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Abstract

Most devices (systems) are operated under different environmental conditions. The
failure process of a system not only depends on the intrinsic characteristics of the system
itself but also on the external environmental conditions under which the system is being
operated. In this paper we study a stochastic failure model in a random environment and
investigate the effect of the environmental factors on the failure process of the system.
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1. Introduction

Many of the currently used failure models have been developed on the premise that the
operating environment is static. In these cases, the basic assumption is that the prevailing
environmental conditions either do not change in time or, if they do, have no effect on the
deterioration and failure process of the device. Therefore, in these cases it is models not
depending on the external environmental conditions that have been proposed and studied.

However, devices often work in varying environments and their performance can be sig-
nificantly affected by the varying environmental conditions. For example, jet engines are
constantly subject to varying atmospheric conditions like pressure, temperature, and humidity,
as well as shocks caused by mechanical vibrations during takeoff, cruising, and landing. As
another example, some electrical devices are frequently subject to random shocks caused by the
fluctuations of an unstable power supply. In these cases, the changes in external conditions or
shocks cause the equipment to deteriorate or age according to certain rules, and to be effectively
older than its intrinsic age. In this regard, there have been various failure models for systems in
random environments. The explicit consideration of the environment as a stochastic process has
been attempted in a number of papers. Most such models take the model of Esary et al. (1973) as
their starting points, and model the shock and wear intensities as varying randomly in response
to environmental conditions; see A-Hameed and Proschan (1973), (1975), Çinlar (1984), and
Feldman (1976), (1977). These models are for one component; the use of multicomponent
models was discussed by Esary and Marshall (1974), and very sophisticated models were
introduced by Çinlar (1977).
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The intrinsic ageing model was considered by Çinlar and Özekici (1987) and studied further
by Çinlar et al. (1989). In these studies, the intrinsic ageing concept was introduced to relate
the deterioration of a component under field conditions to the deterioration it would experience
under laboratory conditions. The concept was extended in Shaked and Shanthikumar (1989).
Özekici (1995) studied optimal maintenance policies for systems in random environments
and Özekici (1996) discussed the implications of the environmental process in the context
of inventory models, queueing models, and reliability models. The concept of random hazard
functions was used and discussed by Gaver (1963), Arjas (1981), and Kebir (1991). In Lemoine
and Wenocur (1985), (1986), the item’s failure rate was described using a stochastic process
which represents the random system state. An excellent survey of the abundant research on
failure models for systems in random environments can be found in Singpurwalla (1995).

In this paper, we study a new stochastic failure model which incorporates varying external
environmental conditions characterized by a Poisson shock process. In the next section we shall
derive the compound failure rate function of a system in a random environment and investigate
the effect of the environmental factors on the failure process. In Section 3 we will give various
examples to show that, depending on the intensity function of the Poisson shock process, the
compound failure rate function can have many different shapes. In Section 4 the dependence
of the compound failure rate function on the intensity function of the Poisson shock process
and the increment in the failure rate will be studied. Concluding remarks are given in the last
section.

2. Main results

Let X be the lifetime of a device operated in a normal, static working environment (or a
laboratory environment which is not exposed to the external environmental conditions) and
denote its survival function and failure rate function as F̄0(t) and r0(t), respectively. The latter
is called the baseline failure rate function. Let {N(t) : t ≥ 0} be a stochastic counting process
describing the occurrence of certain environmental shocks in [0, ∞). Denote the times of
occurrences of these shocks as Ti , 0 = T0 < T1 < T2 · · · . Let Y be the lifetime of an identical
device under the influence of this environmental shock process. In this paper we assume that

P(Y > t | N(s), 0 ≤ s ≤ t) = exp

{
−

∫ t

0

[
r0(x) +

N(t)∑
j=1

µ 1[Tj ,∞)(x)

]
dx

}
, t ≥ 0, (1)

where µ > 0 is a constant and the indicator function 1[Tj ,∞)(x), j = 1, 2, . . . , is defined by

1[Tj ,∞)(x) =
{

1 if x ∈ [Tj , ∞),

0 otherwise.

Physically, (1) means that, given the shock process in the time interval [0, t], the failure rate
of Y increases by a fixed amount µ > 0 at the occurrence of each shock. Furthermore, it is
assumed that a shock does not cause immediate system failure.

