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Abstract. In this paper we prove results about lifting dynamical and ergodic proper-
ties of a given smooth dynamical system to its skew-product extensions by smooth
cocycles. The classical small divisor argument shows that in general such results
are not possible. However, using the notion of the 'fast periodic approximation'
introduced by A. Katok, we will show that if the dynamical system admits such a
'fast periodic approximation' then indeed a certain qualitative behaviour which is
prohibited by small divisor type conditions is now in fact generic. The techniques
are also applied to show that 'recurrent-proximal' behaviour of solutions of linear
differential equations with almost periodic coefficients is generic under suitable
conditions on the coefficient matrix.

1. Introduction and basic definitions
1.1.
Let fl be a compact, connected Cx manifold. Let T denote either the group of
integers (Z) or reals ((R). Atriple (fl, T, p) is called a (Ck-smooth) dynamical system
if Tacts on fl with a jointly Ck (i.e. k times continuously differentiate (/ceNujoo})
action (w, t)-> w f, VH> e fl, te T and preserving a smooth Borel probability measure
fi on fi. If T = Z, we will denote again by letter T the diffeomorphism generating
the Z action and if T = U we will denote by (T,),sR the one parameter group of
diffeomorphisms of fl.

Given a connected Lie group G, a cocycle from (fl, T) into G is a continuous
m a p ^ : f l x T - » G s u c h t h a t <f>(w, f, + t2) = 4>{w t x , t2)<t>(w, t x ) , V w e f l , t x , f, e T. A
cocycle 4> is of class Ck if for each te T the map w^>4>{w, t) is a Ck map. Let
Zk(il,G) denote the set of all Ck cocycles into G. If T = Z, the cocycle <t> is
completely determined by its values on fix{1} and hence will be identified with a
function on fl into G, (i.e. cocycle 4> determined by a function <f> is given by
4>{w, n) = <(>{T"~xw)4>( • • • 4>(w), n e Z + ) . Thus for T = Z, we will identify Zk(Q,,G)

with Cfc(fl, G) the space of Ck functions from fl into G. Thus consequently the
usual Ck metric on Ck(fl, G) induces a metric Dk on Zfc(ft, G). We denote by || ||fc
the Ck norm on Ck(fl, R). Metrics on all other spaces will be denoted by the letter d.
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312 M. G. Nerurkar

Suppose Z is another Cx manifold on which a Lie group G acts on the left with
a jointly Ck action (g, z)^gz. Then given a cocycle 4>eZk(fl, G), we define on
Z x f l the skew product T-action by setting (z, w) • t = (<£(w, f)z, w- /). In the case
T = Z, the diffeomorphism generating the skew-product action will be denoted by
T&, i.e. T4,(z,w) = (<l>(w)z, Tw). If v is a G invariant Borel measure on Z then
clearly v x fj. is invariant under the skew-product action. The following important
examples of this set up should be kept in mind, (a) Let Z = G and G acts on itself
by left multiplication. Here v = 17 — a left Haar measure on G, is an invariant measure.
(b) Let G = GL(n, R) - the general linear group and Z = /7""'(IR) - the real projective
H — 1 space. In this case we do not have any invariant measure on Z.

Given a n y / e Ck(Cl, G), it generates a cocycle \f e Zk(Cl, G) by setting \f(w, t) =
f(w t)f(w)~\ Cocycles of this form are called coboundaries and the set of all such
coboundaries will be denoted Bk(Cl, G). The trivial cocycle is the cocycle I1,
generated by the map w-> e (-the identity element of G) and will be denoted by 1.
Given a <peZk(n,G) and lf e Bk(Q,, G) set, <j>-lf(w, t)=f(w t)<p{w, t)f(w)~\ It
is easy to verify that (/>• lf e Zk(il, G). Given <£,, <f>2e Zk(Cl, G) we call them
cohomologous via a transfer function / if $2 = </>,-l/ for some / e Cfc(il, G).
Cohomologous cocycles gives rise to isomorphic skew-product actions.

Our main goal is to construct cocycles for which the corresponding skew-products
are ergodic. The following property of the action of G on Z is necessary for the
ergodicity of the skew-product actions, (see [6], also refer to [22] for a similar
result). Let v be a <r-finite G invariant measure on Z, then the triple (Z, G, v) is
said to have the V°-fixed point property if every G invariant weakly compact set K
contained in the closed unit ball of L°°(Z, v) contains a fixed point for the G action.
This property also helps in constructing cocycles with ergodic skew-products. We
list a few examples of actions having this property. (1) If v is a finite Borel measure
then (Z, G, v) has this property. (2) Let G be amenable, Z = G and the action of
G be by left-multiplication. Take v = 77 - a left Haar measure. This system does
have the Lx fixed point property. (3) Let Z = U2 and G = SL(2, R) with standard
linear action on Z and v be the Lebesque measure on R2. The (Z, G, v) has the L00

fixed point property.

