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Abstract

Twin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis
studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the
Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins fromNigeria to assess the extent, if any, of genetic differences
between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve
imputation quality for population-specific GWA studies. We investigated the degree of genetic similarity between the populations using several
measures of population variation with genotype data generated from the GSA. Visualization of principal component analysis (PCA) revealed
that theAustralian, Dutch andMidwesternAmerican populations exhibit negligible interpopulation stratificationwhen compared to each other,
to a reference European population and to globally distant populations. Estimations of fixation indices (FST values) between the Australian,
MidwesternAmerican andNetherlands populations suggestminimal genetic differentiation compared to the estimates between each population
and a genetically distinct cohort (i.e., samples from Nigeria genotyped on GSA). Thus, results from this study demonstrate that genotype data
from the Australian, Dutch and Midwestern American twin-family populations can be reasonably combined for joint-genetic analysis.
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Scientific investigations aimed at disentangling the contribution of
genetic factors underlying complex and polygenic traits have dem-
onstrated the necessity of large sample sizes (Evangelou et al., 2018;
Wray et al., 2018). Only when sample sizes are vast is it possible to
estimate the contribution of each locus influencing a complex trait
(Tam et al., 2019; Visscher et al., 2012, 2017). It is both difficult and
financially challenging for a single site to accrue large enough
sample sizes to achieve adequate statistical power. Therefore,
one pragmatic approach for obtaining the large number of samples
required is to aggregate samples collected by different groups,
either through meta- or mega-analysis. Currently, twin registers
from around the world routinely employ this strategy for genotypic
and phenotypic data (Silventoinen et al., 2015, 2016). This
approach is powerful if genetic heterogeneity (e.g., as a result of
dissimilar population ancestry and demographic histories) is not
an issue or is appropriately accounted for. Here, we explore the
degree of genetic similarity between multiple twin cohorts and
indicate whether it is appropriate to combine data from these
cohorts for joint-genetic analysis.

In 2006, a study by Sullivan et al. (2006) empirically showed that
samples from Australian and Netherlands Twin Registers can be
reasonably combined for joint-genetic analyses by estimating
the proportion of total genetic variability attributable to genetic
difference between cohorts (Sullivan et al., 2006). The calculation
of the genetic variability attributable to genetic differences between
cohorts, measured by Wright’s fixation index (FST value), was
estimated using analysis of molecular variance on 359 short tan-
dem repeat polymorphism markers. The estimated FST between
Australian (N = 519) and the Netherlands (N= 549) was found
to be 0.30%, a value smaller than between many other European
groups. The FST estimates suggested that it is reasonable to com-
bine samples from Australian and Dutch cohorts but admittedly
based on calculations in samples of modest size. Here, we evaluate
the genetic similarity in larger number of samples and augment the
comparison by adding a third cohort of samples obtained from the
Avera Twin Register (ATR), a representative population sampling
of theMidwestern region of theUSA. In this study, we test the genetic
variation within and between three populations of interest —

Australian, Dutch and Midwestern American — by employ-
ing genomic data from a custom-designed genome-wide single
nucleotide polymorphism (SNP) array. To further explore the genetic
similarity across the cohorts under study, we incorporated genetic
data from a globally and genetically distinct population — samples
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from Nigeria genotyped on the Global Screening Array (GSA) at the
Avera Institute for Human Genetics (AIHG).

In collaboration with the Netherlands Twin Register (Boomsma
et al., 2002, 2006; Willemsen et al., 2010, 2013), the AIHG (Sioux
Falls, SD, USA) created the ATR in May 2016 (Kittelsrud et al.,
2017). The goal of the ATR is to study the genetic and environmen-
tal influences on health, disease and complex traits by harnessing
the power of longitudinal biological sample collection and survey
correspondence. Participants have enrolled from across all regions
of the USA, the great majority coming from Midwestern states,
including South Dakota, North Dakota, Minnesota, Iowa and
Nebraska. In addition to serving as a prime research model for
studying health and disease in a regional setting, another impor-
tant role of the ATR is to contribute to consortia-driven large-scale
genetic studies focusing on the genetic underpinnings of complex
traits. Therefore, it is of interest to recognize the degree of genetic
similarity between the Midwestern Americans comprising the
ATR and the cohorts for which the genetic data are to be combined.

As long-established twin registers, the Netherlands and
Australian Twin Registers have served as models for newly formed
twin registers from around the world. As is the case for the ATR, the
Netherlands and the Australian twin registers are population based
with recruitment focused on the presence of twins or higher-order
multiples in the family. Through this collaborative initiative, we
included 100 saliva samples from Nigerian mothers of twins to
use as a genetic contrast group to the Australian, Dutch and
Midwestern American populations. Incorporation of genetically
distinct samples further enhances the cross-ethnic comparisons that
we describe here.

The AIHG recently joined the Illumina-initiated GSA consor-
tium. Broadly, the goal of the consortium is to enable a variety of
genotyping applications for biobanks, disease research, transla-
tional research, consumer genomics and population genetic stud-
ies. Specifically, the GSA has been optimized for high-throughput
population-scale studies at lower cost than previous genotyping
platforms. Participation of the AIHG in the GSA consortium
has allowed for the unique opportunity to design a customized
high-density SNP genotyping microarray. A similar strategy for
designing population-specific arrays for genome-wide association
(GWA) testing has already been described, albeit for a different
genotyping platform (Ehli et al., 2017).