For structural systems, a shock may cause immediate system failure. For example, a strong
earthquake can break a bridge with some probability, or may increase its deterioration by some
amount. On the other hand, for electrical systems, there may be some different cases. A power
surge may be a shock that causes immediate failure. However, in most electrical systems there
are built-in protective devices which prevent immediate system failure by cutting off the supply
of electric power in the occurrence of a surge exceeding a prespecified level. In this case, a
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shock of this kind cannot cause immediate system failure, but it increases the possibility of
system failure by increasing the failure rate by some amount.

For convenience we will refer to µ as the increment in failure rate. The following result
gives the failure rate function of Y , namely the compound failure rate function of the system.

Theorem 1. Suppose that {N(t) : t ≥ 0} is a Poisson process with intensity function λ(t) ≥ 0,
i.e. m(t) := E(N(t)) = ∫ t

0 λ(x) dx. Assuming that (1) holds and that m(t) has inverse m−1(t),
the failure rate function of Y , denoted by r(t), is given by

r(t) = r0(t) + µe−µt

∫ t

0
eµxλ(x) dx. (2)

Proof. It is easy to see that

µ

N(t)∑
j=1

∫ t

0
1[Tj ,∞)(x) dx = µ

N(t)∑
j=1

(t − Tj ) = µtN(t) − µ

N(t)∑
j=1

Tj ,

since 1[Tj ,∞)(x) = 0 for 0 ≤ x ≤ t and j = N(t) + 1, N(t) + 2, . . . . Thus,

P(Y > t | N(s), 0 ≤ s ≤ t) = F̄0(t) exp

{
−µtN(t) + µ

N(t)∑
j=1

Tj

}
. (3)

From (3) we see that

P(Y > t) = F̄0(t) E

(
exp

{
−µtN(t) + µ

N(t)∑
j=1

Tj

})
. (4)

Define N∗(t) := N(m−1(t)), t ≥ 0, and T ∗
j := m(Tj ), j ≥ 1. It is known that {N∗(t) : t ≥ 0}

is a stationary Poisson process with intensity 1 (see, e.g. Çinlar (1975, pp. 95–96)), and T ∗
j ,

j ≥ 1, are the times of occurrence of shocks on the new time scale. Let s = m(t). By (4), we
have

P(Y > m−1(s)) = F̄0(m
−1(s)) E

(
exp

{
−µm−1(s)N(m−1(s)) + µ

N(m−1(s))∑
j=1

Tj

})

= F̄0(m
−1(s)) E

(
exp

{
−µm−1(s)N∗(s) + µ

N∗(s)∑
j=1

Tj

})
.

Considering conditional expectation, we have

E

(
exp

{
−µm−1(s)N∗(s) + µ

N∗(s)∑
j=1

Tj

} ∣∣∣∣ N∗(s) = n

)

= exp{−nµm−1(s)} E

(
exp

{
µ

n∑
j=1

m−1(T ∗
j )

} ∣∣∣∣ N∗(s) = n

)
. (5)
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It is known that the joint distribution of (T ∗
1 , T ∗

2 , . . . , T ∗
n ) given N∗(s) = n is the same as

the joint distribution of (V(1), V(2), . . . , V(n)), where the V(i), V(1) ≤ V(2) ≤ · · · ≤ V(n), are
the order statistics of the independent, identically distributed random variables V1, V2, . . . , Vn,
which are uniformly distributed on the interval [0, s] = [0, m(t)]. Hence, in (5),

E

(
exp

{
µ

n∑
j=1

m−1(T ∗
j )

} ∣∣∣∣ N∗(s) = n

)
= E

(
exp

{
µ

n∑
j=1

m−1(V(j))

})

= E

(
exp

{
µ

n∑
j=1

m−1(Vj )

})

= E(exp{µm−1(sU)})n, (6)

where the second equality follows from
∑n

j=1 m−1(V(j)) = ∑n
j=1 m−1(Vj ), the third equality

follows from the independence of V1, V2, . . . , Vn, and, in the last equation, U := V1/s =
V1/m(t) is a random variable uniformly distributed on the unit interval [0, 1].

