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ON ARITHMETIC FUNCTIONS OF FINITE GROUPS

ASHISH KUMAR DAS

The object of this paper is to develop and study group theoretic analogues of some
of the fundamental concepts and results of arithmetic functions of positive integers.

1. INTRODUCTION

Arithmetic functions (that is, complex valued functions defined on positive integers)
play a very important role not only in the theory of numbers but also in almost every
branch of Mathematical sciences. Delsarte [4] and Cohen [3] have developed and studied
group-theoretic analogues of arithmetic functions using finite Abelian groups, in place of
positive integers, as the variables. However, most of their results do not not extend natu-
rally to nonabelian groups. Recently, Leinster [6] developed and studied analogues of the
'sum-of-divisors' function for finite groups, especially for the nonabelian ones. Lucido and
Pournaki [7], Mann [8], Marefat [9], Menegazzo [10], and many others have conducted
detailed studies on various types of nontrivial group-theoretic arithmetic functions (of
course, without calling them arithmetic functions).

Let Q be the collection of all finite groups (up to isomorphism). Then Q can be
regarded as a monoid with respect to the direct product of groups (treating the isomorphic
groups as the identical ones). The identity element of Q is given by the trivial group {e},
the group of order 1. Let A(G) denote the collection of all complex-valued functions with
domain Q. Three very elementary yet very important members of A(Q) are | |, u and e,
given by

|G| = the order of G, u(G) = 1, and e(G) = T' li G = W
10, otherwise

where G € Q. The object of this paper is to extend the ideas of Delsarte and Cohen to
all finite groups (Abelian and nonabelian). Properly speaking, we study the structure of
A{Q) by developing group-theoretic analogues of some of the fundamental concepts and
results of arithmetic functions (see [1]) of positive integers. We also try to characterise
finite groups using analogues of divisor functions. It may be mentioned here that most
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46 A.K. Das [2]

of the group-theoretic analogues developed in this paper coincide, when restricted to the
set of postive integers, with their number-theoretic counterparts; noting that the set of
positive integers can be identified with the subset of Q consisting of all finite cyclic groups
under the injective map n >->• Cn where n is a positive integer and Cn — Z/nZ is the
cyclic group of order n.

2 . COPRIME GROUPS, MULTIPLICATIVE FUNCTIONS, AND CONVOLUTIONS

Let G G Q be a finite group. Then G has a composition series given by
{e} = Ho < Hi < • • • < Hn-i < Hn = G. The set-with-multiplicities of composition fac-
tors associated to this composition series is given by C(G) = {Hi/Hi-i : i — 1,2,..., n}
and it is uniquely determined by G upto isomorphism of factors (see [5], Jordan-Holder
Theorem). By convention C({e}) = 0. It is a standard fact that V K < G the set C(G) is
the disjoint union (that is, union counting multiplicities) of the sets C(G/K) and C(K).

We shall say (see [6]) that the groups G\, G2 € Q are coprime or relatively prime if
C(G\) and C(G2) have no member (that is, composition factor) in common; in case C(G\)

and C(G2) have no Abelian member in common then G\ and G2 will be called almost

coprime. Thus, the groups G\ and G2 will be coprime whenever they have coprime
orders, and if G\ and G2 are Abelian then the converse is also true. It may be mentioned
here that the alternating groups Ah and At are coprime but they do not have coprime
orders.

A function / £ A(G) which is not identically zero will be called multiplicative if we
have f(G\ x G2) = f{Gi)f(G2) whenever Gi,G2 G Q are coprime; in case j(Gx x G2)

= f(Gi)f(G2) holds for all Gi,G2 G Q then / will be called completely multiplicative.

Further, we shall say that the function / is almost completely multiplicative if we have
f(Gi x G2) = f{G\)f(G2) whenever Gi,G2 G Q are almost coprime. Thus, we have
/({e}) = 1 if / satisfies any of the multiplicativity conditions. It is easy to see that | |,
u and e are all completely multiplicative functions.