Here, we report on the design and initial validation of the array,
as assessed by the evaluation of concordance, coverage and impu-
tation quality of the core backbone against the Genome of the

Netherlands (GoNL) reference set (Boomsma et al., 2014;
Genome of the Netherlands Consortium, 2014). Additionally,
we provide evidence to suggest that the custom-selected content
generally enhances imputation quality and provides robust geno-
type calls for population- and disease-relevant SNPs. Furthermore,
we demonstrate that the GSA can be utilized for the generation of
high-quality SNP data from multiple tissue sources, namely blood,
buccal epithelial brushings and saliva.

With high-density SNP genotype data obtained from the GSA
run at AIHG, we assessed the level of genetic similarity across pop-
ulation cohorts of interest: Australian, Dutch and Midwestern
American. To facilitate the assessment of population genetic struc-
ture, we leveraged the power of state-of-the-art software capable of
ingesting genome-wide SNP data obtained from the GSA.
Population genetic variation was summarized by uncorrelated
principal components (PCs) through principal component analy-
sis (PCA) and estimations of FST values. Furthermore, we projected
the PCs estimated from the samples onto data from the Human
Genome Diversity Project (HGDP; Cann et al., 2002). Projection
of calculated PCs onto the diverse populations comprising the
HGDP fostered a global illustration of genetic relatedness between
the populations of interest.

Materials and Methods

Participants and Sample Collection

Australian subjects were from the QIMR Berghofer Medical
Research Institute (N = 1922; Hopper, 2002, 2006). Other subjects
were registered participants of the Netherlands (NTR, N= 10,226;
Boomsma et al., 2006) and Avera (ATR, Sioux Falls, SD, USA,
N= 602; Kittelsrud et al., 2017) Twin Registers, and the
Nigerian Twin and Sibling Registry (NTSR, N = 100; Hur et al.,
2013; see Table 1).

Representative samples of the Midwestern American population
were obtained from the ATR. Enrolled participants include twins,
multiples, siblings and their parents. Participants complete surveys
and questionnaires and provide a cheek swab (buccal brushing) for
zygosity testing and genotyping. The majority of the enrolled partic-
ipants are located in the Midwestern region of the USA, with most
being from South Dakota, Minnesota and Iowa.

Samples from the QIMR Berghofer Medical Research Institute
(Australia) are a combination of a number of different studies, con-
ducted in many countries over many decades, focused on the
genetics of dizygotic twinning (Painter et al., 2010). Samples from

Table 1. Characteristics of samples genotyped on GSA per cohort and tissue

Cohort Country of origin

Sample

N Female (%)a Composition Unrelated individuals Tissue

Avera Twin Register USA 602 66.4 MZ, DZ, parents, sibs 238 Buccal

NTR Netherlands 1135 55.4 MZ, DZ, parents, sibs 6139 Blood

NTR Netherlands 9091 MZ, DZ, parents, sibs Buccal

Australian Australia 1922 100 MODZT 1448 Blood

Nigerian Nigeria 100 100 MOSDZ 96 Saliva

Total 12,850 7921

GSA= Global Screening Array; NTR= Netherland’s Twin Register; N= number of samples; MZ=monozygotic twins; DZ= dizygotic twins; MODZT=mothers of DZ twins; MOSDZ=mothers of
opposite-sex dizygotic twins; sibs= siblings; parents= parents of twins.
aPercentage of female samples is reported from the unrelated set.
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mothers of dizygotic twins (MODZT) were collected from
Australia and New Zealand and were shipped to the AIHG for gen-
otyping on the GSA regardless of whether they were ungenotyped
or previously genotyped on an earlier SNP array. Included in the
shipment were two small cohorts of special interest: (1) a Belgian
sample of 40 MODZT from 14 multiplex families collected in the
1990s; (2) a sample of 10 MODZT from two multiplex families
from the Utah Mormon Database collected in 1994. For the pur-
poses of the study presented here, samples from Belgium and Utah
were excluded from the Australian cohort.

The Nigerian sample in the present study was drawn from the
NTSR, which included over 3000 adolescent monozygotic
and dizygotic twins, their parents and siblings, collected mainly
from public schools in Lagos State and Abuja, Federal Capital
Territory in Nigeria. Participants of the NTSR completed question-
naires and provided saliva or buccal samples for genotyping.
The sample used in the present study consisted of 100 mothers of
opposite-sex twins attending public schools in Lagos State, collected
for the purpose of a pilot study to understand the genetic underpin-
nings of dizygotic twinning. Lagos State is located in the
southwestern geopolitical zone of Nigeria and one of the most pop-
ulous urban areas in Nigeria. Although residents of Lagos State are
ethnically diverse, they are mainly members of the Yoruba group.

Participants from the NTR included twins, their parents and
other relatives (mainly siblings of twins). NTR participants take
part in survey and other research projects and provided blood
or buccal samples for DNA isolation and genotyping.