1.2. Lifting ergodicity by smooth cocycles
One important question in the study of skew-product dynamical systems has been
lifting ergodicity i.e. if (ft, T, fi) is ergodic, can one find a cocycle <f> such that the
corresponding skew-product flow is ergodic with respect to the product measure?
If in the above set up everything is just 'continuous' (and not smooth) then the
existence of a continuous cocycle <f> giving ergodic skew-products is known - even
for more general dynamical systems, where T can be any reasonable amenable
group, (see [18]). In fact such cocycles are residual in the class B0(fl, G), (we will
denote by Bk the closure of Bk in Zk). However even for integer actions (i.e. T = Z)
the problem of producing sufficiently smooth function <j> for which 7^ is ergodic
is delicate and difficult. In fact the classical 'small divisor' argument shows that for
some dynamical systems this is impossible. For example, let O = S1 - the circle.
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Construction of smooth ergodic skew-products 313

T= Ra - the irrational rotation by a, where a is badly approximable by rationals.
Then given any smooth enough (say Ck, k & 2) function 4>: £1 -> R with j n 0 dm = 0
(w being the Lebesque measure on S1), the functional equation 4>{w) =
f(Raw) - f(w) has always a solution/ of class - say C k~2. This result of Kolmogorov-
Siegel shows that Bk(S

l, R) c Bk_2(S\ R) and hence V̂ , e Bk(n, R) the skew-product
diffeomorphism ( /O* on R x 5 ' can not be ergodic.

A very different phenomenon occurs when T is a point transitive Anosov
diffeomorphism. In this case A. Livshitz has given (see [16]) a precise condition
for the solvability of the cohomology equation f(Tw)-f(w) = </>(w), for a given
smooth <t>. Using this, one can show that B^il, R) = B,(£l, R) and hence lifting
ergodicity in the class B,(O, R) is impossible. However using a Parry-Jones type
argument along with A. Livshitz's result one can show that cocycles lifting ergodicity
in the class Z,(ft, G) are residual when G = T" - the n torus. A similar result about
density of cocycles lifting ergodicity in the class Z,(fl, G) for any compact connected
Lie group G is obtained by M. Brin (see [2]). We also remark that this result of A.
Livshitz has been generalized to the case when T is a point transitive diffeomorphism
satisfying a 'closing lemma', (see [12]). Also versions of this result for geodesic
flows are known. Now a result of J. Hawkins, ([5]) based on slight modification of
Parry-Jones argument shows that ergodicity can be generically lifted in the class
Zk(Cl, G) for any diffeomorphism if G = T" - the n-torus. This shows that lifting
ergodicity in the class Zk and in the class Bk are in some sense different problems.
Also non compactness and non abelianness of the group G contribute substantially
to the difficulties in constructing smooth cocycles lifting ergodicity.

In this paper we prove that the set of cocycles which yield the ergodic skew-product
is a residual set in Bk, provided the transformation T admits 'a fast periodic
approximation'. We develop a smooth version of a technique of Glasner and Weiss,
(see [4]). The small divisor argument shows that in general their technique has no
smooth analog. The essence of their technique is the construction of a coboundary
C° with certain 'desired properties' which also is close to the identity cocycle in C°
norm. Replacing the closeness in C° norm by the one in Ck norm is in general
impossible and this is the main obstacle. We will show that if the transformation
admits 'a fast periodic approximation' with 'sufficient speed' then this obstacle can
be overcome.

1.3. Linear system of differential equations
In the case of a flow, besides lifting ergodicity, one also wants to make certain
skew-product extensions 'proximal'. This notion is of importance in the study of
the qualitative behaviour of a linear differential system. By a linear differential
system we mean a family of linear differential equations given by,

x = A(io-t)x, XGR", wefl , . (I)

where (fi, Tx) is a Ck flow and A:ft-»M(n, R) is a continuous map, (M(n,R) is
the set of n x n real matrices). We will assume that fl is a compact, connected C00

manifold and the flow will always be minimal and almost-periodic, (i.e. the family
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of maps {ct>-> T,o)\teU} is equicontinuous). For example let x = A(t)x be a single
differential equation where the entries of the matrix A(t) are (Bohr) almost-periodic
functions. Let il be the hull of 'A(t). If il is a C°° manifold, this problem gets
transformed into outgeneral set up.

Let XA(w, f): fi x R -» GL(n, R) be the fundamental matrix solution of (/) satisfy-
ing XA(w, 0) = / - the identity matrix, Vw e il. Then XA is a cocycle. Also A(w) can
be recovered from XA (i.e. A(w- 0 = [ ( ^ / ^ ) ^ A ( W , f)]-?0i(w, /)" ') . In this way we
shall here onwards identify the set Zr(il,GL(n,R)) with systems x = A(w t)x.
Furthermore note that XA and XB are cohomologous iff systems x = A(w- t)x and
x = B(w- t)x are kinematically similar.

