(1 − α)). Then

w(n)
v(n)

= logγ(n + 1) =
logγ(n + 1)

nr · nr ≤ Knr, n ∈ N

for some K > 0 (as limn→∞ (logγ(n + 1))/nr = 0). According to Proposition 4.6, we
can conclude that C(p,v) is compact in `p(v).
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