Given G € G, let YIC{G) denote the direct product of all members (counting multi-
plicities) of the set-with-multiplicities C(G). As a convention, we take IlC{e} = {e}. If
/ and g are any two functions in A{Q) then we shall define their convolution to be the
function f * g €. A{Q) given by

where G G G, and the summation is over all ordered pairs (H, K) G G x G which satisfy
one of the following conditions:

(i) One of H and K is G, and the other is {e},

(ii) HxK = UC(G), and none of H and K is {e}.
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REMARK 2.1. If / , g € A(G) then one can also define their ordinary product fg € A(G)

given by fg(G) = f{G)g(G) V G € Q. However, the convolution defined above turns out
to be more fruitful.

PROPOSITION 2 . 2 . A(G) is a commutative ring with identity £ under the ad-
ditive and the multiplicative operations given respectively by ordinary addition and con-
volution of functions.

P R O O F : No te t h a t if f , g , h e A{Q) t h e n

( ( / * g) * h ) ( G ) = { f * ( g *

where G € G, and the summation is over all ordered triples (L, M,N) € Q x Q x Q which
satisfy one of the following conditions:

(i) One of L, M and N is G, and. the other two are {e},

(ii) Lx M x N = UC{G), and no two of L, M and TV are {e}.

The associative law for multiplication is thus established. The other properties can be

easily proved. D

REMARK 2.3. In general, the convolution of two multiplicative functions in A(Q) is
not multiplicative. However, if the groups G\yG2 € G are coprime as well as completely
reducible then ( / * g){Gi x G2) — ( / * g){Gi) (f * g)(G2); noting that on the completely
reducible groups the convolution mentioned above coincides with the 'direct convolution'
which is multiplicative (see [3]).

Consider the factorisation map p : G —• G given by p(G) = IIC(G) where G G G-
By Jordan-Holder Theorem, p is well-defined. Clearly, p(G) — G if and only if G is
completely reducible in G- It is also easy to see that p is a monoid homomorphism
and it preserves 'coprimeness' of groups in G- thus, if / G A(G) is multiplicative then
fops A(G) is also multiplicative. In fact, we have

PROPOSITION 2 . 4 . Iff,g e A{G) are multiplicative then {f*g)op€ A{G) is
also multiplicative.

PROOF: Follows from Remark 2.3. D

From the definition of convolution, it follows that p is distributive over convolution.
More precisely, we have

PROPOSITION 2.5. Iff,geA(G)then(f*g)op = (fop)*(gop).

As an immediate consequence we have

COROLLARY 2 . 6 . p induces a unitary ring homomorphism of A(G) into itself

given by f >-> / o p where f € A{G)-

As in the case of the ring of arithemetic functions of positive integers, the ring A(G)

also has invertible elements.
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PROPOSITION 2 . 7 . If f e A(G) with / ({e}) / 0 then there is a unique

g € A{G) such that f *g = g* f = e.

PROOF: We shall show that, for each G € Q, the equation / * g(G) — e(G) has a

unique solution for g{G).

If G = {e}, then the equation / * <?({e}) = e({e}) = 1 has a unique solution given

by

)

So, let G € Q be nontrivial, and assume that for each K 6 G, with \K\ < \G\, the equation
/ * g(K) — e(K) has a unique solution for g(K). Now, the equation / * g(G) — e(G) — 0
can be written as

where the summation is over all ordered pairs (H, K) € Q x Q such that either H = G

and K = {e}, or H x K = YIC(G) and none of H and K is {e}. Clearly each such K

satisfies \K\ < \G\, and so by induction hypothesis g(G) is uniquely determined, namely,

This completes the proof. •

The function g mentioned in the above proposition will be called the inverse of the
function / , and will be denoted by f~x.

COROLLARY 2 . 8 . The set of all functions f € A{G) with f({e}) / 0 forms an
Abelian group under the operation given by convolution.

P R O O F : Let f,g € A(G) with /({e}) ^ 0. Then g({e}) ± 0 if and only if
( / * 9)({e}) = /({e))ff({e}) # 0. Hence, in view of Proposition 2.2, the corollary
follows. D

Returning back to multipliplicative functions in A(G) we have

P R O P O S I T I O N 2 . 9 . If f , g e A(Q) a r e such that fop and ( / * g) o p are

multiplicative then g o p is also multiplicative.