Consider £ = p""1 xfl (where p""1 is the real projective space) and the skew-
product flow on £ denned by the cocycle XA i.e. ([x], w) • f = ([XA(w, *)•*], w 0
where [x] denotes the ray containing xeR". System (/) will be called recurrent if
the skew-product flow on £ is minimal. System (/) is said to be proximal if the
projection Tr:X-»fi (77([x], w) = w) is a proximal extension, i.e. given ([x,], w0),
(ix2\, wo)eY. there exists a sequence (neR such that,

d(([xl],wo)-tn,([x2],wo)-tn)-»0 as n-*oo.

Qualitatively this means that for any weft , the angle between any two solutions of
(/) tends to 0 for some sequence tn of times.

It is important to know when system (/) is both recurrent and proximal. For
example if A(co) = A is a constant matrix, this will never happen. This is because
recurrence requires that eigenvalues of A be purely imaginary, (real eigenvectors
will give rise to proper closed invariant sets for the skew-product flow), but then
in this case the flow on £ preserves distances between points, and hence can not
be proximal. Note that in this case XA((o, t) = etA, following A. Katok cocycles of
this type (namely homomorphism from R to GL(n, R)) will be called constant
cocycles. Now suppose that the flow on fl is periodic (but A is not necessarily
constant) then the classical Floquet theorem says that in this case XA is
cohomologous to some constant cocycle. This shows that recurrent-proximal
behaviour is impossible when (il, T,) is a periodic flow. We shall show that if the
flow (fl, T,) is almost periodic (but not periodic) and admits 'fast periodic approxi-
mation' then recurrent-proximal behaviour is generic. In passing we mention that
under similar hypothesis A. Katok has shown the existence of cocycles not
cohomologous to any constant cocycle [12].

2. Fast periodic approximation and statement of the main theorem
Definition 2.1. Consider a C'-smooth discrete dynamical system (il, T, fi) on a Cx

manifold il. Let a ( n ) > 0 , neN be a sequence such that \imn^x a(n) = 0.

Following A. Katok [12], the diffeomorphism T is said to admit a C"-fast-periodic
approximation (or Cr-rigid) with speed a(n) if there exists a sequence (qn)ne^ of
positive integers and a consant K > 0 such that qn -» oo and,

\\hoT""-h\\r^K\\h\\r+Mqn), V«eN, VdeCr+1(fl,R).
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If T is C°° and above inequality holds VreN, (with K depending on r) then we
say T is C°° rigid with speed a(n).

The following is a typical example of such difteomorphisms.

Example. Let fl = S', be the circle and T=Ra, be the irrational rotation by a. If
3a sequence (pn/qn)nEM of irreducible fractions with gn->oo as n-»oo and constants
K>0, peN and 0< e < 1 such that

\a-pJqn\<K/(qny
+l+'

then (ft, RQ) is C°° rigid with speed a(n) = \/ np+£. If a is a Liouville number i.e.
acln -Pn\ < K/(qn)" for some sequence /?„, qn of integers with qn -» oo and X > 0 is
a constant then we can take a(«) = l/n".

An immediate generalization of this example is obtained by taking fi = T" - the
n-torus and Ra - the irrational rotation by a = ( a , , . . . , an), where a is a 'Liouville
vector' i.e. a , , . . . , an are rationally independent irrationals and for some sequence
qn of integers such that qn -» oo as M -> oo one has

\\\aiqn\\\sK/(qnr, Vi,/j,

where X > 0 is a constant and ||| ||| denotes the distance from the nearest integer.
Again (ft, Rd) is C°° rigid with speed ( l /n") .

We also mention that besides this prime example, examples constructed by Anosov
and Katok in [1] also admit Cr-fast periodic approximations.

Now we state our main theorem.

THEOREM 2.2. Let (ft, T, /*) beaC dynamical system with a smooth (i.e. with positive
C°° density) invariant ergodic probability measure /J,. Let (fl, T) admit C fast-periodic
approximation with speed a(n). Let G be a connected Lie group acting Cr-smoothly
on a connected C°° manifold Z and preserving a a-finite ergodic measure v. Assume
that (Z, G, v) has the L°° fixed point property. Consider the following conditions (A)
and (B)

Condition (A). (Uniform boundedness of derivatives). There exists a constant C > 0
such that

| |DT" | | 0 <C, VneZ,

where DrT" is the rth derivative of T" and || ||0 is the sup norm.

Condition (B). (C° rigidity). There exists a constant K > 0 such that \\h° T ^ -h\\0<

(I) Suppose T satisfies condition (A) and a(n) = l/n4r+1+p, ( 0 < p < l ) then the
set {4> e Br(n, G)\(Z x n , T*, v x M) is ergodic} is residual in Br (fl, G).

(II) Suppose T satisfies condition (B) and a{n) = l/n2r+i+p, ( 0 < p < l ) then we
have the same conclusion as above.

