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SUMMARY

We evaluated three established statistical models for automated ‘early warnings ’ of disease

outbreaks ; counted data Poisson CuSums (used in New Zealand), the England and Wales model

(used in England and Wales) and SPOTv2 (used in Australia). In the evaluation we used national

Swedish notification data from 1992 to 2003 on campylobacteriosis, hepatitis A and tularemia.

The average sensitivity and positive predictive value for CuSums were 71 and 53%, for the

England and Wales model 87 and 82% and for SPOTv2 95 and 49% respectively. The England

and Wales model and the SPOTv2 model were superior to CuSums in our setting. Although,

it was more difficult to rank the former two, we recommend the SPOTv2 model over the England

and Wales model, mainly because of a better sensitivity. However, the impact of previous

outbreaks on baseline levels was less in the England and Wales model. The CuSums model did

not adjust for previous outbreaks.

INTRODUCTION

With recent developments in world politics, monitor-

ing infectious diseases statistically has increased in

importance. Bioterrorism and biological warfare have

sparked the development of computer systems for

automatically detecting sudden changes in public

health. Both the United States and the European

Union invest large amounts of money for protection

against these threats [1, 2]. This adds to more tra-

ditional reasons for surveillance of communicable

disease, e.g. outbreak detection, monitoring trends

of infectious diseases, and evaluating public health

interventions [3].

In the detection of outbreaks of communicable

diseases, it is desirable to minimize the time period

between the actual start of the outbreak and the time

the system provides a warning. Different statistical

models have been developed for this purpose, but we

have been unable to find a systematic comparison

between the different systems. In preparation, before

the introduction of an automated system for out-

break detection of communicable diseases in Sweden,

we evaluated three commonly used models designed

to identify outbreaks sufficiently early to allow time

for interventions. In order to evaluate the models,

we used retrospective epidemiological data from the

national Swedish surveillance system of communi-

cable diseases.

METHODS

Data

The Swedish Institute for Infectious Disease Control

(SMI) is a governmental expert agency, with the task
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of protecting the Swedish population from com-

municable diseases. An important part of national

communicable disease control is surveillance based

on statutory notifications of 58 infectious diseases

regulated by the Communicable Disease Act. A

double notification system is used for each case of

such disease. The two reports emanate from the

clinician treating the patient and from the laboratory

having diagnosed the causative agent. Reports for the

same patient are linked using a personal identification

number issued to all Swedish residents, and used in all

contacts with the Swedish health care system. This

double reporting system considerably increases the

sensitivity of the surveillance system [4]. Whenever

a laboratory performs microbiological typing, e.g.

serotyping and phage typing for salmonellosis, such

data are included in the laboratory report and used

in the detection and investigation of outbreaks.

All analyses were based on the date of registration

at the national database at the SMI. The flow of

information and timeliness in the surveillance system

has previously been studied in detail, and the median

delay between diagnosis and registration of the report

was previously (1998–2002) 1–2 weeks [5]. Since 2004,

a new electronic surveillance system has been in

use with automatic reporting from the laboratories,

allowing the detection of events in real time.

For the evaluation of the three statistical models

we used retrospective epidemiological data for three

diagnoses with different outbreak patterns compiled

by the SMI between 1992 and 2004; i.e. campylo-

bacteriosis, hepatitis A and tularemia. Campylobac-

teriosis is the most commonly reported bacterial

intestinal infection reported in Sweden with several

previous large and small outbreaks; hepatitis A has

previously given rise to many small outbreaks both

secondary for returning travellers and in intravenous

drugusers, and tularemia typically produces outbreaks

when the rodent host population of the causative agent

Francisella tularensis is increasing. The number of

cases per week was studied. Thus, it was assumed that

the population was constant during the study period.

A baseline of 5 years starting with data between 1992

and 1997 was the base for estimating the expected

number of cases for the following week.

Models investigated

We chose to evaluate and analyse three statistical

models. A detailed description of the models evalu-

ated can be found in a thesis by Rolfhamre [6].

CuSums (CuSums charts)

Developed in the early 1950s, the CUmulative Sum is

a method for highlighting changes from a production

average level [7]. It is a sequential hypothesis test,

adding together the differences between the expected

and the observed. A warning is produced if the

sum significantly differs from a calculated threshold.

CuSums is used to automatically detect possible out-

breaks in New Zealand [8], and has been frequently

used for prospective analysis.

