SPECTRUM AND COMPACTNESS OF THE CESÀRO OPERATOR ON WEIGHTED ℓ_{p} SPACES

ANGELA A. ALBANESE ${ }^{\boxtimes}$, JOSÉ BONET and WERNER J. RICKER

(Received 12 December 2014; accepted 29 April 2015; first published online 19 August 2015)

Communicated by A. Sims

Abstract

An investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator C when acting on the weighted Banach sequence spaces $\ell_{p}(w), 1<p<\infty$, for a positive decreasing weight w, thereby extending known results for C when acting on the classical spaces ℓ_{p}. New features arise in the weighted setting (for example, existence of eigenvalues, compactness) which are not present in ℓ_{p}.

2010 Mathematics subject classification: primary 47A10, 47B37; secondary 46B45, 47A16, 47A30.
Keywords and phrases: Cesàro operator, weighted ℓ_{p} space, spectrum, compact operator.

1. Introduction

The discrete Cesàro operator C is defined on the linear space $\mathbb{C}^{\mathbb{N}}$ (consisting of all scalar sequences) by

$$
\begin{equation*}
\mathrm{C} x:=\left(x_{1}, \frac{x_{1}+x_{2}}{2}, \ldots, \frac{x_{1}+\cdots+x_{n}}{n}, \ldots\right), \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \tag{1.1}
\end{equation*}
$$

The operator C is said to act in a vector subspace $X \subseteq \mathbb{C}^{\mathbb{N}}$ if it maps X into itself. Of particular interest is the situation where X is a Banach space. The fundamental questions in this case are: is $\mathrm{C}: X \rightarrow X$ continuous and, if so, what is the spectrum of $\mathrm{C}: X \rightarrow X$? Amongst the classical Banach spaces $X \subseteq \mathbb{C}^{\mathbb{N}}$ where precise answers are known, we mention $\ell_{p}(1<p<\infty)$ [6,14], $c_{0}[14,18]$ and both c and $\ell_{\infty}[1,14]$, as well as ces $_{p}, p \in\{0\} \cup(1, \infty)$ [8], the Bachelis spaces $N^{p}, 2 \leq p<\infty$ [9] and the spaces of bounded variation $b v_{0}$ [17] and bounded p-variation $b v_{p}, 1 \leq p<\infty$ [2]. In all of these cases, the operator norm of $\mathrm{C}: X \rightarrow X$ equals its spectral radius and C has at most one eigenvalue, namely, 1. There is no claim that this list of spaces (and references) is complete.

[^0]The aim of this paper is to investigate the two questions mentioned above for C acting on the weighted Banach spaces $\ell_{p}(w)$. To be precise, let $w=(w(n))_{n=1}^{\infty}$ be a bounded sequence, always assumed to be strictly positive. Define the space

$$
\ell_{p}(w):=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}:\|x\|_{p, w}:=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p} w(n)\right)^{1 / p}<\infty\right\}
$$

for each $1<p<\infty$, equipped with the norm $\|\cdot\|_{p, w}$. Observe that $\ell_{p}(w)$ is isometrically isomorphic to ℓ_{p} via the linear multiplication operator

$$
\Phi_{w}: \ell_{p}(w) \rightarrow \ell_{p}, \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow \Phi_{w}(x):=\left(w(n)^{1 / p} x_{n}\right)_{n \in \mathbb{N}} .
$$

Therefore, each $\ell_{p}(w)$ is a Banach space. The dual space $\left(\ell_{p}(w)\right)^{\prime}$ of $\ell_{p}(w)$ is the Banach space $\ell_{p^{\prime}}(v)$, where $1 / p+1 / p^{\prime}=1$ (that is, p^{\prime} is the conjugate exponent of p) and $v(n)=w(n)^{-p^{\prime} / p}$ for $n \in \mathbb{N}$. In particular, $\ell_{p}(w)$ is reflexive and separable for $1<p<\infty$. Moreover, the canonical unit vectors $e_{k}:=\left(\delta_{k n}\right)_{n \in \mathbb{N}}$ for $k \in \mathbb{N}$ form an unconditional basis in $\ell_{p}(w)$ for $1<p<\infty$. If $\inf _{n \in \mathbb{N}} w(n)>0$, then $\ell_{p}(w)=\ell_{p}$ with equivalent norms and we are in the standard situation. Accordingly, we are mainly interested in the case where $\inf _{n \in \mathbb{N}} w(n)=0$.

By Hardy's inequality [13, Theorem 326, page 239], for every $1<p<\infty$ the restriction of the Cesàro operator $\mathrm{C}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ as given in (1.1) defines a bounded linear operator from ℓ_{p} into itself with operator norm equal to p^{\prime}. Denote these operators by $\mathbf{C}^{(p)}$ so that $\left\|\mathbf{C}^{(p)}\right\|=p^{\prime}$. In Section 2, where the papers $[5,11,12]$ are relevant, we discuss various aspects of the continuity of C when it is restricted to $\ell_{p}(w), 1<p<\infty$; denote this operator by $\mathrm{C}^{(p, w)}$ whenever it is continuous.

For any Banach space X, let I denote the identity operator on X and $\mathcal{L}(X)$ denote the space of all continuous linear operators from X into itself. The spectrum and the resolvent set of $T \in \mathcal{L}(X)$ are denoted by $\sigma(T)$ and $\rho(T)$, respectively; see [10, Ch. VII], for example. The set of all eigenvalues of T, called the point spectrum of T, is denoted by $\sigma_{p t}(T)$. The spectral radius $r(T):=\sup \{|\lambda|: \lambda \in \sigma(T)\}$ of T always satisfies $r(T) \leq\|T\|$, [10, page 567].

Section 3 is devoted to an analysis of the spectrum of C when acting in $\ell_{p}(w)$. The main result is Theorem 3.3; it is complemented by Example 3.5 which clarifies the scope of this theorem. Unlike for $\mathrm{C}^{(p)}$, it can happen that $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right) \neq \emptyset$. Actually, $\mathrm{C}^{(p, w)}$ can even have infinitely many eigenvalues; see Proposition 3.6. The final section deals with the compactness of $\mathrm{C}^{(p, w)}$. Of relevance is how fast w decreases to 0 ; see Proposition 4.1, Theorem 4.2, Corollary 4.3 and Proposition 4.6. Unlike for C acting in the classical Banach spaces mentioned in the opening paragraph, it may happen in $\ell_{p}(w)$ that $r\left(\mathbf{C}^{(p, w)}\right)<\left\|\mathbf{C}^{(p, w)}\right\|$; see Proposition 4.1.

2. Continuity of C in weighted $\boldsymbol{\ell}_{\boldsymbol{p}}$ spaces

Some of the concepts and results from [12] that are quoted in this section actually have their origins in the paper [11]. We begin with the following fact.

Lemma 2.1. Let $w=(w(n))_{n=1}^{\infty}$ be a positive sequence and $1<p<\infty$. Then the Cesàro operator C maps $\ell_{p}(w)$ continuously into itself if and only if

$$
\sup _{m \in \mathbb{N}}\left(\sum_{k=1}^{m} w(k)^{-p^{\prime} / p}\right)^{-1}\left(\sum_{n=1}^{m} \frac{w(n)}{n^{p}}\left(\sum_{k=1}^{n} w(k)^{-p^{\prime} / p}\right)^{p}\right)<\infty,
$$

that is, if and only if there exists $K>0$ such that

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{w(n)}{n^{p}}\left(\sum_{k=1}^{n} w(k)^{-p^{\prime} / p}\right)^{p} \leq K\left(\sum_{k=1}^{m} w(k)^{-p^{\prime} / p}\right), \quad m \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Moreover, if the constant K satisfying (2.1) is chosen as small as possible, then the operator norm of C is at most $p^{\prime} K^{1 / p}$.
Proof. Let $T_{w}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ denote the linear operator defined by

$$
\begin{equation*}
T_{w} x:=\left(\frac{w(n)^{1 / p}}{n} \sum_{k=1}^{n} w(k)^{-1 / p} x_{k}\right)_{n \in \mathbb{N}} \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} . \tag{2.2}
\end{equation*}
$$

Then $\Phi_{w} C=T_{w} \Phi_{w}$. Since Φ_{w} is isometric from $\ell_{p}(w)$ onto ℓ_{p}, it follows that C maps $\ell_{p}(w)$ continuously into itself if and only if T_{w} maps ℓ_{p} continuously into itself. But, the matrix of T_{w} is factorable (cf. [5, Section 4] with $a_{n}=w(n)^{1 / p} / n$ and $b_{k}=w(k)^{-1 / p}$ for $1 \leq k \leq n)$ and so it follows from [5, Theorem 2] that $T_{w} \in \mathcal{L}\left(\ell^{p}\right)$ if and only if (2.1) holds.

The proof of [5, Theorem 2] yields that the operator norm of C is at most $p^{\prime} K^{1 / p}$.
Proposition 2.2. Let $w=(w(n))_{n=1}^{\infty}$ be a positive decreasing sequence and $1<p<\infty$. Then the Cesàro operator $\mathbf{C}^{(p, w)} \in \mathcal{L}\left(\ell_{p}(w)\right)$ and satisfies

$$
\begin{equation*}
1<\left(\frac{1}{w(1)} \sum_{n=1}^{\infty} \frac{w(n)}{n^{p}}\right)^{1 / p} \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq p^{\prime} \tag{2.3}
\end{equation*}
$$

Proof. Fix $m \in \mathbb{N}$. Because w is decreasing,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{w(n)}{n^{p}}\left(\sum_{k=1}^{n} w(k)^{-p^{\prime} / p}\right)^{p} & =\sum_{n=1}^{m}\left(\frac{w(n)^{1 / p}}{n} \sum_{k=1}^{n} w(k)^{-p^{\prime} / p}\right)^{p} \\
& \leq \sum_{n=1}^{m}\left(\frac{w(n)^{1 / p}}{n} \cdot \frac{n}{w(n)^{p^{\prime} / p}}\right)^{p}=\sum_{n=1}^{m} w(n)^{-p^{\prime} / p}
\end{aligned}
$$

which is precisely (2.1) with $K=1$. So, Lemma 2.1 implies that C is continuous on $\ell_{p}(w)$ with $\left\|\mathrm{C}^{(p, w)}\right\| \leq p^{\prime}$.

For an alternate proof of the continuity of $\mathrm{C}^{(p, w)}$, based directly on Hardy's inequality in ℓ_{p}, see [12, Proposition 5.1].

Since $T_{w}=\Phi_{w} \mathrm{C}^{(p, w)} \Phi_{w}^{-1}$, with Φ_{w} mapping the closed unit ball of $\ell_{p}(w)$ onto that of ℓ_{p} and Φ_{w}^{-1} mapping the closed unit ball of ℓ_{p} onto that of $\ell_{p}(w)$, it follows that $\left\|T_{w}\right\|=\left\|\mathrm{C}^{(p, w)}\right\|$. Of course,

$$
\Phi_{w}^{-1} x=\left(w(n)^{-1 / p} x_{n}\right)_{n \in \mathbb{N}}, \quad x \in \ell_{p}
$$

Substituting $x=e_{1}$ into (2.2) it follows that

$$
\left\|\mathbf{C}^{(p, w)}\right\|=\left\|T_{w}\right\| \geq\left\|T_{w} e_{1}\right\|_{p}=\left(\frac{1}{w(1)} \sum_{n=1}^{\infty} \frac{w(n)}{n^{p}}\right)^{1 / p} \geq\left(1+\frac{w(2)}{w(1) 2^{p}}\right)^{1 / p}>1
$$

See also [12, Proposition 5.5].
Some comments regarding Proposition 2.2 are in order. As noted above, for each $1<p<\infty$ we have $\left\|\mathrm{C}^{(p)}\right\|=p^{\prime}$ and, for a positive decreasing weight $w,(2.3)$ holds. These estimates are not the best possible in general. Denote by $\delta_{p}(w)$ the set of all decreasing, nonnegative sequences in $\ell_{p}(w)$ and define

$$
\Delta_{p, w}\left(\mathbf{C}^{(p, w)}\right):=\sup \left\{\left\|\mathbf{C}^{(p, w)} x\right\|_{p, w}: x \in \delta_{p}(w),\|x\|_{p, w}=1\right\} \leq\left\|\mathbf{C}^{(p, w)}\right\| .
$$

The following result follows from [12, Propositions 6.3, 6.5 and 6.6].
Proposition 2.3. Let $1<p<\infty$ and $w(n)=1 / n^{\alpha}, n \in \mathbb{N}$, for a fixed $\alpha>0$. Then

$$
\begin{equation*}
\max \left\{m_{1}, m_{2}\right\} \leq \Delta_{p, w}\left(\mathrm{C}^{(p, w)}\right) \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq M_{2}(r):=[r \zeta(r+\alpha)]^{r / p} \tag{2.4}
\end{equation*}
$$

for $1 \leq r \leq p$, where $m_{1}:=p /(p+\alpha-1)$ and $m_{2}:=\zeta(p+\alpha)^{1 / p}$, with ζ denoting the Riemann zeta function. Moreover, for $\alpha \leq r<(p+\alpha)$, it is also the case that

$$
\left\|\mathrm{C}^{(p, w)}\right\| \leq M_{3}(r):=\left(\frac{p}{p+\alpha-r}\right)^{1 / p^{\prime}} \zeta\left(1+\frac{r}{p^{\prime}}+\frac{\alpha}{p}\right)^{1 / p}
$$

We provide some relevant examples.
Example 2.4.
(i) For $w(n)=1 / n^{\alpha}$, if $\alpha=0.9$ and $p=1.1$, then $\max \left\{m_{1}, m_{2}\right\} \simeq 1.572$ and $M_{2}(1)=$ $M_{3}(0.9) \simeq 1.663$ (see [12, pages 15-16]) and so Proposition 2.3 shows that

$$
1.572 \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq 1.663 .
$$

On the other hand, $p^{\prime}=11$ and so Proposition 2.2 only yields $\left\|\mathbf{C}^{(p, w)}\right\| \leq 11$.
(ii) Still for $w(n)=1 / n^{\alpha}$, but now with $\alpha=0.5$ and $p=2$, we have $m_{1}=4 / 3$ and $M_{3}(3 / 4) \simeq 1.593$ (see [12, page 16]) so that Proposition 2.3 reveals that

$$
\frac{4}{3} \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq 1.593 .
$$

In this case, $p^{\prime}=2$, and so Proposition 2.2 only yields $\left\|\mathbf{C}^{(p, w)}\right\| \leq 2$.
(iii) Again for $w(n)=1 / n^{\alpha}$, with $\alpha>0$, it follows (in the notation of Proposition 2.3) that

$$
\left(\frac{1}{w(1)} \sum_{n=1}^{\infty} \frac{w(n)}{n^{p}}\right)^{1 / p}=\left(\sum_{n=1}^{\infty} \frac{1}{n^{p+\alpha}}\right)^{1 / p}=\zeta(p+\alpha)^{1 / p}=m_{2} .
$$

Hence, the lower bound in (2.3) reduces to $m_{2} \leq\left\|\mathbf{C}^{(p, w)}\right\|$ whereas (2.4) yields $\max \left\{m_{1}, m_{2}\right\} \leq\left\|\mathbf{C}^{(p, w)}\right\|$. Of course, (2.3) applies to more general weights w.

