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INTEGRAL GROUP RINGS OF SOME »-GROUPS

JURGEN RITTER AND SUDARSHAN SEHGAL

1. Introduction. The group of units,  ZG, of the integral group ring
of a finite non-abelian group G is difficult to determine. For the symmetric
group of order 6 and the dihedral group of order 8 this was done by
Hughes-Pearson [3] and Polcino Milies [5] respectively. Allen and
Hobby [1] have computed #Z A ,, where A, is the alternating group on
4 letters. Recently, Passman-Smith [6] gave a nice characterization of
ULD,, where D,, is the dihedral group of order 2p and p is an odd prime.
In an earlier paper [2] Galovich-Reiner-Ullom computed ZZG when G
is a metacyclic group of order pg with p a prime and ¢ a divisor of (p — 1).
In this note, using the fibre product decomposition as in [2], we give a
description of the units of the integral group rings of the two noncommu-
tative groups of order p?, p an odd prime. In fact, for these groups we
describe the components of ZG in the Wedderburn decomposition of QG.
The unit description is perhaps a little unsatisfying due to the difficulty
in computing the units of commutative integral group rings. This diffi-
culty does not arise if one considers the p-adic group ring Z,G, |G| = p?,
Z, = the p-adic integers. Also, if |G| = 27, the commutative group in-
volved is of exponent 3 and its integral group ring has only trivial
units; and we can describe ZZG as a group of 3 X 3 matrices over
Zw], w® = 1.

One of the groups of order p3 has a normal cyclic subgroup of order p2.
We consider in Section 2 a group of order p” having a normal cyclic
group of index p and specialize to the case » = 3 in Section 3. The
methods of this note can also handle extraspecial p-groups of order
P21 (see (4], p. 353) giving rise to matrices of size p¢ X p°.

We are indebted to Ian Musson and the referee for improvements in
this paper.

2. A group of order p*. We consider the following group of order p":
H= (a,bla™  =1=0b"ab=a""").
We need an easy fibre product diagram of rings. Let I and J be two
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ideals of a ring R such that I/ N J = 0. Then

R———>R/J

R/I—— R/(I + J)
is a fibre product, in the sense that
R~ {(a,B8)|a € R/I,B € R/J,a = B}.

This induces the fibre product of unit groups:
UR)——>UR/T)

UR/T)—>HR/I + J)

This is to be applied to the group ring ZX with J = A(X, N) as the kernel
of the natural homomorphism ZX — ZX/N with N < X and I = NZG
where N = D ey x. We shall write £ for (£).

We shall need to number the entries of certain matrices by their pseudo-
diagonals. Let us describe the # diagonals of the n X # matrix 4 = [a;;]

as follows
Oth diagonal: a1 1, as2, - .., tpy
1st diagonal: @19, @23, . . ., Q10 Gp1
2nd diagonal: a3, @24y - -« Gpeg.ny Up1.1, Q.2
(n — 1)th diagonal: a1, @s,1, . - -, Gye1,0—2, Cyope1.

We shall have to number some matrices as [x;;] where x;; is in the ith
diagonal at the jth spot in the above numbering, 0 < 4,7 = » — 1.
Let w be a primitive pth root of unity throughout this note.

PROPOSITION 1. Suppose x, . . ., x,_1 € Z[£] are given with &' = w.
Then there existt; € Z[§] satisfying
p—1
Stwt=x,057<p— 1.
i=0
if and only if

p—1
> xwt € pLlE] forall0 Sk < p — 1.
i=0
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Proof. The given system of equations is

to Xo

where W = [0"],0 £ 4,7 < p.

s
I

tp—1 Xp—1

Since W is a character matrix, it follows by the orthogonality relations
that

W= )

The system is equivalent to

to Xo
il X1
= w!
l,,_l Xp—1
Thus there is a solution ¢, ..., — 1 if and only if

1% —k
- w X € Z[E]
P =

forall0 < k = p — 1. This is equivalent to

p—1

;0 w™x, € pLIE, 0 S b

IIA

p— 1.