England and Wales model

The England and Wales model is used for surveillance

of weekly reports of infectious diseases (4000–5000

infectious agents) to the Communicable Disease

Surveillance Centre (CDSC) in England and Wales

[9, 10]. It uses data from the previous 5 years for

baseline calculations, weighted to minimize the con-

tribution of previous outbreaks. A regression model

is used to calculate the threshold.

SPOTv2

The SPOTv2 model [11, 12] is used for salmonellosis

surveillance on a national level in Australia (National

Enteric Pathogens Surveillance Scheme). It uses data

from the previous 5 years for baseline calculations,

weighted to minimize the contribution of previous

outbreaks. All retrospective epidemiological infor-

mation intended as a base for the evaluation is listed

as cases per week.

Evaluation of the systems

We calculated sensitivity and positive predictive

value (PPV) as defined in ‘Guidelines for evaluating

surveillance systems’ from the Centers for Disease

Control and Prevention (CDC) [13]. As the basis

of these evaluations we introduced two variables :

‘ relevant events ’ and ‘warnings’. A warning triggered

by a model may or may not detect a relevant event,

e.g. an outbreak. In terms of warnings and relevant

events sensitivity and PPV were defined as (gold

standard is 100%):

PPV=
number of relevant warnings

total number of warnings provided
,

Sensitivity=

number of relevant events detected

total number of relevant events of the disease
:
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Definition of ‘relevant events ’

Relevant events are unexpected increases in incidence,

i.e. suspected outbreaks that we aimed to detect using

the evaluated models (long-term trends and known

seasonal variation excluded). To retrospectively define

a relevant event of epidemiological importance we

used two combined approaches:

(1) Epidemiologists at the SMI routinely follow

each disease under study, and events of interests

(mainly outbreaks) are recorded. At the end of the

year these epidemiologists report the main events

of interest for all notifiable diseases in an annual

report, based mainly on their public health impact

[14]. We retrospectively used the annual reports,

complemented by personal communications with

the responsible epidemiologists, to pinpoint rel-

evant events during the study period.

(2) By ‘eye-balling’ the graphs illustrating the

number of reported cases to the SMI (Fig. 1) for

the three diseases evaluated, we identified some

unexpected peaks in incidence. These were re-

viewed with the epidemiologist in charge, and if

those cases could be linked to a known outbreak

they were also included as relevant events.

Definition of ‘warning’

Each week the models discriminated between two

states ; the in-control state (0) and the out-of-control

state (1). During an outbreak, the models may trigger

a warning during several consecutive weeks, but the

first warning would be the most important for the

timely detection of an outbreak. We, therefore, de-

fined a warning as the transition from the in-control

state to the out-of-control state, i.e. the 0/1 transition.

In order to best formally evaluate the sensitivity and

PPV of the systems, all other warnings were filtered

to reduce redundancy.

RESULTS

The retrospective data are summarized in Table 1

and Figure 1, and the results of sensitivity and PPV

calculations in Table 2.

Counted data Poisson CuSums

After performing the evaluation for the CuSums

model, it could be seen by the evaluation plot (Fig. 2)

that the model was not very accurate. We, therefore,
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Fig. 1. Plot showing the number of cases of (a) campylo-
bacteriosis, (b) hepatitis A and (c) tularemia reported to the

SMI during 1992–2003.
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modified the model and evaluated this second

CuSums model as well, which was done by resetting

all CuSum values exceeding 20. Thus, the evaluation

of the CuSums model was, in principle, two different

evaluations. The sensitivity varied between 43 and

100% for both the originally calculated CuSums

Table 1. The number of cases reported each year to the SMI (1 January 1992 to 21 September 2003) and

the number of ‘relevant events ’ for campylobacteriosis, hepatitis A and tularemia per year (1992–1996 was only

used for baseline calculations)

Year

Campylobacteriosis Hepatitis A Tularemia

Notified

cases

Relevant

events

Notified

cases

Relevant

events

Notified

cases

Relevant

events

1992 4438 — 272 — 2 —
1993 4485 — 274 — 7 —
1994 5529 — 344 — 7 —

1995 5580 — 600 — 133 —
1996 5081 — 487 — 48 —
1997 6881 4 693 5 14 0

1998 7310 6 261 1 118 1
1999 7669 6 184 2 83 1
2000 8414 7 152 1 464 1

2001 8578 3 169 1 27 0
2002 7136 1 75 0 160 1
2003 5262 2 84 1 499 1

Total 76363 29 3595 11 1562 5

Table 2. Detection of relevant events (outbreaks) of campylobacteriosis (29 relevant events), hepatitis A

