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Introduction

The two main problems in the theory of the theta correspondence
or lifting (between automorphic forms on some adelic orthogonal group
and on some adelic symplectic or metaplectic group) are the characteri-
zation of kernel and image of this correspondence. Both problems tend
to be particularly difficult if the two groups are approximately the same
size.

Eichler’s famous solution of the basis problem for elliptic modular
forms [E4] (and its representation theoretic versions by Shimizu and
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Jacquet/Langlands [Shz, J-L]) characterizes the image for the lifting from
0O(4) (the orothogonal group of the norm form of a definite quaternion
algebra over Q) to Sp(1), the work of Waldspurger [Wal, Wa2, Wa3] on
the Shimura correspondence characterizes kernel and image for the corre-
spondence between O(2, 1) resp. O(3) (the orthogonal groups of the trace
zero parts of the norm form of a split or division quaternion algebra re-
spectively) and S:p\(lj) Rallis proved fairly general results for the lifting
from % to a rank 1 orthogonal group O(1, m) [Ral] and for the lifting
from Sp(n) to a “large” orthogonal group [Ra4].

Howe and Piatetski-Shapiro [H-PS] could prove injectivity of the
lifting for the pair (O(2, 2), Sp(2)) (using Whittaker model techniques).
They could not generalize this to the lifting from O(4) to Sp(2) (in this
anisotropic case Whittaker models do not exist). Restricting attention to
forms on O(4) whose lifting to Sp(2) corresponds to a holomorphic Siegel
modular form of degree 2, Yoshida [Y1, Y2] treated the same problem
and conjectured injectivity of the lifting. He could, however, prove his
conjecture only for special D and even for these only for special forms
on the orthogonal group. Part of his motivation was the conjecture that
the (one dimensional part of the) zeta function of a certain abelian va-
riety should be the spinor L-function of a Siegel modular form. For the
particular varieties he considered, the lifting (if nonzero) of a suitable
form on the orthogonal group would provide a Siegel modular form with
the required spinor L-function (for details see [Y1, Y2]).

In the present article, we take up this problem in the same semi-
classical spirit as Yoshida and prove that his lifting is almost injective.
More precisely, we can show that the forms ¥ on O(4) in the kernel of
the lifting to Sp(2) are characterized by a condition on a special value
of their standard L-function. From the work of Waldspurger [Wal, Wa2,
Wa3] and Rallis [Ral, Ra3, Ra4] it is not surprising that a condition of
this type characterizes the kernel of the lifting. However, using the
special situation we associate (as in [Y1, Y2]) to the form ¥ on O(4) a
pair of elliptic modular forms of weight 2 whose symmetric L-function is
the standard L-function of ¥. With the help of a result of Ogg [0] on
this symmetric L-function we can then show that the vanishing of the
lifting is indeed a quite exceptional case, thus proving the ‘“almost in-
jectivity’” mentioned above. In particular, the lifting does not vanish in
the cases needed for Yoshida’s geomstric conjecture. This sharp result
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is surprising and depends very much on the special situation considered
here. That the exceptional case does indeed occur has been shown in
[SP].

In classical terms our result gives a precise description of the linear
dependence relations between the theta series of degree two of the inte-
gral quaternary quadratic forms attached to normal ideals in definite
quaternion algebras over Q. As a consequence we can show that the
classes of these quadratic forms are distinguished by their theta series
of degree 2. We now sketch the organization of this paper.

In [B63] the first named author gave a characterization of those
Siegel modular forms of level 1 which are linear combinations of theta
series attached to even unimodular positive definite quadratic forms.
Part 1 can be viewed as an attempt to make the method of [B63] appli-
cable to higher levels N (at least for small weights and with emphasis
on the case of squarefree level and trivial character). Qur basic objects
are Eisenstein series of type

det (Y)*
E* N) =
(2,8 N) (cg) det (CZ + D)*|det (CZ + D)

’

where {C, D} runs over all non associated coprime symmetric pairs with
C = 0mod N.

In section 1 we review the “pullback machinery”’ created mainly by
P. Garrett [Ga, Bo1]. The integration of a Siegel cusp form of degree n
(in the sense of the Petersson scalar product) against such an Eisenstein
series of degree n + n’ (restricted to a block-type diagonal) can be de-
scribed in terms of Hecke operators and Eisenstein series of Klingen
type. The Hecke operators decompose into a contribution from the “good
primes” (this part is of the same type as for level 1) and a “bad part”.
In section 2 we show that the bad part also has a formal Euler product
expansion-for the good primes this is well known [B62]. In section 3 we
build a bridge between the theory of singular modular forms (as created
mainly by Freitag [Fre2]) and the fact (due to Shimura/Feit [Shi2, Fe])
that Res,.(m.nym-« £YZ, s, N) is a holomorphic Siegel modular form (for
“small” weights & < (n + 1)/2). We describe those residues very explic-
itly as linear ocmbinations of theta series, in fact “‘all” theta series of
quadratic forms of levels dividing N occur in that residue. The results
obtained so far are combined in section 4. Theorem 4.1 gives a sufficient
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condition for an eigenform F (of sufficiently small weight) to be a linear
combination of theta series. We can at present prove the necessity of
this condition only under an additional restriction on F (see Remark 4.1
for more details). A second delicate point is that we cannot generally
assume the existence of a basis of eigenforms of our Hecke algebra for
the space of cusp forms. This seems to be due to the lack of a theory
of newforms in our situation. Fortunately both difficulties play no role
in the application to Yoshida’s lifting which are the main goal of this
article. We hope to clarify them in the general situation in future work.

In part 2, we come to the main problem of our work, the investiga-
tion of the injectivity properties of Yoshida’s lifting. Section 5 reviews
the ideal theory of an Eichler order R of squarefree level N in the defi-
nite quaternion algebra D over ). For a pair (p,4) of automorphic
forms on DX which are right invariant under the adelic group of units
R} we define (following [Y1, Y2]) Yoshida’s lifting of degree n, Y™(p, ).
This is a holomorphic modular form of degree n and weight 2 which can
be written as a linear combination of the theta series of degree n of the
ideals of the Eichler orders of level N in D. It can be viewed as the
result of applying the theta lifting to an automorphic form ¥ (g, ) on
the adelic orthogonal group O,(D) of the norm from of D that is derived
from the pair (o, ) via the embedding SO(D) = (D* X D*)/QX*.

From section 6 on we assume ¢ and v to be newforms (or “essential”
in the sense of [Hi-Sa]) and eigenforms for the Hecke algebra of DX
(whose action is represented by Brandt matrices). In sections 6 and 7
we show that Y™(p,+) is then an eigenform of the Hecke operators
arising from the pullback machinery of section 1 and compute the Satake
parameters. For the good primes this is a straightforward application of
results of Rallis [Ra2] and Kudla [Ku] (generalized Eichler commutation
relation), for the primes ramified in D it is almost trivial, but some work
is required for the remaining primes dividing the level N. In section 8
we sketch a proof of the fact that Y™(p,4) = 0 implies that Y"*"(p, )
is cuspidal.

We are then in the position to prove our nonvanishing theorem for
Yoshida’s lifting (Corollary 9.1). To be more specific, we split the space
O™ generated by the Y™(p, ) for newforms ¢, on DX as above into a
direct sum of subspaces @™7 where @™? is annihilated by n — j 4+ 1-fold
application of Siegel’s @-operator (but not by n — j-fold application). By
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a result of Kitaoka [Ki] the theta series of degree m — 1 of quadratic
forms of rank m having the same discriminant are linearly independent.
This implies that all information on the above splitting is contained in
the case m = 3. We concentrate on that case and characterize the sub-
spaces ©®" by conditions on special values of the reduced standard
L-function of elements of these spaces (Theorem 9.1). This is done by
applying Theorem 4.1 and using the explicit computation of the contribu-
tion from the bad primes performed in section 7. By the computations
of section 6 the reduced standard L-function of Y™(g, ) is related to
the symmetric L-function associated to ¢,+. Since ¢ and 4 correspond
to elliptic modular forms of weight 2 with the same Hecke eigenvalues
(by the results of Eichler [E4], Shimizu [Shz], Jacquet/Langlands [J-L])
we can apply a theorem of Ogg [O] on the value at s = 2 of the sym-
metric L-function of a pair of elliptic modular forms. The results obtained
on the analytic properties of the reduced standard L-function of Y®{(p, )
suffice to determine the subspace ©®% in which Y®(p, ) lies by a com-
parison with the analytic characterization of these subspaces obtained in
Theorem 9.1. Our nonvanishing result is then an easy consequence.
The final section 10 collects relations between the Petersson norms of
the various forms on orthogonal and symplectic groups that appeared so
far. These are interesting in their own right [Ral] and allow to express
the Eisenstein series of Klingen type of degree n attached to a cuspidal
Y™ (g, ) (n, < n) by the Yoshida lifting of degree n. This last result
will be needed in a forthcoming paper where we give a new proof of
Waldspurger’s formula relating special values of twisted L-functions to
Fourier coefficients of modular forms of half integral weight.

Preliminaries

For generalities on Siegel modular forms we refer to [Frel]. For

M = (‘é g) we denote by (M, Z) —~ M(Z> = (AZ + B)(CZ + D)-! the

usual action of the group G*Sp(n, R) of proper symplectic similitudes on
Siegel’s upper half space H,.

For any function f: H, - C, any M e G*Sp(n, R) and any “‘weight”
k we write

(f1: M)(Z) = (det M) j(M, Z)~*f(M(Z})
with j(M, Z) = det (CZ + D).
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We shall mainly be concerned with Siegel modular forms for con-
gruence subgroups of type

I’'$(N) = {(é g) e Sp(n, Z)| C = 0 mod N} .

The space of Siegel modular forms (and cusp forms respectively) of de-
gree n and weight & for I'{™™(IN) will be denoted by M (IN)(SKN)); by {,>
we denote the Petersson scalar product. @ denotes Siegel’s operator
&: MEN)— M:_(N).

Our normalization of Hecke operators is as follows:

For fe M%N) and M e GSp(n, Q) with I'{"(N)MI'{™(N) = U, ['{"(N)M,
we put [ PINMIM(N) = 3, fl«M; We shall freely use the adelic inter-
pretation of Siegel modular forms and Hecke operators (see e.g. [Y3]. In
particular, let

K,(N) = {(é g) € GSp(n, Z,)| C = 0 mod Nz,,} ,

denote for M e G*Sp(n, R) by (M, 1, - --) the adele with oco-component M
and all other components 1,,, Then to the Siegel modular form fe
M¥(N) there corresponds a unique automorphic form ¥, on GSp(n, A)
with trivial central character, right invariant under K(N) = [], K,(IN) and
satisfying

fMGL))M,i1,) " =¥ (M, 1, ---)

for all M e G*Sp(n, R).

By M (Z)* we denote the set of nonsingular integral n X n matrices,
Z&® denotes the set of symmetric integral n X n matrices. For an in-
teger a, a| N® means that p|a only if p|N.

Part I. Eisenstein Series and Theta Series

§1. Pullbacks of Eisenstein series

In the case of the full modular group it is well known how Siegel’s
Eisenstein series behaves when restricted to the diagonal-see [B61], [Ga].
In this section we describe how these results generalize to groups of
type I'§V(N).

Let m, n be natural numbers with m > n. The “small” symplectic
groups Sp(n) and Sp(m) can be embedded into Sp(n 4+ m) by means of
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A0 B O
1
w8 b B8] (2 s,
0 0 0 1,
., 0 0 0
M= 8 ‘5‘ f g , M=(‘é g>€Sp(m).
0 C 0 D

We have to understand the double coset decomposition of
(1.1) s (NN (N)FEP(N) - TE(N)Y)

where, as usual, for any subgroup G of Sp(n), we denote by G. the sub-

group of all (‘(‘J‘ g) in G with C = 0.

THEOREM 1.1. A complete set of representatives for the double cosets
in (1.1) is given by

St
with
Lsn oy |M=(Y )
0 M 0 0
Mo =L85 = " 1 M = diag (m,, - - -, my\
. m+m | M = 0mod N
M On, 1< m|my---|m,

In the sequel we shall call such a matrix M an elementary divisor
matrix of size i.

TueoreMm 1.2. For gz e #,, a complete set of representatives of the
g+ (N).-left cosets in I'§{**™(N)..gg'{*(N)' X I'{™(N)' is given by

{ga-g'Uh)'g' | ge I'{P(N), g€ C, ANNI'(N), he P(MNI(N)}.
Here C,, .(N) denotes the parabolic subgroup

Con®) = {(& B)eT@DIC, D) = (g Fnrns )]

and I'™(M) is the (congruence) subgroup of I'{"(N) given by

rean = reann(_5, YO)rean(y T4)-
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Furthermore | = I, ., is the embedding Sp(n) =—> Sp(m) given by

m-=n

(AB

A
r——)o
C D C
0

_OOO

B
0
D
0

[Nl ool w]

m-—mn

Proofs of these theorems are in [Ga] for N = 1. The results for arbi-
trary N can be proved in essentially the same way or may be deduced
from the corresponding statement for N = 1 (we omit details).

For  eH,,,, and even integral weight & we consider the Eisenstein
series

Eni(Z,s, N) = 2 J(M, Z)~* det (Im (M{Z))"

Mepgn+m)\p‘()n+m)(1v)

= ; . det (CZ + D) *|det (CZ + D)|"* det (%)* .