DNA Extraction and Genotyping

DNA was isolated from whole blood, buccal epithelial cells (Min
et al., 2006) and saliva using standard protocols for downstream
SNP genotyping. High-density SNP genotyping for all samples
was done at the AIHG using a custom-designed Illumina GSA
according to the manufacturer’s protocol.

Design of a Customized Genotyping Array and Generation
of Genotype Data

The GSA employed for this study was designed following a
previously defined strategy for designing population-specific
customized genotyping arrays (Ehli et al., 2017). Specifically,
the GSA was custom designed to contain a core imputation back-
bone (approximately 660,000 markers) based on commonly uti-
lized reference panels, such as the GoNL (Boomsma et al., 2014)
and the 1000 Genomes Project (Genomes Project Consortium
et al., 2015). In addition to the core backbone, the array includes
approximately 30,000 additional markers for fine mapping to
further enhance imputation quality, and 8000 markers of interest
associated with a variety of conditions, disorders and traits,
including neuropsychiatric disorders, drug metabolism, fertility
and twinning (Table 2). In total, the GSA contains 697,486
markers.

Prior to design of the array, initial validation of the GSA content
for imputation was assessed by checking concordance, coverage
and imputation quality using an extracted subset of markers
resembling the GSA (683,937 markers). In brief, a dataset mimick-
ing the content on the GSA was curated from 249 unrelated female
individuals of the GoNL project. Males from the GoNL were
excluded as the tools used for assessment of genotyping array cov-
erage could not properly handle a homozygous X chromosome.
GSA-mimicked markers were quality controlled and retained if
minor allele frequency (MAF) was>0.01, missingness per

individual was <10%, missingness per SNP was <5% and if there
was no statistically significant deviation from Hardy–Weinberg
equilibrium (p> 10−5). Quality control and filtering reduced the
number of markers to 617,340. Extracted and quality-controlled
markers were then selected if they were present in the 1000
Genomes (1000G) reference panel (Genomes Project Consortium
et al., 2015; 616,961 markers). The extracted set was phased with
SHAPEIT (Delaneau et al., 2011) and imputed against the 1000G
reference panel phase 3 using IMPUTE2 (Howie et al., 2009). For the
~12.1 million overlapping markers, concordance was calculated in
PLINK (Chang et al., 2015; Purcell et al., 2007) by comparing the
1000G best-guess genotypes to the original GoNL genotypes.

Genotype calls from the GSA were made using Illumina
GenomeStudio2.0 and custom-curated cluster files. In short, clus-
ter positions were defined using genotype data on 1254 samples
run on GSA at AIHG by a variety of technicians and across many
batches (i.e., reagent and bead-chip lots) so as to account for as
much sample variation as possible. Initial assessment of sample-
dependent and sample-independent controls, preliminary call
rates and percentile distributions of GenCall scores (a quality met-
ric indicating the reliability of genotype calls) yielded a final sample
set of 1199 samples for defining cluster positions. Samples were
grouped into males and females so that Y chromosome (1480
markers) and X chromosome (17,880) clusters could be generated
using subsamples of the appropriate sex. Due to the behavior of the
GenomeStudio clustering algorithm, only male samples were used
for defining Y chromosome clusters. Similarly, only female sam-
ples were used for generating X chromosome clusters since males
are not expected to be heterozygotes for X-linked markers.
Therefore, X and Y markers were clustered and evaluated taking
gender into account. All samples were used to cluster autosomal
SNPs (670,744 markers), including XY, and mitochondrial
markers.

Table 2. Content and marker selection categories of the custom-designed
Illumina GSA

Marker type Number of SNPs (N= 697,486)

GSA core backbone Total ~660,000

Sex chromosomes 17,880 X; 1480 Y; 578 PAR

ADME genes/exons 6668; 2787

ClinVar 17,020

MHC 9797

Ancestry informative 3212

Fine-mapping content (candidate genes
and additional markers for imputation)

Total ~30,000

Custom markers Total ~8000

Fertility and twinning

Body stature (height, BMI) and sports and exercise behavior

Mental state and health (happiness, depression, schizophrenia)

Chromosome X (imputation)

Educational attainment

Pharmacogenomics

GSA= Global Screening Array; ADME= absorption, distribution, metabolism, excretion;
BMI= body mass index; ClinVar= NCBI archive for interpretations of clinical significance of
genetic variants; MHC=major histocompatibility complex; PAR= pseudoautosomal region.

212 Jeffrey J. Beck et al.

https://doi.org/10.1017/thg.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2019.41


Following initial clustering, cluster positions were evaluated
and edited based on sequential assessment of several cluster met-
rics. Cluster positions were zeroed (resulting in no genotype calls
for a locus) based on low cluster separation (≤0.27), low call
frequency (<0.96), low mean normalized intensity values for the
heterozygote genotypes (≤0.2), extreme mean normalized theta
values of the heterozygote cluster (<0.2 or>0.825), Mendelian
inconsistencies, ambiguous clusters, excessive numbers of
reproducibility errors and excessive heterozygote calls relative to
expectations based on Hardy–Weinberg equilibrium (>0.2).
Markers on X and Y chromosomes were manually evaluated
and edited on a per-marker basis.