According to (6), we obtain

E

(
exp

{
−µm−1(s)N∗(s) + µ

N∗(s)∑
j=1

Tj

})

= E

(
E

(
exp

{
−µm−1(s)N∗(s) + µ

N∗(s)∑
j=1

Tj

} ∣∣∣∣ N∗(s)
))

=
∞∑

n=0

E

(
exp{−µm−1(s)n} exp

{
µ

n∑
j=1

Tj

} ∣∣∣∣ N∗(s) = n

)
P(N∗(s) = n)

=
∞∑

n=0

exp{−µm−1(s)n} E(exp{µm−1(sU)})n sn

n! e−s

= e−s
∞∑

n=0

[exp{−µm−1(s)} E(exp{µm−1(sU)})s]n 1

n!
= e−s exp{exp{−µm−1(s)} E(exp{µm−1(sU)})s}. (7)

Observe that

E(exp{µm−1(m(t)U)}) =
∫ 1

0
exp{µm−1(m(t)x)} dx.

If we here let m−1(m(t)x) = u, then x = (1/m(t))m(u) and

dx

du
= 1

m(t)
m′(u) = 1

m(t)
λ(u).

Thus, we have

E(exp{µm−1(m(t)U)}) =
∫ t

0 eµuλ(u) du

m(t)
. (8)

Combining (4), (7), and (8) yields

P(Y > t) = F̄0(t)e
−m(t) exp

{
e−µt

∫ t

0
eµxλ(x) dx

}
. (9)
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From (9), we have

ln P(Y > t) = −
∫ t

0
r0(x) dx − m(t) + e−µt

∫ t

0
eµxλ(x) dx.

The compound failure rate function, r(t), is thus given by

r(t) = − d

dt
ln P(Y > t)

= − d

dt

{
−

∫ t

0
r0(x) dx − m(t) + e−µt

∫ t

0
eµxλ(x) dx

}

= r0(t) + µe−µt

∫ t

0
eµxλ(x) dx.

The following corollary gives a simpler expression for the compound failure rate function
when the shock process is given by a homogeneous Poisson process with a constant intensity
λ > 0.

Corollary 1. If the shock process, {N(t) : t ≥ 0}, is a Poisson process with a constant intensity
λ > 0, then the compound failure rate function r(t) is given by

r(t) = r0(t) + λ(1 − e−µt ).

3. Various shapes of the compound failure rate function

In this section we will discuss the limiting behavior of the compound failure rate function,
and show that it can take many different shapes, including IFR (increasing failure rate),
upside-down unimodal, right-side-up unimodal, bathtub, and even CFR (constant failure rate)
and DFR (decreasing failure rate). We will use S(r0(·), λ(·), µ) to denote the system with
the baseline failure rate function r0(t) operated under the environmental condition (λ(·), µ).
Furthermore, in order to emphasize the dependence on (λ(·), µ), we respectively denote the
lifetime, compound failure rate function, and reliability function of the system S(r0(·), λ(·), µ)

as Y(λ(·),µ), r(t; λ(·), µ), and R(t; λ(·), µ) when it is necessary. In the discussions below,
without loss of generality we assume that λ(t) is greater than 0 and is differentiable for all
t ≥ 0.

Theorem 2. If limt→∞ r0(t) =: r0(∞) ≤ ∞ and limt→∞ λ(t) =: λ(∞) ≤ ∞ exist, then

r(∞; λ(·), µ) := lim
t→∞ r(t; λ(·), µ)

=
{

r0(∞) if
∫ ∞

0 eµxλ(x) dx < ∞,

r0(∞) + λ(∞) if
∫ ∞

0 eµxλ(x) dx = ∞.
(10)

Proof. From (2), the result is obvious for
∫ ∞

0 eµxλ(x) dx < ∞. For
∫ ∞

0 eµxλ(x) dx = ∞,
application of l’Hôpital’s rule gives the result immediately.

Corollary 2. Under the conditions of Theorem 2,

r(∞; λ(·), µ) =
{

r0(∞) if E(T1) = ∞,

r0(∞) + λ(∞) if E(T1) < ∞.
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Proof. We claim that E(T1) = ∞ implies λ(∞) = 0. This can be proved by contradiction.
Suppose that the contrary result holds, and let 2c := λ(∞) > 0. Then there exists a t0 > 0
such that

λ(x) > c for x ≥ t0.