This series converges for 2Re(s) + &> n+ m + 1 and has a meromor-

phic continuation to the whole complex plane.
Now we restrict the argument to a “diagonal” of type & = ( 0 Z

with WeH,, ZeH,,.
According to Theorem 1 and Theorem 2 we may split our Eisenstein

WO)

series into subseries:

n

B0 2)r8N) = SedW, 2,5, N)

1=0
and

(1'2) (D.n(W, Z7 S, N) = Z mn,M(W, Z’ Sy N)
M

summing over all elementary divisor matrices M of size n with M =
0 mod N.

Each of the w,(---) and o, u(---) behaves like a modular form of
weight & for I'N) with respect to the variable W; moreover, these func-
tions are of “slow growth”, therefore we may look at their Petersson
scalar product against cusp forms.

To describe these scalar products precisely we need certain Hecke
operators Ty(M), given by the double cosets

re@(y "o )rea)
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where again M is an elementary divisor matrix of size n with M=
0 mod N.
We let Ty(M) act on modular forms from ME(N) by

Fl TN(M) = Z Flkgj
J

where

rem)(y o IR = U D,

is a decomposition of the double coset into disjoint left cosets.

THEOREM 1.3. For Fe SXN) and any M like in (1.2) we have (with
k+2Re(s)>n+m+1, m>n):

a) (F, o(x, —Z,5,N)> =0 for i < n.

b) (F, o, u(*, —Z,3, N)> = p(n, k, s) det M) "*"*Et (F|Ty(M), s, N)(Z).
Here E% (F,s, N) is an Eisenstein series of Klingen type [Kli], defined by

. B . L o det (Im (M<Z)) \*
E: (F,s, N = M M
M&)@ngmwmmm<@&mmmm&

and Z* denotes the n-rowed submatrix of Z in the upper left corner. The
factor u(n, k, s) is equal to

F,,(k—}-s— n-é—l)

I'\(k + s)

,U(n, k’ .5) —_ 2(n9+8n)/2—2ns-nk+1(____1)nk/27rn(n+1)/2
with
n—1 v
') = x4 ]| F(s - 5) .
v=0

For N =1 one can find a proof in [Bo1], Satz 1. Therefore we only

give a sketch of proof for b).
According to Theorem 1.2 a typical summand of w, is of the form

(1.3) j(gﬁgrl(h)lél’ (Ig/ g>>—kdet(Imgﬁgrl(h)1g1<(‘g’ ZO'>>>3

Using the (elementary) formula

oo (Y 9) ey T

— det, (1, — MZ*MW),
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one can write (1.3) in the form
Hy(g{W>, (L (WENKZ>*, 8)j(g, W) *j(l(M)§, Z)~* det Im (I(W)E)IZ))
with
H (W, Z*,s) = det (1, — MZ*MW)-*
X |det (1, — MZ*MW)| ** det (Im (W))* .

The standard unfolding argument leads to
(1‘4) <F3 wn,M(*; —'29 §9 N)>
=3 | FW)H(W, I(R)g{—Z)*,35)det (V)" *-'dUdV
&r Ju,

X j((mg, —Z) * det (Im (I(R)g<{— Z)))’

with W= U + iV.
Now we use an integral formula (attributed to Selberg):

(15) L FOWYH(W, —Z*, 5) det (V)*-*-dUdV
— u(n, k, 8)F(—(MZ*M)~") det (MZ*M)-* det Im (MZ*M)-*
= un b 9FL(y T )(Z*) det () det (Tm (%)

(compare [Bo1], 2.2).
To combine (1.4) and (1.5) we need the automorphism # of Sp(n, R)

given by (é g)* = (_AC ”—DB), which satisfies

M(~ZY — — MIKZS.
We obtain
(1.6) (F, w, x(*, —Z,3,N))

= un, k) det M) S FL(y 7o Jarey

o f det (Tm (U - 2KZ) '
L e e o

Now we may omit §#, since # stabilizes all the relevant groups. Moreover
we have

JAW§, Z) = j(h, g<Z>)j(8&, Z)
(U(h) 2 8KZ)* = h<BLZ)*)

which means that (1.6) is equal to
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e, B, ) det )+ 33 (2 F| (3 )| r)@zm

o oo det (Im(8(2))) \
x (8 %) <de’c(Im(§<Z>*))) '

Now we are done, observing that

(M ~% )h  hermaoNTR@D

runs over a complete set of representatives of the left cosets in the
double coset

rem(y T )rew. 0

§2. An Euler product

All the Hecke operators Ty (M) of §1 are hermitian with respect to
the Petersson inner product on S%(N), since

re@(y "o )ree = rean(yy ) e
but unfortunately they do not commute in general unless N =1. (For
n =1 they do commute as operators acting on newforms, but if N is
not squarefree, the T,(M) act as zero operators on Sf(IV)>¥, see [Li],
Theorem 3).

In this section we investigate the algebraic properties of the 7T,(M)
by considering them as elements of the big abstract Hecke algebra
HL(N), G*Sp(n, Q) over C associated to the Hecke pair (I'{(N),
G*Sp(n, Q). For generalities on Hecke algebras we refer to the books
[An1], [Frel]. The case N = 1 was investigated in [B62].

Each double coset T,(M) factors into an “ordinary part” and an N-
component:

Lemma 2.1. Let M e M (Z)* with M = 0 mod N be factorized in M, (Z)*
as M = M,-M, with M, = Omod N and (det (M,), N) = 1. Then

M-t
rem(y Ty )rem)
M-t ’
= oMy, ot TP TeM(YE )T

=rpan(" g)re@)-rean(yy T )rea.
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Moreover the double cosets
-1 MI
re@(N" yp)ree and rean(g \L)re@)
are equal.

The proof is straightforward, so we omit it.

The ordinary part of T,(M) is an element of the Hecke algebra
H(LFP(N), Sp(n, Quy) with Qu, = {a/be Q|(b, N) = 1}.

Its algebraic structure is well known:

H(CM(N), Sp(n, Q) = #(Sp(n, Z), Sp(n, Qu,))
~® %’(Sp(n, 2), Sp<n, Z[;l;])).

PIN

Here we should restrict to (‘é g) e Sp(n, Quy) with Ce NM,(Quy)-

(The tensor product being restricted in the usual sense). Moreover we
have (by means of the Satake-isomorphism)

#(Spin, 2), sp(n, z[.l_])) ~ CIX7, -, X277
D
where W, is a certain finite group (Weylgroup).
The N-part of T (M) can be further decomposed according to

LemMa 2.2. For M = N-M, M € M (Z)* with det (M)|N~ we have

7,00 = re)(y " 2 )P Ty(N-1,).
This statement follows directly from the decomposition of the double
cosets involved into left cosets:

(@) Ty(N-1,) = [‘én)(N)(qu" - N(;x.ln> F&0)
U rean(yty, TN

Ae zgégl mod N

® T, =T y Ty IO

=yrem(*, A 9.

I

Here A runs through
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{AeZ&P|A = 0mod N} modulo wZZPw'

and w' runs through the left cosets GL(n, Z)w' contained in
GL(n, Z)M'GL(n, Z).

0

@ reen(™M* 2 Arean =y rean-(47 1R,

Here w’ runs through the left cosets GL(n, Z)w' contained in
GL(n, ZZM'GL(n, Z) and A runs through Z&7 modulo wZ&Pw'. Again
we omit the elementary proofs.

CoroLLARY 2.1. The mapping
GL(n, Z)MGL(n, Z) ——> Fgm(N)(N(I)” M) I

induces an isomorphism ¢ between the Hecke algebra

%, é]) n Mn(Z)>

and the Hecke algebra generated by the

%(GL(n, Z), GL(n, Z[

rgM(z\r)(N(I) M/)P"”(N) with M integral, det M|N= ;
here q,, - - -, q, are the primes dividing N.

It is known that

(GL(n, 7), GL(n Z[ : _17 ) N M"(Z))

~® ,;f(GL(n, Z), GL( Z[%]) N M,,(Z))

qIN

and (again via Satake-isomorphism):
1
#(GL , GL{n, Z]— M, ~ C[X, -, X, 5.
( (n, Z) (n Z[q])n (Z)) CIX, ]

Suppose now that Fe M¥N) is an eigenfunction of all the 7,(M) with
M=0mod N, Me M (Z)*:
F|TyM) = 2:(M)- F.

In the sequel we need an important additional assumption, namely
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25(N-1,) #0.
Then Lemma 2.1 implies that F is also an eigenform for all the double
cosets corresponding to M, € M, (Z)*, (det M;, N) = 1:
() Mt 0 \prw — M
FIrean(N g)re@n = o) F,

and for M as in Lemma 2.1 we get
ZF(M) = ZF(Mo)'zg)(Mx) .
In [B62] it was proven that the Dirichlet series

22 AP (M) det (M,)~*

(where M, runs over all integral elementary divisor matrices with
(det (M), N) = 1) is equal to the Euler product
1

£e(s) 1 £(2s — 20)

D@ (s — n)

where D@ (s) is the “standard L-function” attached to F:

Mgy — 1 . 1 ) .
D6 ﬂv ( Q—-p L (1 —a,,p )1 —a;p/’
here the «, , are the “Satake-parameters” of F—we use the same normal-
isation of the Satake isomorphism as in [B61], [Frel].
We want to prove a similar result for the Dirichlet series formed
by the 1.(M,). To do this we observe that—using the Corollary—a
1-dimensional representation 1 of the Hecke algebra

%’(GL(n, 2), GL(n, z[i, . 7;7]) N M,,(Z))

q:
is given by
2.1) GL(n, ZYM,GL(n, Z)
— FIT@- 1) [ re@n(Mg yp) P | Tuav-1)
= 1 . = 3 .
= iy VM- F = M- F

(In (2.1) Ty(N-1,)"' makes sense when considered as endomorphism of
C.F).
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Now we can use a result of Tamagawa [Tam] which implies that

2.9) 57 A(M) det (M)~ = [] — 1
“ WS (—1)gee-RY(T] g

= Bg

where [], denotes the GL(n, Z)-double coset given by

(5 o)

0 q . 11

and the §,,, are the Satake-parameters of the representation i1 (normalized
such that g,, = ¢~* if 1 is the trivial homomorphism counting the number

of left cosets in a double coset). (From the point of view of GL,-Hecke
algebras the “Hecke series”

0

M;?
F""N( d
2 I§P(N) 0 M

Mo

)T det (M-

looks more natural than the one considered here. However, in the ap-
plications we have in mind (see § 1) we must consider representations 1
like in (2.1).) Summing up, we get

THEOREM 2.1. Suppose that F e M¥(N) is an eigenfunction of all the
operators T,(M), M e M, (Z)*, M = 0mod N and assume that the eigen-
value 2(N-1,) is different from zero. Then we have for Re(s) > 0 an
Euler product expansion

ZF(N 1n) 1
N7s £e(s) fl (2 — 2i)

X Ay(s — n)- D¢ (s — n)

% 2/(M) det (M)~* =

where
1

tljl (1 - Bi,qq-‘)

Ay(s) =

qiN

and the B,, are the Satake-parameters of the representation 1 given by
2.1).

Finally we mention a very special type of eigenvalues:
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Remark. Suppose F e M%N) is an eigenform of all the 7,(M), M =0
mod N, det M|N~ and assume that the constant term a, of the Fourier
expansion of F is different from zero. Then

(a) 1x(N-1,) = _Z_‘)N"(ﬂ*‘l)lz-nk/z

0
and for M as above one has

~k+n+1
(b) (M) = (N -1,)-det (% M)
X number of left costes in GL(n, Z)(%’;-M>GL(n, 7).

Here b, + 0 is the constant term in the Fourier expansion of F ],,( J(\)f _1>.

Moreover one has

s 0D _ a1

N) triv, —
det (M)* neATE =)

with

4570 = 11 11—

a¥ j=1 1 — %%

The proof is elementary.
Finally we define M4(N)""" and SXN)*™ to be the eigenspaces of the
Tw(M), M = 0mod N, det M| N~ with eigenvalues given by (a) and (b).

§3. Eisenstein series

In this section k is again an even positive number and N > 1. We
collect here the properties of the Eisenstein series E%(Z, s, N) needed later
on. It is quite useful to consider at the same time another Eisenstein
series of similar type:

. . det (Y)*
@D FZ, 5, N) = {c;:n det (CZ + D)*|det (CZ + D)’
where {C, D} runs over all non associated coprime symmetric pairs with
(det (C), N) = 1. In particular, the Fourier expansion of Fi(Z, s, N) is
somewhat easier to handle, since in (8.1) the rank of C is always maxi-
mal (thanks to N > 1). Both Eisenstein series are closely related to
each other by means of the Fricke involution

(3.2) Ei(= s NI(y ) = NPl 5 ).
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For generalities on such Eisenstein series we refer to the very explicit
results of Shimura [Shil], [Shi2] and Feit [Fe]. For us the behavior of
Eisenstein series at s = (n + 1)/2 — k is of special interest (for “small”
weights, so we are outside the range of convergence):

THEOREM 3.1. For 0 < k< (n + 1)/2 we have

(8) The Eisenstein series E¥(—,s, N) and F%(—,s, N) have poles of
(at most) first order in s,,:= (n + 1)/2 — k; the corresponding residues
&%(—, N) and F%—, N) are holomorphic modular forms.

(b) The Fourier coefficients of &%(—, N) and F¥—, N) do not depend
on the exponent matrices T themselves but only on their genera.