(11 relevant events) and tularemia (5 relevant events)

The CuSums model
The England and
Wales model

The SPOTv2
model

Campylobacteriosis (n=29)

Relevant outbreaks detected 1/15 27 9
Total warnings provided 1/18 36 10
Sensitivity 100%/83% 74% 86%
PPV 4%*/52%* 93%* 31%*

Hepatitis A (n=11)
Relevant outbreaks detected 4/4 5 8
Total warnings provided 4/4 5 8
Sensitivity 100%/100% 100% 100%

PPV 36%/36% 45% 73%

Tularemia (n=5)
Relevant outbreaks detected 3/5 5 5
Total warnings provided 7/11 7 5

Sensitivity 43%/43% 80% 100%
PPV 60%/100% 100% 100%

Total (n=45)
Relevant outbreaks detected 8/26 37 22

Total warnings provided 12/33 48 23
Sensitivity 67%/71% 87% 95%
PPV 18%/53% 82% 49%

In the CuSums column: [Original CuSums]/[Cut CuSums (St>20oSt=0)].

PPV, Positive predictive value.
* See the Discussion section for an explanation.
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and the modified CuSums version (average 67 and

71% respectively). The PPV varied between 4 and

60% for the originally calculated CuSums (average

18%) and varied between 36 and 100% for the

modified version (average 53%).

The England and Wales model

The model used a weighting process based on devia-

tions from the model, to reduce previous outbreaks

in the baseline. It is difficult to illustrate the result

of the reduction, but in the evaluation previous

extremes were reduced to y85% (58–100%) of the

original level, in the evaluation data. The sensitivity

varied between 74 and 100% (average 87%) and the

PPV varied between 45 and 100% (average 82%).

The SPOTv2 model

The model used a mix of Hanning moving averages

and moving medians to reduce previous outbreaks

in the baseline. Previous extremes were reduced to

y80% (76–90%) of the original level. The sensitivity

varied between 86 and 100% (average 95%) and the

PPV varied between 31 and 100% (average 49%).

Swiftness comparison

It was not obvious how to calculate the time period

between when an outbreak actually started and when

our models provided a warning. We could, however,

compare the models in order to see which model first

detected an outbreak. Taking into account that it

was much more difficult to decide when an outbreak

started for campylobacteriosis, than for the other

two model diseases, we concentrated on the other two

(Table 3). It was quite even between the models as

to which detected an outbreak first, but the SPOTv2

model was first to detect the outbreaks more fre-

quently than the others. This is by no means evidence

of which model was the ‘ fastest ’, but the table does

provide an indicator.

DISCUSSION

Model diseases

In this evaluation of statistical models for automatic

outbreak detection we chose three model diseases

with different epidemiology, modes of transmission

and outbreak potentials. For campylobacteriosis,

the true number of outbreaks during the period was

probably much higher than the figures presented.

However, since the same set of retrospective data

was used for all three models, we disregarded this

phenomenon when comparing the models [15, 16].

In the mid-1990s, a hepatitis A epidemic due to

contaminated amphetamine infected some 100 intra-

venous drug users in the Malmö region of Southern

Sweden. Subsequently, the epidemic spread to

Göteborg on the west coast of Sweden, and in 1997

to the capital Stockholm on the east coast [16].

Tularemia is a disease with low incidence, with

cases infected mainly in the northern part of Sweden.
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Fig. 2. Illustration of the outbreak detection of retrospective
campylobacteriosis data (1992–2003) using CuSums. The
impact of the increasing trend in 1997 was so strong that

the CuSums did not recover until 2004, implying that all
outbreaks between 1997 and 2004 would be missed.

Table 3. Summary of number of first discovered outbreaks for hepatitis A and tularemia (note that more than

one model can be first to detect an outbreak)

Number of

outbreaks

CuSums

(original)

CuSums

(cut)

The England and

Wales model SPOTv2

Hepatitis A 11 2 2 4 8
Tularemia 5 1 2 2 3
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Large outbreaks had occurred in 1970, 1981, 2000,

and 2003 [16].

Choice of models to test

In order to find which statistical models to evaluate,

we reviewed the literature. A number of different

statistical models have been developed and evaluated

[9–12, 17–21]. We planned to compare the sensitivity

and PPV from previous studies in the evaluation of

the different models, but not all papers provided these

data, and due to the lack of a ‘gold standard’, the

data provided were not comparable.