PROOF: Let Gi, G2 6 G be any two coprime groups. We shall use induction on the

direct factors of p{G\) and p{G2) to prove that (gop)(d x G2) = (ff °p){Gi)(gop)(G2)

If d = G2 = {e} then

and so, as the induction hypothesis, we assume that for each direct factor K\ of
p(G{) = II(Gi) and for each direct factor K2 of p(G2) = U{G2) with A"! x K2

j= p(Gi) x p(G2) we have

(g o p ) ( / r , x K2) = (go p^K^g o p)(K2)
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that is. g(K\ x K2) — g(Ki)g(K2). Then, since ( / * 5) o p is multiplicative, we have

( ( / * 9) o p) (Gx xG2) = ((f*g)o p) (Gi) ( ( / * g) o p) (G a )

or V f(H)g(K) = V f(Hi)g(Kx)) V

or V /(H! x H2)p(A:1 x K2) = E / (^ i x H^K^g^),

where the summations are over all ordered pairs (H, K), (Hi, K{), (H2, K2) £ Q xQ such
that HxK = p(G1) x p(G2), HlxKl = p(Gx), and H2xK2 = p(G2). Therefore, using
the induction hypothesis and the fact that (/ o p)({e}) = 1, we have

g(p(Gl) x p(G2)) = g(p(Gl))g(p(G2)).

This completes the proof. D

COROLLARY 2 . 1 0 . The set of all multiplicative functions in A(Q) of the form
fop, where f G A(Q), is an Abelian group under the operation given by convolution.

PROOF: It is easy to see that the set under consideration is same as the set of all
functions in A(Q) of the form fop, where / € A(Q) is a multiplicative function; noting
that / o p — (/ o p) o p. We shall in fact show that this set is a subgroup of the Abelian
group considered in Corollary 2.8.

Let f,g & A(Q) be any two multiplicative functions. Then, by Proposition 2.4,
(/ ° P) * (9° P) — (/ * 9) ° P IS multiplicative. Also, we have

( f o p ) * (f1 o p ) = (f* f - 1 ) o p = e o p = e .

So, ( / o p ) " 1 = f~l o p, and, by the above proposition, f~l o p is multiplicative. Hence,

the corollary follows. D

3. T H E M O B I U S F U N C T I O N AND T H E R E L A T E D R E S U L T S

The Mobius function, which is one of the most useful examples of ari thmetic func-

tions of positive integers, is given by

( - 1 ) W ( n ) ' i fw(n) = fi(«)

0, otherwise

where n is a positive integer, LJ(TI) is the number of distinct prime factors of n, and fi(n)

is the number of prime factors (counting multiplicity) of n.

We define the group-theoretic analogues of UJ, Q and the Mobius function fj. as

u)(G) — number of distinct ( that is, non-isomorphic) factors in C(G),

Q(G) = number of factors (counting multiplicity) in C(G), and

otherwise
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where G € £. Note that w({e}) = 0 = ft({e}) and so /i({e}) = 1.
Considering G to be C2 x C2 and C4, one can see that the Mobius function p(G)

defined above is not an extension of the Mobius functions defined by Delsarte and Cohen.
However, taking G = Cn, we have

u(Cn) = u(n), Q{Cn) = fi(n), and (i(Cn) = p{n)

because Cn — CVx*\ x • • • x CPk*k, where p / 1 , . . . , pk
Tk is the standard prime factorisation of

n, and so C{Cn) consists of the simple groups CPi, each having multiplicity r*, 1 ̂  i ^ k.

LEMMA 3 . 1 . n(Gr x G2) = Q(Gi) + Q(G2) for all GuG2e Q, and u{Gx x G2)
= u)(G\) + ̂ {Gi) ifGi and G2 are coprime.

PROOF: Given Gi,G2 € Q, we know that C(Gi x G2) is the disjoint union (that is,
union counting multiplicities) of C(Gi) and C(G2). Hence the lemma follows. D

PROPOSITION 3 . 2 . The Mobius function fi e A{Q) is multiplicative, and fi *

u = u * (J, = £ that is, /J,'1 = u and u~x = fi.