The following example is not a consequence of Proposition 2.3.
Example 2.5. Let $p=2$ and set $w(n)=2^{-n}$ for $n \in \mathbb{N}$. The proof of Proposition 2.2 yields that $\left\|\mathrm{C}^{(2, w)}\right\|=\left\|T_{w}\right\|$. Recall, via (2.2), that

$$
T_{w} x=\left(\frac{1}{n 2^{n / 2}} \sum_{k=1}^{n} 2^{k / 2} x_{k}\right)_{n \in \mathbb{N}}, \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell_{2}
$$

For every $x \in \ell_{2}$, it follows via the Cauchy-Schwarz inequality and the identity $\sum_{k=1}^{n} r^{k}=\left(r-r^{n+1}\right) /(1-r)$, for $r \neq 1$, that

$$
\begin{aligned}
\left\|T_{w} x\right\|_{2}^{2} & =\sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{n}}\left|\sum_{k=1}^{n} 2^{k / 2} x_{k}\right|^{2} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{n}}\left(\sum_{k=1}^{n} 2^{k}\right)\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right) \\
& \leq\|x\|_{2}^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{n}}\left(2^{n+1}-2\right)=\|x\|_{2}^{2} \sum_{n=1}^{\infty} \frac{2\left(1-2^{-n}\right)}{n^{2}} .
\end{aligned}
$$

Accordingly, $\left\|T_{w}\right\| \leq\left(\sum_{n=1}^{\infty}\left(2\left(1-2^{-n}\right) / n^{2}\right)\right)^{1 / 2}$. Observe that

$$
\sum_{n=1}^{\infty} \frac{\left(1-2^{-n}\right)}{n^{2}}=\frac{\pi^{2}}{6}-\int_{0}^{1 / 2} \frac{-\log (1-t)}{t} d t
$$

because of the fact that $\pi^{2} / 6=\sum_{n=1}^{\infty}\left(1 / n^{2}\right)$ and the identity

$$
\int_{0}^{1 / 2} \frac{-\log (1-t)}{t} d t=\int_{0}^{1 / 2} \sum_{n=0}^{\infty} \frac{t^{n}}{(n+1)}=\sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{n}}
$$

The function $f(t)=(-\log (1-t)) / t$ for $t \in(0,1]$, with $f(0):=1$, is positive, continuous and increasing on $[0,1)$ and so

$$
1=f(0) \leq f(t) \leq f\left(\frac{1}{2}\right)=2 \log 2 \quad t \in[0,1 / 2]
$$

which implies that $-\log 2 \leq-\int_{0}^{1 / 2}(-\log (1-t)) / t d t \leq-1 / 2$. Consequently,

$$
\sum_{n=1}^{\infty} \frac{2\left(1-2^{-n}\right)}{n^{2}} \leq 2\left(\frac{\pi^{2}}{6}-\frac{1}{2}\right) \simeq 2.2898
$$

and so

$$
\left\|\mathrm{C}^{(2, w)}\right\|=\left\|T_{w}\right\| \leq \sqrt{\left(\frac{\pi^{2}}{3}-1\right)} \simeq 1.513<p^{\prime}=2 .
$$

Direct calculation yields

$$
\left\|T_{w} e_{1}\right\|_{2}=\left(2 \sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{n}}\right)^{1 / 2} \geq\left(2 \sum_{n=1}^{3} \frac{1}{n^{2} 2^{n}}\right)^{1 / 2} \simeq 1.073
$$

and so

$$
1.073 \leq\left\|C^{(2, w)}\right\| \leq \sqrt{\left(\frac{\pi^{2}}{3}-1\right)} \simeq 1.513
$$

see also Proposition 2.2.

3. Spectrum of $\mathbf{C}^{(p, w)}$

The aim of this section is to provide some detailed knowledge of the spectrum of $\mathrm{C}^{(p, w)}$. Unlike for the classical Cesàro operators $\mathrm{C}^{(p)} \in \mathcal{L}\left(\ell_{p}\right)$ for $1<p<\infty$, it can now happen that eigenvalues appear.

Given a (strictly) positive bounded sequence $w=(w(n))_{n \in \mathbb{N}}$ and $1<p<\infty$, let $S_{w}(p):=\left\{s \in \mathbb{R}: \sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)<\infty\right\}$. For $S_{w}(p) \neq \emptyset$ we define $s_{p}:=\inf S_{w}(p)$. Note that $p^{\prime} / p=1 /(p-1)$ for every $1<p<\infty$. Moreover, let $R_{w}:=\{t \in \mathbb{R}$: $\left.\sum_{n=1}^{\infty} n^{t} w(n)<\infty\right\}$. For $R_{w} \neq \mathbb{R}$ we define $t_{0}:=\sup R_{w}$.

Fix $1<p<\infty$ and let $w(n)=2^{-n p / p^{\prime}}$ for $n \in \mathbb{N}$. Then $S_{w}(p)=\emptyset$, that is, it can happen that $S_{w}(p)$ is empty. However, in the event that $S_{w}(p) \neq \emptyset$, then $s_{p} \geq 1$. Indeed, for any fixed $s \in \mathbb{R}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{p^{\prime} / p}} \geq\|w\|_{\infty}^{-p^{\prime} / p} \sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{3.1}
\end{equation*}
$$

So, whenever $s \in S_{w}(p)$ it follows that $\sum_{n=1}^{\infty}\left(1 / n^{s}\right)<\infty$, that is, $s>1$. Hence, $S_{w}(p) \subseteq(1, \infty)$, which implies that $s_{p} \geq 1$. Moreover, for any $r>s \in S_{w}(p)$ we have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{r} w(n)^{p^{\prime} / p}}<\sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{p^{\prime} / p}}
$$

and so also $r \in S_{w}(p)$. Accordingly, whenever $S_{w}(p) \neq \emptyset$, it is an infinite interval, that is, $S_{w}(p)=\left[s_{p}, \infty\right)$ or $S_{w}(p)=\left(s_{p}, \infty\right)$ with $s_{p} \geq 1$. It is a consequence of (3.1) that $1 \notin S_{w}(p)$ for all $1<p<\infty$ and all positive bounded sequences w.

In the event that $a_{w}:=\inf _{n \in \mathbb{N}} w(n)>0$, it follows that necessarily $s_{p}=1$. Indeed, in this case, $w(n)^{-p^{\prime} / p} \leq a_{w}^{-p^{\prime} / p}, n \in \mathbb{N}$, which implies that $1 / n^{s} w(n)^{p^{\prime} / p} \leq a_{w}^{-p^{\prime} / p} / n^{s}$ for all $n \in \mathbb{N}$ and $s \in \mathbb{R}$. Hence, $(1, \infty) \subseteq S_{w}(p)$, and so $s_{p} \leq 1$. Since we are assuming that $S_{w}(p) \neq \emptyset$, we already know that $s_{p} \geq 1$. Accordingly, $s_{p}=1$.

Let $1<p<\infty$ and fix $\alpha>0$. For $w(n)=1 / n^{\alpha p / p^{\prime}}$ and any $s \in \mathbb{R}$ it follows that $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)=\sum_{n=1}^{\infty}\left(1 / n^{s-\alpha}\right)<\infty$ precisely when $s>(1+\alpha)$ and so $s_{p}=1+\alpha$. Hence, given any $\beta>1$ and $1<p<\infty$, there exists a positive decreasing weight $w \downarrow 0$ such that $S_{w}(p)=(\beta, \infty)$, that is, $s_{p}=\beta$.

Concerning the set R_{w}, a similar discussion applies. For $w(n)=2^{-n}$ it turns out that $R_{w}=\mathbb{R}$ with $t_{0}=\infty$. However, if $R_{w} \neq \mathbb{R}$, then t_{0} is finite with $t_{0} \geq-1$ and $R_{w}=\left(-\infty, t_{0}\right)$ or $R_{w}=\left(-\infty, t_{0}\right]$. Moreover, $R_{w}=\emptyset$ is not possible as $\sum_{n=1}^{\infty} n^{t} w(n) \leq$ $\|w\|_{\infty} \sum_{n=1}^{\infty} n^{t}<\infty$ whenever $t<-1$. If $a_{w}>0$, then necessarily $t_{0}=-1$, but $-1 \notin R_{w}$ as $\sum_{n=1}^{\infty} n^{t} w(n) \geq a_{w} \sum_{n=1}^{\infty} n^{t}$ for all $t \in \mathbb{R}$.

The following result clarifies the connection between s_{p} and t_{0}.
Proposition 3.1. Let $w=(w(n))_{n \in \mathbb{N}}$ be a bounded, strictly positive sequence.
(i) For each $1<p<\infty$ such that $S_{w}(p) \neq \emptyset$,

$$
t_{0} \leq \frac{s_{p} p}{p^{\prime}}=(p-1) s_{p}
$$

In particular, $R_{w} \neq \mathbb{R}$ whenever there exists $p \in(1, \infty)$ with $S_{w}(p) \neq \emptyset$.
(ii) If $R_{w} \neq \mathbb{R}$, then $S_{w}(p) \subseteq\left[1+\left(t_{0} /(p-1)\right)\right.$, $\left.\infty\right)$ for every $1<p<\infty$.
(iii) Suppose that $1<p<\infty$ satisfies $S_{w}(p) \neq \emptyset$. Then

$$
S_{w}(p) \subseteq S_{w}(q), \quad q \in[p, \infty)
$$

In particular, $S_{w}(q) \neq \emptyset$ and $s_{q} \leq s_{p}$ whenever $q \geq p$.
(iv) If $S_{w}(p)=\emptyset$ for some $1<p<\infty$, then $S_{w}(q)=\emptyset$ for all $1<q \leq p$.

Proof. (i) Suppose that $S_{w}(p) \neq \emptyset$. Fix $s>s_{p}$. Since $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)<\infty$, there exists $N \in \mathbb{N}$ such that $1 / n^{s} w(n)^{p^{\prime} / p} \leq 1$ for $n \geq N$ and hence $n^{s p / p^{\prime}} w(n) \geq 1$ for $n \geq N$. So, the series $\sum_{n=1}^{\infty} n^{s p / p^{\prime}} w(n)$ diverges, which yields that $t_{0} \leq s p / p^{\prime}$. Accordingly, $t_{0} \leq s_{p} p / p^{\prime}$. In particular, $R_{w} \neq \mathbb{R}$.
(ii) Fix $p \in(1, \infty)$ and any $t<t_{0}$, in which case $\sum_{n=1}^{\infty} n^{t} w(n)<\infty$. Hence, there exists $K \in \mathbb{N}$ such that $n^{t} \leq 1 / w(n)$ for $n \geq K$, that is, $n^{t p^{\prime} / p} \leq 1 / w(n)^{p^{\prime} / p}$ for $n \geq K$. So, for any $s \in \mathbb{R}\left(\right.$ as $1 / n^{s}>0$ for $n \in \mathbb{N}$),

$$
\frac{1}{n^{s-\left(t p^{\prime} / p\right)}}=\frac{n^{t p^{\prime} / p}}{n^{s}} \leq \frac{1}{n^{s} w(n)^{p^{\prime} / p}}, \quad n \geq K .
$$

Choose now $s \leq 1+\left(t p^{\prime} / p\right)$. It follows from the previous inequality that $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)$ diverges. Hence, $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)$ diverges whenever $s \leq$ $1+\left(t p^{\prime} / p\right)$ for some $t<t_{0}$, that is, whenever $s \in\left(-\infty, 1+\left(t_{0} p^{\prime} / p\right)\right)$. So, $S_{w}(p) \subseteq$ $\left[1+\left(t_{0} p^{\prime} / p\right), \infty\right)=\left[1+\left(t_{0} /(p-1)\right), \infty\right)$.
(iii) Fix $s \in S_{w}(p)$, that is, $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)<\infty$. For every $1<q<\infty$,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{q^{\prime} / q}}=\sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{p^{\prime} / p}} \cdot w(n)^{\left(p^{\prime} / p\right)-\left(q^{\prime} / q\right)} \leq\|w\|_{\infty}^{\left(p^{\prime} / p\right)-\left(q^{\prime} / q\right)} \sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{p^{\prime} / p}}
$$

which is finite provided that $p^{\prime} / p \geq q^{\prime} / q$. This is equivalent to $\left(p^{\prime}-1\right) \geq\left(q^{\prime}-1\right)$, that is, to $q \geq p$. Hence, whenever $q \geq p$ we have $S_{w}(p) \subseteq S_{w}(q)$, which clearly implies $S_{w}(q) \neq \emptyset$ and $s_{q} \leq s_{p}$.
(iv) Follows immediately from part (iii).

Define $\Sigma:=\{1 / n: n \in \mathbb{N}\}$ and let $\Sigma_{0}:=\{0\} \cup\{1 / n: n \in \mathbb{N}\}$ be its closure. The following inequalities will be needed later.