Suppose G = U then one may only assume a(n) = \/n2r+x+ft or a(n) = l/nr+i+p

depending respectively on whether condition (A) or (B) holds.
(Ill) Suppose T satifies either condition (A) or (B) and a(n) = l/a", (a>\ is a

constant). Then the same residuality result holds in the class §<&(&, G).
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(IV) Suppose G = U and (ft, T) be the irrational rotation on circle. Let the rotation
number a satisfy, the condition \a -pn/qn\ < K/qr

n
+'+l>, (0< p < 1) i.e., a(n) =

l /n r + p (see the example). Then the same residuality result holds in the class
Br(a, U).

Remark 2.3. (a) For the example of irrational rotation on the circle, (IV) above
gives us exactly the generic version of a theorem of Krygin [15]. We also believe
that for G = U, the 'least speed' one needs to get a generic lifting of ergodicity in
the class Br is a(n) = \/nr+", 0 < p < l .

(b) If /J. is the unique ergodic measure on ft and either (i) G is amenable or (ii)
G = SL(n,U) and Z = P"~\U) then in the conclusion of theorem (2.2) ergodicity
can be replaced by unique ergodicity,

(c) Although we do not discuss 'affine cocycles' in this paper, using the techniques
developed here, we can prove an 'affine extension' of theorem (2.2). See [14] for a
continuous version. As a consequence we get the following theorem.

THEOREM 2.4. Let (ft, T, /J.) be as in theorem (2.2). Let G = J" be the n-torus and
u be any automorphism of G. Then the set {4> e Cr(£l, G)\ the map T4>(g,w) =
(a(4>(w)g), Tw) on Gx f t is ergodic with respect to the product measure} is residual
in Cr(ft, G), {here if T satisfies (III) of theorem (2.2)), then take r = oo).

Finally we state our result on lifting minimality and getting proximal extension
in the context of linear differential systems. The notion of fast periodic approximation
is similar, the diffeomorphism Tq" in the definition (2.1) is replaced by T,n where
(T,)IGK is the one parameter group of diffeomorphisms generated by the flow. A
typical example of such a flow is again the flow on the n-torus generated by irrational
rotation by Liouville vectors. For simplicity we state the following theorem only
for such systems. Also we remark that here that the topology on Zk(fl, SL(n, R)) is
given by the metric

Dk(4>x, cf>2) = Supo~,s, Dfc(0,( •, t), <f>2( •, f)),

where </>,, </>2eZk(ft, SL(n,R)) .

THEOREM 2.5. Let (ft, T,) be the rotation flow on the n-torus generated by a Liouville
vector. Then the set

{XA e ZMft, SL(n, U))/x = A{w t)x

is recurrent and proximal] is residual in B^(fl, SL(n, U)).

2. Proof of theorem 2.2. Let H = Ll(Zx£l, vx/x) and

= {f\feH,\ f
J zxn

Let || || be the L1 norm on H. Given a cocycle </> e Zr(ft, G), define the operator
U* on H by setting UJ{z, w)=f{<j>{w)z, Tw). Let

1 N - l

vN —— y
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Also, given a function ip e Cr(Ci, G), define the operator L^ on H by Lof(z, w) =
f(*\i(w)z,w).

Now given fe Ho, e > 0 and m e N, define W(f e,m) = {<f>\<l>e Br(il, G) such
that 3MeN, M>m and || V£7|| < e}. Now if

(where (fj)jeNe Ho is a dense subset) then ( Z x f l , Td, vxn) is ergodic, (see [6] for
a proof). Thus once we prove that each W(f e, m) is open and dense in Br then
theorem (2.2) is a consequence of the Baire Category theorem. Openness is easy to
verify. To prove density, first observe that V^L^ = L^V^,*. This shows that if
l e W(fe, m), V/ e, m then 1*6 W(fe,m), V/ e, m, 4> i.e. W(f e, m) is dense in
Br. Thus it is enough to prove that, given/ e, m and 8 > 0 there exists a i/> e Cr(fl, G)
such that, (i) Dr(l*, 1) < 5 and || V^ / | | < e for some M > m.

Now consider, || V"*/|| = ||L^'V"L^,/|| = || V"L^f\\, (since L^, is an isometry). Also
note that by the ergodic theorem we have,

V"g(z,y)=- VgUr>)-> I g(z,>-)^()0 Vgetf,
« .=o Jn

where the convergence is in the norm on H. Thus

II V"1'/!! ~>l/(</'(HI)z, w) djj,(w) as n^oo.

Hence if we can choose
r

)z,w)d/x(w) <e/2,

then by choosing M large enough, we can make sure that || Vf^/]| < e. Thus we have
reduced the proof of the theorem to the following lemma.

LEMMA 1. Given fe Hn, e < 0 and 8 > 0, there exist a ip e C(Cl, G) such that
(i) Dr(l*. 1) < 8 and (ii) ||jn/(«A(w)z, w) dp(w)\\ < e.