Data Management, Quality Control and Relationship
Inference

Individual samples were removed if they had a missing rate greater
than 10% or excess genome-wide inbreeding levels/heterozygosity
(as calculated in PLINK, F coefficient<−0.10 or >0.10). Reported
sex was compared with inferred sex from the genotype data. Sex
mismatches were investigated, resolved and subsequently replaced
in the dataset.

From each population sample, we selected the largest group of
unrelated individuals (Table 1). Unrelated individuals were
identified with KING software (Manichaikul et al., 2012) using
the ‘–unrelated’ option. In brief, related individuals (estimated
kinship coefficient<0.088) were clustered into families. Within
each connected group, individuals were ranked according to the
count of unrelated family members, corresponding to an estimated
kinship coefficient<0.022. A set of unrelated individuals was then
made by selecting the individuals with the largest count of unre-
lated individuals within the respective family group. Additional
unrelated individuals were obtained by taking the individuals with
the next most unrelated family members, only if that individual
was not related to any of the previously selected unrelated individ-
uals. The final selection contained no pairs of individuals with a
first- or second-degree relationship, reducing the sample size to
7921 subjects. Following quality control, the number of samples
was reduced to 7782.

SNP Quality Control and 1000G Alignment

All autosomal SNPs that passed quality control and filtering were
analyzed. PLINK was used to perform quality control. A selection
of highly performing markers (N= 564,020) was used for sub-
sequent quality control and analyses. Specifically, SNPs were
removed if they were not in the 1000G reference panel (phase 3
version 5) or if they were palindromic SNPs with an allele fre-
quency of 0.40–0.60. Polymorphic SNPs withmore than two alleles
were also excluded. SNPmarker names were adjusted for congruity
with 1000G, and strand flip issues were resolved. SNPs were
removed if their call rate was less than 95% and if they differed sig-
nificantly from Hardy–Weinberg equilibrium (p value < 10−5).

Principal Component Analysis

PCA was performed with smartpca of the EIGENSOFT package
(Price et al., 2006) with its default parameter settings. PCA was
used to compute 10 PCs for the populations under study. Initial
ancestry outliers were determined by merging each independent
dataset with 1000G data to project ethnicity with smartpca.
Ancestry outliers, based on being non-European ancestry, were
visually identified and subsequently removed.

Cleaned and 1000G aligned data for each population were fil-
tered to retain SNPs having a MAF > 0.05, linkage disequilibrium
(LD) pruned and filtered to exclude confounding SNPs in long-
range LD, as previously described (Abdellaoui et al., 2013; Price
et al., 2008). Filtering and exclusion of long-range LD regions
reduced the number of autosomal SNPs from 564,020 to
109,702 SNPs. This number of SNPs was used for comparisons
between samples genotyped on GSA, namely those from the
Australian, Midwestern American, Dutch and Nigerian cohorts.

We also calculated whether there were statistically significant
pairwise differences between the Australian, Dutch and
Midwestern American populations and representative European
populations from the HGDP using smartpca. For each pair of pop-
ulations, ANOVA statistics along each eigenvector were summed
across all 10 eigenvectors.

HGDP Data Management and Projection

To establish genetic similarity on a global scale, PCs of the
Australian, Dutch, Midwestern American and Nigerian popula-
tions were projected onto samples obtained from the HGDP
(Cann et al., 2002; Rosenberg, 2006). The HGDP data comprise
genotypes (660,918 SNPs) from 1043 fully consenting individuals
representing 54 global populations from Sub-Saharan Africa,
North Africa, Europe, the Middle East, Central and South Asia,
East Asia, Oceania and the Americas and provide a representative
sampling of worldwide genetic variation (available at https://www.
hagsc.org/hgdp/files.html).

Raw genetic data from the HGDP (sample call rate>98.5%)
were reformatted for PLINK using command line tools. Markers
with greater than 5% missingness were removed. Following the
same procedures as previously described, unrelated individuals
were identified in the HGDP dataset and retained using the pro-
gram KING. Removal of related individuals reduced the sample
size from 1043 to 857. To be consistent with GSA, HGDP data were
converted from Build 36.1 coordinates to Build 37/hg19 using
University of California, Santa Cruz (UCSC’s) batch coordinate
conversion tool, liftOver (Haeussler et al., 2019; Kent et al.,
2002). Overlapping markers between HGDP and GSA (prior to
MAF filter, LD pruning and exclusion of long-range LD) were
identified in the variant information files (.map) using R (R
Core Team, 2018). Of the 133,833 common markers between
the datasets, there were 21,667 multi-allelic variants due to strand
inconsistencies. Strand flips were resolved and data from the
HGDP were merged with cleaned and filtered GSA data using
PLINK. The merged set was filtered to remove markers with a
MAF< 0.05, pruned for LD and excluded SNPs in long-range
LD. Quality control and filtering reduced the final number of
markers to 54,820.

Ten PCs were calculated using smartpca within EIGENSOFT
with default parameters. All HGDP populations were specified
as reference populations for the PC projection.

Case-Control GWA Study

We performed case-control GWA study (GWAS) between the
Midwestern American, Australian and Dutch populations to gain
insight into the degree of genetic relatedness between them. To
avoid false positives, we excluded variants with a MAF< 0.10 in
the quality-controlled and filtered data on unrelated individuals.
Simple association testing was done in PLINK with the ‘–assoc’
command. Two GWASs were performed, both with the
Midwestern American population defined as cases and with
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Dutch andAustralian samples serving as controls. Manhattan plots
and quantile–quantile (QQ) plots were created to visualize regions
of the genome that appeared statistically significant.

