
BULL. AUSTRAL. MATH. SOC. 20F05

VOL. 49 (1994) [499-511]

PERMUTATION REPRESENTATIONS OF THE
(2,4,r) TRIANGLE GROUPS

BRENT EVERITT

The abstract triangle groups A(2,4,r) can be denned for any positive integer r
by A(2,4,r) = (x,y \ x1 = y* = (xy)r = 1). In this paper we show that for
every r }} 6, all but finitely many of the alternating groups An can be obtained
as quotients of A(2,4,r).

1. INTRODUCTION

For positive integers p, q and r we can define the abstract triangle groups A(p, q,r)
by

A(p,g,r) = {x,y | x" = y* = (xy)r = 1).

These arise most naturally in the study of the geometry of discrete groups (see Coxeter
[5] or Lyndon [6]). For instance, it is well known that if

then A(p, q,r) corresponds to the group of automorphisms of a tessellation of the
hyperbolic plane by triangles with angles 7r/p, 7r/g and n/r.

Some years ago, Graham Higman showed that for all but finitely many n, the
alternating group An can be obtained as quotients of both the triangle groups A(2,3,7)
and A(2,4,5). His method (which remained unpublished) involved the use of a small
number of what were basically coset diagrams, together with a technique for combining
diagrams to obtain new ones. His methods were subsequently refined and expanded by
Conder in [1, 2] where he showed that in fact all the groups in the family A(2,3, r), r ^ 7
shared this property. Recently, Mushtaq and Rota obtained a similar result for the
groups A(2,k,l) for all even k ^ 6 , [7]. Their project was continued by Mushtaq and
Servatius in [8] where the result was established for A(2,p, q) with prime p ^ 5 and
q ^ 5p - 3.
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The technique of all these authors was to draw diagrams in the manner discussed
in the next section for the groups A*(2,p, 9) denned by

A*(2,p,q) = (x,y,t \x2=y>> = (xy)" = i2 = [xtf = (yt)2 = 1).

The result was obtained by showing that all but finitely many of the symmetric groups
Sn could be obtained as quotients of the group A*(2,p, q).

There has also been some interest in whether certain quotients of A*(2, q,r) possess
this property. In particular the groups Gk>l'm can be defined by

Gk'l'm = {x,y,t \x2=yk = (xy)1 = t2 = (xt)2 = (yt)2 = (xyt)n = 1)-

In [3, 4] Conder showed that the groups GM>6 and G3-7-168 yield as quotients all but
finitely many of the alternating groups An. An open question that remains is what is
the smallest value of m such that G3'7'm has this property.

All these results used Higman's original method with coset diagrams. The same
approach is used in this paper to show the following:

THEOREM 1. For every r ^ 6 all but finitely many of the alternating groups An

can be obtained as quotients of the triangle groups A(2,4,r) .

2. DIAGRAMS, HANDLES AND COMPOSITION

We shall use Higman's method by drawing diagrams to illustrate transitive per-
mutation representations of the groups A*(2,4,r). A method for combining diagrams,
called composition, will then create new representations for A*(2,4,r).

Given a permutation representation of A*(2,4,r) to Sn , we depict the action of
the generators x,y and t on the set {1,2,... , n} by drawing a diagram with n vertices
in the following way:

• 4-cycles of y are represented by 4-gons permuted in an anticlockwise direc-
tion, transpositions of y by circular 2-gons whose endpoints are swapped,
and fixed points of y by heavy dots,

• a transposition (a, b) of x is represented by an arc connecting the vertices
a and b,

• the action of t is represented by a reflection in the vertical axis of sym-
metry.

As an example, the diagram in Figure 1 illustrates a transitive permutation repre-
sentation of A*(2,4, 7) of degree 14, where

• x acts as the permutation (3,7)(4,5)(6,10)(8,12)(ll,13),
• y acts as (1,2,3,4)(5,6)(7,8)(9,10,11,12)(13,14), and
• t acts as (l,2)(3,4)(5,7)(6,8)(10,12).
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Figure 1

Note how the diagram is planar and consists of two 'faces' (one in the interior and
one on the outside). It may be useful in the future to note that the sum of the number
of polygonal sides and fixed points of y included in each face divides the order of xy.
The reader should note that in figure 1 this sum is equal to seven for each face.

In future when there is no ambiguity we shall drop the numbering from our dia-
grams.

To obtain transitive permutation representations for all but finitely many n, we
shall use a small collection of basic diagrams together with a technique for 'pasting'
diagrams together to obtain new ones. To this end, all of our basic diagrams will
possess the property that they contain two points, a and b, such that a and 6 are
fixed by the action of x, and both y and t map a to b. We shall call such a structure
a handle and denote it by [a, b] . Diagrammatically, a handle appears on the vertical
axis of symmetry. In figure 1 for instance, [1,2] forms a handle.