(¢) The modular forms &%—, N) and F%—, N) do not vanish iden-
tically.

(d) Assume that 2k = n.

Then for all 1 > 1 there is a constant d,, (N) # 0 such that

(3-3) @fﬁu('—, N) = dn,t(N)'fsz—l .

Proof. Part (a) is contained in [Shi2], Theorem 2.7. To prove b)-d)
we look at the Fourier expansion of F%(—, s, N).
According to [Ma], § 18—and using his notation—we have

(3.4) F&Z, s, N) = >, a¥Y¥, T, s, N) exp (2xi trace (TX))
T

where T runs over all symmetric half integral matrices of size n and
(3.5) a(Y, T, s, N) = As)SM(k + 2s, T)h2, (Y, T) det (Y)"
with

(__ l)nklzznﬂn(k\&n)

I'\(k + $)I'x(s)

(3.6) Axs) =

The “‘singular series” is defined by
(3'7) S;,N)(S, T) = Z U(R)_’ezd trace (RT)

R=R’mod1
(v(R),N)=1

where u(R) is the product of the denominators of the elementary divi-
sors of the rational matrix R. The confluent hypergeometric function
hm, (Y, T) was investigated very precisely in [Shil].

To prove c) we consider the ‘“‘constant Fourier coefficient” aX(Y, 0,,
s, N). Here the singular series is a product of Riemann zeta functions
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and A, (Y, 0,) is a product of gamma factors. The relevant part of (3.5)
for T =0, is

p”(k 9% — n_+.1_>
+ s 2 "k 4+ 28 —n) & LMQRk + 45 — n— )

Tk + 9),(s) L0 + 25) w1 L2k + 4s — %)

In fact, this function has a first order pole in s = s, ,, which proves
c). Assertion b) may (at least in the case of #%*(—, N) and T positive
definite) be read off directly from (3.5) when combined with a). For
general T and also for &%—, N) it is easier to use Theorem 2 below.

Concerning d) we prove here only a much weaker statement, from
which by the theory of singular modular forms [Fr2] the assertion d)
follows in a straightforward way:

ProposiTioN 3.1. If 2k = n with k even, we have for all | > 1: There
exists a constant d + 0 such that for all half integral T > 0:

n (n
Res a:”((’g’ y?,,), (7:)) 0?,)), s, N) = d Res (Y, T, 5, N).

Proof. The factors on the right hand side of (8.5) satisfy nice recur-

(n) o)
sion formulas with respect to s and n for ( Y;) v(‘)"> and (1;) 0&) and
any I > 1:

3.8 Ak _ (__1)lk/2217rl(k+23) Aﬁ( _ _l—
8 il = e T O\ 2)

6o safs (7 o))
_ (s =D E M@ —n—1—y) SW(s — 1, T
O £ (2s — 2v)

(n) (n)
6100 (7 ,0) (%7 o)

— 2—n1/2rl(k + 25 — n + Zl + 1) det (V)2 det (2my)k-2e+m+i+ns

X M7 ipps-u(Y, T) .

Here (3.8) is elementary, (3.9) follows from [Ki4], Theorem 1 and (3.10) is
essentially Proposition 4.1 of [Shil].
Putting (8.8)—(3.10) together we get
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Yy 0 T 0 l
s (% yw), (T 5,)sN) =90, T.s — L, N)
where ¢(y, s) is (up to powers of 2 and z) equal to

det (y)-*-rrerient pM(f 4 25 — ]) L M2k + 4s — n— 1 — )
Tk + s)I'(s) LMk 4 25)  v=1 EW(2k + 4s — ) )

In particular, ¢(y,s) is of order zero in s = (n + [ + 1)/2 — k (and inde-
pendent of y).

From the formulas above—applied to / =1, n = 2k — 1 and 5 = 1/2—
one easily obtains (observing that in that case ¢(y,s) has a first order
pole at s = 1/2):

CoROLLARY 3.1. For n = 2k — 1 the Eisenstein series E%(—,s, N) and
F%(—,s, N) are regular in s = 0; their values at s = 0 are holomorphic
nonvanishing Siegel modular forms, denoted by F%¥—, N) and &%(—, N).
There is a nonzero constant d,(n) with

O(Fri(—, N)) = d(n)F(—, N).

All the weights which occur in Theorem 3.1 are ‘“‘singular weights”
except the extreme case k = n/2, therefore we expect &% —,N) and
Fi—, N) to be interesting linear combinations of theta series.

So let (for m = 2k divisible by 4 and N > 1) #(m, N) be the set of
all even i"nteg»ral positive ‘definite quadratic forms in m variables whose
level divides N and whose determinant is a square.

We consider, for Se #(m, N), the degree n theta series

1gfsn)(Z) — XGZZ(,;,‘,M pritrace (X'SXZ)
and the corresponding genus theta series

9 o(Z) = 3 — L 98(2)

gen S &~ A(S,) Sq

where S,, - -+, S, runs over representatives of the GL,(Z)-classes of forms
in the genus of S and A(S) is the number of units of S. (We omit the
usual normalizing factor (3 1/A(S,)~' in order to save notation in the
sequel). All these theta series define elements of M%(N). We have the
following (very weak) version of Siegel’s main theorem:

THEOREM 3.2. Let m = 2k be divisible by 4 and let &, ---, &, be the
genera in ¥(m, N).
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a) Then for all n > m there exist numbers a{® = a™ (%)), p™ = ™(&.),
1< i<t such that

(3.11) E(—, N) = 3] a 9% |
i=1
(3.12) FH—,N) =3 9w .

=1

b) The numbers a(™, ™ are not all equal to zero.
c) The B are essentially indevendent of n:

B =cfs (1<i<LY

with a suitable constant c, + 0.

d) af = NCra+D2 det (£, B™(FF) where S ¥ is the genus of N-S-,
Se ¥, (for the exact value of the B in case n = m, N squarefree see the
following corollary).

Proof. All we have really to prove here is (3.12) for all n > m.

Everything else will then follow from Theorem 3.1 d) or by applying the

Fricke involution (Z(\)f _01> and using (3.2) and

(3.13) LR o) = N det (8) P9

For n > m the theory of singular modular forms [Fre2] asserts that
F¥—, N) is indeed a linear combination of theta series 9, S € &#(m, N).
Thanks to (3.3) the same holds for m = n.

Since Siegel’s @-operator is injective for n > m we may now restrict
ourselves to n = m. The Eisenstein series #%(—, N) can be written as

3.14 Fi(—, N) = 57 U5) gm
(3.19) ( ) (ZS; TORG
where S runs over representatives of the GL(m, Z)-classes in #(m, N).
The coefficients a(S) are given by the equations

(3.15) an(T) = 3 A(S, T)

S TAS) a(S), TeS(m,N).

Here A(S, T) is the rumber of integral nepresentations of 7' by S and
a.(T) is a Fourier coefficient of #*(—, N); in the terminology of [Bo-Ra]
equation (8.15) says that a(S) is a “primitive Fourier coefficient” of
FE(—, N).
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Using GL(n)-Hecke operators one can express a(S) in terms of the
a,(T)—see [Kil]. Since those GL(n)-Hecke operators commute with
Andrianov’s ‘“‘genus operator” [An3] we see that (3.15) together with
Theorem 1 b) indeed implies that the coefficients a(S) depend only on the
genus of S. Therefore we may arrange (3.14) into genera, which proves
(8.12) for n = m. The Fourier coefficients a,(S), Se ¥(m, N) are much
easier to understand than the “primitive Fourier coefficients” a(S):

ProposiTiOoN 3.2.

4, (8) = 2l 1 T e(m + 2 — 21 [[ (1 — p-Y) .
I (m_ + 1_> C(N)(_”L + 1) = iy
™ 2 2

In particular, a,(S) depends only on m and N (not on S e ¥(m, N)!).

Proof (sketch). According to (3.5) a,(S) is essentially a product of a
“singular series” part and a confluent hypergeometric part. The singular
series in question only depends on the p-adic class of S with p/N, so it
is independent of the individual Se #(m, N). The results of [Ki4] imply

that (for T e #(m, N))
m
(s = 3) we
1

in particular S{"(s, T) has a simple pole in s = m/2 + 1.
Concerning the hypergeometric part we need

S(s, T) = g(2s — 20)7,

( hﬁ:}%;;ésy)', T )Is:l/z = det (2nY) V2e-2rtrace &7
This easily follows from [Shil], 4.35.K.

The primitive Fourier coefficients a(S) can be calculated from the
a,.(S) = a,(N) with the help of a generalized Mébious inversion formula.
To see this, let V = Q™ be equipped with the quadratic form given by
S, let L be a lattice on V corresponding to the matrix S, K a lattice
corresponding to 7. Then A(S, T)/A(S) is just the number of lattices
L' © K that are isometric to L.

We write a(L) := a(S), a(K) := a(T) and obtain a,(T) = >, .. a(L).
We restict attention to the case of square free N (see Remark 3 of §4
below).
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By Theorem 1.7.2 of [Kil] this implies
oK) = 2, a(L, K)an(L)

L2K
with
a(L, K) = [] (=1)*»p"»@»=0 = T[] z,(L, K)
PIN

PN

if L is integral, n(L, K) = 0 otherwise, and where A, = h (L, K) is the
Z|/pZ-dimension of L /K, (since our lattices are of square-free level,
L,/K, is of type Z|pZ ® --- ® Z[pZ). Since by Proposition 3.2 a,(L) has
the same value a,(N) for all integral L D K, we are left with the task
of determining for each p|N the number of integral L, 2 K, with L,/K,
of Z,-dimension A,:

a(K) = a,(N) 12 (=Dropt»@e=0t 4 {L, 2 K|hy(L, K) = h,}
= an(N) I K )

We fix p and omit the index p in the following, meaning the Z lattices
when we write K, L and assume all lattices to be of square free level;
this implies that they are orthogonal sums of unimodular and p-modular
“unramified” [Pf] lattices.

We say that L is of type L, (L ~ L,) if it is of index p* in a Z, -
maximal lattice on V. Fori < j, L ~ L,, K ~ L, we have then h,(L, K) =
J— 1 Gf L 2 K) and thus for K ~ L,

a(K) = 3 (—1) - pt-ou=-2 4 ([, 5 K, L ~ L}.
1=0

_ t if V is split at p
We put r = {t +1 otherwise
by p*"; since the quadratic form has square discriminant, V, is either a

sum of hyperbolic planes (split case) or such a sum plus a four-dimen-

} (so that det K is exactly divisible

sional anisotropic Q,-space).

Put further s, = s,(V) the Hasse-symbol of the quadratic space V at
p ([OM], §63), 5, = (—1, —1Dr'*s, (so that T[], S, = (—1)™* and for p
finite §, = 1 iff V is split at p.) We fix a maximal unimodular sublattice
of K; evidently it splits off orthogonally in each integral L 2 K.

By an elementary divisor argument (similar to [OM], 82:28) it is not
hard to show that the lattices L ~ L, with L © K are in bijective corre-
spondence with the (¢ — i)-dimensional totally isotropic subspaces of the
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regular quadratic space of dimension 2r over F, that is split iff V is
split at p. The number of these subspaces is computed to be

¢

(o
t — 7 t—i-1 1
vp (pt~7* + 1) otherwise

=0

t—~1

(pt~ ' + 1) if V is split at p

~.

<.,

where ( ;) is the number of s-dimensional subspaces of I’.

p
By a combinatorial identity attributed to Cauchy ([G-R], p. 242) we
get

ay(K) = (=1y P = 5,(=1ypr=

if the determinant of K is exactly divisible by p*.

Our final result is then (since 4|m and det S being a square imply
anN §, = 1.

p finite

a(S) = (—1y"'a,(N) [[ (—=1yp>e>  if det S = [ p*».
PIN

pIN

We have proved:

CoRroOLLARY 3.2. Let N be square free. Then

Fr(—, N) =3 gmogw

i=1
with

‘Bgm) —_ (__1)m/4am(N) n (__1)Tp(i)pfp('l)(71)(i)—l)
pIN

where the &, are the genera in ¥(m, N) and for S, e ¥, we have det S, =
[Tony 2*®.  In particular, all theta series of forms in ¥(m, N) appear in
FE and &% with non-zero coefficient.

§4. The basis problem for small weights

We are going to characterize (under some additional conditions) those
modular forms of small—but nonsingular—weight, which are represented
by theta series (“basis problem”). Let O™(m, N) € M™*N) be the C-
vectorspace spanned by those theta series 9%, S e #(m, N), for which the
coefficient a«™(gen S) in (3.11) is different from zero (for square free N
we have seen that these are all the 9%, Se &(m, N).
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THEOREM 4.1. Let m = 2k be divisible by 4 and n/2 < k < n and as-
sume that F e SXN) is an eigenfunction of all the T,(M), M = 0 mod N
(a) For all n’ > n we have

Res wn, k, s)

s=(n+n'+1)/2—-k
) At £ b o WD+ k=2 gy (o)
4.) VY2 congas + By [T (s + 2k — 2i)

_ nint F, 98 qw
= @ (gen S)S_A@)isg )
where {S} runs over a set of representatives of GL,(Z)-classes of quadratic
forms in ¥(m, N) with «™(gen S) =+ 0.
(b) The equation (4.1) implies that F € O™ (m, N) if 2(IN)- Ay(s)D¢"(s)
has a (simple) pole at s =n + 1 — k.
(c) For Fe SYN)"™ one has Fe®™(m,N) if D¥(s) has a (simple)
pole at s=n+1—k.
(d) If conversely Fe®™(m, N) N SEN) is such that

(F, 9>+ 0 only for Se #(m,N), detS = [] p¥»®

PIN
with >~ T,(S) of fixed parity, then the converse of b) and c) is true.
(This apparently unnatural condition will be satisfied in the applications
in part II).