Proof. Let 0 < y'<{ be a small number (it's relation to e will be determined later).
Since Cc(ZxCl) is dense in L ' ( Z x i l ) , standard approximation arguments allow
us to assume (without loss of generality) that the given / is continuous, has compact
support and ||/|| < e/8. We will first assume t h a t / depends on z alone, i.e. f(z, w) =
/(z) and let M, = sup {|/(z)|/z e Z}.

We will fix a family {(0a, <^a)|l ^ a < R} of local charts so that
(i) (0a)a = i is an open cover of O,
(ii) cj>a:Oa^Q (where Q = {x = ( x , , . . . , xB)£Rn/0<x,•< 1}, /i = dim(l) is a C00

diffeomorphism such that (</>«)5(.(/x|Oa) = m\Q, where /x|0o and m\Q are the normalized
restrictions of measure ft and the Lebesque measure m to 0a and Q respectively,
(such a chart can be chosen because n has a positive Cx density in each chart, see
[1]). Let M2 = sup,«„«;« H^allr+i • Set M = max {M,, M2}, note that M depends
only on r, / and the manifold fi.

Since (Z, G, y) has the L00 fixed point property, there are c, e [0,1] and g, e G,
l < i < 5 such that I - = 1 c, = l and ||£?=i C ^ J ^ E / ^ where/g,(z) =/(g,-z), (a sketch
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of the proof of this fact will be provided at the end). Divide interval [0,1] into
subintervals A,- of length c,- as shown in the figure.

0 - A > ' AJ 1

Define a Cx map h : [0,1] -» G by setting it equal to g, on 'most of the interval A,'
and making sure that,

0
<e/2 . (1)

Now onwards let assumptions in (I) of theorem (2.2) hold. Pick NeN such that,

,.. Me LK(M)2(2)2r+l „
(0 —<T7 and(n) — <S, (2)

qN io (qN)p

where L and M are constants depending only on r, e, functions /, to, the map T
and the manifold fl (they will be explicitly described later).

Using Rokhlin's lemma pick a Borel set E c ft such that (i) E, TE,..., p"*)2~lE
are mutually disjoint and

(ii) A U TE > l - ( y ' / M ) . (3)

Let (B;)f=1 be a partition of £ into disjoint Borel sets with positive measure such
that for each \<i<p,(p<R) there is some a(i)e{\, 2 , . . . , R} such that B,gOa(0.
Without loss of generality we assume that each Bj is compact, (if not replace it by
a compact subset with measure so close to that of Bj that (3) is preserved). Let
£, >0 be such that the £, -neighbourhoods of compact sets {T'E}\% ' are pairwise
disjoint. Now pick £2> 0 such that if d(x, y) < £2 then

d(Tx,Tiy)<il V0<;<(<7,v)2-l,

set £ = min (f,, £2)- Now pick open sets Vj(l <;'</)) such that, (a) BjC V^cOt,(j)n
{^-neighbourhood of £} (b) V, n Vj = 0, Vi ^7 and (c)

)2M. (4)

Note that the sets {T"V^|l<7'sp, 0< (<(<jN)2-1} are pairwise disjoint. Set

V=\JVj, A=/i(V) andA, = M(^-).

The following sublemma (the proof of which will be given later) is the first step in
in the construction of the desired function i/>.

S U B L E M M A 2. LetQ = {(xi,...,xn)eW/0<xi<l}, W <= Q be an open set, I c [0,1]

be an interval of length I and fp : [0.1] -> U, /3 e J be an equicontinuous family of maps.

Then given e > 0, and reN there exists a C°° map 77: Q-» / SMC/I

(a) supp i ; c IV and 77 = 0 in a small neighbourhood of dW and

where F is a constant depending on r, e, family fp and the dimension of Q.
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<e, V- e J. (6)

With the help of above sublemma, we now construct maps 0,-: Vj->R as follows:
Let 6j = r)j ° <f>aii) where 17, : 4>a(j)( Vj) -» l} be as in the sublemma where the equicon-

tinuous family of maps is t-*f(h(t)z), zeZ, e = y' and /, is the interval of length
kjl A as shown in the figure.

'0A, /A' A2/A ' ' 1

Clearly supp 0, c V, and 0, can be extended to all of O by setting it equal to 0
outside Vj. Thus 0,:O^IR is Cx map.

Now

where A is a constant depending only on r, namely it is the number of terms one
gets in computing r+1 derivatives of composition of two functions.

Thus

Now since (4>a)^n\Oa) = m\Q, we have

\j n(Vj) m(4>aU)(Vj))

Hence

„ „ M
A

where

M = AMF[ Max /u.(0a(/))]r+I.
IsjsR

Set 0* = Xj"=i Oj, then 0* is a Cr + 1 map with Supp 0* £ V and since V,'s are disjoint
we have,

| |0*| | r + 1<M/Ar + 1. (7)

First we prove part (I) of theorem (2.2). Define 0:fi->[R by settling,

Let

and (
6(w)\ =0outside u { r ' V / 0 < i<(qN)2-\}.