Lemma 3.2.
(i) Let $\lambda \in \mathbb{C} \backslash \Sigma_{0}$ and set $\alpha:=\operatorname{Re}(1 / \lambda)$. Then there exist constants $d>0$ and $D>0$ (depending on α) such that

$$
\begin{equation*}
\frac{d}{n^{\alpha}} \leq \prod_{k=1}^{n}\left|1-\frac{1}{k \lambda}\right| \leq \frac{D}{n^{\alpha}}, \quad n \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

(ii) For each $m \in \mathbb{N}$,

$$
\begin{equation*}
\frac{(n-1)!}{(n-m)!} \simeq n^{m-1} \quad \text { for all large } n \in \mathbb{N} \text {. } \tag{3.3}
\end{equation*}
$$

(iii) Let $1<p<\infty$ and $w=(w(n))_{n \in \mathbb{N}}$ be a positive decreasing sequence. Then

$$
\begin{equation*}
\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in \ell_{p} \quad \forall m \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left(n^{m} w(n)^{1 / p}\right)_{n \in \mathbb{N}} \in \ell_{p} \quad \forall m \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

Proof. (i) The inequalities in (3.2) follow as in [18, proof of Lemma 7], where the restriction $\alpha<1$ is assumed. Indeed, with $(1 / \lambda)=\alpha+i \beta$ (for $\alpha, \beta \in \mathbb{R}$), and using $1+x \leq e^{x}$ for $x>0$,

$$
\begin{aligned}
\prod_{k=1}^{n}\left|1-\frac{1}{k \lambda}\right| & =\prod_{k=1}^{n}\left(1-\frac{2 \alpha}{k}+\frac{\alpha^{2}+\beta^{2}}{k^{2}}\right)^{1 / 2} \\
& \leq \exp \sum_{k=1}^{n}\left(-\frac{\alpha}{k}+\frac{C}{k^{2}}\right) \leq \exp (-\alpha \log (n)+v) \leq \frac{D}{n^{\alpha}}
\end{aligned}
$$

An application of Taylor's formula to $x \mapsto(1+x)^{-1 / 2}$ for $x>-1$ yields

$$
\begin{aligned}
\prod_{k=1}^{n}\left|1-\frac{1}{k \lambda}\right|^{-1} & =\prod_{k=1}^{n}\left(1-\frac{2 \alpha}{k}+\frac{\alpha^{2}+\beta^{2}}{k^{2}}\right)^{-1 / 2} \leq \prod_{k=1}^{n}\left(1+\frac{\alpha}{k}+\frac{C^{\prime}}{k^{2}}\right) \\
& \leq \exp \sum_{k=1}^{n}\left(\frac{\alpha}{k}+\frac{C^{\prime}}{k^{2}}\right) \leq \exp \left(\alpha \log (n)+v^{\prime}\right)=d^{-1} n^{\alpha} .
\end{aligned}
$$

(ii) Fix $m \in \mathbb{N}$. Then, for all large $n>m$,

$$
\frac{(n-1)!}{(n-m)!}=(n-1) \cdots(n-m+1)=n^{m-1}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \simeq n^{m-1}
$$

(iii) Suppose that (3.4) holds. Fix $m \in \mathbb{N}$. Let $k \in \mathbb{N}$ satisfy $k \geq(2+m p)$. Since $\left(n^{k} w(n)\right)_{n \in \mathbb{N}} \in \ell_{p}$, there exists $N \in \mathbb{N}$ such that

$$
w(n) \leq \frac{1}{n^{k}} \leq \frac{1}{n^{2+m p}}, \quad n>N
$$

It follows that

$$
\sum_{n=1}^{\infty} n^{m p} w(n) \leq \sum_{n=1}^{N} n^{m p} w(n)+\sum_{n=N+1}^{\infty} n^{m p}\left(\frac{1}{n^{2+m p}}\right)<\infty
$$

that is, $\left(n^{m} w(n)^{1 / p}\right)_{n \in \mathbb{N}} \in \ell_{p}$. Accordingly, (3.5) is satisfied.
Conversely, suppose that (3.5) holds. Since $\left(n w(n)^{1 / p}\right)_{n \in \mathbb{N}} \in \ell_{p}$, there exists $K \in \mathbb{N}$ such that $w(n) \leq 1$ for $n \geq K$ and hence $w(n) \leq w(n)^{1 / p}$ for $n \geq K$. Fix $m \in \mathbb{N}$. Then $n^{m} w(n) \leq n^{m} w(n)^{1 / p}$ for $n \geq K$. Since $\left(n^{m} w(n)^{1 / p}\right)_{n \in \mathbb{N}} \in \ell_{p}$, we can conclude that also $\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in \ell_{p}$. Hence, (3.4) is satisfied.

This concludes the proof.

If $S_{w}(p) \neq \emptyset$, then $s_{p} \geq 1$ and so $p^{\prime} / 2 s_{p} \leq p^{\prime} / 2$, which is relevant for the following results. Also relevant is that $\left\|\mathrm{C}^{(p, w}\right\|<p^{\prime}$ is possible; see Section 2.

We now come to the main result of this section.
Theorem 3.3. Let $w=(w(n))_{n \in \mathbb{N}}$ be a positive decreasing sequence.
(i) Suppose that $S_{w}(p) \neq \emptyset$ for some $1<p<\infty$. Then for the dual operator $\left(\mathrm{C}^{(p, w)}\right)^{\prime} \in \mathcal{L}\left(\left(\ell_{p}(w)\right)^{\prime}\right)$ of $\mathrm{C}^{(p, w)}$,

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right|<\frac{p^{\prime}}{2 s_{p}}\right\} \cup \Sigma \subseteq \sigma_{p t}\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{p t}\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right) \backslash \Sigma \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right| \leq \frac{p^{\prime}}{2 s_{p}}\right\} \tag{3.7}
\end{equation*}
$$

For the Cesàro operator $\mathbf{C}^{(p, w)}$ itself,

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right| \leq \frac{p^{\prime}}{2 s_{p}}\right\} \cup \Sigma \subseteq \sigma\left(\mathrm{C}^{(p, w)}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma\left(\mathbb{C}^{(p, w)}\right) \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\} \cap\left\{\lambda \in \mathbb{C}:|\lambda| \leq\left\|\mathbb{C}^{(p, w)}\right\|\right\} . \tag{3.9}
\end{equation*}
$$

(ii) Suppose that $R_{w} \neq \mathbb{R}$, that is, $t_{0}<\infty$. Then, for every $1<p<\infty$,

$$
\begin{equation*}
\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m<\frac{t_{0}}{p}+1\right\} \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right) \subseteq\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m \leq \frac{t_{0}}{p}+1\right\} \tag{3.10}
\end{equation*}
$$

If $R_{w}=\mathbb{R}$, then

$$
\begin{equation*}
\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\Sigma \quad \forall 1<p<\infty . \tag{3.11}
\end{equation*}
$$

Proof. The proof is via a series of steps.
(i) By Proposition 2.2, $\mathrm{C}^{(p, w)} \in \mathcal{L}\left(\ell_{p}(w)\right)$ with $\left\|\mathrm{C}^{(p, w)}\right\| \leq p^{\prime}$. The dual operator $A:=\left(\mathrm{C}^{p, w}\right)^{\prime} \in \mathcal{L}\left(\ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)\right)$ also satisfies $\|A\| \leq p^{\prime}$ and is given by

$$
A y=\left(\sum_{k=n}^{\infty} \frac{y_{k}}{k}\right)_{n \in \mathbb{N}}, \quad y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right) .
$$

Step 1. We show $0 \notin \sigma_{p t}(A)$.
Observe that $A y=0$ for some $y \in \ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$ implies that $z_{n}:=\sum_{k=n}^{\infty}\left(y_{k} / k\right)=0$ for all $n \in \mathbb{N}$. Hence, $y_{n}=n\left(z_{n}-z_{n+1}\right)=0$ for $n \in \mathbb{N}$, and so A is injective.
Step 2. We show $\Sigma \subseteq \sigma_{p t}(A)$.
Let $\lambda \in \Sigma$, that is, $\lambda=1 / m$ for some $m \in \mathbb{N}$. Via (3.12) below, the nonzero vector $y=\left(y_{n}\right)_{n \in \mathbb{N}}$, defined via $y_{1} \in \mathbb{C} \backslash\{0\}$ arbitrary, $y_{n}:=y_{1} \prod_{k=1}^{n-1}(1-(1 / \lambda k))$ for $1<n \leq m$ and $y_{n}:=0$ for $n>m$, which belongs to $\ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$, satisfies $A y=\lambda y$.

Step 3. We show $\left\{\lambda \in \mathbb{C}:\left|\lambda-\left(p^{\prime} / 2 s_{p}\right)\right|<p^{\prime} / 2 s_{p}\right\} \subseteq \sigma_{p t}(A)$.
Let $\lambda \in \mathbb{C} \backslash\{0\}$. Then $A y=\lambda y$ for some nonzero $y \in \ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$ if and only if $\lambda y_{n}=\sum_{k=n}^{\infty}\left(y_{k} / k\right)$ for all $n \in \mathbb{N}$. This yields, for every $n \in \mathbb{N}$, that $\lambda\left(y_{n}-y_{n+1}\right)=y_{n} / n$ and so $y_{n+1}=(1-(1 / \lambda n)) y_{n}$. It follows that

$$
\begin{equation*}
y_{n+1}=y_{1} \prod_{k=1}^{n}\left(1-\frac{1}{\lambda k}\right), \quad n \in \mathbb{N}, \tag{3.12}
\end{equation*}
$$

with $y_{1} \neq 0$. In particular, each eigenvalue of A is simple.
Now let $\lambda \in \mathbb{C} \backslash \Sigma$ satisfy $\left|\lambda-\left(p^{\prime} / 2 s_{p}\right)\right|<p^{\prime} / 2 s_{p}$ (equivalently, $\alpha:=\operatorname{Re}(1 / \lambda)>$ s_{p} / p^{\prime}, that is, $\left.\alpha p^{\prime}=\operatorname{Re}\left(p^{\prime} / \lambda\right)>s_{p}\right)$. For such a λ, the vector $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ defined by (3.12) actually belongs to $\ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$. Indeed, via Lemma 3.2(i) there exists $c=c(\lambda)>0$ such that

$$
\prod_{k=1}^{n}\left|1-\frac{1}{\lambda k}\right|^{p^{\prime}} \leq c n^{-\operatorname{Re}\left(p^{\prime} / \lambda\right)}, \quad n \in \mathbb{N} .
$$

It then follows from (3.12) that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|y_{n}\right|^{p^{\prime}} w(n)^{-p^{\prime} / p} & =\left|y_{1}\right|^{p^{\prime}} w(1)^{-p^{\prime} / p}+\left|y_{1}\right|^{p^{\prime}} \sum_{n=2}^{\infty} \prod_{k=1}^{n}\left|1-\frac{1}{\lambda k}\right|^{p^{\prime}} w(n)^{-p^{\prime} / p} \\
& \leq\left|y_{1}\right|^{p^{\prime}} w(1)^{-p^{\prime} / p}+c\left|y_{1}\right|^{p^{\prime}} \sum_{n=2}^{\infty} n^{-\operatorname{Re}\left(p^{\prime} / \lambda\right)} w(n)^{-p^{\prime} / p}
\end{aligned}
$$

where the series $\sum_{n=2}^{\infty} n^{-\operatorname{Re}\left(p^{\prime} / \lambda\right)} w(n)^{-p^{\prime} / p}$ converges because $\operatorname{Re}\left(p^{\prime} / \lambda\right) \in S_{w}(p)$, that is, $y \in \ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$. Hence, $\lambda \in \sigma_{p t}(A)$.
Step 4. We show $\sigma_{p t}(A) \backslash \Sigma_{0} \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\left(p^{\prime} / 2 s_{p}\right)\right| \leq p^{\prime} / 2 s_{p}\right\}$.
Fix $\lambda \in \sigma_{p t}(A) \backslash \Sigma_{0}$. According to (3.2), there exists $\beta=\beta(\lambda)>0$ such that

$$
\begin{equation*}
\prod_{k=1}^{n}\left|1-\frac{1}{\lambda k}\right|^{p^{\prime}} \geq \beta \cdot n^{-\operatorname{Re}\left(p^{\prime} / \lambda\right)}, \quad n \in \mathbb{N} . \tag{3.13}
\end{equation*}
$$

But, as argued in Step 2 (for any $y_{1} \in \mathbb{C} \backslash\{0\}$), the eigenvector $y=\left(y_{n}\right)_{n \in \mathbb{N}}$ corresponding to the eigenvalue λ of A, which necessarily belongs to $\ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$, that is, $\sum_{n=1}^{\infty}\left|y_{n}\right|^{p^{\prime}} w(n)^{-p^{\prime} / p}<\infty$, is given by (3.12). Then (3.13) implies that also $\sum_{n=1}^{\infty}\left(1 / n^{\operatorname{Re}\left(p^{\prime} / \lambda\right)} w(n)^{p^{\prime} / p}\right)<\infty$, that is, $\operatorname{Re}\left(p^{\prime} / \lambda\right) \in S_{w}(p)$, and so $\operatorname{Re}\left(p^{\prime} / \lambda\right) \geq s_{p}$. Equivalently, $\operatorname{Re}(1 / \lambda) \geq s_{p} / p^{\prime}$, that is, $\lambda \in\left\{\mu \in \mathbb{C}:\left|\mu-\left(p^{\prime} / 2 s_{p}\right)\right| \leq p^{\prime} / 2 s_{p}\right\}$.

It is clear that Steps 1-4 establish the two containments in (3.6) and (3.7).
For every $T \in \mathcal{L}(X)$ with X a Banach space, it is known that $\sigma_{p t}\left(T^{\prime}\right) \subseteq \sigma(T)$ [10, page 581] with $\sigma(T)$ a closed subset of \mathbb{C}. Accordingly, (3.8) follows from (3.6).
Step 5. We show $\sigma\left(\mathbb{C}^{(p, w)}\right) \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\left(p^{\prime} / 2\right)\right| \leq p^{\prime} / 2\right\}$.
It suffices to show that every $\lambda \in \mathbb{C}$ with $\left|\lambda-\left(p^{\prime} / 2\right)\right|>p^{\prime} / 2$ belongs to $\rho\left(\mathrm{C}^{(p, w)}\right)$. To do this, we argue as in [7]. We recall the formula for $(\mathrm{C}-\lambda I)^{-1}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ whenever
$\lambda \notin \Sigma_{0}\left[18\right.$, page 266]: for $n \in \mathbb{N}$, the nth row of the matrix for $(\mathrm{C}-\lambda I)^{-1}$ has the entries

$$
\begin{array}{cc}
\frac{-1}{n \lambda^{2} \prod_{k=m}^{n}\left(1-\frac{1}{\lambda k}\right)}, \quad 1 \leq m<n \\
\frac{n}{1-n \lambda}=\frac{1}{\frac{1}{n}-\lambda}, \quad m=n
\end{array}
$$

and all the other entries in row n are equal to 0 . So, we can write

$$
\begin{equation*}
(\mathrm{C}-\lambda I)^{-1}=D_{\lambda}-\frac{1}{\lambda^{2}} E_{\lambda} \tag{3.14}
\end{equation*}
$$

where the diagonal operator $D_{\lambda}=\left(d_{n m}\right)_{n, m \in \mathbb{N}}$ is given by $d_{n n}:=1 /((1 / n)-\lambda)$ and $d_{n m}:=0$ if $n \neq m$. The operator $E_{\lambda}=\left(e_{n m}\right)_{n, m \in \mathbb{N}}$ is then the lower triangular matrix with $e_{1 m}=0$ for all $m \in \mathbb{N}$ and every $n \geq 2$, with $e_{n m}:=1 / n \prod_{k=m}^{n}(1-(1 / \lambda k))$ if $1 \leq m<n$ and $e_{n m}:=0$ if $m \geq n$.