PROPOSITION 2. Let A and B be p X p matrices over Q(§), &7 = w,

given by
M1 ] 01 0 0...0]
@ 0 010...0
B = VA=
i W (100 ...0]

The Z[t]-span of the matrices {B'47, 0 < 1,7 < p — 1} consists of all
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b X p matrices over Z[£] of the form

Xo,0 X1,0 e e Xp—1,0
Xp—1,1 Xo,1 e Xp—2,1
M=
L ¥1p-1 X2p-1 ... :)Co,,,_lA

such that for eachjand k,0 < 7,k < p,

p—1

*) E 0" € pLIE].

Proof. For a fixed j, the matrices B'47,0 < 7+ < p — 1, have non-zero

entries only in the jth diagonal. The Z[£]-vector (xo, %1, ..., Xp—1) is a
diagonal in the span of {Bt47} if and only if there exist ¢; € Z[¢] such that
= ‘
X1

p—1
Z tiBi =
0

Xp—1

This means that
Jotwt=x,02i<p— 1L
i
Applying the last proposition to each diagonal we get our result.

The next proposition is well known.

PROPOSITION 3. Let 01 € 04 be Z-orders in a rational algebra. If an element
a € 01 has an inverse in 0y then it is a unit of 0, already.

Proof. We have for the indices of additive groups
(02 : @01) = (@02 : a01) = (02: 01),
which implies @01 = 0; and the result follows.
Now, we study our group of order p*,
H = (a,bl @' =1 = ? b~lab = a?"*+1).
Writing a~'b~'ab = a®* = ¢ we have H' = (c) of order p. Thus
H = H/{c) = (a) X ()
Let N be a primitive p"2th root of unity. Then

QH = OH$ Q()‘)po-
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In fact,

QH ~ QH/A(H, (c)) ~ QHt, Q(N)pxp =~ QH/IQH.

Clearly,
ZH— ZH/A(H, {c)) ® Z[\]pzp
{
0

with the projection onto the first component. We shall compute the pro-
jection in the second component. It is easily checked that

{ZH + (1 — ¢)ZH =pZH + (1 — ¢)LH
and

tZHN (1 — ¢)ZH = 0.
Thus we have the fibre product

mod (c)

3

ZH ZH

mod ¢ 8, 02 {mod p

T = ZH/¢ZH L S ZH/pZH

with all maps natural. The p X p matrices

0010 ...0 .
0010...0

A= -+ | and B = - AT =0

—
N
|
-

> o
(=]

satisfy
A? = \I, B* = I, B-'AB = A?* 1,

That the matrices {B'47}, 0 < 4, j < p, are linearly independent over
Z[\] can be seen as follows.
Suppose that

> zyB'4’ = 0.
1,5
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Since A7 has non zero entries only in the jth diagonal we have
; 2,B*4’ = 0 for each .

It follows from the nonsingularity of 4 that
; 2B = 0.

This easily implies that z;; = 0 for all ¢, ;.
Let Sp be the Z[\]-span of the matrices {B47|0 < 7,7 < p}. We claim
that T is isomorphic to Sp. Consider the map

¢:ZH — Sp, ¢(a) = 4, ¢(b) = B.

Since¢ =14c¢+ ...+ P lismappedto (1 + w + ... + o 1)I = 0,
we have an induced map

do : T'—)SP

Since ¢ (a?*a™?) = NA'B?, ¢, is onto Sp. Also, ¢, is one to one as after
tensoring with Q we see that both T"and Sp have Q-dimension (p" — p™1).
Now we give a valuation theoretical description of Sp.

PRrOPOSITION 4. The matrix Z € Z[\pyx, € Sp if and only if the matrix
X = Z' satisfies

p—1
Z xjiwki e pZ[)\], fOr a” O é j, k < P
i=0

where Z' is obtained from Z by dividing all entries below the main diagonal
by \.