Calculation of FST Estimates

To quantify measures of structure in populations, we estimated FST
values between the Midwest American, Australian, Dutch and
Nigerian cohorts. Weir and Cockerham (1984) and Hudson
et al. (1992) estimators were calculated using two different software
programs: popstats (Skoglund et al., 2015) and scikit-allel (Miles
2018), implemented in Python.

Results

Validation of the GSA

Imputation quality metrics, quantified by R2 values, are presented
in Table 3. For all 1000G imputed autosomal SNPs, including those
present in African and Asian populations, the median R2 values for
the GSA are 0.02 for MAF> 0.000–0.001, 0.69 for MAF > 0.001–
0.01, 0.97 for MAF > 0.01–0.05 and 0.99 for MAF> 0.05. For the
selection of autosomal SNPs that were present in both the GoNL
and 1000G reference data, indicative of true genetic variants in the
Dutch population, the results demonstrate improved imputation
quality compared to all SNPs present in 1000G. Themedian R2 val-
ues of the SNPs in the GoNL and 1000G reference set are 0.04 for
MAF > 0.000–0.001, 0.80 for MAF > 0.001–0.01, 0.97 for

MAF > 0.01–0.05 and 0.99 for MAF > 0.05. Here, the improved
imputation quality, captured by both median and mean scores,
is mainly the result of the exclusion of a large number of rare
SNPs (i.e., SNPs in African and Asian populations — captured
by the full 1000G set), which are likely absent from the Dutch
population.

Concordance of the genotyped GoNL SNPs that were reim-
puted with a 1000G imputation reference panel was high for most
SNPs in the genome, as can be seen in Table 4. In the imputed data,
of the 12,074,470 polymorphic variants with a MAF > 0, up to
62.2% can be reimputed with very high quality. At lower levels
of quality (below 80% concordant), 1.95% of the genome is not well
covered.

Principal Component Analysis

We performed fine-scale PCA of unrelated subjects from the
Australian, Dutch and Midwestern American populations to
investigate the degree of genetic relatedness of these populations
independent of other global populations. The PCA utilized
109,702 autosomal SNPs after stringent quality control, filtering,
pruning and exclusion of long-range LD regions. As seen in
Figure 1, results of the PCA suggest that the Midwest American,
Australian and Dutch populations are not genetically distinct from
one another since the clusters moderately overlap. The Midwest
American cluster partially superimposes both Australian and
Dutch clusters, which themselves also show a small degree of over-
lap. Visualization of PCs from the PCA on the Australian, Dutch
and Midwestern Americans demonstrates commonality of popu-
lation clusters, thereby suggesting a high degree of genetic similar-
ity between these populations.

Provided the unique opportunity to genotype Nigerian mothers
of twins on the GSA, a PCA was performed with the inclusion of
these globally distinct samples to serve as a genetic contrast group
to the populations under study. Thus, to enhance the investigation
of the genetic similarity of the Australian, Dutch and Midwestern
American populations on a broader scale, we performed a PCA on
all samples genotyped on GSA at AIHG, including those from
Nigeria. The results of the PCA are depicted in Figure 2.
Inclusion of a geographically and genetically distant population
resulted in distinct separation of European-ancestry-based popu-
lations and the Nigerian cohort, indicative of population stratifica-
tion and genetic dissimilarities.

Table 3. Imputation quality metrics per minor allele frequency bin for the GSA

Selected SNPs Chr MAF range N SNPs Median R2 Mean R2 SD

1000G All SNPsa 1–22 >0.000–0.001 21,373,838 0.02 0.05 0.08

>0.001–0.01 6,853,643 0.69 0.64 0.28

>0.01–0.05 2,863,052 0.97 0.91 0.13

>0.05 6,974,825 0.99 0.96 0.08

GoNL and 1000Gb 1–22 >0.000–0.001 1,003,022 0.04 0.08 0.10

>0.001–0.01 2,736,096 0.80 0.74 0.24

>0.01–0.05 2,461,024 0.97 0.92 0.12

>0.05 5,874,328 0.99 0.97 0.07

GSA= Global Screening Array; Chr= chromosome; MAF=minor allele frequency; N SNPs= number of SNPs; SD= standard deviation; GoNL= Genome of the Netherlands.
aDenotes full 1000G imputation with Asian/African/other SNPs not present in the Dutch population.
bDenotes overlapping SNPs between GoNL and 1000G. All monomorphic SNPs were excluded, thus only polymorphic SNPs were selected for each comparison.

