A REMARK ON COMPLEX CONVEXITY

BY CAMINO LERANOZ*

ABSTRACT. We present a quasi-normed space which is locally H_{∞} -convex but is not locally *PL*-convex in the sense of Davis, Garling and Tomczak-Jaegermann.

In [2], Davis, Garling and Tomczak-Jaegermann define the notions of *PL*-convexity and H_{∞} -convexity, and ask whether a locally H_{∞} -convex space is necessarily locally *PL*-convex (problem 1, [2]). We show here that a quasi-normed 2-dimensional space described by Aleksandrov in [1] provides an example to answer this question negatively.

DEFINITION. A complex continuously quasi-normed space $(E, ||\cdot||)$ is *locally PL-convex* (resp. *locally* H_{∞} -*convex*) if whenever x and y are in E, there exists $\delta = \delta(x, y) > 0$ such that

$$\frac{1}{2\pi} \int_0^{2\pi} ||x + r e^{i\theta} y|| d\theta \ge ||x||$$

(resp. sup{ $||x + re^{i\theta}y||, 0 \le \theta \le 2\pi$ } $\ge ||x||$) for all $0 \le r \le \delta$. A complex continuously quasi-normed space $(E, ||\cdot||)$ is uniformly PL-convex (resp. uniformly H_{∞} -convex) if

$$\inf\left\{\left(\frac{1}{2\pi}\int_{0}^{2\pi}||x+e^{i\theta}y||d\theta-1\right):||x||=1,\,||y||=\epsilon\right\}>0$$

for all $\epsilon > 0$ (resp. if

$$\inf \left\{ \left(\sup_{\theta \in [0,2\pi]} ||x + e^{i\theta}y|| - 1 \right) : ||x|| = 1, ||y|| = \epsilon \right\} > 0$$

for all $\epsilon > 0$).

Aleksandrov defines the following quasi-norm in C^2

(1)
$$||(z_1, z_2)||_0 = \max\left\{\frac{\max\{|z_1|, |z_2|\}}{B}, \frac{\min\{|z_1|, |z_2|\}}{A}\right\}$$

Received by the editors December 17, 1987.

^{*}Results of this paper will form part of the author's Ph.D. thesis, currently under preparation at the University of Missouri-Columbia, under the direction of Professor N. Kalton.

AMS Subject Classification (1980): 46A06.

[©] Canadian Mathematical Society 1987.

where A and B are two fixed positive real numbers such that A < B and $A + B \leq 2^{1/p}A$ for some fixed p < 1.

PROPOSITION 1 (Aleksandrov). (\mathbb{C}^2 , $\|\cdot\|_0$) is a non-locally PL-convex p-normed space.

PROOF. We omit the easy proof that $\|\cdot\|_0$ is *p*-subadditive. Define

$$f(\epsilon) = \frac{1}{2\pi} \int_0^{2\pi} || (1 + \epsilon e^{i\theta}, 1 - \epsilon e^{i\theta}) ||_0 d\theta,$$

for every $\epsilon > 0$. For ϵ small enough

$$||(1 + \epsilon e^{i\theta}, 1 - \epsilon e^{i\theta})||_0 = \frac{1}{A}\min(|1 + \epsilon e^{i\theta}|, |1 - \epsilon e^{i\theta}|),$$

and therefore,

$$f(\boldsymbol{\epsilon}) = \frac{2}{A\pi} \int_0^{\pi/2} \sqrt{1 + \boldsymbol{\epsilon}^2 - 2|\boldsymbol{\epsilon}| \cos \theta} d\theta.$$

There exists $\delta > 0$ such that f is continuous in $[0, \delta]$, differentiable in $(0, \delta)$ and $f'(\epsilon) < 0$ for every $\epsilon \in (0, \delta)$, therefore $f(\epsilon) < f(0)$ for every $\epsilon \in (0, \delta)$ i.e.,

$$\frac{1}{2\pi}\int_0^{2\pi} ||(1+\epsilon e^{i\theta}, 1-\epsilon e^{i\theta})||_0 d\theta < ||(1,1)||_0$$

for every $\epsilon \in (0, \delta)$. Hence, $(\mathbb{C}^2, ||\cdot||_0)$ is not locally *PL*-convex.

PROPOSITION 2. (\mathbb{C}^2 , $\|\cdot\|_0$) is locally H_{∞} -convex.

PROOF. Given (z_1, z_2) , $(w_1, w_2) \in \mathbb{C}^2$, $\{z_k + e^{i\theta}w_k, \theta \in [0, 2\pi]\}$ is a circle of center z_k and radius $|w_k|$ (k = 1, 2). It is clear that

$$|z_k + e^{i\theta}w_k| \ge \sqrt{|z_k|^2 + |w_k|^2}$$

in a closed set of θ 's of measure π , and $|z_k + e^{i\theta}w_k| \ge |z_k|$ in an open set of θ 's of measure greater than π (k = 1, 2). Thus, there must exist $\theta_0 \in [0, 2\pi]$ such that $|z_1 + e^{i\theta_0}w_1| \ge |z_1|$ and $|z_2 + e^{i\theta_0}w_2| \ge |z_2|$. In particular,

$$\sup_{\theta \in [0,2\pi]} || (z_1 + e^{i\theta}w_1, z_2 + e^{i\theta}w_2) ||_0 \ge || (z_1, z_2) ||_0.$$

 $(\mathbb{C}^2, ||\cdot||_0)$ is not uniformly H_{∞} -convex, but we can modify this example to show than even uniform H_{∞} -convexity does not imply local *PL*-convexity. We may define the following quasi-norm in \mathbb{C}^2

$$||(z_1, z_2)||_{\delta} = ||(z_1, z_2)||_0 + \delta \sqrt{|z_1|^2 + |z_2|^2}$$

where $\|\cdot\|_0$ is the quasi-norm defined in (1) and $\delta > 0$. For δ small enough $(\mathbb{C}^2, \|\cdot\|_{\delta})$ is not locally *PL*-convex, but it is uniformly H_{∞} -convex. We omit the details.

CAMINO LERANOZ

QUESTION. Can a locally H_{∞} -convex space be always renormed with an equivalent locally *PL*-convex quasi-norm?

References

1. A. B. Aleksandrov, *Essays on non-locally convex Hardy classes*, Lecture Notes in Mathematics **864**, pp. 1-89 (Springer-Verlag, 1981).

2. W. J. Davis, D. J. H. Garling and N. Tomczak-Jaegermann, *The complex convexity of quasi-normed linear spaces*, J. Funct. Anal. 55 (1984), pp. 110-150.

Department of Mathematics University of Missouri-Columbia Columbia, Missouri 65211 USA