Note that by (7) and condition (A) it follows that,

Max(| |0 | | r + 1 > | |0 | | r + 1)<M/Ar + 1. (7')

where M is some constant depending only on M and constant C (in condition A).
Thus M depend only on r, y' (hence on e), function/, map T and the manifold Cl.
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Set \p = h ° 0, we will show that i/» is the required map. Clearly ip is of class Cr+1.
First we will verify that Dr(l*, 1) < 5, to see this we recall the following general fact.

Given a manifold ft, a Lie group G and C maps, h:IR->G and /),:ft-»G and
g, g,-:ft-»R(i = l,2),~-we have

(i) £ > r C ° g i , ^ o g 2 ) s L 1 | | g 1 - g 2 | | r

and

(ii) AC»i ' [h ° gT\ A2 • [A " g]"1) ^ L2Dr( V M I s l U
where • denotes the group multiplication. Note that constant L, depends only on
the function h and on the number of terms one gets in computing r derivatives of
composition of two functions by product and chain rule. Thus L, (and similarly
L2) depends only on r and h. Thus we get,

Dr{\\ 1) = £>,((</' ° TW\ 1) = Dr((<l> °
= Dr((4>° T) • (ho ey\ t-(h

(by (ii) where L2 depends only on r and h).
Now

D r (^ o T, ijj) = Dr(/i = (6 ° T), /i o 0)< L,||^ o T - 0||r, (by (i)).

Thus

T-e||r||e||r, (8)

(8')

r,

where L= LXL2-a constant depending only on r and h.
Here we remark that if G = R, then

Dr(\\ 1) = Dr{h °(eoT),h°d)<L\\0°T-0\\r,

(without loss of generality L> L,). Now consider,

KMa(qN)
77TT7 T
A (qN)

by (7).

Now

Hence

2q2
N

(since y ' < | )

T - 0| | r< ( 2 2

This shows (using (8) and (7')) that,

7
A
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Note that when G = R, (8') shows that we need only assume a{n) = l /n2 r + 1 + p.
Similarly in case of condition (B) we need only have a(n) = l /nr + 1 + p .

Now we prove that ||Jn/(i/'(w)z) dp\\ < e. Note that,

J. f{4i{w)z)dp-
v>--<?v-l f

i = 0 JT'£

n- U

M
<y' + —, Vz, (since

?
(9)

Now we calculate $T'Ef(ip(w)z) dp. Fix an ie { 0 , 1 , . . . , (qN)2-qN - 1}, and let
vve T'E, say w= T'w, weE. Because of the way 6 was denned, we have 0(w) =
6(w) = 6*(w), thus

T'E
= f([h o fl]z) dp = I

Writing A ~ B to mean \A — B\ < y, we note that

p [ (y/(«.v)2) p
X /([A o e*]z) dp ~

j = 1 J fl, j =

Now since (<f>a(j))*(p\Oa) = m\Q, we have

d/i.

/([/i = d*]z) dp (by (4)).

where S, = 0aO)(Vj).

f(h(t)z) dt = \ \ f(h(t)z) dt, (by (6)).

(A;T')/A(<7N)2

Thus

I |
j=\ J Bj

p{E) I f(h(t)z)dt,

p(V-E)<(y'/(qN)2M) (by (4)).

f{h(t)z)dt

'lj) + (y'yHqN)2) (since A7 =

since

and

(10)
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Thus (9) and (10) gives us,

f(it,(w)z) d/i

f(h(t)z)dt

h
<7TV

<4y'+(e/10)

f(h(t)z)dt (since < !/(<?„ )2)

f(h(t)z)dt VZGZ by (2).

Thus by (1) we get,

<4y'+e/10+e/2<e (ifwechoose y'<e/10).f(iP(w)z)dfi
i

The general case: now let/e C0(Z xfl) be any function. Set g(z) = Jn/(z, w)
Now given g, e, 8, we will apply the previous technique to construct the function
ifj such that,

r(l*, 1)<S and g(i/f{w)z) <e/5. (a)

In constructing this i// we will be a little more careful in choosing NeN, (see (2)).
Here we pick iVeW so that in addition to conditions in (2) we also have,

aN .=0

(This is possible by the Ergodic theorem.) Set

/i(z, w ) = - ^ V / ( z , T-'w),

Now we claim that,

<e/5.

then ||/, -g | | < e/5.

. - I /(iA(w)z, w)
Jn

<2e/5.

(b)

(c)

To see this note that, if wed'= {J{T'E\0< ;< (qN)2-qN - 1} then
V0< i < ^ - l , (see the definition of \p).

Thus

/!(tA(w)z, w) d/x- I /(<A(w)z,
Jn

i=o LJn

w).

)z, T"V) d)

'w)z, w) d/j.