Counted data Poisson CuSums

Brown et al. tried to detect clusters of nosocomial

infection in data from 1995 to 2000. They com-

pared CuSums and a moving average and concluded

CuSums to be the superior. Further, they con-

cluded the PPV to be 83–96%. No sensitivity was

presented [17]. Hutwagner et al., in the United States,

used information from the years 1992 to 1997 to cal-

culate the baseline, and then to analyse retrospective

data of Salmonella serotypes over the next 5 years for

each state reporting. They concluded the sensitivity

by state in which the outbreak was reported to be

from 0 to 100% and the PPV from 64 to 100% [18].

O’Brien & Christie analysed retrospective data from

1985 to 1996 of Mycoplasma pneumonia, using a

13-week moving average to calculate the predicted

value. They concluded: ‘at national level, however,

where data are further aggregated, CuSums could

quickly detect both focal and non-focal increases

in low prevalence conditions, facilitating investi-

gations in order to establish the reason for the

increase ’ [19].

One great disadvantage of the CuSums model is

the lack of control for previous outbreaks, resulting

in decreased sensitivity in a disease like hepatitis A,

with a major outbreak occurring during a number of

years in the mid-1990s (Fig. 3). The lack of reduction

does not only decrease the sensitivity of the model,

but also the ability to monitor trends in diseases.

To improve the model, one could use the reduction

process of either the England and Wales model or

the SPOTv2 model. It is not clear, however, what

impact this would have. All CuSums depend by defi-

nition on the previous, i.e. a possible outbreak last

week will have an impact on this week, causing

a higher CuSums than normally. Due to this, the

magnitude of a possible outbreak affects the time

for the CuSums to recover. An example of this can

be seen in Figure 3, where the evaluation graph of

hepatitis A is presented. At the start of 1997, a small

(though greater than by chance) increase in the

retrospective data triggered a warning (max StB5).

Compare this with the major outbreak detected

immediately after, in the middle of 1997, when max

St>50. The recovery times of the CuSums was

y10 weeks and 1 year respectively for the two

warnings. During that year no outbreaks could be

detected. This was the main reason for introducing

the ‘cut CuSums’, where all CuSums exceeding

St=20 were cut off. This allowed the CuSums to

recover in <10 weeks, compared to 1 year in the

latter of the above outbreaks. Since we cut the

CuSums when it exceeded St=20, there was no

guarantee that the detected outbreak had ended,

triggering another warning directly. Thus, we might

get an increase in the number of warnings per out-

break, but this can be considered as being better than

no warning at all.

The England and Wales model

The study of Farrington et al. in 1996, using real

epidemiological data, showed that y40% of all

warnings corresponded to outbreaks or other events

of public health interest. About 30% corresponded

to increases of questionable epidemiological interest,

and the remaining 30% corresponded to faults in

the reporting, such as batching of reports by one

laboratory [10]. Carlsund compared the England and

Wales model with a time-series analysis model and
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Fig. 3. Illustration of the outbreak detection of retrospective
hepatitis A data (1992–2003) using CuSums.
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concluded that the England and Wales model was

superior for high-incidence diseases [20].

In comparison to the CuSums model, the recovery

time of the system was instantaneous when a warn-

ing was produced. The weighting process to reduce

previous outbreaks seemed to work properly. It was

not obvious how to verify the process, since it was

included in the model. In order to get an indi-

cation of the correctness of the weighting process,

we observed the evaluation graph of hepatitis A

(Fig. 4). During the years 1994 and 1998, there were

major outbreaks in Sweden, causing the number of

cases each week to double. When using these data

in the baseline, without any reduction of previous

outbreaks, the sensitivity of detecting new out-

breaks was decreased. This is exemplified when

using CuSums (Fig. 3), where there was no detec-

tion activity at all between mid-1998 and mid-2003.

By observing the detection of the England and

Wales model we saw an even flow of detection ac-

tivity during the same time period (the same phenom-

enon could be observed when using the SPOTv2

model).

Even though the England and Wales model proved

to have high sensitivity and PPV when detecting

campylobacteriosis, it produced a larger number of

irrelevant warnings (more than 1.6 warnings per

detected relevant event). Although it was easy to

manually filter them out, the number was too high.