If $\lambda \notin \Sigma_{0}$, then $d(\lambda):=\operatorname{dist}\left(\lambda, \Sigma_{0}\right)>0$ and $\left|d_{n n}\right| \leq 1 / d(\lambda)$ for $n \in \mathbb{N}$. Hence, for every $x \in \ell_{p}(w)$,

$$
\begin{aligned}
\left\|D_{\lambda}(x)\right\|_{p, w} & =\left(\sum_{n=1}^{\infty}\left|d_{n n} x_{n}\right|^{p} w(n)\right)^{1 / p} \\
& \leq \frac{1}{d(\lambda)}\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p} w(n)\right)^{1 / p}=\frac{1}{d(\lambda)}\|x\|_{p, w} .
\end{aligned}
$$

This means that $D_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$. So, by (3.14), it remains to show that $E_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$ whenever $\lambda \in \mathbb{C}$ satisfies $\left|\lambda-\left(p^{\prime} / 2\right)\right|>p^{\prime} / 2$. To this end, we note that if $\lambda \in \mathbb{C} \backslash \Sigma_{0}$ then with $\alpha:=\operatorname{Re}(1 / \lambda)$, it follows from (3.2) that

$$
\begin{gathered}
\left|e_{n 1}\right| \leq \frac{d^{-1}}{n^{1-\alpha}}, \quad n \geq 2, \\
\left|e_{n m}\right| \leq \frac{d^{-1} D^{\prime}}{n^{1-\alpha} m^{\alpha}}, \quad 2 \leq m<n,
\end{gathered}
$$

for some constants $d>0$ and $D^{\prime}>0$ depending on λ. So, for every $\lambda \in \mathbb{C} \backslash \Sigma_{0}$, there exists $c=c(\lambda)>0$ such that

$$
\begin{equation*}
\left|\left(E_{\lambda}(x)\right)_{n}\right| \leq c\left(G_{\lambda}(|x|)\right)_{n}, \quad x \in \mathbb{C}^{\mathbb{N}}, n \in \mathbb{N} \tag{3.15}
\end{equation*}
$$

where $\left(G_{\lambda}(x)\right)_{n}:=\sum_{k=1}^{n}\left(x_{k} / n^{1-\alpha} k^{\alpha}\right)$ with $\alpha:=\operatorname{Re}(1 / \lambda)$ and for all $x \in \mathbb{C}^{\mathbb{N}}$ and $n \in \mathbb{N}$. Clearly, (3.15) implies that $E_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$ whenever $G_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$.
Claim. The operator $G_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$ whenever $\lambda \in \mathbb{C}$ satisfies $\left|\lambda-\left(p^{\prime} / 2\right)\right|>p^{\prime} / 2$.
To establish this claim, fix $\lambda \in \mathbb{C}$ with $\left|\lambda-\left(p^{\prime} / 2\right)\right|>p^{\prime} / 2$. Then, necessarily, $\lambda \notin \Sigma_{0}$ with $\alpha:=\operatorname{Re}(1 / \lambda)<1 / p^{\prime}$ and so $(1-\alpha) p>1$. This implies that $\alpha<1$. Observe that $G_{\lambda} \in \mathcal{L}\left(\ell_{p}(w)\right)$ if and only if the operator $\tilde{G}_{\lambda}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ given by

$$
\left(\tilde{G}_{\lambda}(x)\right)_{n}=w(n)^{1 / p} \sum_{k=1}^{n} \frac{w(k)^{-1 / p}}{n^{1-\alpha} k^{\alpha}} x_{k}, \quad x \in \mathbb{C}^{\mathbb{N}}, n \in \mathbb{N}
$$

defines a continuous linear operator on ℓ_{p} (the proof of this is along the lines of that of Lemma 2.1). To prove that indeed $\tilde{G}_{\lambda} \in \mathcal{L}\left(\ell_{p}\right)$, we need to distinguish the three cases (a) $\alpha=0$, (b) $\alpha<0$ and (c) $0<\alpha<1$ and establish relevant inequalities in each case.

Case (a). Since w is decreasing, for every $n \in \mathbb{N}$,

$$
\sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}}=\sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)}} \leq \frac{n}{w(n)^{1 /(p-1)}}
$$

and hence, for every $m \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{w(n)^{1 / p}}{n} \sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)}}\right)^{p} \leq \sum_{n=1}^{m} \frac{1}{w(n)^{1 /(p-1)}} \tag{3.16}
\end{equation*}
$$

Case (b). Observe that for every $n \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{k=1}^{n} & \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}} \\
& \leq \frac{1}{w(n)^{1 /(p-1)}} \int_{1}^{n+1} x^{-\alpha p /(p-1)} d x \\
& =\frac{1}{w(n)^{1 /(p-1)}} \frac{\left((n+1)^{-(\alpha p /(p-1))+1}-1\right)}{-\frac{\alpha p}{p-1}+1} \\
& \leq \frac{(p-1)}{(p(1-\alpha)-1)} \frac{(n+1)^{(p(1-\alpha)-1) /(p-1)}}{w(n)^{1 /(p-1)}}
\end{aligned}
$$

Setting $c:=(p-1) /(p(1-\alpha)-1)>0$ it follows, for every $m \in \mathbb{N}$, that

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\frac{w(n)^{1 / p}}{n^{1-\alpha}} \sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}}\right)^{p} \\
& \quad \leq c^{p} \sum_{n=1}^{m} \frac{(n+1)^{p(p(1-\alpha)-1) /(p-1)}}{w(n)^{1 /(p-1)} n^{(1-\alpha) p}} \\
& \quad \leq 2^{p(p(1-\alpha)-1) /(p-1)} c^{p} \sum_{n=1}^{m} \frac{1}{w(n)^{1 /(p-1)} n^{\alpha p /(p-1)}} . \tag{3.17}
\end{align*}
$$

Case (c). For every $n \in \mathbb{N}$, still with $c=(p-1) /(p(1-\alpha)-1)$,

$$
\begin{aligned}
\sum_{k=2}^{n} \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}} & \leq \frac{1}{w(n)^{1 /(p-1)}} \int_{1}^{n} \frac{1}{x^{\alpha p /(p-1)}} d x \\
& =\frac{c}{w(n)^{1 /(p-1)}}\left(n^{(p(1-\alpha)-1) /(p-1)}-1\right)
\end{aligned}
$$

Since $(1-\alpha) p>1$ (that is, $(1-\alpha) p-1>0)$ and $\alpha p>0$ with $1 / w(1) \leq 1 / w(n)$, this implies, for every $n \in \mathbb{N}$, that

$$
\begin{aligned}
& \left(\frac{w(n)^{1 / p}}{n^{1-\alpha}} \sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}}\right)^{p} \\
& \quad \leq\left[\frac{w(n)^{1 / p}}{n^{1-\alpha} w(1)^{1 /(p-1)}}+\frac{w(n)^{1 / p} c}{n^{1-\alpha} w(n)^{1 /(p-1)}}\left(n^{(p(1-\alpha)-1) /(p-1)}-1\right)\right]^{p} \\
& \quad \leq\left[\frac{w(n)^{1 / p}}{n^{1-\alpha} w(n)^{1 /(p-1)}}+\frac{w(n)^{1 / p} c}{n^{1-\alpha} w(n)^{1 /(p-1)}}\left(n^{(p(1-\alpha)-1) /(p-1)}-1\right)\right]^{p} \\
& \quad=\left[(1-c) \frac{w(n)^{1 / p}}{n^{1-\alpha} w(n)^{1 /(p-1)}}+\frac{w(n)^{1 / p} c}{n^{1-\alpha} w(n)^{1 /(p-1)}} n^{(p(1-\alpha)-1) /(p-1)}\right]^{p} \\
& \quad=\left(\frac{-\alpha p}{p(1-\alpha)-1} \frac{w(n)^{1 / p}}{n^{1-\alpha} w(n)^{1 /(p-1)}}+\frac{w(n)^{-1 / p(p-1)} c}{n^{1-\alpha}} n^{(p(1-\alpha)-1) /(p-1)}\right)^{p} \\
& \quad \leq\left(\frac{w(n)^{-1 / p(p-1)} c}{n^{1-\alpha}} n^{(p(1-\alpha)-1) /(p-1)}\right)^{p} \\
& \quad=c^{p} w(n)^{-1 /(p-1)} n^{-\alpha p /(p-1)} .
\end{aligned}
$$

Hence, for every $m \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{w(n)^{1 / p}}{n^{1-\alpha}} \sum_{k=1}^{n} \frac{1}{w(k)^{1 /(p-1)} k^{\alpha p /(p-1)}}\right)^{p} \leq c^{p} \sum_{n=1}^{m} \frac{1}{w(n)^{1 /(p-1)} n^{\alpha p /(p-1)}} \tag{3.18}
\end{equation*}
$$

The inequalities (3.16)-(3.18) imply that $\tilde{G}_{\lambda} \in \mathcal{L}\left(\ell_{p}\right)$; indeed, in each case, suitable choices of a_{n} and b_{k} (with $p=q$) allow us to apply [5, Theorem 2(ii)]. This establishes the claim and hence also Step 5.

Step 6. We note that $\sigma\left(\mathrm{C}^{(p, w)}\right) \subseteq\left\{\lambda \in \mathbb{C}:|\lambda| \leq\left\|\mathrm{C}^{(p, w)}\right\|\right\}$.
This is well known, [10, Ch. VII Lemma 3.4].
Steps 5 and 6 clearly yield (3.9). The proof of part (i) is thereby complete.
(ii) Suppose first that $R_{w} \neq \mathbb{R}$. Fix any $1<p<\infty$.

Step 7. Both of the inclusions in (3.10) are valid.
The Cesàro operator $\mathbf{C}^{(p, w)}$ is clearly injective. So, $0 \notin \sigma_{p t}\left(\mathbf{C}^{(p, w)}\right)$. Let $\lambda \in \mathbb{C} \backslash\{0\}$. Consider the equation $(\lambda I-\mathbb{C}) x=0$ with $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \backslash\{0\}$. Then $x_{1}=\lambda x_{1}$ and $(2 \lambda-1) x_{2}=x_{1}$ and $(n \lambda-1) x_{n}=\lambda(n-1) x_{n-1}$ for all $n \geq 3$. If $m \in \mathbb{N}$ denotes the smallest positive integer such that $x_{m} \neq 0$, then it follows that $\lambda=1 / m$ and so $x_{n}=((n-1) /(n-m)) x_{n-1}$ for all $n>m$. Thus,

$$
\begin{equation*}
x_{n}=x_{m+(n-m)}=\frac{(n-1)!}{(m-1)!(n-m)!} x_{m}, \quad n \geq m . \tag{3.19}
\end{equation*}
$$

According to (3.3), we have $((n-1)!/((m-1)!(n-m)!)) \simeq(1 /(m-1)!) n^{m-1}$ for each $m \in \mathbb{N}$. So, $x \in \ell_{p}(w)$ if and only if the series $\sum_{n=m+1}^{\infty} n^{(m-1) p} w(n)$ converges. But the
series $\sum_{n=m+1}^{\infty} n^{(m-1) p} w(n)$ converges precisely when $(m-1) p \in R_{w}$. In this case, $(m-$ 1) $p \leq t_{0}$, that is, $m \leq\left(t_{0} / p\right)+1$. So, $\sigma_{p t}\left(\mathbf{C}^{(p, w)}\right) \subseteq\left\{1 / m: m \in \mathbb{N}, 1 \leq m \leq\left(t_{0} / p\right)+1\right\}$.