'-i
-I/'

)z, w)

z, w) d
IN i = o LJn

1 ? .v-:

?JVT i = 0

Thus combining (a), (b) and (c) we get ||Jn/('A(vv)z» H')

—) < ^ (sincey'<e/10(andby(2)).
qNJ 5
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Note that if a(n) = \/a", it is easy to see that Dr(l
4'tp)< 8 for any given reN,

(see the estimates). This takes care of part (III) of theorem (2.2).
Now we turn to part (II) of theorem (2.2). Note that condition (A) was used only

to establish D^l1*, 1)< 5. To make ||0° 7 - 0 | | r small, we used the technique of
defining 0 as an average of map 0 and subsequently dominated ||0° T— 6\\r by
||0| | r+1. Condition (A) was then used to bound ||0J|r+1 by ||0*||r+i. Now if we set
^(w)=I?i"o' 9*{T'<o) and ip = h° 0, then ||0° T - 0 | | r gets dominated directly by
||0*||r+1 and thus we avoid using condition (A).

Since 0 is not the average of 0*, we have another problem namely in showing
that \\\nf(if>(w)z)dfi\\<e. Since supp0*f= V and {7"V|0< i < (qNf- 1} are dis-
joint, 0 will be zero on 'most of ft'. To overcome this problem we take Rokhlin
tower of height (qN) (rather than (qN)2) overset E. Then exactly as before, it follows
that j£/(t//(w)z) dfj, is close to ^(E)\lf(h(t)z) dt uniformly in z.

Now if wG T'E, say vv = T'w, we E, (0< i< qN — 1) then note that,

£ 0*(T"»+J *)-'"£ 0*(TJw)
j=0 j=0

SK'l \\e*°TJ\\oa(qN)SKqNa(qN),
;=0

(this follows from condition (B)). Thus for large enough N this is small. This shows
that, j r £ /(<K>v)z) d/j. is close to n(E) \lf(h(t)z) dt, V0< i< qN - 1. As before this
enables us to show that ||Jn/(i/>(«;)z) d/j.\\<e.

Since we now have a Rokhlin tower of height qN, \\0° T — 0\t is of the order of
( <{N )r+' and || 01| r is of the order of (qN)r. Notice that now since 0 is not the average
of 0* we will be missing a 'qN' in the denominator. This shows that to make
Dr(l*, \)<8, one needs a(n) to be of the order of l /«2 r + 1 + p .

Finally, let us consider part (IV) of theorem (2.2). First note that since G = U,
by (II) we already have the result if \a ~pn/qn\< k/q2

n
+r+p, but in this example we

actually have more than Cr rigidity. Namely the transformation T itself can be
approximated in C norm by periodic transformation Tn, (Tn being the rotation by
pnlqn). This enables us to partition the circle into qN arcs of equal lengths and
define 0 suitably on one of the arcs and extend it periodically on all of the circle.
Hence we can write,

\\B o T- 0| | r= ||0° 7 - 0 0 r n | | r < (Constant) \\6\\r+l(l/q
r
n
+'+p)

by the Mean Value Theorem. Since ||0||r+i is of the order q^1 we can make
||0 ° T- 0||r arbitrarily small. (See [19] for details in this case.)

Now we give the proof of the following fact used in (1).

PROPOSITION. 3 [6]. Assume that (Z, G, v) is an ergodic dynamical system with the
Lx-fixed point property. Then given fe L'(Z, v) with \fdv = 0 and e > 0, 3c,e[0,1]
and g, G G, 1 < i < s such that £*=1 c, = 1 and ||£/=i cjgl|| < e.v

Proof. Let C{f) be the closed convex hull of {fg\geG} in V{Z,v). Let
dist. (0, C(/)) = 8. If 8 > 0 then by the Hahn-Banach theorem 3 / * e LX{Z, v), with
||/*|U = 1 such that J hf* dv > 5/2 V/i e C(f).
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Let C*(/*) be the weakly closed convex hull of {/*|ge G} in LX(Z, v). Note
that \fh* > 5/2 Vft* E C*(/*). NOW since C*(/*) is G-invariant, convex and weakly
compact, by the L°°-fixed point property there exists a G-invariant function say C
in C*(/*), but then "ergodicity implies that almost surely C is a constant. Thus,
since C e C*(/*), we have 5 /2<} C/= C J / = 0 , a contradiction. Hence 5 = 0 and
this proves the proposition.

We remark that the function / to which we have applied this proposition may
not have zero integral, however we have chosen this / such that | | / | | <e /8 , (see
early part of § 2) and it is easy to see that this is enough to ensure ||£ c,-/gi|| < e/4.