Due to this, the PPV of the other two models was

affected, i.e. the PPV for campylobacteriosis using

the England and Wales model was in reality lower

and the corresponding PPV for the CuSums and the

SPOTv2 model was in reality higher. The reason for

this is the difficulty in deciding the time period of

an actual outbreak, especially for high-incidence

diseases like campylobacteriosis. Since the England

and Wales model provided a large number of warn-

ings, we had, in equal numbers, many decisions to

make with regard to whether one week belonged

to this outbreak, another outbreak or perhaps no

outbreak at all. Since we used the same set of time

periods for all three model evaluations, this had an

impact on the PPV of the other two models.

The SPOTv2 model

Stern & Lightfoot evaluated the model with epidemi-

ological information (salmonellosis and shigellosis)

over 3 years with >90% sensitivity and >50%

PPV [21].

Compared to the England and Wales model, there

was a better balance between the number of warnings

and the number of detected outbreaks. One warning

per actual outbreak is sufficient to detect the disease

and any further warnings are unnecessary.

The SPOTv2 model may experience problems

when detecting diseases like tularemia. An example

of this is illustrated in the evaluation graph of

tularemia (Fig. 5). When evaluating the years

1997–2000, we used the years 1992–1999 as baseline.

Note that the standard deviation (S.D.), illustrated as

the distance between the predicted value and the

threshold, when we started detecting in 2001 and

the outbreak year of 2000 was included in the
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baseline. The S.D. was doubled, which implies a de-

creased sensitivity. The high S.D. was kept during all

years for which 2000 was included in the baseline.

Looking to the future, we might notice that when

predicting the years following 2003, the other major

outbreak this year will also be included in the base-

line, implying an even higher S.D. (although not as big

increase as in 2001). Ideally, the reduction of the pre-

vious outbreaks would filter out the major outbreaks

of 2000 and 2003.

The reduction of previous outbreaks encountered

more problems when evaluating hepatitis A. Since the

reduction was designed to smooth the edges of a long

period of extremes rather than reduce the outbreak

itself, the major outbreak in the mid-1990s was not

really reduced, but smoothed. This is obviously better

than no reduction at all, but there is a great potential

in the model to improve the PPV. In fact, any out-

break lasting longer than 10 weeks may experience the

same problem.

SPOTv2 proved to be the best choice for detecting

trends in the data. This is an advantage when detect-

ing diseases like Chlamydia infections, where trends

are interesting, but a disadvantage when detecting

campylobacteriosis, which may experience some

trends during early years, but return towards a base

value in a long-term perspective. An example of this

is illustrated in the evaluation graph of campylo-

bacteriosis (Fig. 6). The predicted value (as well as the

threshold) showed a clear trend over time, due to an

increasing trend over the years 1996–2001.

Conclusions

In this analysis, the CuSums could not compete

in sensitivity and PPV with the England and Wales

model and SPOTv2. The main reason being that

the CuSums does not adjust for previous outbreaks

in the baseline. It was more difficult to rank the

other two models. However, we would recommend

SPOTv2 over the England and Wales model for the

following reasons. First, SPOTv2 produced fewer

warnings than the England and Wales model, with-

out losing PPV. Less warnings implies better sensi-

tivity than the England and Wales model, which

for our purposes is the most important argument

in selecting SPOTv2 over the England and Wales

model. Second, SPOTv2 was easier to implement

and ran faster than the England and Wales model.

Third, although it was difficult to compare the

swiftness of the models, as they were all fast,

SPOTv2 seemed to outperform the England and

Wales model.

The main advantage of the England and Wales

model over SPOTv2 was in the reduction of

previous outbreaks. The England and Wales model

produced better results than the SPOTv2 model.

However, SPOTv2 was by no means bad at reduction

and this argument was not sufficient to change our

opinion.

One factor that we did not consider in this formal

evaluation focusing on sensitivity and PPV was the

added value of repeated warnings. In sustained out-

breaks, repeated warnings could further motivate

outbreak investigations. In a country like Sweden

with few outbreaks and good resources to investigate

any suspected outbreak, this is of less importance,

while in countries with many outbreaks and scarce

resources for public health investigations the ability

of an alert system to give repeat warnings could be

imperative.

We based our opinions on the evaluation of

campylobacteriosis, hepatitis A and tularemia data.

Our conclusions only consider these three diseases,

although we believe them to be representative of

many other communicable diseases as well.
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campylobacteriosis data (1992–2003) using the SPOTv2
model.
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