This implies that, for any t ≥ t0,∫ t

0
λ(x) dx ≥

∫ t

t0

λ(x) dx ≥ c(t − t0)

and, consequently,

E(T1) =
∫ ∞

0
exp

{
−

∫ t

0
λ(x) dx

}
dt

=
∫ t0

0
exp

{
−

∫ t

0
λ(x) dx

}
dt +

∫ ∞

t0

exp

{
−

∫ t

0
λ(x) dx

}
dt

<

∫ t0

0
exp

{
−

∫ t

0
λ(x) dx

}
dt +

∫ ∞

t0

e−c(t−t0) dt

=
∫ t0

0
exp

{
−

∫ t

0
λ(x) dx

}
dt + 1

c
< ∞,

which is a contradiction. Therefore, it must be true that λ(∞) = 0. Notice, by Theorem 2,
that if E(T1) = ∞ then no matter whether

∫ ∞
0 eµxλ(x) dx < ∞ or

∫ ∞
0 eµxλ(x) dx = ∞, it is

always true that r(∞; λ(·), µ) = r0(∞), since, from our claim, λ(∞) = 0.
Now suppose that E(T1) < ∞. In this case we have

∫ ∞
0 λ(x) dx = ∞, since

E(T1) =
∫ ∞

0
exp

{
−

∫ t

0
λ(x) dx

}
dt < ∞

implies that exp {− ∫ ∞
0 λ(x) dx} = 0. Hence,∫ ∞

0
eµxλ(x) dx ≥

∫ ∞

0
λ(x) dx = ∞

and, consequently, r(∞; λ(·), µ) = r0(∞) + λ(∞) by Theorem 2.

Remark 1. It is tempting to try to show that E(T1) < ∞ implies λ(∞) > 0. However, this is
not true. Indeed, let us assume T1 to have a log-normal distribution. It is known that the failure
rate function of a log-normal distribution has an upside-down bathtub shape and that its limit
decreases to 0 as t tends to ∞.

Remark 2. Suppose that
∫ ∞

0 eµxλ(x) dx < ∞; then∫ ∞

0
λ(x) dx <

∫ ∞

0
eµxλ(x) dx < ∞.

Furthermore, E(T1) = ∞. However, the reverse implication does not hold, as demonstrated by
the following counterexample. Let λ(x) = 1/(1 + x), x ≥ 0. It is straightforward to see that
exp {− ∫ t

0 λ(x) dx} = 1/(1 + t) and, hence,

E(T1) =
∫ ∞

0
exp

{
−

∫ t

0
λ(x) dx

}
dt = ∞.
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However, on the other hand it is easy to verify that∫ ∞

0
eµxλ(x) dx =

∫ ∞

0

eµx

1 + x
dx = ∞.

Remark 3. The same example also shows that∫ ∞

0
eµxλ(x) dx = ∞ �⇒/ E(T1) < ∞.

Intuitively, Corollary 2 tells us that when E(T1) = ∞, that is, the first arrival time of the
shock process is extremely long, then only very few shocks, if any, can occur and, thus, the
shock process does not affect the limit of the compound failure rate as t tends to ∞.

Conversely, if E(T1) < ∞ then r(∞; λ(·), µ) is affected by the shock process as indicated
in Corollary 2. It is surprising that the dependence of r(∞; λ(·), µ) on the shock process is
expressed only through λ(∞). Let us look at the case of a stationary Poisson shock process
with λ(t) = λ for any t ≥ 0. From (9) we see that the contribution of the shock process to the
survival function of Y is to add a series component with survival function

Ḡ(t) := exp

{
−λ

(
t − eµt − 1

µeµt

)}
.

Note that the exponent in Ḡ(t) is equivalent to −λ(t − µ−1) as t → ∞. That is, for large t

the effect of the shock model on the survival function of Y amounts to the addition in series to
the original system of a component with a two-parameter exponential distribution. This two-
parameter exponential distribution has a threshold 1/µ and the limit of its failure rate function
as t → ∞ does not depend on the threshold. Therefore, in the limiting case µ does not enter the
expression for r(∞; λ(·), µ). This situation is not uncommon. In fact, many widely applied
lifetime distributions, such as Weibull, gamma, log-normal, and log-logistic distributions, have
two parameters but are such that the limits of their failure rate functions as t → ∞ either
depend on only one of the two parameters or do not depend on either of them.