Proof. Statement a) can easily be obtained by combining Theorem
1.2 and Theorem 3.2. We remark here that the gamma factor u(n, &, s)
as well as the Riemann zeta factors in (4.1) are all of order zero at the
arguments in question. Furthermore c) follows from b), since for Fe
SEN)*v, the function A,(s) is of order zero at s =n + 1 — k. The “if”-
direction in b) easily follows from (4.1) for n = n’ since Ef (F,s) = F.

For the (partial) converse of d) we simply note that the computation
of the B, in §3 (for square-free N) and the parity condition of d) imply
that

@n) <F’ "959")> (n)
(3 a(gen ) L2 99, F) 2 0

(for N not square-free see Remark 2 below).

Remark. 1) There are two points in our theorem which are not
quite satisfactory. The first is the parity condition in d). The only way
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we see to get around it is to work out the pullback for the genus theta
series of each genus in %(m, N) (which is an Eisenstein series by [Ku-
Ra]). When one does this, everything looks the same as above for the
pAN (which is no surprise from the adelic point of view), but for p|N
we have to handle a far more complicated Hecke-algebra than above. It
appears that under suitable conditions on the local Sp.(Q,)-representation
generated by F we can still conclude that the pole of A,(s)D&(s) does
not come from /Ay(s) and thus conclude that the converse of c) holds
without the parity conditions (where /A,(s) is the contribution of the
above mentioned Hecke-algebra for p|N).

The second unsatisfactory point is that we cannot choose a basis of
S»(N) consisting of eigenforms of all the Ty(M), M = 0 mod N and also
do not know anything about A%(N). Of course, this defect becomes even
worse when we try to work with the pullback of the genus theta series.
May be this point can be clarified by a good theory of newforms for
Siegel modular forms (to our knowledge such a theory has not yet been
worked out). Again, this will probably demand a detailed study of the
local representations.

Curiously, none of these difficulties come into play for the applications
of our results to Yoshida’s lifting in part II (which were the starting
point of our investigations). This may be caused by the fact that in this
case we are considering theta liftings of forms on the orthogonal group
that are “new” in a natural sense.

2) Our Theorem was formulated for arbitrary level N, but it is only
the squarefree case which is really interesting. This is explained by the
fact that

EYZ,s,N) = (N")""EYN"-Z,s,N) if N =]]q and N = N'N".

qIN

3) The assertion ¢) of the Theorem above is also true for level 1
([Bog], [We]).

Part II. Yoshida’s Lifting

§5. Automorphic forms on the quaternion algebra and its orthogonal
group

Let D be a definite quaternion algebra over Q, ramified at the primes
Dy, -+, Dy, split at all other primes, N, =p, - - - p,.
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Let R be an Eichler order of level N = N\N, ((N,, N,) = 1, N, square-

free), i.e. R, is a maximal order in D, for all p{N, and is conjugate to
{(? 2)€M2(Zp)lc = 0 mod p} for p|N, (where D, has been identified
with My(Q,)). The arithmetic of these orders has been investigated by

Eichler in [E 3].

An ideal I is a Z-lattice of rank 4 on D, it is called an order if it
is a subring (with 1) of D. All ideals considered here shall have the
following properties:

i) the left order {x € D|xI < I} of I is an Eichler order of level N.

ii) I is locally principal, i.e. for each p there is x,e I, with I, =
Rjx,, where R’ is the left order of I.

Obviously, the right order of such an ideal is again an Eichler order
of level N and any ideal I with left order R is of the type I = (R, -x)N
D = Rx for some x e D3.

Two ideals I, and I, are said to be right equivalent or to belong to
the same (right) class if there exists x ¢ D* with I, = Lx.
With a double coset decomposition

h h
Dy = U B{yi'D* = U D*y.RY (n(y) = 1)

we then have a set of representatives Ry;* of the classes of ideals with
left order R (whose number is known to be finite and denoted by A). On
D there are the involution x——> %, the norm n(x) = x¥ and the trace
tr(x) = x + % The group of proper similitudes of the quadratic form n(x)
is isomorphic to (DX X D*)/Q* (and accordingly for the completions and
the adelization) via

(%1, %) —> 000, With  0,,0(y) = ® Y057
([E 1], §5), with the special orthogonal group SO(D, n) being the image of
{(x;, x,) € (D* X D)/Q*|n(x,) = nlxa)} .

Let I, =yRy;* ,j=1,---,h),R, = I,,,e, = |R}|, and consider the
theta series of degree n of the quadratic lattice I,

@) =9I, Z) = Y exp(2ui trace(QX)2))

X=(Z1y.0y Zn) el;‘,

with @(x),, = $tr (x,%,), Ze H,.
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Linear combinations of these theta series are conveniently dealt with
by collecting their coefficients in an automorphic form

¥ € (DX X D}, RX X RY)
= {f: D} X DX —> C|f is left invariant under D* X D* and right

invariant under RX X Rj}:

Any such automorphic form f is determined by its values at the
(¥4 ;) and, conversely, can be given by prescribing these values arbitra-
rily.

DEeFiNITION 5.1. Let
o, v € (D%, RX) = {f: D¥ —> C|f(rxu) = f(x) for all v ¢ D*, ue R}}.
The n-th Yoshida-lifting Y™(p, ) of (¢, ) is defined by

Y™ (g, 4 1= 7": o(y ) (yy) 9™ e MYN).

6i=l ee
v € L(D%, R) is called cuspidal (by abuse of language) if J o(x)dx = 0.
DX\D;

Remark. This lifting has been studied by H. Yoshida in [Y1], [Y2]
from the adelic point of view. In that setting, which is also more con-
venient for the computation of the action of the Hecke operators on
Y™ (p, ) in subsequent sections, it is defined as follows:

Denote by o the Weil- (or oscillator-) representation of (Sp,), on the
space of Schwartz-Bruhat functions S(D%) attached to the norm form on
D, and with respect to the standard additive character of Q,/Q (see e.g.
[Y2] for formulas for the action of generators of the local components
Sp.(Q,), let f = T[], f, € #(D%) be given by f, = characteristic function of
R for p finite, f.(x) = exp (—2r trace Q(x)), put

048, (1, 1) = 3, o(@)f(x'2xy) (g €(Spa)a, %, 1€ D, nlx) = nlxw) = 1).

Then F = Y™(g, ) corresponds to ¥, =: ?‘")(ga, ¥, ): (Sp,)a —> C given by

@, . fle) = | )08, (5, x))dd,

Dxx DX\DR XD

Here the integral is restricted to x,, x, with n(x,) = n(x,) = 1. (Alterna-
tively, one can extend the oscillator representation to the group of simil-
itudes (see e.g. [Vi2]) and then integrate over all of DX x DX).
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LemMA 5.1. Let N be squarefree. The space 6™(4, N) generated by
theta series of degree n of integral quaternary quadratic forms of level N|N
and square discriminant is spanned by the

Yo, ¥), &,v e (D}, RY),

where D ranges over the definite quaternion algebras over Q unramified
outside N and R ranges over the Eichler order of level N|\N in D.

Proof. An inspection of the possible Jordan splittings of the com-
pletions of such a quadratic form shows that it must be in the genus of
one of the Eichler orders and thus, observing the identification of (D*
X D*)/Q*with the group of proper similitudes of (D, n), is isometric to
one of the (I,;,, n). This proves the assertion since obviously

(DX X D, R X RY) = «(D3, RY) ® (D3, RY) .

On «/(D%, RX) we have for pYN Hecke operators T'(p) defined by f’(p)go(x)

=I olxy Dr(y)dy where ¢, is the characteristic function of {ye R,|n(y)
D3

epZy}. They are given explicitly by

T(p)o(y) = ;: B.(D)e(,),

where the Brandt-matrix entry B,,(p) is the number of ideals of norm p
in the class of I, that are integral (i.e., contained in their left order
R, = y,Ry;").
For N’|N there is an involution wy. on (D%, R%) given as follows:
For p|N choose r,€ DY to be a nontrivial representative of N(R,) =
{xe D}|xR,x' = R,} modulo R;Q; (one has (N(R,: R;Q;) = 2, see e.g.
[Vil]), e.g., for p|N, choose z to be a prime element of R,, for p| N, choose

_ (0 -1
= (p 0 )
For N’|N let ny. € R, be given by

N\ _ [m i PIN’
(@) {1 otherwise

and put

Wy p(y) = p(yry) -
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Lemma 5.2, Let N, =p,., - - D, let e: Z;—> {£1} be a character and
let . = (wpY), -+ 7 (D)) € Z& for N'|N be given by

_ [+1 if p|NV
mwe) = {* i
Let «%(D%, RY) := {p € (D%, R)|wy.¢ = e(yy)p for all N'|N}). Then
(D%, RY) = @.e34 D%, RY).

Proof. Obvious.

LEmMMa 5.3 (“Stable non-vanishing”). Let ¢ e &°(Dj%, RBY), ¥ € &*(D},
RX). Then

Y®(g, 4)#0 if and only if e =¢.

Proof. For the proof we have to check when the quadratic lattices
Iy, n), (I, n) are isometric. This is easily seen to be the case if and
only if either

i) y7'e Riny.y:'D* and y;'e Riry. y7'D* for some N’'|N
or

ii) (@) holds with i and j interchanged.

Let Z; act on {1, - - -, A} by putting RXy;.,D* = RXy:'ry.D* (N'|N),
and let Fix(i) = {p e Zi|y() = i}.

Writing Y™(p, 1) as a linear combination > a™9™(K,) of theta series
of pairwise non-isometric lattices in the genus of (R, n) we find for K,

=1,
a® = 5T (Yo V(o) T V(Y) (Vi)
’ » mod (F{X() NFIx () e.e,(1 + 4,
- 10y LYy + Y(y)e(ys)
7 mod (F;:i)m“lx(j)) =) ee;(1 + 4,y)
0 if e ¢
{#7} P(y Wy + v(y)e(y,) fe=¢.

ee,(l+ a,y)

The assertion now follows from Kitaoka’s [Ki2] result that the theta
series of degree m — 1 of inequivalent quadratic forms in m variables
having the same discriminant are linearly independent, since o(y ) (y,) +
W(y)e(y,;) = 0 for all i, j implies ¢ = 0 or = 0.

Remark. The assertion of Lemma 3 can also be formulated in terms
of functions on the orthogonal group O(D, n):
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Let ¥': O,(D, n) —> C be defined by
U@) = 2. o(y(y,)
Wiy
where the summation is over all (y,,y,) with
o € O(D, n)oy,,,,Os(R) and O,(R) = {re O,(D, n)|tR = R}.
Then ¥ == 0 if and only if ¢ = ¢.

§6. Computation of Euler factors: Good places

Let ¢, 4 € &%(D%, RX) for some character ¢ on the group of involutions
wy (d|N) as in § 5, assume further that ¢ and + are eigenfunctions of all
the Hecke-operators ff‘(p) with eigenvalues 1,, u, for pfN (equivalently,
the modular forms in S}(N) corresponding to ¢, 4 (if these are cuspidal)
under the correspondence of Eichler, Shimizu, Jacquet-Langlands are eigen-
functions of the Hecke-operators T(p) with the same eigenvalues). We
can then compute the Satake parameters of Y™(p, ) in terms of those

of ¢, .

THEOERM 6.1. Let ¢,y € (DX, RX) as above, let p{N, denote by B,
-1 resp. B, ;' the Satake parameters of ¢, with respect to the Hecke-
algebra of GL,(Q,) = D} (so that 2, = p"*(B, + B;Y), » = P"*B, + 57Y)-

Then Y™(p, ) is an eigenfunction of the p-component of the Hecke-
algebra of GSp, with Satake-parameters

a(p) = p~HEDWEEY (normalized to ai(pay(p) - - - a(p) = 1).

a(p) = B; lﬁp

a2(p) = anBp

ap)=p" (G =D

Proof. Let GO*(D,) denote the group of proper similitudes of (D, n),
PGO*(D,) = GO*(D)/Q;. Then (%Q}, %Q) = 0o} (With a,,.,(3) =
%, ¥%;,) maps Dx/Qy X D}/Qy bijectively onto PGO*(D,).

Identifying Dy with GL(Q,) we see that the product of the Borel
subgroups of PGL,(Q,) is mapped onto a Borel subgroup of PGO*(D,)
(i.e., the stabilizer of a flag W, € W, of isotropic subspaces of dimensions

1, 2 respectively of (D,, n)). Inverting the map, the torus
A

ot
[
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of PSO(D,) = SO(D,)/{+1} is mapped onto

{(tzt;‘ I)Q;(_ (txtz 1)@;} C PGL(Q,) X PGL(Q,).

A homomorphism p: #(PGL(Q,) X PGL(Q,), PGL(Z,) X PGL(Z,)) — C*
with Satake parameters (8,, 5;%), (B, f;") is thus mapped onto p*:
#(PSO(D,), PSO(R,)) — C* with parameters f,8;, f,8,

We restrict this to #(PO(D,), PO(R,)) (where PO(D,) = O(D,)/{+1})
and apply Rallis’ result [Ra2, Ku] generalizing the Eichler commutation
relation between Anzahlmatrices and the action of Hecke operators on
theta series.

