energy, before retracing its path to collide again with M. Clearly, the speed of m just before its second collision with M will be the same as that immediately after its first collision with M but, of course, the respective velocities will be in opposite directions. After the second collision between M and m, m will again move towards and then rebound from the reflecting surface Y before colliding again with M, and this pattern will then occur repeatedly. Now, considering the situation where $m \ll M$, it is clear that the velocity of M will be only slightly affected by each collision with m and the fact that the collision is assumed to be perfectly elastic then implies that the speed of m after each collision will be greater than the speed before the collision by about twice the speed of M. In general terms, then, the speed of m will initially continually increase after each collision with M, while the speed of M towards the reflecting surface will slowly decrease due to the slowing-down effect of the repeated impacts from m. This process whereby m moves continually faster and M moves continually slower will then continue until M is effectively brought to rest and then proceeds to move off in the opposite direction. The effect of further impacts from m will then be to slowly increase the speed of M (now in a direction away from the rigid surface Y) while at the same time decreasing the speed of m at each collision. This will then continue until the speed of M exceeds that of m, when no further collisions will take place. During this whole sequence of events it is clear that the maximum speed of m will occur when the speed of M is a minimum, and, if this corresponds to M being stationary, then this maximum speed for m will occur when all the original energy of M has been completely transferred to m. The above qualitative analysis may be quantified by formulating the difference equations governing the speeds (u_n and v_n respectively) of m and M after their nth collision. The solution of these equations then yields $u_n = \sqrt{M/m} V \sin 2n\phi$, $v_n = V \cos 2n\phi$ where $\phi = \tan^{-1} \sqrt{m/M}$ and V is the speed of M before the first collision, and it is clear that, as n increases, the general behaviour of u_n and v_n follows the above qualitative discussion. In particular, if ϕ is such that $2k\phi = \pi/2$ for some integer k, then after k collisions M will be brought to rest with all its energy having been transferred to m.

STUART SIMONS

School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London E1 4NS

90.58 Some surprising results associated with permutations

Introduction

In this note we consider a permutation of $1, 2, 3, \ldots, n$. We divide the possible $n!$ permutations into different classes. We show that cardinalities of these classes have many surprising relations and we prove these relations.
Notation

By \(A = (a_1, a_2, \ldots, a_n) \) we denote a permutation. Let \(i \) be the first integer \(a_1 \). We say that \(j \) is the top of the permutation if \(a_k = j \) and \(a_1 < a_2 < \ldots < a_{k-1} < a_k = j > a_{k+1} \). In the following, we shall consider \(n \geq 2 \) as \(n = 1 \) is a single permutation.

Illustration

\((i, j)\)s for some permutations are illustrated below:

\[
\begin{align*}
(2, 4, 6, 1, 3, 7, 5) & \quad i = 2 \quad j = 6 \\
(4, 1, 2, 7, 3, 5, 6) & \quad i = 4 \quad j = 4 \\
(1, 2, 3, 4, 5, 6, 7) & \quad i = 1 \quad j = 7
\end{align*}
\]

By \(C_n(i, j) \) we denote the class of permutations where \(i \) is the first integer and \(j \) is the top. By \(T_n(i, j) \) we denote the number of permutations belonging to class \(C_n(i, j) \). The following relations are obvious.

\[
\begin{align*}
\sum_{j=1}^{n} T_n(i, j) &= (n - 1)! & \quad (1) \\
T_n(i, j) &= 0 \text{ if } i > j. & \quad (2) \\
T_n(i, i) &= (n - 2)! (i - 1) \text{ for } n \geq 2 \text{ and } i > 1. & \quad (3)
\end{align*}
\]

Theorem: Let \(n > 2 \) then, for \(1 \leq i < j < n \) and \(1 < i < j \leq n \),

\[
T_n(i, j) = (i - 1) \sum_{k=2}^{j-i+1} \binom{j-i-1}{k-2} (n-k-1)! + (j-i-1) \sum_{k=2}^{j-i} \binom{j-i-2}{k-2} (n-k-1)! + 1 \quad (4)
\]

and

\[
T_n(1, n) = (n - 2) \sum_{k=2}^{n-1} \binom{n-3}{k-2} (n-k-1)! + 1. \quad (5)
\]

Proof: We first prove (4).