Lifetime distributions are often classified into different classes such as IFR, CFR, and
DFR. To study the behavior of the compound failure rate function (2), we assume that λ(t)

is differentiable with λ(0) < ∞ and then rewrite (2) as

r(t; λ(·), µ) = r0(t) + µe−µt

([
1

µ
eµxλ(x)

]t

0
− 1

µ

∫ t

0
eµxλ′(x) dx

)

= r0(t) + λ(t) − λ(0)e−µt −
∫ t

0
e−µ(t−x)λ′(x) dx. (11)

Also, note that the derivative of r(t; λ(·), µ) with respect to t is

r ′(t; λ(·), µ) = r ′
0(t) + µe−µt

(
λ(0) +

∫ t

0
eµxλ′(x) dx

)
. (12)

The following examples demonstrate that the compound failure rate function r(t; λ(·), µ) can
take various different shapes.

Example 1. (IFR shape.) Suppose that r0(t) = r0 for all t ≥ 0 (i.e. the lifetime distribution
is CFR). Then in this case r ′

0(t) = 0 and the lifetime distribution of Y is IFR if λ′(t) ≥ 0.
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This implies that, even though the lifetime distribution of X is exponential (i.e. the system
never deteriorates), preventive maintenance may have to be considered when it is operated in a
random environment in which the intensity function λ(t) is nondecreasing in t .

Specifically, let the baseline failure rate function be r0(t) = 1, t ≥ 0, and let the environ-
mental condition be given by (λ(t), µ) = (2 − e−t , 1). In this case, the compound failure rate
function in (2) is given by

r(t; λ(·), 1) = 3 − te−t − 2e−t , t ≥ 0,

and r ′(t; λ(·), 1) = (t + 1)e−t > 0, t ≥ 0.

Example 2. (Upside-down unimodal shape.) Suppose that r0(t) = r0 for all t ≥ 0, and let
λ(0) > 0. In this case, from (12),

r ′(t; λ(·), µ) = µe−µt

(
λ(0) +

∫ t

0
eµxλ′(x) dx

)
.

We see that r ′(0+; λ(·), µ) > 0 and, thus, the compound failure rate function r(t; λ(·), µ) is
initially increasing. It is also easy to see that r(0; λ(·), µ) = r0 and, by (2), that r(t; λ(·), µ) >

r0 for all t > 0, regardless of the shape of λ(t).
Now let us assume that λ′(t) < 0 for all t > 0 and that

∫ ∞
0 eµxλ′(x) dx < −λ(0). Let

g(t) := λ(0) + ∫ t

0 eµxλ′(x) dx. Then r ′(t; λ(·), µ) = µe−µtg(t) and g′(t) = λ′(t)eµt < 0,
for all t ≥ 0. Thus, it follows from g′(t) < 0, for all t > 0, g(0) = λ(0) > 0, and

g(∞) := lim
t→∞ g(t) = λ(0) +

∫ ∞

0
eµxλ′(x) dx < 0,

that there exists a positive value t∗ such that r ′(t; λ(·), µ) > 0 for all t < t∗ and r ′(t; λ(·), µ) <

0 for all t > t∗. That is, r(t; λ(·), µ) has an upside-down unimodal shape with change point t∗.
In particular, suppose that λ(t) = e−ηt for all t ≥ 0, with η > µ. Then it is obvious that

λ′(t) < 0 and that ∫ ∞

0
eµxλ′(x) dx = − η

η − µ
< −1 = −λ(0).

Note that

λ(0) +
∫ t

0
eµxλ′(x) dx = 1 + η

η − µ
[e−(η−µ)t − 1].

From this we can see that r ′(t; λ(·), µ) > 0 for all t < −(1/(η − µ)) ln(µ/η) and that
r ′(t; λ(·), µ) < 0 for all t > −(1/(η − µ)) ln(µ/η). This implies that r(t; λ(·), µ) is strictly
increasing for t < −(1/(η−µ)) ln(µ/η) and strictly decreasing for t > −(1/(η−µ)) ln(µ/η).
Hence, r(t; λ(·), µ) has an upside-down unimodal shape with change point given by t∗ =
−(1/(η − µ)) ln(µ/η). Moreover, from the first case of (10), we have limt→∞ r(t; λ(·), µ) =
r0.