For n>2 this asserts the existence of a homomorphism
knt H(Sp(Q,), Sp.(Z,)— #(0(D,), OR,) such that a homomorphism
p*: #(0(D,), O(R))— C* with Satake parameters 7,, 7, is mapped to
p* ok, with Satake parameters

a =7, a=171,, a'2+j:pj G=1,---,n—-2),

and such that #, commutes with the theta lifting. In particular, by ap-
plying the theta lifting to an automorphic form G on O,(D) which is an
eigenfunction of s#(0O(D,), O(R,)) with eigenvalues given by p¥: #(0O(D,),
O(R,)) — C* one obtains an eigenfunction F of #(Sp.(Q,), Sp.(Z,) with
eigenvalues pf = pf ok, H(Sp,(Q,), Sp.(Z,)) — C*. In our situation this
shows that F'= Y™(p, ) is an eigenfunction of s#(Sp,(Q,), Sp.(Z,)) with
Satake parameters a,(p), - - -, a,(p) as asserted.
The parameter «,(p) can be computed by (3.3.70) of [Anl]:

a(p) fjl 1 + a,(p)) = Ax(p)p~ 1/ |

where 2.(p) is the eigenvalue of F under the Hecke-operator T'(p) =
TQ,---,1,p, ---,p). Using Yoshida’s [Y3] computation of the action of
T(p) on theta series we obtain

Yo, )| T(p) = 20 + 1) [T L+ PIY (%)
(see also [Y1] for n = 2), and thus
Aep) = P8, + B+ By + B T L+ )

=" 1 (L + (),

ao(p) — p‘“"””‘"‘”“’ﬁ;l .
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COROLLARY 6.1. The standard L-function of F™ =Y™(p, ) is for n >2
Dias) = I1 (1 = P71 = Bf,p™") (L — B,B'P ™) "L — B;'B,p™")
(1 — B7B;p~) :I:[: A —p7) 1 —pi)!
= COGLEN)- TT E0(s — HP(s + ).
The spinor L-function of F™ is for n > 2
Z73(s) = zl;IN(l — P71 = B'p)7A = Bop7) A = Bp)
= L™(p, s + 1/2L™(y, s + 1/2),
zga(s) =z s + - Dn=2)

4
n-2 Z},!}’},(s + (n —_ 1)(n - 2) _

i=11</1< < fi<n—2 4

)
where
L) = (1 — Bofp™ )1 — B,B5'p )71 — B5'B,p™) (1 — B*B7'p™)7)
Remark. The last formula for n = 3 has been obtained by Tanigawa
[Tan]. We will see that Y*(¢, ) can be cuspidal for ¢ = 1. This gives
then some examples of cusp forms of degree 3 whose spinor L-function

has a functional equation under s+~ 1 — s and can be analytically con-
tinued.

§7. Computation of Euler factors: p dividing N

Let ¢, € &(D%, RY) be as in section 6, and assume in addition ¢
and + to have the following properties:

(i) ¢ and v are in the essential part [Hi-Sa] of #(D%, RY), i.e. f

Dx\D,
p(x)o(x)dx = 0 for all p e #(D%, RX) which are right invariant under (R})*
for some order R’ < D strictly containing R.

(1) For all primes q|N,, ¢ and + are eigenfunctions of the Hecke-

operators T(1, q) given by T(1, Qo(x) = o(xy )z, () dy where t,, is
Dx q q
q

the characteristic function of R;‘((l) 2)R;<
That is, ¢ and + are cuspidal (unless R is maximal, in which case

they may be identically 1 on D%) and correspond to newforms of weight
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2 and level N, eigenfunctions of all Hecke operators, under the corre-
spondence of Eichler, Shimizu, Jacquet-Langlands.

The functions ¢ and + generate then (if they are cuspidal) irreducible
subspaces of the regular representation of D% on (DY) ([Ge], §5) whose
p-component for p| NV, is isomorphic to the unique irreducible subspace of
the representation of GL,(Q,) induced by the character &,|[}? &,|];** (see

p

[Ge], [Cal]) where &, is the unramified character on QF with £(p) =
— e(w,).

By the results of section 6 we have to compute the action on F =
Y®(p, ) of Ty(IN-1,) and of the double cosets

(n) Hi(p)_l 0 (n) : . 1n-t 0
I (N)( L n,(p))Fo (N) with II(p) = ( . pl,) for all p|N.

We notice first that by the methods of [Y3] the action of the Hecke
operators can be localized as usual.

LeEmMA 7.1. Let 7 € Sp,(Q), Fe M%N), let ¥, be the automorphic form
on (Sp,)a associated to it (see preliminaries). Let

Ko = {(é g) e $p.(Z,)|C = 0mod NZ,},

let o,, be the characteristic function of K{PrK{ on Sp.(Q,), and let
Dy, - -+, 0, be the primes for which 1 ¢ K. Put

U, KOTK® = L ¥V (g8Y0,,(2)dZ ,

Pn(Qp

let FIK{PrK{ be the modular form in MXN) associated to ¥ .| K{TK{".
Then

FIIP(NYTP(N) = FIKPTKR| - |[KPTKR
In particular, if Up|KPrK® = 2,V r, then

F|T1T™(N) = [] 4,,-F.
i=1

LEMMA 7.2. Let ¥, =Y®™(p, v, f) as in section 5, let KPrKQ =
Us K®7,. Then

Ve KPTKY = Y0, 4, f)

where fz) = 3, 0,(17Yf, (0, denoting the oscillator representation as in
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section 5) and fyz) = f(z) for all places I + p. If further x,, %, € D} are
such that

fi)) = [, Sl rme Wea@dx

(with t,, the characteristic function of R}x,RY), then

Y™ (p, ¥, f) = 2 Y™ (gt ¥, f)

where

@) = [ oty eady and ¥ = [ ey eady.

Proof. The proofs are completely analogous to those given in [Y3],
section 1.

The local computations left to be done become particularly easy for
p|N, (.e., D, is a skew field and R, is its maximal order).

LEmMA 7.3. Let p|N,, F = Y™(p, ). Then

a) F|K,,(p0_1n “Pg‘ln) K, = p*™-2.5 (Dy1"F where s D) is the
Hasse invariant of the quadratic space (D, n) ([OM], §63) and 7, is an
absolute constant.

0

b) Fis an eigenfunction of the K §,’”< I "—Ol(p ) m (p))K ™ and the Satake
1

parameters B, from section 2 of F are given by B = p"~'~'.

Proof. By section 2 (proof of Lemma 2.2) we have

(S Py W I e

where A = A(w) runs through pZ®™®, modulo wZ™™.w' and

p,Sym p,8ym

GL(n, Z)M'GL(n, Z,) = \J GL(n, Z,)w' .

Now, for fixed w we have:
1, —A 2
Zo((s 0 wh))f@ = Tt (—AQ)flau) | det wf.
w. (w)
Since #,'R, = {zeD;[Q(z)e P Z%E} (z, a prime element in D)), this is
equal to
{ 0 if zen,'R}
pr Y det w;mt? if zen;'R}.
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Observing that z,'R, is the dual lattice of R, with respect to the norm
form we obtain:

7o, v pIEP( Sy M )ES

= L p~r = det MIzp"T3s,(D)"Y (o, 4 f)

(Here the action of (__01 ld') under the oscillator representation is com-

puted with the help of formulas from [Pe], [Sa], see also Lemma 8.2.a)
below. For M = N.1, this proves a), for general M we see that (with
the notation of section 2) A(M,) is equal to | det M,|; " times the number
of w. By (2.2) and our normalization of the B, , this implies b).

LemMA 7.4. Let p|N,, F= Y™(p, ). Then

0

FIES .

-1
pO 1,,)K1(Dn) _ p"(""l)/zsp(D)“T;‘,F.

Proof. This can be proved using Evdokimov’s [Ev] computation of
1, A
Aez{m moa pz () 0 plL
More precisely, denote by S,,, S representatives of the classes of integral
positive definite quadratic forms satisfying the following conditions:
(1) S, is split over QQ, and equivalent to S over all Z, with [ = p.
(ii) The level of S and S;, is not divisible by p%
(iii) The discriminant of S is exactly divisible by p™-7, that of S;,
is exactly divisible by p*.
If S,; corresponds to a lattice K, denote by p~'S(p) the matrix cor-
responding to K*? = K* M Z[1/p]K.
Then it is easily verified that Evdokimov’s r(S, pS,,, G,D,_,.,G) is
equal to r(S, S¥(p)). Applying K ;"’(I?l ——01">K§,”’ we obtain
n n. O - _lln n,
9¢ )(S)lK;)(pln PO )K;,)

r/2 h(%)
= preses Sy 3 (~1yprenin 3 T Swtd s
j=0 j=1 e(Smlz-j,j)
In our situation (m = 4, r = 2), this implies

-1 ~
K (g TP KR = = o e (DY = Y, 40 1)
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where f; = f, for I + p and f}/(z) is the characteristic function of

(6 pMz)) N (ae2)(5 9))-
Since ¢, y+ were chosen to be in the essential part of (D%, RY), we
see that 17("’(90, ¥, ) = 0, which proves the assertion.

Remark. i) If D, and D, are quaternion algebras as above, D, is

split at p and D, is ramified at p, then s,(D,) = — s,(D,), i.e., the eigen-
-t
values of Kl(’m<p01 P 0 1“)K§,") in the split and in the non-split case

are the same for odd n, of opposite sign for even n. ii) The proof of
Lemma 7.4 is actually valid if only one of ¢, v is in the essential part of
(D%, R%). This will be used later.

LEMMA 7.5. Let F e MYN), p|N, [[ = (16—1' p‘{ ) let ® as usual
1
0

denote Siegel’s ®-operator, write F|T{™ for F|K ,‘,")<( ﬂ0§"))" n(_,,)>K ™. Then

F|T™\ @ = p™tF|0|T¢ ",

F|\T™| @ = p™*F|@|T?:} + p'F|@| T i<n).
If Fis in the subspace of M%(IN) generated by theta series of level dividing
N, then F|T™ is in the same space.

Proof. The first part of the assertion is easily verified along the
lines of [Fre 1], IV, §4 and [Kri]. The second part is clear in the singular
case by [Fre 2] and follows in general from the result in the singular
case by the commutation relation of the first part.

LEmMA 7.6. Let p|N,, F = Y™(¢, ). Then F is an eigenfunction of

the T, = K ;,’”(( ngw)—l n%,))K ™ and the Satake parameters B from section

2 of F are given by B, = p"~t~.

Proof. By the previous lemma we can restrict attention to the case
n=4 and put [[{¥ = [[, K{ = K,. We have the coset decomposition

S0 g =ul )6 )

where w’ runs through representatives of the cosets GL(4, Z,)w’ in GL(4,
Z,)11.GL4, Z,) and A through Z{?, mod wZ:),.w'. Letting the repre-
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sentatives act on the test function f, via the oscillator representation we
obtain as in the proof of Lemma 3:

£(2) { 2 }ldet w* i Q2)eZin
P = ¢ (wlZe Rjw~1
0

otherwise
_ pst{#{wlz e Riw} if Q@)e Z&o,

0 otherwise .
For z= (g, ---,2)e D} we let K(z) denote the lattice in D, generated
by (2, - - -, 2,) and restrict attention to z with K(z) of rank 4. Obviously

ze Ryw™' for some w if and only if K(z) is in p~'R, and has no more
than i elementary divisors p-! with respect to R,.

If ze Riw;*' for some fixed w, then the cosets wGL(4, Z,) with ze
R,w~' are parametrized by the cosets #e GL(4, Z,)/(w,GL(4, Z,)w;* N
GL(4, Z,)) with zue Ryw;*. Since their number depends only on K(z) we
can put w, = [], and have GL(4, Z)/[1.GL(4, Z,)[[:* N GL(4, Z,) in bijec-

tion to GL(4, ]F,,)/IS,, where P, = {(O* :) eGL4, F ,,)} is the parabolic
t,m—-1

stabilizing the subspace generated by the first 4 — i basis vectors of Fi.
If K(z) has exactly j < i elementary divisors p~' with respect to R,, the

number of cosets Z with zu e R;[];* is then equal to

(129, where (3) = E=P=r

is the number of k-dimensional subspaces of F};. To summarize, we have

(4 — j) if Q(z) e Zm, K(z) S p~'R, has j < i
\2) = p* »

4 — g elementary divisors p~! w.r.t. R,

0 otherwise

(K(z) of rank 4).
By Lemma 5 we know that with some numbers a,

f;» = pat ZK; aghy

where hy is the characteristic function of K* for a lattice K < D, and
the summation runs over all K = K(z) with Q(2) e Z{),. That is,

fz) =p" >, ax.

K2K(z)

We can thus use Theorem 1.7.2 of [Kil] to compute the @;. We com-
pute first the ax for K that are Z-isometric to R,.
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Assume K to have J < i elementary divisors p~! w.r.t. R, denote by
B the number of unimodular lattices M < p~'R, with M 2 K and one
elementary divisor p~!, by B, the number of such lattices with two ele-
mentary divisors p~' with respect to R,. We have then

ok = (f _ j)p B ‘8‘(;' E 1),, B ﬁz(i -2- 2);;

(where the last term occurs only for i > 2).