PROOF: The first part follows from Lemma 3.1. For the second part, one notes that
juop = /j and u o p — u where p is the factorisation map considered in section 2. So,
by Propositions 2.4 and 2.5, /z * u is multiplicative and (p. * u)(G) — (p, * u)(UC(G))
VG € G- Now, for G ^ {e}, YIC(G) is a product of powers of distinct simple groups in Q,
and

(/x * u ) { P k ) = M ( W ) + H(P) + H i ? 2 ) + ••• + » ( P k )

= 1 - l + 0 + --- + 0 = 0

for each simple group P £ Q, for each positive integer k. So, it follows that (/j. * u)(G)

As an immediate consequence, we have the following analogue of the Mobius inver-
sion formula.

P R O P O S I T I O N 3 . 3 . Forf,g e A{Q),

f - g*u <=> g = f * fi.

PROOF: We have to simply 'multiply' the first equation on the right by p to get the
second, and the second equation on the right by u to get the first. D

An important example of a completely multiplicative function of positive integers is
the Liouville's function given by

where n is a positive integer. We define the group-theoretic analogues of A as

where G € Q.
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PROPOSITION 3 . 4 . The Liouville's function X € A{Q) is completely multi-
plicative, and A * / x 2 = / i 2 * A = e that is, A"1 = p? where p? is the ordinary product of
p. with itself. Also, for each G € £,

<\ \(r\ , i\<n\ J 1 ' ^P(G) = P(H x H) for some H e G(A * u)(G) = (u * A)(G) = <
I 0, otherwise.

PROOF: The first assertion follows from Lemma 3.1. The remaining assertions are
proved using an argument similar to the one that was used to prove the second part of
Proposition 3.2, except that in this case we have

(A • p2){Pk) = \(Pk) + X{Pk~l) = (-1)* + (-1)*"1 = 0,

and

(A * u ) { P k ) = A ( { e } ) + X{P) + X(P2) + ••• + X{Pk)

= 1-1 + 1- . .. + (-1)*=/°' i f M S ° d d

I 1, if Ac is even

for each simple group P £ Q, and for each positive integer k. Hence, it follows that if
GeG then (A * n2){G) = {p2 * X){G) = e(G), and also (A * u)(G) = 0 or 1 depending on
whether there exists or does not exist a factor in C(G) having odd multiplicity. D

In Proposition 2.7, we have seen, in particular, how to compute the inverse of a
multiplicative function on Q. However, for completely multiplicative functions of the
form fop the computation of the inverse is easy.

PROPOSITION 3 . 5 . Let f e A{Q) be a multiplicative function such that
f — f op. Then f is completely multiplicative if and only if f * (p,f) = (fif) * f — e that
is, f'1 — nf where fxf is the ordinary product of \i and f.

P R O O F : For each G € G, we have

= J2 f(HMK)f(K) =
= f(G){u*n)(G)=e(G)

by proposition 3.2; noting that (fop)(G) = f(G), / ( {e} ) = 1 and e{G) = 0 for G ± {e}.

Conversely, since / is mulptiplicative it is enough to show that f(Pk) — f(P)k for

each simple group P in Q and for each positive integer k. Now,

*) + »(P)f(P)f(Pk-*) = 0

= • f(Pk) = f(P)f(Pk-1)

and so. by iteration, f(Pk) = f(P)k- This completes the proof.
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4. DIVISOR FUNCTIONS AND THEIR MULTIPLICATIVITY

Some well-known examples of divisor functions which form an integral part of arith-

metic functions of positive integers are given by

T(n) = E *' <r(n) = ^ d , and aa(n) = ^ d a

d\n d\n d\n

where n is a positive integer and a is any complex number.
Taking cue from [6], we define the group-theoretic anlogues of these functions as

r(G) = E 1, a(G) = £ \N\, and aa(G) = £ \N\°
N<G N<G

where G € G- Thus, T(G) is the number of normal subgroups of G, a{G) is the sum of
the orders of normal subgroups of G, and oa(G) the sum of the ath powers of the orders
of normal subgroups of G.

Clearly, CTO(G) = T(G) and <J\(G) = o{G). Also, in particular, if we take G = Cn

then aQ(Cn) — aa(n); noting that there is an one to one correspondence between the
normal subgroups of Cn and the divisors of n given by N >-¥ \N\, where N < Cn.