Specifically, suppose that the baseline failure rate function is given by r0(t) = 1 for all
t ≥ 0 and that the environmental condition is given by (λ(t), µ) = (e−3t , 1). In this case, the
compound failure rate function is given by

r(t; λ(·), 1) = 1 + 1
2 e−t − 1

2 e−3t , t ≥ 0.

In this example, the compound failure rate function strictly increases for all t < 0.5493
and strictly decreases for all t > 0.5493; it thus has an upside-down unimodal shape with
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change point t∗ = 0.5493. Furthermore, λ(t) satisfies the condition in the first case of (10),
i.e.

∫ ∞
0 eµxλ(x) dx < ∞, and, thus, the limit of the compound failure rate function is given by

r0(∞) = 1.

The above example is very interesting in the following sense. From (1), given the shock
process {N(t) : t ≥ 0}, the conditional failure rate of the system is given by

r0(t) +
N(t)∑
j=1

µ 1[Tj ,∞)(t), (13)

which is a nondecreasing function of t > 0. Furthermore, from (13) we can see that the
occurrence of a shock affects the failure rate not only at the time of its occurrence, but also
continuously and indefinitely starting from the time of its occurrence, regardless of the shape
of λ(t). Thus, intuitively it would seem that r(t; λ(·), µ) is always IFR. However, from the
above discussion we see that the compound failure rate is not always IFR. In fact, it can take
various different shapes, including even DFR shape, as the following examples demonstrate.

Example 3. (DFR shape.) Let λ(t) = 1 for all t ≥ 0 and let µ = 1. Then r ′(t; λ(·), µ) =
r ′

0(t) + e−t . If, furthermore, r0(t) = 2e−t , then r ′(t; λ(·), µ) = −e−t < 0 and, so, the
compound failure rate is DFR.

Let us show that r(t; λ(·), µ) can have a right-side-up unimodal shape.

Example 4. (Right-side-up unimodal shape.) Let λ(t) = λ for all t ≥ 0 and let r0(t) = e−ξ t

for all t ≥ 0, with ξ > µλ and ξ > µ. Then, from Corollary 1, the compound failure rate
function is given by

r(t; λ(·), µ) = r0(t) + λ(1 − e−µt ) = e−ξ t + λ − λe−µt ,

and its derivative with respect to t is given by

r ′(t; λ(·), µ) = −ξe−ξ t + λµe−µt .

It is thus easy to see that

r ′(t; λ(·), µ)

{
< 0 if 0 < t < t∗,
> 0 if t > t∗,

where t∗ = −(1/(ξ − µ)) ln(λµ/ξ). That is, in this example r(t; λ(·), µ) has a right-side-up
unimodal shape with change point t∗.

In particular, if we choose µ = 0.5, λ = 1.0, and ξ = 3.0, then the graph of the compound
failure rate function is as plotted in Figure 1. As is shown there, the compound failure rate
function has a right-side-up unimodal shape with change point t∗ = 0.7167.

The following example shows that r(t; λ(·), µ) can be bathtub shaped.

Example 5. (Bathtub shape.) Let λ(t) = λ for all t ≥ 0 and let

r0(t) =

⎧⎪⎨
⎪⎩

e−t + 1 if 0 ≤ t ≤ t1,

e−t1 − µ−1e−t1 [1 − e−µ(t−t1)] + 1 if t1 ≤ t ≤ t2,

0.1(t − t2)
2 + 1 if t2 ≤ t,
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Figure 1: The compound failure rate function in the right-side-up unimodal case.
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Figure 2: Compound failure rate function in the bathtub-shape case.

where µ < 1, λ < 1, t1 = −(1−µ)−1 ln(λµ), and t2 = t1 −µ−1 ln(1−µ). Then r(t; λ(·), µ)

has a bathtub shape with two different change points, t1 and t2, t1 < t2, and r(t; λ(·), µ) is a
constant on the interval [t1, t2].

In particular, if we choose λ = 0.5 and µ = 0.5, then the graph of the compound failure
rate function is as plotted in Figure 2. As is shown there, the compound failure rate function is
bathtub shaped with change points t1 = 4 ln 2 and t2 = 6 ln 2.

Finally, we show that r(t; λ(·), µ) can be a constant function.