By elementary computations in the matrix ring My(Q,) we find that
the K C p~'R, (isometric to R,) are in bijective correspondence to the
pairs of cosets (xR}, £RY) with det x = p = det %,

. {0 1) X<1 o> . X(p o> .
: R*UR R*UR R
xxe(p 0 P U P O p y4 U y4 0 1 »

or

(0 P\px ce (0 1\ps
xeRp<1 }(;>Rp and xeRp<p >R,,

or
x(0 X - 1 0
xeRp<1 Z)Rp and xeR;f(O p)R;

or one of these with x, ¥ interchanged, or one of these with x, ¥ re-

placed by
(2, D=0 0, D=,
—-p O —-p 0 -p O —-p 0

(and maybe again interchanged), the correspondence of course being given

by K = xR, %"
We find further that
a) j=0p=2p=1 if K =R,
, . 0 Npx o oxfl 0\ps
b) j=1p=1p=1 if xe(_p O)R,,, xeRp(O p)R,,
or xe(o 1)R;,' xeR;(p %)r;
—-p 0 0 1
N 1\ - 0 1\py
or xeR,,(8 p)R,,, xe(_p O)RP
X 0\ px 5 0 1\ px
or xeRp(g 1)Rp, xe(_p O)Rp
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, , J1 0 - oD O\ px
Q) j=18=0p8=2 if xeR,,<0 p)R;, xeR,,(g I)Rp
0 - 1 0)\py
or xeR,i‘(é) 1)R;;, xeRZ(O p)Rp
. . 10 - 1 0
Q j=1p=18=0 i xeR;(O p)R;, xeR;;(O p)R;;
or xeRx<p O)RX, 3"ceR’<<p 0>Rx
o 1/ o 1"
e) j=28=0p8=1 in all other cases
Thus
<4> —2<.3 ) in case a)
i1/, 1 — 1/,
——<‘2 ) in case b)
(71) ak:ﬁ l-——zp
(,3 ) —2(,2 ) in case ¢)
1 —1/, 11— 2/,
0 in all other cases

(where the expressions involving (i — 2) occur only for i > 2).

The a; for unimodular K are irrelevant for us by the same argu-
ment as in Lemma 7.4. In fact, the unimodular lattices in D, are given
by ideals having right and left order conjugate to MyZ,. By direct
matrix calculations one checks that all such ideals contained in p~'R,
have either left or right order containing R, i.e. have characteristic
function invariant (on the lef tor on the right) under (R,)* for an order
R’ strictly containing R. The same argument applies to the p-modular
sublattices containing pR! which are just

1 0 p 0
(0 p)Mz(Zp) and Mz(Z,,)(0 1).

We contend that a; = 0 for all other p-modular sublattices of p~—'R,. To
see this notice that

fi(z) = fi(z) if 2’ e D} is such that K(z) = K(z) + pR}.

The same holds (by the computations already done) for > aihy, where
5./ extends only over K that are unimodular or Z,isometric to R,.
For K(z) 2 pR!, z’ as above we have therefore
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P 3 ax = fi0) = [iz) = p* 3 axhs(@)
=P &' axhx(2)

PN
K2K(z)

ag .

Taken together, Y®(p, )| T, can be expressed as a linear combination of
theta series of lattices in the genus of R with coefficients given by (8.1).

We denote by r, the characteristic function of R ( i)p (1)) R, by r, that of
R% ({)) (1)) R%, by z, that of R} ((1) g) Ry, write ¢|z, for J.D" o(xy D (y)dy
and obtain
" auf [ 4 3 .
v To=p((%) —2(,° ) )¥oew
1/, 1 -1/,

_ p( 2 ) (Y9 len ¥l e + Yol ey, ] )
1— 2/,
+ Y|y ¥le) + YO(p)es ¥]2)

+o((;2,) —2(, 2 ) Jeln vin) + YOln vie).

By our assumptions on ¢, y» we can compute the ¢|z,, V|7, by considering
the action of these Hecke operators on the unique R, -invariant function
g of the unique irreducible subrepresentation of the representation of
GL,(Q,) induced from the character

Los /214 |-1/2
> E(tt) | &2 |t
0 ¢

on its Borel subgroup.
By § 3 of [Ca2] this can be given by

A6 D)= % D)

(together with g((f)‘ f)x) = &(t,ty) | 4], | L], g (x) this determines g uniquely).
2
An elementary computation yields then

olt, = — &P

elty = olr, = &) .

& being a quadratic character we obtain on substituting this into the ex-
pression for Y®(p, 1):
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4
Yo, )| T, = ( : ) Y, ¥) |

which is just the same eigenvalue as the one obtained in the non-split
case. Using Lemma 7.5 again we obtain the assertion.

CoROLLARY 7.1. Let F = Y™(¢p, ). Then the function Ay(s) of section
2 is given by

Ay(s) = A5G) T] [T = p )

Note added (Nov. 1990). We can now also prove a version of Lemma
7.6 and of Corollary 7.1 in the case that only ¢ is essential (this
weakened requirement on the pair (¢, ) basically means that ¢ ®
gives rise to an “essential” form on the orthogonal group of D (or
rather on the spin group) in a sense which has of course to be made
more precise). To formulate a statement in this case let ¥ =y + ¢,y
where w,p = ¢, and where +, is right invariant under a maximal order
Rp 2 R, ¥, = wyn, and let a,, @, be the p-Satake parameters of v, (and
V) (normalized to a,@, = p), u, = @, + @,

Then with F = Y™ (¢, 4) we have

F\ T, Fy = po((7) = p o+ 1+ (P T %) B
» - D,
The proof is similar to that of Lemma 7.6; one gets that

F|T® — p“‘*“‘(( ’?) —pp+ 1+ e,,p,,)(’? - 2) )F
1/ 1 —1/»

is a linear combination of theta series of lattices on D of discriminants
different from N? and hence orthogonal to F (see Lemma 9.1 below).

Furthermore, in the discussion of section 2 assume F only to be an
eigenform for all the Ty(M) with M = NM,, (det (M,), N) = 1 and define
(M) for any Me M, (Z)* with M =0mod N by <(F, T,(MF) =
A(M)(F, Fy. Then (with F = Y™(p,+) again) the p-factor of the func-
tion Ay(s) from Theorem 2.1 is given by

(1 + e,@,p™* ") (1 + e,a,p*H ﬂa(l )
i=

If now € (D%, RX) is arbitrary we use the decomposition

#(D}, B) = C-10 D A now( D%, (RA))
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from [Hi-Sa] (where «,.(D%, (R,)*) denotes the set of cusp forms in the
essential part of (D%, (R,)*)) and assume (as always) that  is an
eigenfunction of all the w, (/| N) having the same eigenvalues ¢, as ¢.
There are two maximal orders R,, R, in D, containing R,, and for
each R D R in the above decomposition R/ equals one of R,, R, R,

Writing
v=c+ X2 Va
R'2R
=ct X Vet X Vet 2 e
R§i=ﬁp R'p=1?jrJ Ry=E,

=c+ Y+ Yo+ s

we find that , can be treated as in the proof of Lemma 7.6, while ¢ and
¥y + e, are of the shape discussed above (and v, can be assumed to
be an eigenform of the Hecke operator T,,).

§8. Cuspidality properties of theta series

We will need some results connecting the behaviour of theta series
of degree n in the I'{"(N)-inequivalent boundary components of H,.
Although we don’t believe these to be new, we sketch the proofs for lack
of a reference.

As usual, for a field K we consider the standard maximal parabolic
subgroups P, .(K) of Sp(n, K) where P, . (K) has Levi factor Sp(n — r, K)
X GL(r, K) embedded by

A 0 B 0
A B 0 T 0 0
, T —>
((C D) > C 0 D 0
0 0 0 71

(for K = Q we have then C, .., = Sp(n, Z) N P, (Q)).

LemMa 81. Let N=p,---p, for 0< [, <r (i=1,. --,t let RP(,
..., 1,) be given by

ln—l{ O On—u 0

0 0,, 0 -1, .
R‘"’l,-n,l = mod p,Z i=1.-,1.
@, 0) 0, 0 1, 0 Dy ( )
0 L, 0 0,
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Then
Sp(n, Z) = Ulrl,v--,l;=0 Fén)(N)RX?)(lb ) lt)cn.n—r .

Proof. Dividing first by the principal congruence subgroup I'™(IV)
and using :

Sp(n, Z)|[I'™(N) = ﬂNSp(n, E,)

we see that we have to determire representatives of the double cosets in

P (B, )\8p(n, E,)/P, (E,) .

That these are just the images of the R®(.--, [, ---) under reduction
mod p, is a well known consequence of the Bruhat decomposition (see
e.g. [War], p. 49).

Remark. The double coset of R{(r) is also represented by (10 —Ol">

mod pZ. Especially for r = 1 it may sometimes be more convenient to
use this representative.

LEMMA 8.2. Let L be an integral positive definite lattice on Q™ with
quadratic form @ and associated bilinear form B(x,y) = Q(x + y) — Q(x)
— Q(y) of level dividing N (i.e. NQ(LY) < Z), discriminant d, 3™(L) its
theta series of degree n. Denote by d, the highest power of p dividing d.
Let R®() = RP(,, ---,1,) with I, =0 for p, # p, I, =1 for p, = p,

@) = Lt 0 Z[—l-]L, 9@-t(L, [¥; Z) = 3 exp (2ritr Q()Z)
; > 4
where x = (x,, - - -, x,) runs over (% o K) € L7 (Xgay, o, X)) € (LPP)
and Q(x),, = $B(x,, x;) as usual. Then
a) IM(L) | RP(D) = 1,(d,)'s(Q)'d,; 9™ ~+D(L, L+?)

where 7,(d,) depends only on d Q) and s/(Q) is the Hasse invariant
([OM], §63)

b) 9N RP(D| 0" = d;7,(d,)s,(Q 9" ()| Ry — 1) for 1> 1.

Proof. b) is an immediate consequence of a). a) is most easily
proved using the Weil- or oscillator-representation. It is then a con-
sequence of the explicit formulas for the action of elements of Sp(nm, Q,)
given in [Sal], [Pe], Prop. 2.14 and [Rao], Lemma 3.2.
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Remark. Statement a) above was proved for n =1 (in a somewhat
different formulation) by Kitaoka [Ki3].
A consequence of the Lemma is:

THEOREM 8.1. Let F = >, a, 9% be a linear combination of theta series
of quadratic forms of square free level belonging to the same genus. Then
F is a cusp form if and only if F|® = 0.

Remark. Note that Theorem 8.1 is different from the corollary to
Theorem 1.1.1 of [Ra3]. Rallis assumes that the (n — 1)-st theta lifting of
a form on the orthogonal group vanishes for all test functions and ob-
tains cuspidality of the n-th theta lifting for all test functions, whereas
we consider one specific test function throughout.

We notice that Lemma 2 allows to determine the part in the space
of Klingen-Eisenstein series of a linear combination of theta series that
is not cuspidal. In order to state the result we need some more notations.

Recall that for any discrete subgroup I of Sp(n, Q) commensurable
with Sp(n, Z), Re Sp(n, Z) and fe S¥R-'I'R N C,,,), one has the Klingen-
Eisenstein series

E;(f,I,R): = 2 M ZYy)i(M, Z)* .
Me(R-1IF'RNCnyy\R~1I")
(Here for G < C,,, we denote by G, the intersection of G with the Sp(r)-
component of C, , and by Z* the upper left hand corner of size r X r of Z).

This series converges for 2> n + r+ 1 and satisfies for R = 7R,
(rel', Rye Sp(n,Z), ceC, ,):

E:Af, ', TR) = E; (flci', I, Ry)

(where again ¢, is the Sp(r)-part of ¢). That is, the double coset decom-
position of I'\Sp(n, Z)/C,,, determines the Eisenstein series to be con-
sidered.

Furthermore, they satisfy

fif R and L are in the same double cosets

Eftr ,F9R Lig» = i
AT, )L { 0 otherwise.

These facts, taken together with Lemma 2, yield

TaEOREM 8.2. Let f =3 a,9%) € S¥(N) be a linear combination of
theta series of positive integral quadratic forms in 2k variables in the same
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genus of square free level N = p, --- p, and discriminant d and assume
k>n+r+ 1 Let

1 Liyeee,

n—r t
FO =2 24 ]LIId;,””‘Tp,(Sz)"sp,(Sz)“EZ,r(f, IP(N), RpP(, -+, 1) .

Then (F™ — 3 a,9¢)|R|@"" = 0 for all Re Sp(n, Z).

Remark. By a result of S. Kudla (that has not yet been published)
the following is true:

Let K be a lattice on the 2k-dimensional quadratic space V over Q,
let 0,(V) = U O(V)h,0,(K) be a double coset decomposition such that
h,K corresponds to the quadratic form S, and let ¢ be the right O,(K)-
invariant automorphic form on O,(V) with ¢(h,) = «,. Assume further
that the form ¢ is orthogonal to all forms on O,(V) whose lift to Sp(r, A)
vanishes. Then Y «,9¢*" is orthogonal to Sk, (V).

The above theorem then implies

Fo = 37 g, 90+ if & >2r+ 2,

which can be viewed as an extension of Siegel’s main theorem. We will
arrive at a similar result for Yoshida’s lifting in section 10.