Conversely, if $m<\left(t_{0} / p\right)+1$ for some $m \in \mathbb{N}$, that is, $(m-1) p<t_{0}$, then $(m-1) p \in$ R_{w} as $t_{0}=\sup R_{w}$. Then the vector $x \in \mathbb{C}^{\mathbb{N}}$ defined according to (3.19), with $x_{1}=\cdots=$ $x_{m-1}=0$ and for any arbitrary $x_{m} \neq 0$, belongs to $\ell_{p}(w)$. Therefore, $1 / m \in \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$.
Step 8. Assume now that $R_{w}=\mathbb{R}$. Then (3.11) is valid.
Fix $1<p<\infty$. As argued in Step 7, the point $1 / m \in \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ if and only if $(m-1) p \in R_{w}$. But, for $R_{w}=\mathbb{R}$, this is satisfied for every $m \in \mathbb{N}$ and so $\Sigma \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$. On the other hand, it is also shown in the proof of Step 7 that every eigenvalue λ of $\mathbb{C}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ must have the form $\lambda=1 / m$ for some $m \in \mathbb{N}$. Since every eigenvalue of $\mathrm{C}^{(p, w)}$ is also an eigenvalue of $\mathrm{C}\left(\right.$ as $\left.\ell_{p}(w) \subseteq \mathbb{C}^{\mathbb{N}}\right)$, it follows that $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right) \subseteq \Sigma$.
Remark 3.4.
(i) If $s_{p} \notin S_{w}(p)$ for some $1<p<\infty$, then the argument of Step 4 in the proof of Theorem 3.3 implies that (3.6) reduces to the equality

$$
\sigma_{p t}\left(\left(\mathbb{C}^{(p, w)}\right)^{\prime}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right|<\frac{p^{\prime}}{2 s_{p}}\right\} \cup \Sigma .
$$

Also, if $t_{0} \notin R_{w}$, then (3.10) reduces to the equality

$$
\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m<\frac{t_{0}}{p}+1\right\}, \quad 1<p<\infty .
$$

(ii) For $w(n)=1$, for all $n \in \mathbb{N}$, in which case $\ell_{p}(w)=\ell_{p}$ and $s_{p}=1$, we have that $\mathbf{C}^{(p, w)}=\mathbf{C}^{(p)}$ for all $1<p<\infty$ with $\left\|\mathbf{C}^{(p, w)}\right\|=\left\|\mathbf{C}^{(p)}\right\|=p^{\prime}$. Then (3.8) and (3.9) imply the known fact

$$
\begin{equation*}
\sigma\left(\mathbb{C}^{(p)}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\} . \tag{3.20}
\end{equation*}
$$

Since $t_{0}=-1$, we also recover from (3.10) the known fact $\sigma_{p t}\left(\mathrm{C}^{(p)}\right)=\emptyset$.
(iii) According to (3.8), for w positive, decreasing and with $S_{w}(p) \neq \emptyset$,

$$
\begin{equation*}
\frac{p^{\prime}}{s_{p}} \leq \max \left\{1, \frac{p^{\prime}}{s_{p}}\right\} \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq p^{\prime} . \tag{3.21}
\end{equation*}
$$

In particular, whenever $s_{p}=1$ (see, for example, Example 3.5(i) below), the inequalities in (3.21) imply that necessarily $\left\|\mathbf{C}^{(p, w)}\right\|=p^{\prime}$ is as large as possible. For the special case where $w(n)=1 / n^{\alpha}, n \in \mathbb{N}$, for some $\alpha>0$, direct calculation yields $s_{p}=1+\left(\alpha p^{\prime} / p\right)$ and so $S_{w}(p) \neq \emptyset$ for all $1<p<\infty$. It follows that

$$
\frac{p^{\prime}}{s_{p}}=\frac{p}{\alpha+p-1}=m_{1}
$$

where m_{1} occurs in the lower bound for $\left\|\mathrm{C}^{(p, w)}\right\|$ as given in (2.4); see Proposition 2.3. Hence, (3.21) yields $m_{1} \leq\left\|C^{(p, w)}\right\|$. Combined with Example 2.4(iii) we can conclude that

$$
\max \left\{m_{1}, m_{2}\right\} \leq\left\|\mathbf{C}^{(p, w)}\right\| .
$$

This provides an alternate proof to that in [12] of the same estimate in (2.4).
(iv) An examination of the argument for Step 2 in the proof of Theorem 3.3(i) shows that the assumption $S_{w}(p) \neq \emptyset$ is not used there, that is, we always have

$$
\Sigma \subseteq \sigma_{p t}\left(\left(\mathbf{C}^{(p, w)}\right)^{\prime}\right)
$$

for every $1<p<\infty$ and every positive decreasing weight w.
We now present some relevant examples.

Example 3.5.

(i) Suppose that $w(n)=1 /(\log (n+1))^{\gamma}$ for $n \in \mathbb{N}$ with $\gamma \geq 0$. Then

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s} w(n)^{p^{\prime} / p}}<\infty
$$

if and only if $s>1$ and hence $s_{p}=1$ for every $1<p<\infty$. In view of Remark 3.4(iii) we have that $\left\|\mathrm{C}^{(p, w)}\right\|=p^{\prime}$. Moreover, $\sum_{n=1}^{\infty} n^{t} w(n)<\infty$ if and only if $t<-1$ or $t \leq-1$ for $\gamma>1$. Hence, $t_{0}=-1$. According to Theorem 3.3, for each $1<p<\infty$,

$$
\sigma\left(\mathbb{C}^{(p, w)}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\}, \quad \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\emptyset .
$$

In particular, equality may occur in (3.9). For the case where $\gamma=0$ (so that $w(n)=1$ for $n \in \mathbb{N}$, we recover the known result about the spectrum of $\mathrm{C}^{(p)} \in$ $\mathcal{L}\left(\ell_{p}\right)$ for $1<p<\infty[6,14]$.
(ii) More generally, suppose that $w(n)=1 / n^{\beta}(\log (n+1))^{\gamma}$ for $n \in \mathbb{N}$ with $\beta \geq 0$ and $\gamma \geq 0$. Then $\sum_{n=1}^{\infty}\left(1 / n^{s} w(n)^{p^{\prime} / p}\right)<\infty$ if and only if $s>\left(\beta p^{\prime} / p\right)+1$ and so $s_{p}=\left(\beta p^{\prime} / p\right)+1$ for every $1<p<\infty$. Moreover, $\sum_{n=1}^{\infty} n^{t} w(n)<\infty$ if and only if $t<(\beta-1)$ or $t \leq(\beta-1)$ for $\gamma>1$. Hence, $t_{0}=\beta-1$. According to Theorem 3.3, for each $1<p<\infty$,

$$
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2\left(\left(\beta p^{\prime} / p\right)+1\right)}\right| \leq \frac{p^{\prime}}{2\left(\left(\beta p^{\prime} / p\right)+1\right)}\right\} \cup \Sigma \subseteq \sigma\left(\mathrm{C}^{(p, w)}\right)
$$

and

$$
\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m<\frac{\beta-1}{p}+1\right\}
$$

In particular, $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\emptyset$ whenever $\beta \in[0,1]$. We claim that actually

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2\left(\left(\beta p^{\prime} / p\right)+1\right)}\right| \leq \frac{p^{\prime}}{2\left(\left(\beta p^{\prime} / p\right)+1\right)}\right\} \cup \Sigma=\sigma\left(\mathrm{C}^{(p, w)}\right) \tag{3.22}
\end{equation*}
$$

which shows that equality may occur in (3.8).
Keeping in mind the argument for Step 5 in the proof of Theorem 3.3, to verify (3.22) it suffices to prove that every $\lambda \in \mathbb{C} \backslash\{0\}$ satisfying

$$
\left|\lambda-\left(p^{\prime} / 2\left(\left(\beta p^{\prime} / p\right)+1\right)\right)\right|>p^{\prime} / 2\left(\left(\beta p^{\prime} / p\right)+1\right)
$$

belongs to $\rho\left(\mathbf{C}^{(p, w)}\right)$, that is, the operator $\tilde{G}_{\lambda} \in \mathcal{L}\left(\ell_{p}\right)$. So, fix such a λ and note that

$$
\alpha:=\operatorname{Re}\left(\frac{1}{\lambda}\right)<\left(\beta \frac{p^{\prime}}{p}+1\right) / p^{\prime}=\frac{\beta}{p}+\frac{1}{p^{\prime}} .
$$

We also observe, for our particular w, that the operator \tilde{G}_{λ} is given by

$$
\left(\tilde{G}_{\lambda}(x)\right)_{n}=\frac{1}{n^{1-\alpha+(\beta / p)} \log ^{\gamma / p}(n+1)} \sum_{k=1}^{n} \frac{x_{k}}{k^{\alpha-(\beta / p)} \log ^{-\gamma / p}(k+1)}
$$

for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$. So, \tilde{G}_{λ} is given by the factorable matrix with $a_{n}:=$ $n^{-(1-\alpha+(\beta / p))} \log ^{-\gamma / p}(n+1)$ and $b_{k}:=k^{-(\alpha-(\beta / p))} \log ^{\gamma / p}(k+1)$, where $\alpha<(\beta / p)+$ $\left(1 / p^{\prime}\right)=(\beta / p)+1-(1 / p)$ implies that $1-\alpha+(\beta / p)>1 / p$ and

$$
\left(1-\alpha+\frac{\beta}{p}\right)+\left(\alpha-\frac{\beta}{p}\right)=1=\frac{1}{p}+\frac{1}{p^{\prime}}
$$

and also that $(\gamma / p)+(-\gamma / p)=0$. According to [5, Corollary 9(ii)], it follows that $\tilde{G}_{\lambda} \in \mathcal{L}\left(\ell_{p}\right)$ and the claim is proved.
Finally, since $s_{p}=(\beta+p-1) /(p-1)$, it follows from (3.21) that

$$
p^{\prime} \cdot \frac{p-1}{\beta+p-1} \leq\left\|\mathrm{C}^{(p, w)}\right\| \leq p^{\prime}, \quad 1<p<\infty,
$$

with $(p-1) /(\beta+p-1) \uparrow 1$ for $\beta \downarrow 0$. This example also shows that the inequality $t_{0} \leq s_{p} p^{\prime} / p$ (cf. Proposition 3.1(i)) can be strict. For $\beta \downarrow 0$ it follows from (3.8) and (3.9) that

$$
\sigma\left(\mathbf{C}^{(p, w)}\right) \uparrow\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right|<\frac{p^{\prime}}{2}\right\}
$$

whose closure equals $\sigma\left(\mathrm{C}^{(p)}\right)=\sigma\left(\mathrm{C}^{(p, w)}\right)$ for w as in (i).
It is clear from (3.10) that $\mathrm{C}^{(p, w)}$ has at most finitely many eigenvalues whenever $t_{0} \in \mathbb{R}$. The following result characterizes the case where $\sigma_{p t}\left(\mathbf{C}^{(p, w)}\right)$ is an infinite set; see also Remark 3.8(i) below. Recall that a sequence $u=\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ is rapidly decreasing if $\left(n^{m} u_{n}\right)_{n \in \mathbb{N}} \in \ell_{1}$ for every $m \in \mathbb{N}$. The space of all rapidly decreasing, \mathbb{C}-valued sequences is usually denoted by s.
Proposition 3.6. Let $w=(w(n))_{n \in \mathbb{N}}$ be a positive decreasing sequence.
(i) The following assertions are equivalent.
(1) $R_{w}=\mathbb{R}$.
(2) $\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in \ell_{1}$ for all $m \in \mathbb{N}$.
(3) $\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in c_{0}$ for all $m \in \mathbb{N}$.
(4) $w \in s$.
(ii) For each $1<p<\infty$, the following assertions are equivalent.
(5) $\Sigma \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$.
(6) $\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in \ell_{p}$ for all $m \in \mathbb{N}$.
(iii) Any one of the equivalent assertions (1)-(4) implies that both (5) and (6) are valid for every $1<p<\infty$.
(iv) If (6) holds for some $1<p<\infty$, then each assertion (1)-(4) is satisfied.

Proof. (i) That (1) if and only if (2) follows from the definition of R_{w}. That (2) implies (3) is immediate from $\ell_{1} \subseteq c_{0}$. Assume (3). Fix $t \in \mathbb{N}$ and set $m=t+2$. Then $\left(n^{m} w(n)\right)_{n \in \mathbb{N}} \in c_{0}$ implies that $\sup _{n \in \mathbb{N}} n^{m} w(n)<\infty$. Accordingly,

$$
\sum_{n=1}^{\infty} n^{t} w(n)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} n^{m} w(n) \leq \frac{\pi^{2}}{6} \sup _{n \in \mathbb{N}} n^{m} w(n)<\infty .
$$

Since t is arbitrary, we can conclude that (2) holds. That (2) if and only if (4) is clear from the definition of the space s.
(ii) Since $\mathbf{C}^{(p, w)}$ is injective, $0 \notin \sigma_{p t}\left(\mathbf{C}^{(p, w)}\right)$. By (3.3) and (3.19), $\lambda \in \mathbb{C} \backslash\{0\}$ is an eigenvalue of $\mathrm{C}^{(p, w)}$ if and only if $\lambda=1 / m$ for some $m \in \mathbb{N}$ with the corresponding one-dimensional eigenspace generated by a vector $x^{[m]}=\left(x_{n}^{[m]}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ satisfying $x_{n}^{[m]} \simeq n^{m-1}$. So, $\Sigma \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ if and only if $\left(n^{m-1}\right)_{n \in \mathbb{N}} \in \ell_{p}(w)$ for all $m \in \mathbb{N}$, that is, if and only if $\left(n^{m} w(n)^{1 / p}\right)_{n \in \mathbb{N}} \in \ell_{p}$ for all $m \in \mathbb{N}$, which is equivalent to (6) via Lemma 3.2(iii).
(iii) Follows immediately from parts (i) and (ii) and the fact that (2) implies (6), since $\ell_{1} \subseteq \ell_{p}$ for every $1<p<\infty$.
(iv) Immediate from $\ell_{p} \subseteq c_{0}$ for every $1<p<\infty$.

Given a decreasing sequence $w=(w(n))_{n \in \mathbb{N}}$ of positive real numbers, set $\alpha_{n}:=$ $-\log w(n)$ for $n \in \mathbb{N}$. Then $w(n)=e^{-\alpha_{n}}$ for $n \in \mathbb{N}$. Moreover, $\alpha_{n} \rightarrow \infty$ for $n \rightarrow \infty$ if and only if $w(n) \rightarrow 0$ for $n \rightarrow \infty$.

Corollary 3.7. Let $w=(w(n))_{n \in \mathbb{N}}$ be a positive decreasing sequence.
(i) If $w \in s$, then $\lim _{n \rightarrow \infty}(\log n) / \alpha_{n}=0$.
(ii) If $\lim _{n \rightarrow \infty}(\log n) / \alpha_{n}=0$ and $w(N)<1$ for some N, then $w \in s$.

Proof. (i) Since $w \in s$, condition (3) in Proposition 3.6 implies that

$$
\forall m \in \mathbb{N} \quad \exists n_{m} \in \mathbb{N} \quad \forall n \geq n_{m}: n^{m} w(n)=\frac{n^{m}}{e^{\alpha_{n}}}<1,
$$

that is, that

$$
\forall m \in \mathbb{N} \quad \exists n_{m} \in \mathbb{N} \quad \forall n \geq n_{m}: n^{m}<e^{\alpha_{n}}
$$

It follows that

$$
\forall m \in \mathbb{N} \quad \exists n_{m} \in \mathbb{N} \quad \forall n \geq n_{m}: m \log n<\alpha_{n} .
$$

This implies that necessarily $\alpha_{n}>0$ for all $n \geq n_{m}$, and so

$$
\forall m \in \mathbb{N} \quad \exists n_{m} \in \mathbb{N} \quad \forall n \geq n_{m}: \frac{\log n}{\alpha_{n}}<\frac{1}{m} .
$$

This means precisely that $\lim _{n \rightarrow \infty}(\log n) / \alpha_{n}=0$.
(ii) Fix $m \in \mathbb{N}$. Then there is $n_{0} \in \mathbb{N}$ with $n_{0} \geq N$ such that $(\log n) / \alpha_{n}<1 /(m+1)$ for all $n \geq n_{0}$. Since $w(N)<1$ implies that $\alpha_{n}=-\log w(n)>0$ for all $n \geq n_{0}$, we can conclude that $(m+1) \log n<\alpha_{n}$, that is, $n^{m+1} w(n)<1$ for all $n \geq n_{0}$. So, $\sup _{n \in \mathbb{N}} n^{m+1} w(n)<\infty$. It follows that

$$
n^{m} w(n) \leq \frac{1}{n} \sup _{r \in \mathbb{N}} r^{m+1} w(r), \quad n \in \mathbb{N},
$$

with $(1 / n) \sup _{r \in \mathbb{N}} r^{m+1} w(r) \rightarrow 0$ as $n \rightarrow \infty$. By the equivalence of (3) and (4) in Proposition 3.6(i), it follows that $w \in s$.