Since every proper non-trivial normal subgroup N of a finite group G satisfies
2 ^ |W| ^ |G|/2, we have

2T(G) + |G| - 3 < ff(G) ^ 1 + T(G)^.

PROPOSITION 4 . 1 . IfG eg then a{G) = £ r(G/Ng) where Ng is the small-
geG

est normal subgroup ofG containing g.
PROOF: We know that, V<7 € G, the normal subgroups of G/Ng are in one to

one correspondence with the set {./V : Ng < N < G} — {N : g E N < G}, and so
T(G/N9) = \{N:geN<G}\. Therefore,

N<G N<\Gg€N N<G g£G

E 1 = ±,T(G/N.);
gSG N<G

here 6g^ = 1 or 0, according as g € N or g £ N.

As a corollary we have the following number theoretic identity.

COROLLARY 4 . 2 . For any positive integer n,

n - l
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P R O O F : Putting G — Cn, in the above proposition, we have

n—1

o(n) = a(Cn) = 5 ^ T( TTT) i W is tae subgroup of Cn generated by k

n - ln - l _,
— 5 ^ r I TT- ) > where k! =

^ gcd(n,fc)
n- l n - l

t=0 Jfc=o n

Given any two groups G\ and G2 (finite or infinite, Abelian or non-abelian), we
now develop a condition which is equivalent to saying that every normal subgroup of the
product G\ x G2 is of the form Nx x iV2 with N{ < d, i = 1,2.

We shall say that the groups G\ and G2 have a subgroup in common if there exist
non-trivial subgroups Hi of G\, and Hi of G2 such that H\ = i/2-

THEOREM 4 . 3 . Let Gi and G2 be any two groups. Then the following conditions
are equivalent:

(1) Every normal subgroup of the product G\ x G2 is of the form N\ x Â 2 with
Ni < Gx and N2 < G2.

(2) For each Hx < Gi and for each H2 < G2, tie centres Z(G\/Hi) and
Z{G2IH2) of the quotient groups G\/Hi and G2/H2 have no subgroup in
common.

PROOF: Suppose that Gi and G2 satisfy the second condition. Let N < Gx x G2.
Set Hx = ni f(Gi x {e2}) D Nj and H2 = ^( ({e i} x G2) n Nj where et are identities
of Gj and TTJ : G\ x G2 —> Gi are projections, i = 1,2. Then

Hi x {e2}, {ej x H2CN Cnx(N)x ir2{N)

and so

(4.4) H1xH2 = {Hx x {e2}) ({e j x H2) C ̂ (iV) x TT2(N)

It may be noted here that Hi < d and H{ < 7rt(AT), z = 1,2. Now, suppose ax e
Then (ai,a2) € N for some a2 £ G2; in fact a2 G n2(N). Therefore, Vyi € Gi, we have

(9iaigr\a2) = (</i,e2)(ai,a2)(gr1,e2) e iV

G\.

9ia\9i~lai~l 6
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Thus, axHx e Z(GX/HX). So, we have TTX(N)/HX C Z{GX/HX). Similarly,

n2{N)/H2 C Z{G2/H2). Note that if ax,bx G nx(N) then (ax,a2),(bx,b2) G TV for some

a2,b2 G TT2(N), and so ( a i i i " 1 ^ ^ " 1 ) , (ai&i>O2&2) G TV. Therefore,

axHx = fti/Tt <=> a ^ i " 1 € #1 <=> (o16r1,e2) € N

<F=^(ex,a2b2~
1) G /V <=> c ^ " 1 € # 2 <==> a2#2 = b2H2.

This means that we have a well-defined injective map / : irx(N)/Hx —> ir2(N)/H2 given
by f(axHx) = a2H2 where {ax,a2) G N. Also,

f(axHxbxHx) = /(a^Hi) = a2b2H2 = a2H2b2H2 - f{axHx)}{bxHx),

showing that / is a homomorphism. Finally, if b € K2{N) then (a, 6) € TV for some
a G KX(N) and so f(aHx) — bH2, which implies that / is surjective. Thus / is an
isomorphism. Hence it follows from the hypothesis that TTi(N)/Hi are trivial subgroups
of Z{Gi/Hi), i = 1,2. Therefore, H{ = iri(N), £ = 1,2, and so N = Hx x # 2 , by ((4.4)).