Proof. Observe that A7 has entries 1, 1, ..., 1, A\, ..., XA in the zth

)
diagonal and zeros elsewhere. Thus in order to compute Sp we need only
calculate the span {B74% 0 < j < p} separately for every <. Thus we need

to find all Z[\]-vectors (2,0, . . . , 2ip—1) such that
"l 1 Taw -
21
p—1 .
; 1
7 —_
;0 t,B \ ' :
L A B L Zip—1 B
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which is equivalent to

240

b4 ——
§ : j i,p 1
th] =

—1
7=0 zi,p—ix

j ZupN
The result now follows by Proposition 2.

We have the diagram

mod{c) _
ZH———> 1A
3
mod ¢|6, ozlmod b
A 4 0 _
T =2ZH/tZH —— (Z/pZ)A
% *
Sp

which is commutative by setting ¢; = 0:¢0'. Let us describe the map ¢,.
Given M € Sp we wish to write M as 3 a;;B'47 with ay; € Z[N\],0 < 4,5
< p. Let M’ be obtained from M by dividing all entries below the main
diagonal by X. Then the jth diagonal x, . . . , x;,—1 of M’ is the same as
the main diagonal of ), a;;B‘. We have

1 1 ...1 ]
Qo Xj0 1 © wp-l
/4 = , W=
Op—1,5 Xj,p—1 1 ot w(p_l)ZJ
Thus
1 —1k
A5 = 'p' ; w X
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Writing
Qg = Zdijkxky dijk € Z[w], 0 = k< Pn—a

we have

M= du\NB'A’ =3 (2 dijkA”k)BiAj,
i, 7 k

0<4,7<p,0=k<p

The commutative diagram implies that
o1(M) = X dipbtarr

where d,;, is obtained from d;; by substituting » = 1 and going mod .
In view of Proposition 3, we have proved

THEOREM 1. (a) ZH ~ {(a, M) € ZH X Z[N),xo| M’ satisfies (*) and
02(c) = ¢:1(M)}.
(b) #ZH ~ {(a, M) € UZH X Z[N)pso| M s a unit of Z[Npxp, M’
satisfies (*) and ¢2(a) = ¢1(M)}. Here
(1) M’ is obtained from M by dividing all entries below the main diagonal
by N\, N is a primitive p*2th root of unity;
(ii) The condition (*) is

p—1
Z;xjiw“ €PLIN, 0= k< pw=N"

where {x;;} are the pseudo diagonals of M';
(iii) 82 : ZH — (Z/pZ) H is the natural map mod p;
(IV) ¢1(M) = Z i,7.k d'ijkl_)idj+pk where

1
ij=zzl szEZ ]

15 written as Zk AN, diy € L[w],0 £ k < p"3and d,y is obtained from
d by substituting w = 1 and going mod p.

If we replace Z by the ring of p-adic integers Z, then all the work above
goes through. But in this case one knows explicitly that Z,H consists
of all elements of nonzero augmentation. Therefore, a corresponding
result for Z,H is obtained.

3. Groups of order p2. If p is an odd prime, the two noncommutative
groups of order p* are

H = (a,b|a® =1 = b?,b"lab = a?*1)

https://doi.org/10.4153/CJM-1982-016-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-016-5

INTEGRAL GROUP RINGS 241

and
= {(a,b| (a,b) = a~b~lab = ¢,ca = ac,cb = bc,a? =1 = b? =¢).

We reserve the letters G and H for these groups throughout this section.
The first one is a special case of the group discussed in the last section,
obtained by taking » = 3. We have w = )\, a primitive pth root of unity,
¢ = a” and the fibre product diagram is as follows:

mod{c) _
ZH—7———> 7H

3
mod ¢} 04 ealmod P

A 4

0 _
= ZH/¢ZH ————(Z/pZ)H

bo
J h

Y

Sp

Theorem 1 specializes to

THEOREM 2. (a) ZH ~ {(a, M) € ZH X Z[w],x,| M’ satisfies (*) and
fa(a) = ¢1(M)}.
(b) U#ZH ~ {(a, M) € UZH X Z|wlyx| M is a unit of Zlwlyxy, M
satisfies (*) and 02(a) = ¢1(M)}. Here,
(1) M’ is obtained from M by dividing all entries below the main diagonal
by w.
(i1) The condition (*) s

p—1
2 050" € pLI), 0 S,k < p, o’ =1
i=0

where {x;;} are the pseudo diagonals of M'.