Remark 3.8.
(i) Concerning condition (5) in Proposition 3.6 (for any given $1<p<\infty$), we claim that the entire set $\Sigma \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ whenever $\sigma_{p t}\left(C^{(p, w)}\right)$ is an infinite set. To see this, suppose that $1 / m \in \sigma_{p t}\left(C^{(p, w)}\right)$ for some $m \in \mathbb{N}$. According to the argument in Step 7 of the proof of Theorem 3.3, we can conclude that $\left(n^{m-1}\right)_{n \in \mathbb{N}} \in \ell_{p}(w)$. So, for all $1 \leq k<m$, it follows that

$$
\sum_{n=1}^{\infty}\left(n^{k}\right)^{p} w(n) \leq \sum_{n=1}^{\infty}\left(n^{m-1}\right)^{p} w(n)<\infty
$$

and hence, via (3.3), that the vector $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ given by (3.19), with k in place of m, also belongs to $\ell_{p}(w)$, that is, it is an eigenvector of $\mathrm{C}^{(p, w)}$ corresponding to $\lambda=1 / k$. This shows that $\{1 / k\}_{k=1}^{m} \subseteq \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ whenever $1 / m \in \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$, which clearly implies the stated claim.
(ii) Let $1<p_{0}<\infty$. The constant vector $\mathbf{1}:=(1,1, \ldots) \in \mathbb{C}^{\mathbb{N}}$ satisfies $\mathbf{C 1}=\mathbf{1}$ and so $1 \in \sigma_{p t}\left(C^{\left(p_{0}, w\right)}\right)$ if and only if $\mathbf{1} \in \ell_{p_{0}}(w)$, that is, if and only if $w \in \ell_{1}$. In this case, $1 \in \sigma_{p t}\left(C^{(p, w)}\right)$ for every $1<p<\infty$. Then Theorem 3.3(ii) implies that necessarily $t_{0} \in(0, \infty]$.
(iii) Let $w(n)=1 / n^{\alpha}$, for all $n \in \mathbb{N}$ and some $\alpha>0$. Then $\sum_{n=1}^{\infty} n^{t} w(n)<\infty$ if and only if $t<(\alpha-1)$, and so $t_{0}=(\alpha-1)$. In particular, $R_{w} \neq \mathbb{R}$. Moreover, for any $1<p<\infty$,

$$
\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m<\frac{t_{0}}{p}+1\right\}=\left\{\frac{1}{m}: m \in \mathbb{N}, 1 \leq m<\frac{(\alpha-1)}{p}+1\right\}
$$

So, given any $1<p<\infty$, it is possible to choose an appropriate $\alpha>0$ such that $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ is a finite set with any preassigned cardinality; see (3.10).
(iv) Condition (1) of Proposition 3.6, that is, $R_{w}=\mathbb{R}$, implies that necessarily $S_{w}(p)=$ \emptyset for every $1<p<\infty$; see Proposition 3.1(i).
Let $w=(w(n))_{n \in \mathbb{N}}$ be any (strictly) positive decreasing sequence and let $1<p<\infty$. The Cesàro operator $\mathrm{C}^{(p, w)}$ is similar (via an isometry) to an operator $T_{w} \in \mathcal{L}\left(\ell_{p}\right)$ which is defined by the factorable matrix $A(w)=\left(a_{n k}\right)_{n, k \in \mathbb{N}}$ with entries $a_{n k}=a_{n} b_{k}=$ $\left(w(n)^{1 / p} / n\right) \cdot w(k)^{-1 / p}$ for $1 \leq k \leq n$ and $a_{n k}=0$ for $k>n$ (see the proof of Lemma 2.1). In particular, $\sigma\left(\mathrm{C}^{(p, w)}\right)=\sigma\left(T_{w}\right)$. Moreover, the matrix $A(w)$ satisfies the following two conditions:
(i) $\sup _{n \in \mathbb{N}} \sum_{k=1}^{\infty}\left|a_{n k}\right|=\sup _{n \in \mathbb{N}}\left(w(n)^{1 / p} / n\right) \sum_{k=1}^{n} w(k)^{-1 / p} \leq 1$, because w decreasing implies that $\sum_{k=1}^{n} w(k)^{-1 / p} \leq n w(n)^{-1 / p}, n \in \mathbb{N}$; and
(ii) $f_{k}:=\lim _{n \rightarrow \infty} a_{n k}=w(k)^{-1 / p} \lim _{n \rightarrow \infty}\left(w(n)^{1 / p} / n\right)=0, k \in \mathbb{N}$, because $w \in \ell_{\infty}$.

If, in addition, the matrix $A(w)$ also satisfies the condition:
(iii) $\alpha:=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}=\lim _{n \rightarrow \infty}\left(w(n)^{1 / p} / n\right) \sum_{k=1}^{n} w(k)^{-1 / p}$ exists;
then the linear operator corresponding to $A(w)$ is a selfmap of c, the space of all convergent sequences, that is, $A(w)$ is conservative, [19, page 112].

Suppose now that the matrix $A(w)$ satisfies condition (iii) with $\alpha=1$. Then $A(w)$ is regular and the linear operator corresponding to $A(w)$ is limit preserving over c, [19, page 114]. Define $\eta:=\lim \sup _{n \rightarrow \infty} a_{n} b_{n}$. For the operator T_{w} (which is similar to the Cesàro operator $\mathbf{C}^{(p, w)}$) it turns out that $\eta=0$ and so a result of Rhoades and Yildirim [19, Theorem 3] yields

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\} \subseteq \sigma\left(\mathbb{C}^{(p, w)}\right) \tag{3.23}
\end{equation*}
$$

after noting that $S:=\overline{\left\{a_{n} b_{n}: n \in \mathbb{N}\right\}}=\Sigma_{0} \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}$.
It is worthwhile to compare (3.8) with (3.23). So, let $1<p<\infty$ and let w be a positive decreasing sequence such that $S_{w}(p) \neq \emptyset$. Then

$$
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\} \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right| \leq \frac{p^{\prime}}{2 s_{p}}\right\} \subseteq \sigma\left(\mathbb{C}^{(p, w)}\right)
$$

with the first inclusion holding if and only if $s_{p} \leq p^{\prime}$. Observe that if $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}} \in$ $\ell_{p^{\prime}}$, then $s_{p} \leq p^{\prime}$ is valid and, conversely, if $s_{p}<p^{\prime}$, then $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}} \in \ell_{p^{\prime}}$. In this case, (3.8) is a better inclusion than (3.23). For instance, if $w(n):=1 / n^{r}$ for all $n \in \mathbb{N}$ and some $r>0$, then $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}} \in \ell_{p^{\prime}}$ if and only if $r<1$. On the other hand, the reverse inclusion

$$
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2 s_{p}}\right| \leq \frac{p^{\prime}}{2 s_{p}}\right\} \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}
$$

holds if and only if $p^{\prime} \leq s_{p}$. Observe that if $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}} \notin \ell_{p^{\prime}}$, then $p^{\prime} \leq s_{p}$ is valid and, conversely, if $p^{\prime}<s_{p}$, then $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}} \notin \ell_{p^{\prime}}$. In this case, modulo the additional requirement that $\alpha=1$ (see condition (iii)), in which case (3.23) is actually valid, we see that (3.23) is a better inclusion than (3.8).

The following example shows that condition (iii) above and the property $S_{w}(p) \neq \emptyset$ can be compatible.

Example 3.9. Fix $1<p<\infty$. For each $n \in \mathbb{N}$ set $w(n)=1 /(\log (n+1))^{p}$, in which case $w(n) \downarrow 0$. Then $S_{w}(p)=(1, \infty)$ and

$$
\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\}=\sigma\left(C^{(p, w)}\right) \quad \text { with } \sigma_{p t}\left(C^{(p, w)}\right)=\emptyset
$$

see Example 3.5(i) with $\gamma=p$. Moreover, concerning condition (iii), observe that

$$
\frac{w(n)^{1 / p}}{n} \sum_{k=1}^{n} w(k)^{-1 / p}=\frac{1}{n \log (n+1)} \sum_{k=1}^{n} \log (k+1), \quad n \in \mathbb{N} .
$$

The inequalities

$$
((n+1) \log (n+1)-n) \leq \sum_{k=1}^{n} \log (k+1) \leq((n+2) \log (n+2)-n-2 \log 2), \quad n \in \mathbb{N}
$$

then imply that

$$
\alpha=\lim _{n \rightarrow \infty} \frac{w(n)^{1 / p}}{n} \sum_{k=1}^{n} w(k)^{-1 / p}=1 .
$$

Note also that $\left(w(n)^{-1 / p} / n\right)_{n \in \mathbb{N}}=((\log (n+1)) / n)_{n \in \mathbb{N}} \in \ell_{p^{\prime}}$.
We conclude this section with some comments about the mean ergodicity and the linear dynamics of $\mathrm{C}^{(p, w)}$. For X a Banach space, recall that $T \in \mathcal{L}(X)$ is mean ergodic if its sequence of Cesàro averages $T_{[n]}:=(1 / n) \sum_{m=1}^{n} T^{m}$ for $n \in \mathbb{N}$ converges to some operator $P \in \mathcal{L}(X)$ for the strong operator topology, that is, $\lim _{n \rightarrow \infty} T_{[n]} x=P x$ for each $x \in X$, [10, Ch. VIII]. Since $(1 / n) T^{n}=T_{[n]}-((n-1) / n) T_{[n-1]}$ for $n \in \mathbb{N}$ (with $\left.T_{[0]}:=I\right)$, a necessary condition for T to be mean ergodic is that $\lim _{n \rightarrow \infty}(1 / n) T^{n}=0$ (in the strong operator topology).

Let w be a positive decreasing sequence and let $1<p<\infty$ with $S_{p}(w) \neq \emptyset$. If $s_{p}<p^{\prime}$, then it follows from (3.6) that $\mu:=\frac{1}{2}\left(1+\left(p^{\prime} / s_{p}\right)\right) \in \sigma_{p t}\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right)$ and so there exists a nonzero vector $x^{\prime} \in \ell_{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$ such that $\left(\mathrm{C}^{(p, w)}\right)^{\prime} x^{\prime}=\mu x^{\prime}$. Choose any $x \in \ell_{p}(w) \backslash\{0\}$ satisfying $\left\langle x, x^{\prime}\right\rangle \neq 0$. Then

$$
\left\langle\frac{1}{n}\left(\mathrm{C}^{(p, w)}\right)^{n} x, x^{\prime}\right\rangle=\frac{1}{n}\left\langle x,\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right)^{n} x^{\prime}\right\rangle=\frac{\mu^{n}}{n}\left\langle x, x^{\prime}\right\rangle, \quad n \in \mathbb{N}
$$

with $\mu>1$ and so the set $\left\{(1 / n)\left(\mathrm{C}^{(p, w)}\right)^{n} x: n \in \mathbb{N}\right\}$ is unbounded in $\ell_{p}(w)$. In particular, the sequence $\left\{(1 / n)\left(\mathrm{C}^{(p, w)}\right)^{n}\right\}_{n \in \mathbb{N}}$ cannot converge to 0 for the strong operator topology in $\mathcal{L}\left(\ell_{p}(w)\right)$. Accordingly, $\mathrm{C}^{(p, w)}$ fails to be mean ergodic whenever $s_{p}<p^{\prime}$. This is the case when $w(n)=1$ for all $n \in \mathbb{N}$, in which case $s_{p}=1$, and we recover the known fact that the classical Cesàro operator $\mathbf{C}^{(p)}$ fails to be mean ergodic for every $1<p<\infty$; see [3, Section 4], where it is also shown that the Cesàro operator fails to be mean ergodic in the classical Banach sequence spaces $c_{0}, c, \ell_{p}(1<p \leq \infty), b v_{0}$ and $b v$, but that it is mean ergodic in $b v_{p}(1<p<\infty)$. For w as in Example 3.5(i), we recall that, also, $s_{p}=1$ for every $1<p<\infty$, and so $\mathrm{C}^{(p, w)}$ is not mean ergodic.

Concerning the dynamics of a continuous linear operator T defined on a separable Banach space X, recall that T is hypercyclic if there exists $x \in X$ such that the orbit $\left\{T^{n} x: n \in \mathbb{N}_{0}\right\}$ is dense in X. If, for some $x \in X$, the projective orbit $\left\{\lambda T^{n} x: \lambda \in \mathbb{C}, n \in\right.$ $\left.\mathbb{N}_{0}\right\}$ is dense in X, then X is said to be supercyclic. Clearly, hypercyclicity always implies supercyclicity.

Let now w be a positive decreasing sequence and let $1<p<\infty$. According to Remark 3.4(iv), the infinite set $\Sigma \subseteq \sigma_{p t}\left(\left(\mathbf{C}^{(p, w)}\right)^{\prime}\right)$. Then, by a result of Ansari and Bourdon [4, Theorem 3.2], $\mathrm{C}^{(p, w)}$ is not supercyclic and hence also not hypercyclic.

4. Compactness of $\mathbf{C}^{(p, w)}$

According to (3.20), for each $1<p<\infty$ the classical Cesàro operator $\mathrm{C}^{(p)} \in \mathcal{L}\left(\ell_{p}\right)$ is surely not compact. However, in the presence of a positive weight $w \downarrow 0$, this may no longer be the case for $\mathrm{C}^{(p, w)}$ acting on $\ell_{p}(w)$. We begin with the following fact.