Table 4. Genotype concordance metrics for GSA-mimicked, genotyped GoNL
SNPs that were reimputed with 1000G reference panel

Concordance (%) N SNPs Percent

>99 7,506,660 62.17

>95–99 3,470,030 28.74

>80–95 861,745 7.14

>50–80 221,831 1.84

≤50 14,204 0.11

Note: Total number of 1000G SNPs that were reimputed, polymorphic and present in
GoNL= 12,074,470.
GSA= Global Screening Array; GoNL= Genome of the Netherlands; N SNPs= number of
SNPs.
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Projection of PCs from all samples genotyped on GSA onto
those from the HGDP allowed for visualization of populations
on a globally diverse scale. Results of the PCA using the HGDP
as reference populations showed clear layering of the Australian,
Dutch and Midwestern American populations on the representa-
tive European HGDP cohort (Figure 3). The HGDP European
population is comprised of samples collected from France, Italy,
Italy-Bergamo, Orkney Islands, Russia and Russia-Caucasus. At
the global level, the Australian, Dutch and Midwestern
American samples showed strong distinction from African and
Asian populations. Alternatively, the PCs of the cross-ethnic com-
parison demonstrated strong overlap between the Nigerian sam-
ples and the representative African population from HGDP. The
HGDP African population was made up of samples obtained from
Angola, Botswana, Central African Republic, Congo, Kenya,
Lesotho, Namibia, Nigeria, Senegal, South Africa and Sudan.
The results suggest that global genetic diversity can be observed
by plotting PCs, and that the Australian, Dutch and Midwestern
American populations show nearest genetic relatedness to
European populations.

In order to provide a quantitative estimate of relationships
between populations in a pairwise fashion, we used smartpca to
sum ANOVA statistics across all eigenvectors (parameter default
of 10 eigenvectors). The results of the pairwise comparisons of the
Australian, Dutch and Midwestern Americans are shown in
Table 5. Statistically significant differences were observed for each
pairwise comparison, suggesting the existence of population
stratification.

To put in context the genetic differences between the
Australian, Dutch and Midwestern Americans, we tested for sig-
nificant differences between them and the samples obtained from
Nigeria, as well as all HGDP populations, including representative
European populations (Supplementary Files 1 and 2). All compar-
isons between the Australian, Dutch, and Midwestern American
and HGDP European populations were statistically significant,
with the comparison between Australian and Orkney Islands pop-
ulations being least significant. More generally, for each cohort, the
statistical comparison with the Orkney Islands resulted in the least
significant difference.

Case-Control GWAS

We performed two case-control GWAS between Midwestern
American (cases) and Australian (controls) and Dutch (controls)
populations using only common variants. A MAF filter
(MAF> 0.10) was employed to avoid false positives due to minor
allele frequencies. The GWAS betweenMidwestern American (227
‘cases’) and Australian (1354 ‘controls’) utilized 228,166 variants
after MAF filtering. Results of the case-control GWAS between

Fig. 1. Genetic ancestry of Midwestern American, Australian and Dutch subjects.
Shown are the results from PCA using autosomal genotyped SNPs after quality control,
filtering, pruning and exclusion of long-range LD (109,702 markers). Ancestry outliers
were removed prior to performing PCA. PC1 and PC2 represent the first and second
PCs and account for 18.864% and 11.919% of the variation, respectively.

Fig. 2. Genetic ancestry of Midwestern American, Australian, Dutch and Nigerian sub-
jects. Shown are the results from the PCA using all autosomal genotyped SNPs after
quality control, filtering, pruning and exclusion of long-range LD (109,702 markers).
Ancestry outliers were removed prior to performing PCA. PC1 and PC2 represent
the first and second PCs and account for 67.765% and 6.568% of the variation,
respectively.

Table 5. Statistical significance of differences between populations

Population 1 Population 2 Chi-square p value

Midwestern American Netherlands 457.171 6.169 × 10-92

Midwestern American Australian 660.324 2.053 × 10-135

Australian Netherlands 7121.469 0

Note: For each pair of populations, ANOVA statistics along each eigenvector were summed
across eigenvectors. Degrees of freedom is equal to 10, the default number of eigenvectors.

Fig. 3. Projection of PCs for Midwestern American, Australian, Dutch and Nigerian
subjects onto HGDP populations. Shown are the results from the PCA using autosomal
genotyped SNPs that were in common with HGDP after quality control, filtering and
exclusion of long-range LD (54,820 markers). Ancestry outliers were removed prior to
performing the PCA. PC1 and PC2 represent the first and second PCs and account for
38.048% and 28.811% of the variation, respectively.
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the two populations are visualized in a Manhattan plot
(Figure 4(C)). Four chromosomal regions exhibited genome-wide
significant differences (p< 5 × 10−8). The dbSNP ID numbers
for the significant SNPs are rs6420020 (chromosome 5,
p= 1.571 × 10−15), rs10817415 (chromosome 9, p= 3.832 × 10−15),
rs11599284 (chromosome 10, p= 5.387 × 10−14) and rs78611721
(chromosome 20, p= 2.164 × 10−14). The frequency of these SNPs
was much greater in Australians than in American individuals. The
QQ-plot (Figure 4(D)) of genome-wide p values showed modest
deviation from the null hypothesis of no association. The overall
GWAS genomic control statistic (λ) was 1.153, indicating slight infla-
tion due to population structure, driven by a small number of

polygenic variants, between the Midwestern American and
Australian populations.