Conversely, suppose Gx and G2 do not satisfy the second condition. So, there exist
Hi < Gi, i — 1,2, such that Z(GX/HX) and Z(G2/H2) have a subgroup in common. Let
Ki/Hi be non-trivial subgroups of Z(Gi/Hi), £ = 1,2, such that there is an isomorphism
F : Kx/Hx —• K2/H2. Put

N = {(01,02) G Kx x K2 : ̂ (01^) = a2H2).

Let (ai,a2),(6i,62) G N then F(a1^i) = a2i/2 and F{bxHx) = b2H2. So, ^ ( a ^ r 1 / / , )
= a2b2~

lH2. Thus

(a,,a2)(61,62)-1 = (ai6r1,a262~1) € N,

showing that TV is a subgroup of Gx x G2. Again let (ax,a2) G TV and (gx, g2) € Gx x G2.
Then,

{91,92){ax, a2)(gx,g2)~
x = {giaxgi~l, g2a2g2~

l) e Kx x K2,

since K{ < G{, i — 1,2. Also, since

a^ & Ki/Hi GZ(Gi/Hi), « = 1,2,

we have
F^cng^Hi) = F(axHx) = a2H2 = g2a2g2~

lH2.

Thus (gi,y2)(ai,a2)(5i,52)~1 G /V, and so iV < d x G2. On the other hand, suppose N

is of standard form Nx x N2 where Nt < G{, i - 1,2. Then, TT^/V) = N{, i = 1,2. But
since F is bijective, we have n^N) - K{,i - 1,2. Therefore, N — Kxx K2. Since Kx/Hx

is non-trivial, there is some at G A"i such that a.\Hx ^ //!. But (ai,e2) G Kx x K2 — N.

So, F(axHx) = e2H2 = H2, the zero element of K2/H2. Therefore, since F is injective,
we have axHx = Hx, the zero element of K\jHx. This contradiction shows that TV is not
of the form mentioned in the first condition. D

The following corollary generalises [6, Proposition 3.3].
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COROLLARY 4 . 4 . IfGi, G2 € G are almost coprime then every normal subgroup
of the product Gi x G2 is of the form Ni x N2 with Ni < Gi and N2 < Gi.

P R O O F : Let Hx < Gx and H2 < G2 be such that the centres Z(Gi/Hi) and
Z(G2/H2)

 n a v e a subgroup in common. So, there are non-trivial subgroups Ki/Hi of
Z{Gi/Hi), i = 1,2, such that ^ / - ^ i 3 # 2 / # 2 . Then C{Ki/Hx) = C{K2/H2). Since
#i < Ki < Gu we have C(Ki/Hi) C C(JQ C C(Gi), i = 1,2. Thus, C(Gi) and C{G2)
have an Abelian member in common. D

By considering G\ = 54, G2 = C3, and noting that the symmetric group 54 and
the quotient S^/V = S3 have trivial centres, one can easily see that the converse of the
above corollary is not true; V is the normal subgroup {e, (12)(34), (13)(24), (14)(23)} of
S4. However, as an immediate consequence of the above corollary we have

PROPOSITION 4 . 5 . If f € A(G) is multiplicative (or, almost completely mul-
tiplicative) then the function F G A(G) given by

F(G) =
N<G

is also multiplicative (or, almost completely multiplicative).

P R O O F : Let Gi,G2 € G be a pair of coprime (or, almost coprime) groups. Clearly,
if Ni < Gi and iV2 <1 G2 then Ni and iV2 are also coprime (or, almost coprime). So, we
have

F(GlxG2)=

= F(G,)F(G2).
<d N2<G2 n

COROLLARY 4 . 6 . aa is almost completely multiplicative.