(iii) 05 : ZH — (Z/pZ) H is the natural map mod p.
(v) ¢1(M) =D . a.,b'a’ where

ij = —Z -”lee Z[O)

and &;;1s obtained from a.;; by putting w = 1 and gotng mod p.

Now, we consider our second group of order p3. The factor commutator
group, G = G/{c) is elementary abelian of order 2, G = (@) X (b). We
have the decomposition

QG >~ QG @ Q(w)yxw)
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where Q (w),x, is the ring of all p X p matrices over Q(w). In fact
QG ~QG/A(G, {¢)) ~ QGt,
Q(w)po ~ QG/tQG.

Clearly,

2G - 1LG/A(G, (¢)) @ Zlwls
{
G
with the projection onto the first component. We shall compute the pro-
jection in the second component. Consider the fibre product diagram
d
3

mod ¢|0, 6:{mod p

2G/e26 —2 s 2/p2)G
where 6;, 63 and 6, are the natural projections and 6; is the map
0:(3 zcialb*) =Y za'bt, z € Z.
It is worthwhile noting that ZG/¢ZG is isomorphic to the twisted group
ring Z[w] o G with wb@ = ab. The map 6, after this identification is given
by
0,3 aa®d’) = Y. aa’d?!, o € ZLlw]
where & is obtained from a by substituting » = 1.
Let us define a map ¢, from Z[w] 0 G to Z[w]yx, by

(1 1 [0 10 ...0]
w 0 010...0
W' (1 00 ...0

Then wBA4 = AB, A? = I = B?. Moreover, if 9, ; a;;B'47 = 0, ay; €
Z[w]and 0 < 7,5 < p, thena;; = O for all 7, j. This can be seen as follows:

; 2 ayB'A’ = 0= a;B'4’ =0
J i

as A7 has nonzero entries only in the jth diagonal. Further, due to the
nonsingularity of 4 it follows that Zi a;;B' = 0, and this implies that
a;; = 0 for all 7, 7. We have proved that

ZG/¢ZG ~Z[w] o G ~span (B'47,0 < 1,7 < p) = Sp,
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the Z[w]-span of the matrices {B!47}. It follows by Proposition 2 that

p—1
Sp = {ME Z[wlyx,| Msatisfies D x,;,0"" € pZlw]forall0 < k,j < p} .
i=0
Let us understand the induced map ¢; = 610

0
26 ———— 76

04 02

Z[w)o G ~ZG/¢ZG ————> (Z/pZ)G

A

Given M € Sp, we wish to find ¢} (M) € Z[w] 0 G. Let {x;,0,...,%;p-1}
be the jth diagonal of M. We wish to find a;; € Z[w] such that
> i ai;BiA7 = M. It is necessary to find a;; such that

xj,()
i .
2 ayB' = : 0=j=p—1L
i
X;,p—1
This is equivalent to
P
aO,j 7.
Xj1
W =
Ap—1,;
! Xj7,p—1
where
1 1 1
1l w W't
W =
1 wﬂ“l w(p—l)2
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Hence, we see that

17=1
A5 = ; ; x]k
We have
o (M) = D ap'@ and e (M) = D aybla’
07

where d@;; is obtained from «;; by substituting w = 1. We have proved
the first part of the next theorem. The second part follows from Proposi-
tion 3 in view of the fact that Sp is an order in Z[w]yxp.

THEOREM 3.
(@) ZG >~ {(a, M) € ZG X Z[wlpxy| M satisfies (*), 02(a) = ¢1(M)}.