The second case-control GWAS was performed between
Midwestern American (227 ‘cases’) and Dutch (6139 ‘controls’)
using 228,025 common variants after MAF > 0.10 filtering. The
results of the case-control GWAS between the two populations
are presented in the Manhattan plot in Figure 4(A). No statistically
significant variants exceeded the genome-wide significance
threshold (p< 5 × 10−8). The QQ-plot (Figure 4(B)) shows slight
genomic inflation across the entire range of p values. The GWAS
genomic control statistic (λ) was 1.159, again indicating slight
inflation due to population structure differences between the
Midwestern American and Dutch populations.

Table 6. FST between Midwestern American, Dutch, Australian, and Nigerian populations

Comparison

FST estimator

Weir and Cockerhama Weir and Cockerhamb Hudsona Hudsonb

Population 1 Population 2 Est Std. error Est Std. error Est Std. error Est Std. error

Midwestern American Netherlands 0.00017 7.40 × 10-6 0.00017 7.35 × 10-6 0.00017 7.45 × 10-6 0.00018 8.19 × 10-6

Midwestern American Australian 0.00019 8.34 × 10-6 0.00019 8.25 × 10-6 0.00019 8.39 × 10-6 0.00019 7.99 × 10-6

Midwestern American Nigerian 0.14362 0.00100 0.14556 0.00266 0.14424 0.00099 0.14614 0.00263

Netherlands Australian 0.00045 8.73 × 10-6 0.00045 2.43 × 10-5 0.00045 8.62 × 10-6 0.00045 2.34 × 10-5

Netherlands Nigerian 0.14382 0.00101 0.14585 0.00269 0.14470 0.00098 0.14683 0.00263

Australian Nigerian 0.14347 0.00102 0.14545 0.00275 0.14463 0.00100 0.14639 0.00267

Note: The choice of the FST estimator impacts the resulting estimate. The number of SNPs used for each comparison was 564,020.
Sample sizes: Midwestern American 238; Netherlands 6139; Australian 1448; and Nigerian sample 62.
aFST as estimated by popstats software. Block size for the jackknife estimator was default 5 Mb.
bFST as estimated by scikit-allel Python package. Block size for the jackknife estimator was 56,402 (equivalent to the number of total variants divided by 10).

Fig. 4. Results of the case-control GWAS between Midwestern American (cases), Australian (controls) and Dutch (controls) populations. (A) Manhattan plot of the
case-control GWAS of Midwestern Americans (227 cases) and Dutch (6139 controls) using 228,025 variants after MAF > 0.10 filter. (B) QQ-plot of observed versus
expected p values of the association results between Midwestern American and Dutch populations (λ= 1.159). (C) Manhattan plot of the case-control GWAS of
Midwestern Americans (227 cases) and Australians (1581 controls) using 228,166 variants after MAF > 0.10 filter. (D) QQ-plot of observed versus expected p values
of the association results between Midwestern American and Australian populations (λ= 1.153). Shown in each Manhattan plot is a blue line depicting a suggestive
level of statistical significance (p= 1 × 10−5). In panel (C), the red line represents a genome-wide level of statistical significance (p= 5 × 10−8). The rs numbers point to
the chromosomal region that reached the genome-wide significance level. Variants with a MAF < 0.10 were excluded. All related individuals and ancestry outliers were
removed prior to performing the associations.
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FST Estimates

FST values were calculated as a measure of genetic differentiation
between populations. We generated FST values using two
approaches, namely Weir and Cockerham (1984) and Hudson
et al. (1992) estimators. As demonstrated by Bhatia et al. (2013),
the Weir and Cockerham estimator is dependent on the ratio of
sample sizes comprising each population. Therefore, an alternative
approach is to use the Hudson estimator, which can be imple-
mented as a strategy independent of sample sizes, even when
FST is not uniform across populations. The result produced by
theHudson estimator is a simple average of the population-specific
estimators originally defined by Weir and Hill (2002). Ultimately,
the Hudson estimator was recommended by Bhatia et al. (2013) or
estimating FST for pairs of populations with unequal sample sizes.

The FST estimates from both the Weir and Cockerham and
Hudson estimators are shown in Table 6 and are relatively close
to previously reported estimates from the HapMap consortium
(International HapMap 3 Consortium et al., 2010) and GoNL
project (see Supplementary Table 5 in Genome of the
Netherlands Consortium, 2014). Regardless of the estimator,
smaller FST estimates are observed between the Australian,
Dutch and Midwestern American populations than between each
population compared to the Nigerian cohort. Consistent with the
work of Bhatia et al. (2013), it is important to note that the choice of
the estimator made an impact on the resulting FST estimate.

Discussion

To gain insight into the routine practice of aggregating genomic
datasets from twin registers from around the world, we investigated
interpopulation genetic variation with genome-wide data generated
onGSA from the Australian, Dutch andMidwestern American pop-
ulations. Here, we report on the inception and initial validation of a
custom-designed Illumina GSA and its implementation in studying
population genetic variation. Through quantitative measures and
visualization of PCs, results of work presented here suggest a high
level of genetic similarity between the Australian, Dutch and
Midwestern American populations, albeit with small, yet statistically
significant differences existing between them.

The custom-designed GSA provides a genotyping platform
initially optimized for imputation containing a core imputation
backbone supplemented with additional fine-mapping content
to bolster imputation quality and genome-wide coverage. Also
featured on the GSA are custom-selected markers specific to
phenotypes of interest, notably for fertility and twinning.