Proof of sublemma 2. First let W be the cube {x = ( x , , . . . , xn)/0< x{ < a} and
/ = [0, A]. Let x '• W^ [0,1] be a Cx map such that x - 0 outside {x|l/2e < x, < a -
l/2e} and x= 1 inside {x|l/e < x , < a , - l / e } and \\x\\r^ M(r)(e)r, VI < i<r where
e = ( a / N ) , NeN and M(r) is some constant depending on r alone. Explicit
construction of such a function can be found in [21] and is based on the usual
convolution technique. Take g(x) = g ( x , , . . . , xn) = (Axn/a) and set ry(x) =
x(x)g{x). It is easy to verify that by choosing JVeN large enough one can make
[ l /m( W)] \wf° V dm arbitrarily close to (I/A) Jo f(t) dt and this can be done
uniformly over the class of functions which are uniformly bounded (in particular
for an equicontinuous family). If W is not a cube then write 'most of W as a
disjoint union of such p cubes (or its translates) and apply above result replacing
A by X/p and interval of length A by intervals of length A/p and take the sum of
the corresponding functions.

Now we very briefly indicate the proof of theorem 2.5. See [19] for the details
in the case of a 2-torus where the underlying construction of the required function
is much easier.

The techniques used are as before. We will only sketch the ideas involved in
lifting proximality generically, (see [4,19]). Fix woefi. Given open sets U, V c £
and e > 0 , define

P( U, V, e) = {XA e Bj diam (H,(XA)( Ux{w0}) u(H,(XA)( Vx{w0}))

< e, for some (€R},

where H,(XA)isthehomeomorphismgivenby H,{XA)([x], w) - {[XA(w, t)x], w t).
If XAe P(U, V, 1/n), Vn and VL7, V belonging to a countable base of X, then any
pair of points in the fiber over w0 is proximal and since (ft, R) is minimal, this
implies x = A(w- t)x is a proximal system. Thus as before the main problem is to
prove that P( U, V, e) is dense in Bx. Using the same arguments as in the proof of
theorem (2.2) we reduce this problem to showing that leP(U, V, e) and this is
equivalent to showing that given a go 6 SL(n,U) and 5 > 0 , 3 i//C0C(ft, SL(n, R)) such
that DcoO*, 1 ) < 5 and tp(wo) = go, (see [19] for details). Construction of such a
function is essentially as before, in fact much easier, (see [19]).

In the same way, under the same assumptions one can show residuality of recurrent
as well as uniquely ergodic systems in Bx, (see [4, 19]).

Remark 4. The (Sacker-Sell) spectrum of system (I) is denned to be the set a-(A) =
{A|A E R such that for some w e ft, the equation x = [A(w • t) — A/]x has a non-trivial
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bounded solution}. The spectral theorem of Sacker and Sell [20] says that er(A) = 
Uf=i bi], where / c < n and the union is a disjoint union of fc-intervals. If 
at = b, VI < i < k then system (I) is said to have a discrete spectrum otherwise it is 
said to have a band spectrum. If the flow on il is periodic then the spectrum o-(A), 
for any A is discrete. 

Following R. Johnson, we will call system (I) elliptic iff J 2 Hdv = Q for all Borel 
probability measures v on £ which are invariant under the skew-product flow, 
where H ( [ x ] , w) = {A(w)x, x ) / | | x | | 2 and < , > is the standard inner product on U". 
In the case n = 2 , if system (I) is not elliptic it is said to be hyperbolic, (see [9] for 
details). 

The following proposition is proved in [9] and [10] for n = 2 . 

P R O P O S I T I O N 5 . (a) If the skew-product flow on £ is uniquely ergodic then system 
(I) is elliptic, (b) If system (I) is hyperbolic then it is proximal if and only if it has a 
band spectrum. 

Our result shows that for flows admitting fast-periodic approximation, smooth 
elliptic, recurrent proximal cocycles are generic in the class Bx. Now note that for 
the rotation flow on T 2 generated by badly approximable irrationals, smooth elliptic 
proximal cocycles do exist, namely take any smooth enough elliptic cocycle in the 
subgroup of uppertriangular matrices. Then by standard Kolmogorov-Siegal argu
ment one can show that it is cohomologous to a cocycle of the form 

and thus cannot yield a minimal skew-product. Hence a more appropriate question 
is: can one have smooth elliptic recurrent-proximal cocycles based on such rotation 
flows (i.e. flows generated by badly approximable irrationals). We conjecture that 
this is not possible if A is smooth enough. 

Finally, smooth cocycles which are hyperbolic and proximal have very compli
cated dynamical properties and their construction for R and Z actions is the content 
of [17] and [7] respectively. In the situation when Q, = T 2 - the 2 torus, the cocycle 
is hyperbolic with discrete spectrum and is smooth enough, using the usual small 
divisor argument Johnson and Sell ([11]) have shown that such a cocycle must be 
cohomologous to a constant cocycle, (i.e. the cocycle of the form e'K for some fixed 
matrix K). In general the questions regarding proximality or band spectrum of 
linear systems x = A(w • t)x are related to the nature of the Mackey range and the 
recurrence and transience properties of XA. However no concrete results of this 
nature are available. Much more is known about some specific cocycles, in particular 
those arising as the fundamental matrix solutions of the 1-dimensional Schrodinger 
equation, (see [8] , an exhaustive list of other references is too long and hence will 
be omitted). 
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