Proposition 4.1. Let w be a positive decreasing weight.
(i) For every $1<p<\infty$ we have $\Sigma \subseteq \sigma\left(\mathrm{C}^{(p, w)}\right)$.
(ii) Suppose that $\mathrm{C}^{(p, w)}$ is a compact operator for some $1<p<\infty$. Then

$$
\begin{equation*}
\sigma\left(\mathrm{C}^{(p, w)}\right)=\Sigma_{0} \quad \text { and } \quad \sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)=\Sigma \tag{4.1}
\end{equation*}
$$

Moreover, $w \in s$ and $r\left(\mathrm{C}^{(p, w)}\right)<\left\|\mathrm{C}^{(p, w)}\right\|$.
Proof. (i) According to Remark 3.4(iv), we have $\Sigma \subseteq \sigma_{p t}\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right)$. But it is always the case that $\sigma_{p t}\left(\left(\mathrm{C}^{(p, w)}\right)^{\prime}\right) \subseteq \sigma\left(\mathrm{C}^{(p, w)}\right)$ [10, page 581], and so $\Sigma \subseteq \sigma\left(\mathrm{C}^{(p, w)}\right)$.
(ii) Since $\mathbf{C}^{(p, w)}$ is injective, $0 \notin \sigma_{p t}\left(\mathbf{C}^{(p, w)}\right)$. The compactness of $\mathbf{C}^{(p, w)}$ then implies $\sigma_{p t}\left(\mathbf{C}^{(p, w)}\right)=\sigma\left(\mathbf{C}^{(p, w)}\right) \backslash\{0\}[15$, Theorem 3.4.23]. According to the proof of Step 8 for Theorem 3.3, we also have that $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right) \subseteq \Sigma$. In view of part (i), the equalities in (4.1) follow.

By Theorem 3.3(ii) we must have $R_{w}=\mathbb{R}$ (if not, then t_{0} is finite and so (3.10) would imply that $\sigma_{p t}\left(\mathrm{C}^{(p, w)}\right)$ is finite, which is a contradiction to (4.1)). Then, via Proposition 3.6(i), we can conclude that $w \in s$.

It follows from (2.3) and the equality $r\left(\mathrm{C}^{(p, w)}\right)=1$ (see (4.1)) that $r\left(\mathrm{C}^{(p, w)}\right)<$ $\left\|\mathrm{C}^{(p, w)}\right\|$.

To decide when $\mathrm{C}^{(p, w)}$ is compact, first observe that $\mathrm{C}^{(p, w)}=\Phi_{w}^{-1} T_{w} \Phi_{w}$ (see Lemma 2.1 and its proof), where $T_{w} \in \mathcal{L}\left(\ell_{p}\right)$ is given by (2.2). Given any $x \in B_{p}:=$ $\left\{x \in \ell_{p}:\|x\| \leq 1\right\}$ and $i \in \mathbb{N}$, it follows from Hölder's inequality that

$$
\begin{aligned}
\sum_{n=i}^{\infty}\left|\left(T_{w} x\right)_{n}\right|^{p} & =\sum_{n=i}^{\infty} \frac{w(n)}{n^{p}}\left|\sum_{k=1}^{n} \frac{1}{w(k)^{1 / p}} \cdot x_{k}\right|^{p} \\
& \leq \sum_{n=i}^{\infty} \frac{w(n)}{n^{p}}\left(\sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}}\right)^{p / p^{\prime}}
\end{aligned}
$$

So, T_{w} (and hence also $\mathrm{C}^{(p, w)}$) will be compact whenever w satisfies the following compactness criterion:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{w(n)}{n^{p}}\left(\sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}}\right)^{p / p^{\prime}}<\infty \tag{4.2}
\end{equation*}
$$

Indeed, (4.2) implies that $\lim _{i \rightarrow \infty} \sum_{n=i}^{\infty}\left|\left(T_{w} x\right)_{n}\right|^{p}=0$ uniformly with respect to $x \in B_{p}$, from which the relative compactness in ℓ_{p} of the bounded set $T_{w}\left(B_{p}\right) \subseteq \ell_{p}$ follows, [10, pages 338-339].

We introduce some notation. Let w be a positive decreasing sequence. Define

$$
A_{n}(p, w):=w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}}, \quad n \in \mathbb{N}, 1<p<\infty .
$$

The compactness criterion (4.2) then states that $C^{(p, w)}$ is a compact operator if $\sum_{n=1}^{\infty}\left(\left(A_{n}(p, w)\right)^{p / p^{\prime}} / n^{p}\right)<\infty$.
Theorem 4.2. Suppose, for some $1<p<\infty$, that there exist constants $M>0$ and $0 \leq \alpha<1$ such that

$$
A_{n}(p, w) \leq M n^{\alpha}, \quad n \in \mathbb{N}
$$

Then $\mathbf{C}^{(q, w)}$ is a compact operator for every $1<q \leq p$. In particular, $w \in s$.
Proof. Observe, for fixed $1<q \leq p$, that

$$
\gamma:=\frac{q^{\prime}}{q}-\frac{p^{\prime}}{p}=\frac{1}{q-1}-\frac{1}{p-1}=\frac{p-q}{(q-1)(p-1)} \geq 0 .
$$

For each $n \in \mathbb{N}$,

$$
\sum_{k=1}^{n} \frac{1}{w(k)^{q^{\prime} / q}}=\sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}} \cdot w(k)^{-\gamma} .
$$

Accordingly, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
A_{n}(q, w) & =\frac{w(n)^{q^{\prime} / q}}{w(n)^{p^{\prime} / p}} \cdot w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}} \cdot w(k)^{-\gamma} \\
& =w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}} \cdot\left(\frac{w(n)}{w(k)}\right)^{\gamma}
\end{aligned}
$$

Since w is decreasing, $w(n) / w(k) \leq 1$ for all $1 \leq k \leq n$ and so

$$
A_{n}(q, w) \leq w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}}=A_{n}(p, w) \leq M n^{\alpha} .
$$

Accordingly,

$$
\sum_{n=1}^{\infty} \frac{\left(A_{n}(q, w)\right)^{q / q^{\prime}}}{n^{q}} \leq M^{q / q^{\prime}} \sum_{n=1}^{\infty} \frac{n^{\alpha q / q^{\prime}}}{n^{q}}=M^{q / q^{\prime}} \sum_{n=1}^{\infty} \frac{1}{n^{q-\left(\alpha q / q^{\prime}\right)}}
$$

But $q-\alpha q / q^{\prime}=q-\alpha(q-1)=q(1-\alpha)+\alpha>(1-\alpha)+\alpha=1$ and so

$$
\sum_{n=1}^{\infty} \frac{\left(A_{n}(q, w)\right)^{q / q^{\prime}}}{n^{q}}<\infty .
$$

Then the compactness criterion yields that $\mathrm{C}^{(q, w)}$ is a compact operator.
That $w \in s$ is a consequence of Proposition 4.1(ii).

The following consequence of Theorem 4.2 leads to a rich supply of weights w for which $\mathrm{C}^{(p, w)}$ is compact.

Corollary 4.3. Let w be a positive weight with $w \downarrow 0$. If the limit

$$
\begin{equation*}
l:=\lim _{n \rightarrow \infty} \frac{w(n)}{w(n-1)} \tag{4.3}
\end{equation*}
$$

exists in $\mathbb{R} \backslash\{1\}$, then $\mathbf{C}^{(p, w)}$ is compact for every $1<p<\infty$.
Proof. Fix $1<p<\infty$. According to Theorem 4.2 (with $\alpha=0$), it suffices to prove that $\sup _{n \in \mathbb{N}} A_{n}(p, w)<\infty$. Set $a_{n}:=\sum_{k=1}^{n} w(k)^{-p^{\prime} / p}$ and $b_{n}:=w(n)^{-p^{\prime} / p}$ for $n \in \mathbb{N}$. Since $w \downarrow 0$, we have $b_{n} \uparrow \infty$. Moreover, the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}-a_{n-1}}{b_{n}-b_{n-1}} & =\lim _{n \rightarrow \infty} \frac{w(n)^{-p^{\prime} / p}}{w(n)^{-p^{\prime} / p}-w(n-1)^{-p^{\prime} / p}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1-(w(n) / w(n-1))^{p^{\prime} / p}}=\frac{1}{1-l p^{p^{\prime} / p}}
\end{aligned}
$$

exists in \mathbb{R} as $l \neq 1$. According to the Stolz-Cesàro criterion [16, Theorem 1.22], it follows that $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=1 /\left(1-l^{p^{\prime} / p}\right) \in \mathbb{R}$, that is, $\lim _{n \rightarrow \infty} A_{n}(p, w)=$ $1 /\left(1-l^{p^{\prime} / p}\right) \in \mathbb{R}$. In particular, $\sup _{n \in \mathbb{N}} A_{n}(p, w)<\infty$ is indeed satisfied.

Remark 4.4.

(i) Let w be a positive decreasing weight.
(a) According to (3.8), if $\mathrm{C}^{(p, w)}$ is a compact operator for some $1<p<\infty$, then $S_{w}(p)=\emptyset$.
(b) The condition $w \downarrow 0$ by itself need not imply that $S_{w}(p)=\emptyset$ (see, for instance, Example 3.5).
(ii) Suppose $S_{w}(p) \neq \emptyset$ for some $1<p<\infty$. Then $\mathrm{C}^{(q, w)}$ fails to be compact for every $q \in[p, \infty)$. This follows from part (i)(a) and Proposition 3.1(iii).
(iii) The following examples (a)-(c) all fall within the scope of Corollary 4.3. So, in each case, $w \in s$ and the identities in (4.1) hold; see Proposition 4.1.
(a) For any fixed $a>1$ and $r \geq 0$ set $w(n):=n^{r} / a^{n}$ for $n \in \mathbb{N}$. Then

$$
\lim _{n \rightarrow \infty} \frac{w(n)}{w(n-1)}=a^{-1} \neq 1
$$

(b) For any fixed $a \geq 1$, the weight $w(n):=a^{n} / n$! for $n \in \mathbb{N}$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{w(n)}{w(n-1)}=0 \neq 1 \tag{4.4}
\end{equation*}
$$

(c) The weight $w(n):=1 / n^{n}$ for $n \in \mathbb{N}$ also satisfies (4.4).

We point out, since w is decreasing, that $w(n) / w(n-1) \in(0,1]$ for all $n \in \mathbb{N}$. Hence, whenever the limit (4.3) exists, then necessarily $l \in[0,1]$.

As an application, suppose that the positive decreasing weight w has the property that $l:=\lim _{n \rightarrow \infty}(w(n) / w(n-1))$ exists in $[0,1)$. Then, for each $r>0$, the positive decreasing weight $w^{r}: n \mapsto w(n)^{r}$ for $n \in \mathbb{N}$ satisfies $\lim _{n \rightarrow \infty}\left(w(n)^{r} / w(n-1)^{r}\right)=l^{r} \in$ $[0,1)$. Hence, $\mathrm{C}^{\left(p, w^{r}\right)}$ is a compact operator in $l_{p}\left(w^{r}\right)$ for every $1<p<\infty$.
(iv) The following criterion is sufficient to ensure that the limit (4.3) exists in $\mathbb{R} \backslash\{1\}$. Hence, both Proposition 4.1 and Corollary 4.3 are applicable to such a weight w. In particular, $w \in s$.
Let $\beta=\left(\beta_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence with $\beta \uparrow \infty$ such that $\lim _{n \rightarrow \infty}\left(\beta_{n}-\beta_{n-1}\right)=\infty$. Then the weight $w(n):=e^{-\beta_{n}}$ for $n \in \mathbb{N}$ satisfies $l:=$ $\lim _{n \rightarrow \infty}(w(n) / w(n-1))=0 \neq 1$.

It is routine to verify that $\lim _{n \rightarrow \infty}(w(n) / w(n-1))=0$.
For the weight $w(n):=a^{-n}$ for $n \in \mathbb{N}$ (with $a>1$), we have that $\beta_{n}:=-\log w(n)=$ $n \log (a) \uparrow \infty$, but $\left(\beta_{n}-\beta_{n-1}\right) \log (a) \nrightarrow \infty$ for $n \rightarrow \infty$. So, the above criterion is not applicable to this weight. However, according to part (iii)(a) of this remark (with $r=0$), the weight w is admissible for Corollary 4.3.

The following examples illustrate that Theorem 4.2 is more general than Corollary 4.3.

Example 4.5.

(i) Fix $0<\beta<1$ and set $w_{\beta}(n):=e^{-n^{\beta}}$ for $n \in \mathbb{N}$, in which case $w_{\beta} \downarrow 0$, but

$$
\lim _{n \rightarrow \infty} \frac{w_{\beta}(n)}{w_{\beta}(n-1)}=\lim _{n \rightarrow \infty} e^{(n-1)^{\beta}-n^{\beta}}=\lim _{n \rightarrow \infty} e^{-\beta / n^{(1-\beta)}}=1,
$$

as $(n-1)^{\beta}-n^{\beta}=n^{\beta}\left[(1-1 / n)^{\beta}-1\right]=n^{\beta}[1-\beta / n+o(1 / n)-1] \simeq-\beta / n^{1-\beta}$ for $n \rightarrow \infty$, so Corollary 4.3 is not applicable. We show that Theorem 4.2 does apply.
Fix $1<p<\infty$ and set $\gamma:=p^{\prime} / p$. Then, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
A_{n}\left(p, w_{\beta}\right) & =e^{-\gamma n^{\beta}} \sum_{k=1}^{n} e^{\gamma k^{\beta}} \leq e^{-\gamma n^{\beta}} \int_{1}^{n+1} e^{\gamma \gamma^{\beta}} d x \\
& =\frac{e^{-\gamma n^{\beta}}}{\beta} \int_{1}^{(n+1)^{\beta}} e^{\gamma t} t^{(1 / \beta)-1} d t \leq \frac{e^{-\gamma n^{\beta}}}{\beta} \int_{1}^{(n+1)^{\beta}} e^{\gamma t} t^{m} d t,
\end{aligned}
$$

where $m \in \mathbb{N}$ is chosen minimally such that $(m-1)<(1 / \beta)-1 \leq m$. Integration by parts $(m+1)$ times yields

$$
\begin{aligned}
\int_{1}^{(n+1)^{\beta}} e^{\gamma t} t^{m} d t \leq & a_{0}+a_{1}(n+1)^{\beta} e^{\gamma(n+1)^{\beta}}+a_{2}(n+1)^{2 \beta} e^{\gamma(n+1)^{\beta}} \\
& +\cdots+a_{m}(n+1)^{m \beta} e^{\gamma(n+1)^{\beta}}
\end{aligned}
$$

for positive constants $a_{0}, a_{1}, \ldots, a_{m}$. It follows that

$$
\int_{1}^{(n+1)^{\beta}} e^{\gamma t} t^{m} d t \leq M(1+n)^{m \beta} e^{\gamma(1+n)^{\beta}}, \quad n \in \mathbb{N}
$$

for some constant $M>0$. Accordingly,

$$
A_{n}\left(p, w_{\beta}\right) \leq \frac{M}{\beta}(1+n)^{m \beta} e^{\gamma\left((1+n)^{\beta}-n^{\beta}\right)}, \quad n \in \mathbb{N} .
$$

Since $(n+1)^{\beta}-n^{\beta} \simeq \beta / n^{1-\beta}$ and $(1+n)^{m \beta} \simeq n^{m \beta}$ for $n \rightarrow \infty$, there exists $K>0$ (independent of n) such that

$$
A_{n}\left(p, w_{\beta}\right) \leq K n^{m \beta}, \quad n \in \mathbb{N}
$$

Since $(m-1)<(1 / \beta)-1$ implies that $\alpha:=m \beta \in(0,1)$, Theorem 4.2 yields that $\mathrm{C}^{\left(p, w_{\beta}\right)}$ is compact.