With the use of the GoNL reference set and a selection or
markers mimicking the GSA, we demonstrated that we can reim-
pute genotypes with a high degree of confidence. Exceptions are
made for rare alleles (MAF< 0.0001), which are never well
imputed (Zheng et al., 2015). A limitation to the validation of
the GSA is that we utilized the sequences of only 249 samples;
therefore, the imputation and presence of alleles with a
MAF< 0.01 was likely less than ideal. However, by comparing
the validation results of the Illumina GSA to other commercially
available genotyping platforms the imputation quality of the
GSA is well in line with other genotyping products (refer to
Tables 1 and 2 in Ehli et al., 2017). Additionally, the method of
testing the coverage using two reference datasets to check concord-
ance between genotyped and reimputed SNPs utilizes SNPs in
union with both reference panels. Thus, we inherently assume that
SNPs specific to a population — for example, those SNPs only
appearing in GoNL— are covered and imputed in such a manner.

Nevertheless, the GSA has been instrumental in generating high-
quality genotype data from cohorts around the world for use in
population genetic studies of complex traits.

PCs often show remarkable correlation with geography, amani-
festation of decreasing genetic similarity with increasing geo-
graphic distance. Thus, in an effort to elucidate the degree of
genetic resemblance between the Australian, Dutch and
Midwestern American populations, we performed PCA and visu-
alized PCs. Visualization of PCs for the three populations under
study shows a high degree of overlap between PCs 1 and 2. The
similarity observed between Midwestern American and Dutch
populations is consistent with estimates of 4.1 million
Americans (1.28% of the US population in 2017) claiming total
or partial Dutch heritage (Data Access and Dissemination
Systems, 2017). In large part, the majority of inhabitants of
Midwest America have ancestral origins rooted in Northwestern
Europe as a result of common migratory routes. Lending
additional support to the Midwestern American and Dutch simi-
larity is the fact that the majority of the Dutch Americans reside in
Michigan, California, Montana, Minnesota, New York, Wisconsin,
Idaho, Utah, Iowa, Ohio, West Virginia and Pennsylvania.
Together, it is apparent that there is strong Dutch influence and
saturation in the Midwestern region, which is reflected in the
genetic profiles of these populations.

Broad-scale comparison to diverse populations from around
the world, such as those represented by the HGDP, further por-
trayed similarity between the Australian, Dutch and Midwestern
Americans and with European populations more generally. The
close resemblance of Australian and European populations is con-
sistent with prior empirical results (Stankovich et al., 2006) and the
fact that immigrants from Northern Europe colonized Australia
(mainly from Britain and Ireland) and America. Incorporation
of genotype data from a globally distinct population (i.e.,
Nigerian samples genotyped on GSA) facilitated the projection
of the PCs onto the HGDP and recapitulated worldwide genetic
diversity.

Quantitative measures of population similarity, as measured by
summed ANOVA statistics over eigenvectors, revealed small yet
statistically significant differences between the Australian, Dutch
and Midwestern American populations. Additional comparisons
of each population to individual HGDP European cohorts further
demonstrated significant differences suggestive of population
stratification. Likewise, patterns of FST estimations were consistent
with the geographical clustering observed in PCA and with pre-
vious FST estimates of global population genetic differentiation.
Altogether, it is likely that the observed population genetic dissimi-
larities are due to systematic allele frequency differences resulting
from migration, adaptation, drift and selection.

In general, large GWAS efforts aimed at discerning the genetic
contributions to complex traits typically rely on meta-analyses of
multiple cohorts of relatively homogeneous populations. Thus, to
assess the level of homogeneity between Midwestern American,
Australian and Dutch cohorts, we performed case-control associ-
ation testing between populations. Case-control GWAS of
Midwestern American and Australian populations yielded results
to suggest that only small genetic differences exist between the pop-
ulations under study. We hesitate to interpret the few differences
observed between the Australian and Midwestern American pop-
ulations, although we note that it is possible that the genome-wide
significant SNPs (rs6420020, rs10817415, rs78611721 and
rs11599284) could be implicated in the dizygotic twinning pheno-
type given that the genotyped Australian group consisted of
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MODZT. Between Australian and Midwestern American popula-
tions, genomic inflation appeared to be primarily driven by a small
number of highly polymorphic SNPs, while the remainder of the
genome appears comparable. In a similar fashion, the results of the
GWAS ofMidwestern American and Dutch populations suggested
moderate genetic differences between the two populations without
genome-wide significant loci.

Twin families are major contributors of phenotype and geno-
type data to collaborative research initiatives. Twins are often
motivated to take part because of information on their zygosity
(Odintsova et al., 2018). The results from the work presented here
are encouraging for ongoing collaborative projects, including the
genetics of twinning. Collaborative efforts of the Australian,
Netherlands and other twin registers have contributed to many
landmark genetic studies, including the identification of two
genetic variants associated with dizygotic twinning (Mbarek
et al., 2016). Participation of twin cohorts and their families from
geographically distinct regions such as Nigeria will undoubtedly
help facilitate the elucidation of additional genetic variants under-
lying complex traits, including dizygotic twining, due to the large
regional differences in twinning rates (Hall, 2003; Hoekstra et al.,
2008; Smits & Monden, 2011).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2019.41.
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