P R O O F : It is enough to note that G 1-4 |G|°, for G 6 G, defines a completely
multiplicative function in A(G). D

5. CHARACTERISATION OF GROUPS USING DIVISOR FUNCTIONS

Most trivial characterisation of groups using divisor functions is perhaps the follow-
ing:

aa(G) — \G\a + 1 <*=*> G is a simple group

where G €. G, and a is a complex number. Also, we know that any finite Abelian group
G has a (normal) subgroup of order d for every divisor d of |G|, and G has exactly one
such subgroup for every divisor d if and only if G is cyclic. Therefore, for any Abelian
group G € G, we have aa(G) ^ crQ(|G|), and the equality holds if and only if G is cyclic.
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LEMMA 5 . 1 . Let G eG be such that G = \J N. Then r(G) > 5.
N<G

PROOF: Since \N\ ^ |G|/2 V N < G, and since the identity element of G is a
common member of all normal subgroups of G, it follows that any two proper normal
subgroups of G can contain at the most \G\ — 1 distinct elements. Hence G must have
atleast three proper nontrivial normal subgroups, which in turn implies that T(G) ^ 5. D

P R O P O S I T I O N 5 . 2 . Let G e Q. Ifa(G) ^ 2|G| + 2 then G / U N.
N<G

PROOF: Let us assume that G = \J N. Then, for each g € G, the smallest normal
N<G

subgroup Ng of G containing g is a proper normal subgroup of G, and so G/Ng ^ {e}
which means r(G/Ng) ^ 2. Therefore, by Proposition 4.1, we have

Since a(G) ^ 2|G| + 2, it follows that T(G) ^ 4 which contrdicts the Lemma 5.1. Hence
the proposition follows. D

From [2, Theorem 1], we know that if G G Q is such that G ^ (J iV then every

Abelian quotient of G (that is, every quotient of G which is Abelian) is cyclic. Hence,
we have the following corollary to the above proposition, which is also an improvement
to the 'Abelian Quotient Theorem' proved in [6]:

COROLLARY 5 . 3 . IfG is a finite group with <J(G) ^ 2|G| +2 then every Abelian

quotient ofG is cyclic.

REMARK 5.4. If q : G —> G' is a homomorphism of groups G,G' e Q then T(q(G))
^ T(G), since q~l{M) < G V M < q(G). In particular, we have T(G/N) < T(G) V
G € Q and V N < G; moreover, the inequality is strict if N is nontrivial.

PROPOSITION 5 . 5 . Let G € Q be such that T(G) = 5 and G = (J TV. Then
N<G

G = C2 x C2.

PROOF: By ([2, Theorem 1]), there is a normal subgroup of G such that G/N
= Cp x Cp for some prime p. So,

T(G/N) = r(Cv x Cp) = p + 3 = » T(G) ^ p + 3, since T(G) > r(G//V),

otherwise 5 = T(G) > T{G/N) = p + 3 = 5 which is absurd. Hence the proposition

follows. D

The Proposition 5.5 tells us that if G ^ C2 x C2 then the hypothesis of the Corollary
5.3 can be further improved to CT(G) ̂  2|G| + 3.
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In [6], Leinster has studied the groups G € Q which satisfy the condition a(G)
= 2|G|, and he termed such groups as 'perfect groups' (not to be confused with the ones
which are more standard and mean something else). He proved that an Abelian group
G 6 G is perfect if and only if G = Cn where n is a perfect number that is, cr(rc) = 2n,
and he conjectured that there are infinitely many nonabelian perfect groups. However, it
requires some effort to find examples of nonabelian perfect groups. Leinster has exhibited
only three examples of such groups, namely,

S3 x C5, A5 x C6i x C31 x Cs, A6 x C36i x Cm x C8.

We mention below few more examples of nonabelian perfect groups:

Consider the generalised quaternion group Q4m of order Am, m ^ 2, given by

Urn = (a,b\ a2m = 1,6* = am,bab~l = a~l

It can be easily proved that if m is odd then the proper normal subgroups of Q4 m

are precisely the subgroups of the cyclic group generated by a. Therefore, c(Q4m)
= Am + a(2m) if m is odd. Using multiplicativity of a one can see that the nonabelian
group Q12, Q20X C"19, Q28>< Cu, Q244 xA5x C43 x C u and Q22ox Ĉ og are all perfect
groups in the sense of Leinster.
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