For $\beta \geq 1$, the compactness of $\mathbf{C}^{\left(p, w_{\beta}\right)}$ follows from Corollary 4.3. Indeed, if $\beta=1$, then $w_{\beta}(n)=e^{-n}$ for $n \in \mathbb{N}$ and so Remark 4.4(iii)(a) implies the compactness of $\mathrm{C}^{\left(p, w_{\beta}\right)}$. For $\beta>1$, observe from above that

$$
\lim _{n \rightarrow \infty} \frac{w_{\beta}(n)}{w_{\beta}(n-1)}=\lim _{n \rightarrow \infty} e^{(n-1)^{\beta}-n^{\beta}}=\lim _{n \rightarrow \infty} e^{-\beta n^{\beta-1}}=0
$$

and so the compactness of $\mathrm{C}^{\left(p, w_{\beta}\right)}$ follows again from Corollary 4.3.
(ii) There also exist positive decreasing weights $w \in s$ such that the sequence $\{w(n) / w(n-1)\}_{n \in \mathbb{N}}$ fails to converge at all, yet $\mathbf{C}^{(p, w)}$ is a compact operator for every $1<p<\infty$.
Define $w(n):=1 / j^{j}, n=2 j-1$, and $w(n):=1 / 2 j^{j}, n=2 j$, for each $j \in \mathbb{N}$. Then w is (strictly) decreasing to 0 . For $n_{j}:=2 j, j \in \mathbb{N}$, we have $w\left(n_{j}\right) / w\left(n_{j}-1\right)=\frac{1}{2}$ for all $j \in \mathbb{N}$ and so $\lim _{j \rightarrow \infty}\left(w\left(n_{j}\right) / w\left(n_{j}-1\right)\right)=\frac{1}{2}$, whereas for $n_{r}:=2 r+1, r \in \mathbb{N}$, the subsequence $\left\{w\left(n_{r}\right) / w\left(n_{r}-1\right)\right\}_{r \in \mathbb{N}}$ of $\{w(n) / w(n-1)\}_{n \in \mathbb{N}}$ converges to 0 . Accordingly, the sequence $\{w(n) / w(n-1)\}_{n \in \mathbb{N}}$ is not convergent and so Corollary 4.3 is not applicable.

Fix $1<p<\infty$ and set $\gamma:=p^{\prime} / p>0$. To establish the compactness of $\mathrm{C}^{(p, w)}$, observe, for every $j \in \mathbb{N}$, that

$$
\begin{equation*}
A_{2 j}(p, w)=\frac{1}{\left(2 j^{j}\right)^{\gamma}}\left(\sum_{k=1}^{j}\left(k^{k}\right)^{\gamma}+\sum_{k=1}^{j}\left(2 k^{k}\right)^{\gamma}\right)=\frac{1+2^{\gamma}}{2^{\gamma}} \frac{1}{\left(j^{j}\right)^{\gamma}} \sum_{k=1}^{j}\left(k^{k}\right)^{\gamma} \tag{4.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
A_{2 j-1}(p, w)=1+\frac{1}{\left(j^{j}\right)^{\gamma}} \sum_{k=1}^{2(j-1)} w(k)^{-\gamma}=1+\frac{(j-1)^{(j-1) \gamma}}{\left(j^{j}\right)^{\gamma}} A_{2(j-1)}(p, w) \tag{4.6}
\end{equation*}
$$

with $\lim _{j \rightarrow \infty}\left((j-1)^{(j-1) \gamma} /\left(j^{j}\right)^{\gamma}\right)=0$. Set $a_{j}:=\sum_{k=1}^{j}\left(k^{k}\right)^{\gamma}$ and $b_{j}:=\left(j^{j}\right)^{\gamma}$ for $j \in \mathbb{N}$. Then $b_{j} \uparrow \infty$. Moreover,

$$
\lim _{j \rightarrow \infty} \frac{a_{j}-a_{j-1}}{b_{j}-b_{j-1}}=\lim _{j \rightarrow \infty} \frac{\left(j^{j}\right)^{\gamma}}{\left(j^{j}\right)^{\gamma}-\left((j-1)^{j-1}\right)^{\gamma}}=\lim _{j \rightarrow \infty} \frac{1}{1-\frac{(j-1)^{\left(j^{j-1) \gamma}\right.}}{\left(j^{j}\right)^{\gamma}}}=1
$$

According to the Stolz-Cesàro criterion [16, Theorem 1.22], it follows that, also, $\lim _{j \rightarrow \infty}\left(a_{j} / b_{j}\right)=1$. So, via (4.5) and (4.6), we obtain $\lim _{j \rightarrow \infty} A_{2 j}(p, w)=\left(1+2^{\gamma}\right) / 2^{\gamma}$ and $\lim _{j \rightarrow \infty} A_{2 j-1}(p, w)=1$. In particular, $\sup _{i \in \mathbb{N}} A_{i}(p, w)<\infty$ and so Theorem 4.2 applies (with $\alpha=0$). Hence, $\mathrm{C}^{(p, w)}$ is compact and $w \in s$.

The following result is a comparison-type criterion for compactness. One knows something about the compactness of $\mathrm{C}^{(p, w)}$ in $\ell_{p}(w)$ for a certain weight w and $1<p<\infty$ and one has a second weight v whose growth relative to w is controlled. Then, also, $\mathrm{C}^{(p, v)} \in \mathcal{L}\left(\ell_{p}(v)\right)$ is compact.
Proposition 4.6. Let w be a positive decreasing sequence. Suppose, for some $1<$ $p<\infty$, that there exists $0 \leq \alpha<1$ such that

$$
\begin{equation*}
A_{n}(p, w) \leq M n^{\alpha}, \quad n \in \mathbb{N} \tag{4.7}
\end{equation*}
$$

for some constant $M>0$.
Let v be any positive decreasing sequence such that $\{v(n) / w(n)\}_{n \in \mathbb{N}} \in \ell_{\infty}$ and satisfying

$$
\begin{equation*}
w(n) \leq K n^{\beta} v(n), \quad n \in \mathbb{N} \tag{4.8}
\end{equation*}
$$

for some $0 \leq \beta<(p-1)(1-\alpha)$ and some constant $K>0$. Then $\mathrm{C}^{(q, v)} \in \mathcal{L}\left(\ell_{q}(v)\right)$ is a compact operator for every $1<q \leq p$.
Proof. Let $L:=\sup _{n \in \mathbb{N}}(v(n) / w(n))$. Then, for each $n \in \mathbb{N}$, we have via (4.7) and (4.8) that

$$
\begin{aligned}
A_{n}(p, v) & =v(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{v(k)^{p^{\prime} / p}}=\left(\frac{v(n)}{w(n)}\right)^{p^{\prime} / p} w(n)^{p^{p^{\prime} / p}} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}} \cdot\left(\frac{w(k)}{v(k)}\right)^{p^{\prime} / p} \\
& \leq L^{p^{\prime} / p} w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}}\left(K k^{\beta}\right)^{p^{\prime} / p} \\
& \leq(L K)^{p^{\prime} / p} w(n)^{p^{\prime} / p} \sum_{k=1}^{n} \frac{1}{w(k)^{p^{\prime} / p}} n^{\beta p^{\prime} / p} \\
& =(L K)^{p^{\prime} / p} n^{\beta p^{\prime} / p} A_{n}(p, w) \leq M(L K)^{p^{\prime} / p} n^{\alpha+\left(\beta p^{\prime} / p\right)} .
\end{aligned}
$$

Moreover, $\alpha+\left(\beta p^{\prime} / p\right)=\alpha+(\beta /(p-1))<1$ because $0 \leq \beta<(p-1)(1-\alpha)$ implies $\beta /(p-1)<(1-\alpha)$ which implies $\alpha+(\beta /(p-1))<1$. So, Theorem 4.2 applied to $v($ with $\alpha+(\beta /(p-1))$ in place of $\alpha)$ implies that $\mathrm{C}^{(q, v)} \in \mathcal{L}\left(\ell_{q}(v)\right)$ is compact for all $1<q \leq p$.
Example 4.7. Let $v(n):=1 / e^{n^{\beta}} \log ^{\gamma}(n+1)$ for $n \in \mathbb{N}$, where $0<\beta<1$ and $\gamma>0$. Then $\mathrm{C}^{(p, v)} \in \mathcal{L}\left(\ell_{p}(v)\right)$ is compact for every $1<p<\infty$. Observe that $\lim _{n \rightarrow \infty}$ $(v(n) / v(n-1))=1$ and so Corollary 4.3 is not applicable.

So, fix $1<p<\infty$. Define $w(n):=e^{-n^{\beta}}$ for $n \in \mathbb{N}$. According to Example 4.5(i), there exist constants $M>0$ and $0<\alpha<1$ such that

$$
A_{n}(p, w) \leq M n^{\alpha}, \quad n \in \mathbb{N}
$$

Since $v(n) \leq w(n)$ for $n \in \mathbb{N}$, it is clear that $\{v(n) / w(n)\}_{n \in \mathbb{N}} \in \ell_{\infty}$. Choose any $r \in$ $(0,(p-1)(1-\alpha))$. Then

$$
\frac{w(n)}{v(n)}=\log ^{\gamma}(n+1)=\frac{\log ^{\gamma}(n+1)}{n^{r}} \cdot n^{r} \leq K n^{r}, \quad n \in \mathbb{N}
$$

for some $K>0\left(\right.$ as $\left.\lim _{n \rightarrow \infty}\left(\log ^{\gamma}(n+1)\right) / n^{r}=0\right)$. According to Proposition 4.6, we can conclude that $\mathrm{C}^{(p, v)}$ is compact in $\ell_{p}(v)$.

References

[1] A. M. Akhmedov and F. Başar, 'On the fine spectrum of the Cesàro operator in $c_{0}{ }^{\prime}$, Math. J. Ibaraki Univ. 36 (2004), 25-32.
[2] A. M. Akhmedov and F. Başar, 'The fine spectrum of the Cesàro operator C_{1} over the sequence space $b v_{p},(1 \leq p<\infty)$ ', Math. J. Okayama Univ. 50 (2008), 135-147.
[3] A. A. Albanese, J. Bonet and W. J. Ricker, 'Convergence of arithmetic means of operators in Fréchet spaces', J. Math. Anal. Appl. 401 (2013), 160-173.
[4] S. I. Ansari and P. S. Bourdon, 'Some properties of cyclic operators', Acta Sci. Math. (Szeged) 63 (1997), 195-207.
[5] G. Bennett, 'Some elementary inequalities', Q. J. Math. 38 (1987), 401-425.
[6] A. Brown, P. R. Halmos and A. L. Shields, 'Cesàro operators', Acta Sci. Math. (Szeged) 26 (1965), 125-137.
[7] G. P. Curbera and W. J. Ricker, 'Spectrum of the Cesàro operator in ℓ^{p} ', Arch. Math. 100 (2013), 267-271.
[8] G. P. Curbera and W. J. Ricker, 'Solid extensions of the Cesàro operator on ℓ^{p} and c_{0} ', Integral Equations Operator Theory 80 (2014), 61-77.
[9] G. P. Curbera and W. J. Ricker, 'The Cesàro operator and unconditional Taylor series in Hardy spaces', Integral Equations Operator Theory, to appear, doi:10.1007/s00020-015-2230-9.
[10] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, 2nd printing (Wiley Interscience Publications, New York, 1964).
[11] G. J. O. Jameson, 'Norms and lower bounds of operators on the Lorentz sequence space $d(w, 1)$ ', Illinois J. Math. 43 (1999), 79-99.
[12] G. J. O. Jameson and R. Lashkaripour, 'Norms of certain operators on weighted ℓ^{p} spaces and Lorentz sequences spaces', J. Inequal. Pure Appl. Math. 3(Article 6) (2002), 17 pp.
[13] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (Cambridge University Press, Cambridge, 1964).
[14] G. Leibowitz, 'Spectra of discrete Cesàro operators', Tamkang J. Math. 3 (1972), 123-132.
[15] R. E. Megginson, An Introduction to Banach Space Theory (Springer, New York, 1998).
[16] M. Mureşan, A Concrete Approach to Classical Analysis (Springer, Berlin, 2008).
[17] J. I. Okutoyi, 'On the spectrum of C_{1} as an operator on $b v_{0}$ ', J. Aust. Math. Soc. 48 (1990), 79-86.
[18] J. B. Reade, 'On the spectrum of the Cesàro operator', Bull. Lond. Math. Soc. 17 (1985), 263-267.
[19] B. E. Rhoades and M. Yildirim, 'Spectra for factorable matrices on ℓ^{p} ', Integral Equations Operator Theory 55 (2006), 111-126.

ANGELA A. ALBANESE, Dipartimento di Matematica e Fisica, 'E. De Giorgi', Università del Salento-C.P.193, I-73100 Lecce, Italy
 e-mail: angela.albanese@unisalento.it

JOSÉ BONET, Instituto Universitario de Matemática Pura y Aplicada, IUMPA, Universitat Politècnica de València,
E-46071 Valencia, Spain
e-mail: jbonet@mat.upv.es
WERNER J. RICKER, Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany
e-mail: werner.ricker@ku-eichstaett.de

[^0]: The research of the first two authors was partially supported by the projects MTM2013-43540-P and GVA Prometeo II/2013/013 (Spain).
 (C) 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