§9. Non-vanishing

In [Y1], [Y2] Yoshida conjectured that for cuspidal ¢,V € &¢(D%, R%),
¢ #+0+# ¢ and R maximal in D the lift Y™ (o, ) is different from zero.
We shall now prove this conjecture, including the case of Eichler orders
under our usual condition that ¢ and + are in the essential part of
A(D%, R¥). Thus, for the rest of this section we assume ¢, \ € (D}, RX)
to be as in section 7. As always N = N,N, is the level of R, D is split
at the prime p if and only if p/tN,.

Denote by <7, the essential part of (D}, RY). By 0% ,, we denote
the subspace of O™(4, N) N Mi(IN)=" generated by the Y™{(p, ) with
0, U € A g

Note added (Nov. 1990). The improvements sketched in the note at
the end of section 7 allow us to weaken the assumption ¢ € </, here too.

Since we are considering only theta series of quadratic forms in one
genus we have a splitting

(9.1) Ofm = D OF7,

i=0
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defined inductively by
Fiv, = {F € Of y, | OF = 0} = OF} 5, N SHAN)™" (by §8)
and
OFR) = 053, by the @-operator

where | means the orthogonal complement in &% ..
(N.B.: Forms in (@%:%)" need not be orthogonal to all cusp forms).

Thanks to a result of Kitaoka [Ki2] we have % ,, = 0% 5, for n > 3,
so the case n = 3 of the splitting contains all information about such
splittings for any n.

We shall prove that this splitting can also be described in terms of
properties of automorphic L-functions.

Results of similar type—but only for “large” weights—were obtained
by Harris [Hal], [Ha2]. Finally we shall describe the splitting in terms
of the Yoshida lifting.

Lemma 9.1, a) Y®(o, ¢)|K;,n>(p‘)1n _01">K§,"> = (w1, (D) Y™(o, )
b) If S is an integral positive quaternary quadratic form with 9% ¢
O™(4, N) with det S + NiN3 then

9 is orthogonal to O™, .

¢) If n=2, det S = NIN? but S is not in the genus of (R, n), then
9 is orthogonal to OF,,.

Proof. a) As in §8 we have
0 —1
pl, 0
— TZSp(D)" b Sa(yt)‘lf(yj) 9‘"’(1‘23”, pZ)

Y ®(g, w)u{;}m( n)Kgn)(Z)

= 135,(D)" 2. i”(*w(y—’)S‘")(yin;‘Ry;B pZ)

7 eiej

- T;S,,(D)" Z §0(yt)‘l’(yj) g(n)(zpy‘n;IRygl’ Z)

oY e.e,

= T(w p)szsp(D)ﬂ Y(")«D? \”)

(where n, denotes the element of DX with (g _61) or a prime element

of D, in the p-component, 1 in all others and z, e D* with n(z,) = p).
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b) Assume that p*|det S for some p|N, (i.e. S is divisible by p).

Then using the formula for the action of K (p(f)l P (_)11") K% from §7 we

-1
see that 9% is an eigenfunction of K f;"(p(i -p 0 1") K™ with eigenvalue

—s,(D)"rpp™™-2, Since this operator is hermitian and 6§y, is an eigen-
space with eigenvalue —s,(D)"17p""~ ", we see that 9 must be orthogo-
nal to O™,

If S is primitive there is some p|N, with pfdet S. Writing again
p~!S* = S*? and using a) we see

YD, ), 9 = e(wp)1;"s,(D) " p{Y Mg, ), 98> = 0.

c) In this case there is some p|N for which S is anisotropic over
Q, and D, split or vice versa.
In any case 99 is (modulo theta series of imprimitive forms that are

—np-1 .
orthogonal to 6%;%),, by b)) an eigenfunction of K (p(iz p 0 12) K@ with

eigenvalue +r2p* while 6%, y, has the negative of this number as eigen-
value. Again the assertion follows since the operator is hermitian.

Remark. We should note that Lemma 1 remains true if only one of
¢, ¥ is in the essential part of «/(D}, RY) since the results about T,(N1,)
used for its proof are valid under this weaker condition (see the remark
after Lemma 7.4).

THEOREM 9.1. Suppose FeOf y, is an eigenform of all Hecke opera-
tors Ty(M), M=0mod N. Let N=p,---p,. Then

(1) Feo6§?, implies that D is of order at least | in s =1 and
has a simple pole in s = 2

(ii) Fe0%, implies that D" is of order | — 1 in s = 1 and has at
most a simple pole in s = 2

(i) Fe 0%y, implies that D" is of order Il — 2 in s =1 and has a
simple pole in s = 2

(iv) Fe0g%, implies that DY’ is of order 2l — 3 in s = 1 and has a
double pole in s = 2.

Evidently the converses of these statements are also true (in the appli-
cations we have in mind only the behaviour in s = 1 will be relevant).

Proof. To prove ii), iii), iv) we use the Zharkovskaya relations [Zh]
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9.2) Dg'(s) = L™(s — 1)L™(s + 1)DGR(s) if OF +# 0
9.3) Di(s) = EW(s — DEN(s + () DGx(s)  if PF 0
(9.4) D (s) = L™(s — 1L(s + 1)RLW(s)’ if O°F 0

form. Combining (9.2) with Theorem 4.1 and Lemma 9.1 we get the first
part of ii).
iii) Here we have

ii) For Fe 0%%, we have OF e 0%, < 0® (4, N) and OF is a cusp-

DF(s) = L(2s) i A(n?)

= nttt
(n,N)=1

where A(n?) is the eigenvalue of the Hecke operator 7T'(n?) (in the usual
notation for elliptic modular forms) for the cusp form @*F.

By a standard reasoning (Rankin-Selberg-method) the value of this
Dirichlet series at s = 1 is essentially the square of the Petersson norm
of @*F and therefore different from zero; the behaviour in s = 2 is clear.
This proves iii).

iv) follows from (9.4).

The second assertion of i) follows from Theorem 4.1 and Lemma 9.1.
To obtain the result about the behaviour in s = 1 we recall the integral
representation for D¥(s) obtained in section 4:

(% 0 -
EE((G 2g) s M)
2N 1) 4025 — DDP@ = 1) o
Ner(2s + 2) [] L9s + 4 — 2i)

= #(3’ 2: S)

In s =1 we have a simple pole for u(3, 2, s) and a pole of order [ for

ayes =1 = T 1 o—toms

To prove i) we must show the crucial
ProrosrtioN 9.1. EYZ,s, N) has a pole of order 1 at s = 1.

Proof. We prefer to prove the same statement of FiZ, s, N). From
section 3 we see that the constant term in the Fourier expansion of
F¥Z, s, N) indeed has a pole of first order. On the other hand we know
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by the results of Feit ([Fe], Theorem 9.1.b) 3.) that
1(L(S)FZ, s, N)

has at most poles of first order. Here L(s) is a product of (shifted) L-
series with the property that s = 1 is still in the domain of absolute con-
vergence of their Euler product; 7(s),_, is a product of I'-factors evaluated
at positive arguments.

The second part of ii) follows in a similar way from the fact that
F%Z,s, N) is regular in s = 1 (which is implied by [Fe], 9.1.b) 2.).

In [Y1], [Y2] Yoshida conjectured that (for any e) the lift Y*(p, v) is
different from zero if ¢, y» = 0 are elements of /¢, (DX, RX).

We shall verify (a strong version of) Yoshida’s conjecture by using
the splitting (9.1) of 6§, y, and solaing the following

PrOBLEM. Suppose ¢, ¥ € (DX, RX) are eigenfunctions of the Hecke
algebra, both different from zero and in the essential part. Determine
the subspace 0§:72,(0 < i < 3) in which Y®(p, ) lies!

From the results obtained so far it is clear that Y®(p, v) does not
vanish and that Y®(p, ¥ must lie in one of the subspaces 0§;%,. More-
over, according to the Theorem of I.4. the automorphic L-function D@(s)
with F := Y®(p, v») should contain the solution of this problem.

So let f,g € M¥N) be modular forms corresponding to ¢ and v and
let a(p) = a, + @,, b(p) =B, + B, (a,@, = BB, = p) be the corresponding
eigenvalues of the Hecke operators 7'(p), pfN. (Note that this normali-
zation is different from the one used in §6). We need the L-series

¥ = L
Lialp, v 8) = pHN (1 — a,8,07 )1 — a,B,p~*)1 — @,B,p~*)1 — &,B,p"")

= ™25 — 2) i a(n)b(n)
o

— Lo — D).

(see Corollary 6.1 for the definition of L{)(s)).
In special cases we have
L, 1, 8) = L)X M(s — DEWN(s — 2)
and
Lgﬁ:(l» ‘I’) S) = L(N)("l’” S)L(N)(‘Ify s — 1)

where
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b(n) =T 1 )
¢ v (1—B,p7 )1 — B,p)

Loy, 8) = 3

n=
(ny,N)=1

]

From the results of §6 we have
D@(s) = E™M(s — DEN(s + DI()LGup, ¥, s + 1)

Several cases have to be considered separately:

(i) ¢ and + both constant. Then D{(s) is of order 2/ — 3ins =1
and has a double pole in s = 2. ’

(ii) ¢ constant, v cuspidal (and vice versa). Since L™(y, 2)L™ (4, 3)
is different from zero, we get a simple pole for D@(s) in s = 2. More-
over, the order of D¢(s) in s = 1 is equal to [ — 1 + order L™ (v, s).

(iii) ¢, ¥ both cuspidal, ¢ not proportional to +. s’f‘ilen D@ (s) has
a simple pole in s = 2. We claim that the order of D{(s) in s =1 is
indeed ! — 1 or equivalently:

LGn(p, ¥, 2) + 0.

This is precisely what Theorem 4 of Ogg [O] says.

(iv) ¢ and + cuspidal, ¢ = ¢y (¢ #0). Then D§{’(s) has a simple
pole in s =2 and D{(s) is of order ¢#— 2 in s = 1 since in this case
L& (¢, ¥, s) has a first order pole in s = 2, the residue is essentially the
square of the Petersson norm of f (see e.g. [O]).

We have thus completely solved the problem stated above. We sum-
marize our results, giving at the same time a description of the spaces
0%, in terms of the lift Y®.

THEOREM 9.2. Denote by <., the set of cusp forms in the essential
part of (D%, RY), let {v,} C &, be a basis of A, consisting of eigen-
functions of the Hecke algebra (if R is maximal, this basis has h — 1 ele-
ments, h the class number of R).

Then the spaces 0$:%,, have the following bases (which are mapped to
orthogonal bases of 0%, under ©*-%)

oY  {Y®Q, 1} (6%, = {0} for N, # 1)
O e (YO0, ¥}

Of: 1YW, v i <J,eo = ¢}
- {Qf if Ny #1
{Y(3)(1’ 11/'j)|51 = &, L(N)("I’j’ 1) #*= 0} if Nz =1
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0% YL y)le; = e, Ly, 1) =0} (0%, = {0} if N, #1).

Proof. Everything has already been proved except for the orthogo-
nality of the images under @' of the basis elements. But this follows
from strong multiplicity one for ./, which implies (by the results of §6)
that Y™ (y, ;) and Y™ (i, ,) give (if they are nonzero) different homo-
morphisms #(GSp,(Q,), Sp.(Z,)) — C* for infinitely many primes p unless
(i, j} = {k, 11

CoroLLARY 9.1. Yoshida’s conjecture is true, moreover if N, =1 (i.e.
R is a maximal order), 0 + e &, an eigenform we have Y®(1, ) =0
if and only if L™(), 1) = 0.

CoROLLARY 9.2. Let N, = 1. Then all nontrivial linear relations be-
tween the theta series 9%(I;;) are of the type

-~ o) + 99 gor ) = 0

7 oee(1+4,) Y
where ¢ is in the subspace of <«/*°(D%, RX) spanned by those Hecke eigenforms
o with L', 1) = 0. Furthermore, 99(1;;) = 9®(l,,) implies (I,,, n) = (I,;, n).

Proof. Let {K.} be a set of representatives of the nonisometric lat-
tices among the I;;, >« 9%(K,) = 0, not all «, = 0. Then >, ¢ 99(K,) + 0
is a cusp form, thus (by Theorem 9.2) equal to Y®(1, ¢) with ¢ as asserted,
which proves the first part of the corollary. If 99(I,)) = 99(I,,), then
(by the first part) there is ¢ € &/*°(D}, RY) such that

-2 o)+ ey
#(Fix(i) N Fix() el + 3y,)

2 o(ye) + e(y)

#(Fix(k) N Fix(D) ege(l + 6,)
Sﬂ(yy) + 90(3’#) =0 if Iij e Iv,z ?3 I, .

(in the notation of §5). Assume that j i and (say) ¢(y,) > 0. Then
o(y) + o(y;,) > 0 and I,; # I,;, a contradiction.

Thus j =i, & = and (again using the notation of §5) j #y(k) for
all , since otherwise o(y,) = ¢(y,). If 1 < < his such that j # px +# &,
then ¢(y,) = 0 implies that «, + 0 for K, = I,,, a contradiction.

If on the other hand ¢(y,) # 0, then «, + 0 for K, = I,,, thus I,, = I,

or I, = I,. But that implies y = 5(j) or p = n(k) for some », thus @, # 0
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for K, = I,, or for K, = I,,. Since both these lattices are neither iso-
metric to I,, nor to I, this is again a contradiction. We are thus
reduced to the case that the class number and the type number of D are
both equal to 2. From the tables of Pizer [Pi] one sees that this can
happen only for N = 11,17, 19, in which cases the theta series of degree
one of the nonisometric ideals are known to be distinct.