(b) ULG ~ {(a, M) € ULG X Zwlyxy| M is a unit of Z[wlpwp, M
satisfies (*), 02(a) = ¢1(M)}.

Here,
(i) 62 : ZG — (Z/pZ)G is the natural map mod p;
(ii) The condition (*) s

p—1
gxﬁw“ € pLlw],0 <,k < p, o’ =1,

where {x;} are the pseudo diagonals of M,
(iii) ¢2(M) = D . ; @s;0'a where

= Z -kixjk € Zlw]

and @;;is obtamed froma;; by putting w = 1 and going mod p.
As in the case of Theorem 1 there is also a corresponding p-adic result.
4. Groups of order 27. Now, we specialize to the case p = 3; w? = 1.
The groups are
G = (a, bl(a,b) = ¢, ccentral,a® = b = ¢ = 1), and
H = {(a,bla® = 1 = b3, b~lab = a*).

Then G = (@) X (b), H = (@) X (b) are both elementary abelian 3-
groups. It is well known (7, p. 57] that %ZG = +G, %ZH = +H. We
wish to give an explicit description for ZZG and %ZH. The diagram for
ZG is as follows:

1 010
B = w , A=10 0 1},
w? 1 00
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mod (c)
05

mod c| 6, 0;|mod 3

G —7G

Z[w] 0 G ~2G/¢ZG L SN (2/32)G

%l
@1

Sp

Specializing the condition (*) to p = 3, we see that the matrix
Xo0,0 X1,0 X2,0
M=%, %01 %11 | € Zlw]sxs
X1,2 X2,2 Xo,2
belongs to Sp if and only if it satisfies for each 0 < ¢ < 2 the conditions
%0 + x4 + %42 € 3Z[w]
X0 + 0w + x20% € 3Z[w]
X0 + x“wz + X o e 3Z[O)]
To find ¢:(M) we need a,; € Z[w] such that M = 3 a;;B*A’. This gives

a0, 1 1 1[5
ay; | = % 1 w? w X1
127, 1 w w? X jo

ao; = k(x50 + x5 + %5)
(**) a1 = 3(xj0 + 0¥ + wxjs)
as; = 3(xjo + wxj + wixg).
We have ¢:(M) = ¥ a;b'a’. We know that the units of ZG are pairs

(o, M), a € ULG, M € Sp with ¢,(M) = ¢s(a). But, since #ZG = +G
we need matrices M such that

¢1(M) = Za_ijgidj = :I:till-)m = 02(:l:a’b”‘)

and

for some I, m. This means thatif r = w — 1,
(1) For two values of ¢ and all j, a;; = 0 (mod =);
(2) For the third value of ¢ either
ap = £l,a4 = a, =0 (mod 7) or
g = *l,ap9p=a,=0 (mod7) or

s = +1,a90 =ay =0 (mod 7).
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We have proved

THEOREM 4. UWZG ~ { M € UZL|w]sxs| M satisfies (1) and (2) where a.;
are given by (**)}.

It is clear that the matrices ¥ € %Z[w]sxs which are congruent to
I mod ° are contained in ZZG and hence ZZG is a congruence subgroup
in SL(3,Z[w]).

Now, we describe ZZH. Recall that if we have a matrix

Xo,0 X1,0 X20
X=2 = X2,1 Xo,1 X1,1
X1,2 X2,2 Xo,2

satisfying (*) then the corresponding matrix in Sp is

X0,0 X1,0 X2,0
Z=|wxy1 o1 K11
wX1,2 WXy 2 Xo,2

If we write Z = Y a ;B'47 then it can be checked that ¢:(Z) = =h,
h € H if and only if the matrix X satisfies (1) and (2). We have

THEOREM 5. U ZH ~ {Z € UZL[wlsxs| Z' satisfies (1) and (2) where a;
are given by (**)}.

It is easily seen that ZH is a congruence subgroup in SL(3, Z[w]).
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