Let the top = \(j \) be in the \(k \)th place in the permutation. Then there are two possibilities

\[
a_{k+1} < i \quad \text{or} \quad 1 < a_{k+1} < j.
\]

Limits of \(k \) can be easily obtained.

In the first case, \(a_{k+1} \) can be one of \(1, 2, 3, \ldots, i - 1 \), the integers between \(i \) and \(j \) can be chosen in \(\binom{j-i-1}{k-2} \) ways and the remaining integers can be arranged in \((n-k-1)! \) ways. Similarly, in the second case, \(a_{k+1} \) can be chosen in \((j-i-1)! \) ways and integers between \(i \) and \(j \) can be chosen in \(\binom{j-i-1}{k-2} \) ways and remaining integers can be chosen in \((n-k-1)! \) ways. This proves (4).

In the case of \(T_n(1, n) \), if \(k < n \), the above argument holds good but for \(k = n \), there is one permutation, \((1, 2, \ldots, n) \) and hence (5) is true.
Some of the $T_n(i, j)$ were evaluated for different n and written in tabular form. Two tables, $T_6(i, j)$ and $T_7(i, j)$ are given below.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>33</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>24</td>
<td>6</td>
<td>14</td>
<td>27</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>12</td>
<td>22</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>72</td>
<td>18</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>24</td>
<td>60</td>
<td>114</td>
<td>196</td>
<td>326</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1: $T_6(i, j)$

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>60</td>
<td>114</td>
<td>196</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>120</td>
<td>24</td>
<td>54</td>
<td>98</td>
<td>163</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>240</td>
<td>48</td>
<td>84</td>
<td>436</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>360</td>
<td>72</td>
<td>114</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>480</td>
<td>96</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>600</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>120</td>
<td>288</td>
<td>522</td>
<td>848</td>
<td>1305</td>
<td>1957</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2: $T_7(i, j)$

The tables of $T_n(i, j)$ lead us to some surprising observations.

Observation 1: We note that, for every $j > 1$ and $n > 2$,

$$ T_{n+1}(1, j) = \sum_{i=1}^{j-1} T_n(i, j - 1). $$

The set $C_{n+1}(1, j)$ may be mapped bijectively to the disjoint union

$$ \bigcup_{i=1}^{j-1} C_n(i, j - 1) $$

as

$$ (1, a_2, a_3, \ldots, a_{k-1}, a_k (= j), a_{k+1}, \ldots, a_{n+1}) $$

\((a_2 - 1, a_3 - 1, \ldots, a_k - 1, j - 1, a_{k+1} - 1, \ldots, a_{n+1} - 1)\).

This image is clearly a member of \(C_n(i, j - 1)\) for some \(i\) with \(1 \leq i \leq j - 1\). Hence

\[T_{n+1}(1, j) = \sum_{i=1}^{j-1} T_n(i, j - 1) \]

and this is the same as \(\sum_{i=1}^{n} T_n(i, j - 1)\) since the additional terms are all zero.

Observation 2: \(S(n, k) = T_n(i + 1, i + k + 1) - T_n(i, i + k)\) depends upon \(n\) and \(k\) but does not depend on \(i\). This can be proved using the theorem. However it is a surprising thing to note. A table of \(S(n, k)\) is presented below.

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>24</td>
<td>30</td>
<td>38</td>
<td>49</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 1: \(S(n, k)\) for \(k \leq 5\) and \(3 \leq n \leq 7\)

We note that \(S(n, 0) = (n - 2)!\) and \(S(n, 1) = (n - 3)!\).

In addition, the following observation is somewhat surprising. For \(2 \leq k < n - 1\)

\[S(n, k) = S(n, k - 1) + S(n - 1, k - 1). \] (3)

This observation can be proved using the theorem, but the algebra is somewhat involved. A combinatorial proof of this observation is interesting. The similarity between (7) and recurrence relations between binomial coefficients is also worth noting.

Acknowledgement

The authors are very grateful to the editor and referee for their valuable comments.

KAVITA LAGHATE
Jamnalal Bajaj Institute of Management Studies, Mumbai, India
e-mail: laghatekavita@hotmail.com

M. N. DESHPANDE
Institute of Science, Nagpur 440001, India
e-mail: dpratap_ngp@sancharnet.in