CoRroLLARY 9.3. Let N, =1, N odd, let R, ---, R, be representatives
of the types of maximal orders in D, let

L, =(Z1+ 2R,) N {xe D|tr(x) = 0}.

Then the theta series 9W(L,) are linearly independent if and only if
L(y, 1) # 0 for all Hecke-eigenforms e s/*(D%, R).

Proof. We notice first that the injective mapping oJ, ,(I"((IV)) — M,,,(IN)
of Satz 8 in [Kra] carries the Jacobi theta series of index one of the
R, to the 9(L,) (for N prime this is Satz 1, ch. II in [Kra]). To see this,
let x =95+ 2ye L, with ¢ eZ, ye R,. Then n(x)c2Z if and only if s’ e
27Z. For xe L, and se Z one sees therefore that x': = (x + s)/2 is in R,
if and only if n(x) = s mod 2, and one has tr(x’) = s, n(x’) = (n(x) + s?/4.
Using Kramer’s notation [Kra],

p(47) = Ié exp (2rin(x)z), ¢,(4c) = ; exp (2rin(x)r)

n(x) 6212 n(i) E2tZ
are therefore such that ¢,(47)9,(z, 2) + ¢,(42)9, ,(z, 2) is the Jacobi theta
series of index 1 of R,, hence oy(47) + ¢,(47) = 9(L,)(z) is the modular
form of weight 3/2 corresponding to this Jacobi form. Thus, the 9%(L,)
are linearly independent if and only if the Jacobi theta series of index
one of the R, are linearly independent. These are, by the same reason-
ing as in [SP] and using Theorem 4.3. of [Y2], linearly dependent if and
only if there is + € &*(D%, RX). with Y®(1, 4») = 0.
(this generalizes a result of Gross [Gr]).

Remarks. 1) We should emphasize that the main ingredients of our
proof of Yoshida’s conjecture were

—the holomorphy and regularity results of Shimura [Shil], [Shi2]
and Feit [Fe]

—pullbacks of Eisenstein seires and their relations to automorphic
L-functions
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—the theorem of Ogg about L, which in turn is based on the
Ramanujan-Petersson conjecture for weight 2 (proved by Eichler [EZ2]).
In particular, we have made essential use of the fact that ¢, corre-
gspond to holomorphic modular forms.

2) We have used Kitaoka’s [Ki2] result on linear independence of
theta series to restrict attention to the splitting of ®®. Instead of this,
one could also use the trivial fact that the theta series of degree 4 are
linearly independent and consider the splitting of @®. Essentially the
same type of argument as above can then be used, proving in particular
the special case Y®(p, y) #+ 0 of Kitaoka’s linear independence result.

3) The elements of the space

C{YO(L, )| ¥ € Sy, 4 eigenform, L(y, 1) = 0}

N |dim6eg¢> | N |dim6e$d | N |dimo§?P
389 1 2027 1 3271 3
433 1 2029 2 3463 2
563 1 2081 2 3583 2
571 1 2089 1 3701 2
643 1 2251 1 3779 1
709 1 2293 2 3911 2
997 2 2333 4 3943 4
1061 2 2381 2 3967 1
1171 1 2593 4 4027 2
1483 1 2609 2 4093 2
1531 1 2617 2 4139 1
1567 3 2677 1 4217 2
1613 1 2797 1 4253 3
1621 1 2837 1 4357 1
1627 1 2843 4 4481 1
1693 3 2861 2 4547 1
1873 1 2953 1 4787 2
1907 1 2963 2 4799 1
1913 3 3019 2 4951 2
1933 | 3 3089 2 5003 3
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satisfy the MaaB-relations [Y2]. It would be very interesting to see
whether the elements of 6§ satisfy similar relations.

4) The result about Y®(1,+) has been proved independently by
Yoshida (using methods similar to those of [Y2] and a result of Wald-
spurger). For N prime it follows also from the proof given in [SP] for
the special case of N = 389.

5) The case L™ (y, 1) = 0 really occurs. For NN prime the dimension
of the space generated by such +: has been computed in many cases by
K. Hashimoto (using that it is equal to ?-(dim span {9®(L,)}) by [Gr]).
With his kind permission we reproduce some of his results in the fol-
lowing Table.

6) In case N, =1, Corollary 2 specifies the precise extent to which
the linear independence conjecture of [An2] is wrong for these genera of
quadratic forms.

§10. Scalar product formulas

In this last section we shall compare various scalar productsof the
modular forms and the automorphic forms on DX that occurred so far.
We keep the notations of the previous sections and notice that

19(n)(IM)I T(p) = p** jljj (pj + 1)(4? Bjk(p)'s(n)(Itk) + [L\: B“(p)8<">((I”))
for n > 2,
INL) | T(p) = ; B,(p)99(Ly,)

(pYN, B,,(p) the entries of the Brandt matrix).

This can be deduced without difficulty from [Y3] and is proved im-
plicitly in [Y1], § 5 (the case n = 1 is due to Eichler). Further, all the
eigenvalues 2,(p) for a Hecke-eigenform ¢ e «/(DX, RY) are real and the
eigenform ¢ itself can be chosen to be real.

We note finally that the natural notion of scalar product for (D%,
RY) and (D} x DX, R X RY) is

vy = [, obds = 5 AT

i

and

<$0! ® ‘I’lr P2 ® ‘!’2> = <§Dls SDZ><‘!’1’ ‘,’2>
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respectively.
We have to consider Y™(g, v) for n =1, 2, 3.
a) n=1
Let ¢ e (DX, RX), be a Hecke-eigenform, put

F =Yg, ¢), 9, =91, .
Using 9,,|T(p) = > B.\(p)%; we get
2. BulD)XF, 9upp = (F, 94| T(p)) = <F|T(p), 915) = (@)F, i1
for all j and ptN.
By strong multiplicity one for o7 . (D%, RX) this implies
CF, 950 = (F, 940 = cip(y)

for some c,,
@(yt) }J: Bkj(p)cj = <F, s l T(p)> = 2p(¢)<Fv 19ki> = ck¢(yt) .

Choosing some i with ¢(y,) + 0 we get, again using strong multiplicity
one: ¢; = cp(y,) with some constant ¢ = c(p) depending on ¢, which shows

(F, 9. = co(y)e(y,) -
To determine the constant write
(F,Fy =5, 2000 (g g 5 — o2 MY.
7 e.e; T e
Since 3, o(y,)*/e; is the first Fourier coefficient of F we find
¢ = (F,, Fy)

where F, is the normalized eigenform corresponding to ¢. It is well
known (Rankin-Selberg method) that

(Fy By = eDP(D)
with
s 1 —_—
(=YL @) [| 4+ P

G

(see e.g. [Pet], [Ran]). We have therefore proved

ProposiTioN 10.1. For n =1, F = Y%(p, p) we have
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D (F,99) = (DR Dp(y)e(y)

ii) <F, Fy = COD}N)(l)«D’ 50>2
where ¢, depends only on N.

b) n=2

Let again ¢, v € 4. (D%, RX) for some ¢ be Hecke-eigenforms, ¢ + cv,
put

F = Y®(p, ¥) + 0 (a cusp form), 9y = 99(1,,) .

Obviously p: (y,,y,) > (F,9,;) is a symmetric function on DX x D, i.e.
(¥, ¥5) = o35, ).

The space of such symmetric p e /(D% X D%, RX X R%) is spanned by
the functions

pvy(yi’ yj) = §0u(y¢)¢p(yj) + g)v(yj)say(yt)
where ¢,, ¢, are Hecke eigenforms in (D}, (R,)*) for some order R’ 2

R of level N’|N, since by [Hi-Sa] «/(D%, RX) is the direct sum of the
A ose(D%, (RY)*) for the orders R’ © R. Define the operator T(p) by

ol T(E)ys, ) = 2 B,(p)p(ys, y0) + Z‘ B.(p)o(y1, y5) -
Then

0. T(D) = A(0) + 2,(0,)pne

for all p not dividing N.

Let now ¢,, ¢, € (DX, R5) and assume that p,., has the same eigen-
values under f’(p) as p,, for pfN. Let f, be the normalized elliptic new-
form of weight 2 (and level N’ dividing N) corresponding to ¢,, i.e., having
the same Hecke eigenvalues for p/N as ¢,.

Then f, + f. — f., — f. has Fourier coefficients a, = 0 for (n, N) = 1,
hence is an oldform of level N [Li], thus orthogonal to f,, f,. This im-
plies {f,, f.} = {fl, f.}, hence {¢,, ¢,} = {¢., ¢.} (since strong multiplicity one
holds for 7. (D%, RX) by [Hi-Sa]. (The argument remains true if one of
o, v is identically 1).

Now o(y,, y,) = (F, 9> is seen to satisfy

ol T(D) = 2,(9) + 2,(4)  (PIN)

(using the expression of f'(p) by Brandt matrices and proceeding as in
the case n = 1), and ¢, ¥ are in & (D%, RX) by assumption.
Thus (with ¢ = ¢,, v = ¢,), p = cp,,, 1.€.,
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0(¥i, ¥) = (F, 9% = clo(yu)y(y,) + o(y)(y.)

for some constant ¢ = c(gp, V) depending on ¢ and . We are now in
the range where the results of part I apply and obtain

¢ = ¢, Res D" (s) + 0
s=1
with

42, 2, HA(N-1,)45"(1)
2¢O(N,, NN COR)E (4N (2)

C‘o =
where Ax(N-1,) = £ [,y p" " s, (D)"1% (by Lemmas 7.3 and 7.4) depends
only on n, N,, N, but not on ¢, . We write

const = const (n, N,, N,)
for any such constant depending only on n, N,, N, in the following.

ProrositioN 10.2. For n =2, ¢,V € (D%, RX), F = Y%, V) we

have
D (F9) = const-Res D) p(r)¥(,) + oy )H()
ii) (F, Fy = const-Res D (s)¢o @ ¥, ¢ @ )

and for n’ > 2

D — 1 Res EL (YO, ¥), 5)

i1l Y™ ¢, ) = const. —F >~ 7
) ((P \lf) Res D}”’(s) s=(n’'-1)/2
s=1

L)) (90, ¥, 1) 2 2
= const.- 2y v 7/ Res  EZ (Y®(o, V), s
oS T o D) e Y 90
Proof. The last fact follows from the first and Theorem 4.1.
¢) n =3, Ris a maximal order, = 1, L(p, 1) = 0.
F = Y¥g, 1) is then a cusp form, we put &% = 9®(I,;). By the same
argument as above we obtain:

ProrositioN 10.3. For n = 3, R, ¢ as above, F = Y®(p, 1) we have:

1) (F, 97 = const-Res D" (s)(p(ys) + o(¥)
ii) (F,F) = const-R?s DP(s)K1® ¢, 1® o>

and for n’ > 3
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iii)  Y™(p,1) = const. 2 W —1) Res E2,,(Y (o, 1), 5
Res D (s)  s=ws

L™(p, n’ — 1)L™(p, n' — 2)
L™(p, 3)L™(p, 2)

X Res B2, (Y(p, 1), 5) .
s=n’/2

= const -

Remarks. 1) The scalar product formulas obtained in all cases are
similar to those of Rallis [Ral] relating Petersson norms of forms on the
orthogonal group and of their theta liftings. The formulas for Y (g, ),
n’ > n are in a sense generalizations of Siegel’s theorem: They exhibit
a linear combination of theta series as (residue of) an Eisenstein series.

2) In the results described above, there is one point missing: In
Proposition 1 there is no statement (iii) like in Propositions 2 and 3. Here
we can only obtain a somewhat weaker result for Y"(¢, ¢), which however
will be essential in future applications. First we remark that Theorem
4.1 remains valid under the weaker assumption (n + n’ + 1)/2 — k> 0,
so we can apply it for n =1, F = Y¢p, ¢), ¢ € &, (DX, RY) and n’ > 3.
For n’ = 2 we can use Corollary 3.1.

We have to observe now that on the right hand side of (4.1) theta
series arising from all Eichler orders of level N —not only from the one
we are considering—may give nontrivial contributions (note that theta
series of Eichler orders of level #+ N are orthogonal to F by Lemma 1 of
section 9).

We obtain then:

ProrosiTiON 10.4. For Ni|N having an odd number of prime factors
denote by D(N)) the definite quaternion algebra over Q ramified at c and
the primes dividing Ni, unramified at all other places, and by R(N7) an
Eichler order of level N in D(N7). Denote further by % e o  (D(NDX,
R(N))Y) the (unique) function in .f,.,(D(NDX, R(NDYX) satisfying YP(p™9,
") = F. Then

) ) ) DW)(n’ —1)
Y™ (o@D WD) = const-——* - — ) Res E2(F,s
e e DI i )

for n’ >3,
37 Y®(pWD, W) = const-(E}(F, 0)) .

NiIN
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For future reference, we finally state the proposition above for n’ = 2
in a slightly different (but equivalent) form with ¢, F, N,, N,, N| as above,
Fy =G, (p(y))e) '+ F, l:= number of primes dividing N. Then

with

F#((7 ) =abr@ 3 Yo, 0*02)
X NN

( 1) [+ p)te™@)-.

PIN

In subsequent work we shall show that the arithmetic version of the
identity above (i.e. the corresponding identity between the Fourier coeffi-
cients of both sides) implies a version of Waldspurger’s formula for val-
ues of twisted L-series.
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