Example 6. (CFR.) It can be easily verified using (2) and (12) that r(t; λ(·), µ) is a constant
function if and only if the following two conditions are satisfied:

(a) λ(0) = − 1

µ
r ′

0(0) ≥ 0,

(b) λ′(x) = −µ−1e−µx d

dx
(eµxr ′

0(x)).

Now, if we choose r0(t) = e−t for all t ≥ 0 and let µ > 0 be arbitrary, then we will obtain

λ(t) = 1 − (1 − µ−1)e−t , t ≥ 0.

Direct computation based on (2) gives r(t; λ(·), µ) = 1, t ≥ 0.
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4. Dependence on the intensity function and the increment in failure rate

To study the dependence of r(t; λ(·), µ) on λ(·) and µ we need the concept of failure rate
ordering (see, e.g. Shaked and Shanthikumar (1994, p. 12)).

Definition 1. Let Z1 and Z2 be two nonnegative, continuous random variables with respective
failure rate functions, q1(·) and q2(·), such that

q1(t) ≥ q2(t), t ≥ 0.

Then Z1 is said to be smaller than Z2 in the failure rate order, written Z1 ≤fr Z2.

Theorem 3. (I) Consider systems S(r0(·), λ1(·), µ) and S(r0(·), λ2(·), µ). If λ1(t) ≥ λ2(t)

for all t ≥ 0 then Y(λ1(·),µ) ≤fr Y(λ2(·),µ).

(II) Consider systems S(r0(·), λ(·), µ1) and S(r0(·), λ(·), µ2). If µ1 ≥ µ2 and λ′(t) ≥ 0 then
Y(λ(·),µ1) ≤fr Y(λ(·),µ2).

Proof. From (2), it is easy to see that if λ1(t) ≥ λ2(t) for all t > 0 then r(t; λ1(·), µ) ≥
r(t; λ2(·), µ) for all t > 0. That is, Y(λ1(·),µ) ≤fr Y(λ2(·),µ).

From (11), the compound failure rate function in (2) is given by

r(t; λ(·), µ) = r0(t) + λ(t) − λ(0)e−µt −
∫ t

0
e−µ(t−x)λ′(x) dx.

Hence,
∂r(t; λ(·), µ)

∂µ
= λ(0)te−µt +

∫ t

0
(t − x) exp{−µ(t − x)}λ′(x) dx.

Therefore, if λ′(t) ≥ 0 for all t ≥ 0 then, for any t > 0, r(t; λ(·), µ) is strictly increasing in
µ > 0.

It is worthy of note that if the condition λ′(t) ≥ 0 is violated in Theorem 3, then the
compound failure rate function may not be strictly increasing in µ for all t > 0, as indicated
by the following example.

Example 7. Suppose that the baseline failure rate function is given by r0(t) = 1 for all t ≥ 0.
For this system, we consider two different environmental conditions, (λ(t), µ1) = (e−3t , 1) and
(λ(t), µ2) = (e−3t , 2). The corresponding compound failure rate functions are respectively
given by

r1(t) := r(t; λ(·), 1) = 1 + 1
2 e−t − 1

2 e−3t , t ≥ 0,

and

r2(t) := r(t; λ(·), 2) = 1 + 2e−2t − 2e−3t , t ≥ 0.

It can be shown that r2(t) > r1(t) for t ∈ (0, ln 3), that r2(t) < r1(t) for t > ln 3, and that
r2(t) = r1(t) for t = 0 or t = ln 3. The graphs of these two compound failure rate functions
are plotted in Figure 3.
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Figure 3: The graphs of two compound failure rate functions.

5. Concluding remarks

When a system is used under varying environmental conditions, the environmental factors
should be incorporated into the study of the system performance.

In this paper, we have studied the performance of a system which is operated in a random
environment governed by a Poisson shock process. From the results for the compound failure
rate function, it can be seen that the influence of the occurrence rate of the shock process is more
significant than that of the amount of failure rate increment caused by each shock. Furthermore,
we obtained some surprising results which could not have been predicted prior to analysis.

In future study, more general environmental factors, such as pressure, temperature, humidity,
and so on, could be modeled via various stochastic processes to describe the operational
characteristics of the real world. Also note that in much of the previous research work on
statistical inference, only the parameters in the baseline failure rate function have received
attention. Since the environmental factors are essential elements of the system performance,
more attention should be paid to parameters describing environmental conditions in future
research.
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