Let us suppose then, that we are given two diagrams for A*(2,4,r) of degree n
and m, say U and V, containing handles [a,6]u and [a',6']v respectively. We form the
composition, UV, of U and V by placing U and V one above the other on the vertical
axis of symmetry and adding arcs connecting a to a' and 6 to b'.

It is not too difficult to see that the resulting diagram depicts a transitive
permutation representation for A*(2,4,r) of degree n + m. Firstly, the relations
x2 — yA = t2 — (xt) = (yt) = 1 are clearly still satisfied. Also if (abci . . . cn )
and (a'b'di ... drj) are the cycles of xy in U and V respectively that pass through the
handles of each diagram, then in UV these become (ab'ci... c n )(bdi ... d,^ a') with all
other cycles of xy unaffected. In particular, xy still has order r in UV.

Later on we shall need to know the cycle structure of the action of the element xyt.
In particular, we shall need to know the effect of composition on this cycle structure.
In a manner similar to the action of xy, the only cycles of xyt that are effected by
composition are those that pass through the handles of the respective diagrams. The
two cycles passing through b and b' in U and V are juxtaposed while the fixed points
a and a' are joined to form a transposition.

3. THE DIAGRAMS AND CYCLE STRUCTURES

For each value of r ^ 6 we shall use three basic diagrams P(r), Q(r) and R(r) each
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of which will depict a permutation representation of A*(2,4,r). In the diagrams P(r)
and Q(r), x,y and t will act as even permutations while in the diagram R(r), x and
y will be even and t will be odd. These will then be joined together by composition
in a way that will give transitive permutation representations for A*(2,4,r) onto Sn

for all but finitely many values of n. Of course, we cannot present infinitely many
diagrams, one for each value of r ^ 6. Instead we shall use a special technique first
used by Conder in [2] and will adopt the notation used by him there.

Our first task will be to consider the positive integers modulo eight and give dia-
grams P(k + 8d), Q(k + 8d) and R(k + 8d) for k G {6, 7,8,.. . , 12,13} and d a positive
integer.

In the diagrams Figures 2 — 10, the 'cross' symbol <g> stands for h 2-cycles (that
is: h circles), for those values of h stipulated below the diagram. For instance, Figure
2 shows the diagram P(6 + 2/i + 8<£) for h = 0,1,2,3. Adding 0,1,2 or 3 circles at
each crossed position yields the four diagrams P(6 + 8d),P(8 + 8d),P(10 + 8d) and
P(12 + 8d).

Once this has been done where appropriate we get 24 diagrams in total, a
P(k + 8d), Q(k + 8d) and R(k + 8d) for each value of k £ {6,7,... , 12,13}.

The 'pod' symbol C "̂  in Figures 2—10 stands for a string of d 4-cycles
of y (that is: d squares). Since each 'face' in the basic diagrams has four such con-
figurations adjacent to it (two contained in the face and two contained in a bordering
face), the effect will be to add 8d polygonal sides on to each face. This means that the
new diagram will represent a permutation representation for A*(2,4, k + 8d), since xy
will now have order k + 8d.

Hence we obtain our three diagrams P(r),Q(r) and R(r) for all r ^ 6.

Figure 2. Diagram P(6 + 2h + 8d) h = 0,1,2,3 24 + 8h + 32d vertices
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Figure 3. Diagram P(7 + 2h + 8d) h = 0,1,2,3 42 + 12/i + 48d vertices

Figure 4. Diagram Q(6 + 2h + 8d) h = 0,1,2,3 25 + 8/i + 32<£ vertices
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Figure 5. Diagram Q(7 + 2* + 8«Q h = 0,1,2,3 43 + 12ft + A8d vertices

Figure 6. Diagram R(6 + 2h + 8d) h = 0,2 61 + 20h + 80d vertices
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Figure 7. Diagram R(8 + 2h + 8d) h = 0,2 32 + 8/i + 32d vertices

Figure 8. Diagram R(7 + 8d) 28 + 32d vertices

rO- -CK
a b

O
Figure 9. Diagram R{9 + 2h + 8d) h = 0,l 20 + 4/i + lQd vertices
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Figure 10. Diagram R(13 + 8d) 28 + 16d vertices

Before moving on to the proof of the theorem, it will be useful to take note of
the cycle structures of the element xyt in each of our diagrams. Although there are
infinitely many we are helped by the fact that for d ^ 2, the addition of d squares at
the appropriate positions in each diagram only results in the creation of 2-cycles and
6-cycles in the cycle structure of xyt. Specifically, each symmetric pairing of pods gives
rise to a 2-cycle and a 6-cycle for each value of d ^ 2.

The cycle structures are listed in Table 1 at the end of the paper, where each number
represents a cycle in xyt of that length and repetitions are denoted by exponents. The
positions of the handles [a, 6] in each cycle structure have been shown, and certain
prime cycles have been highlighted for future use. For instance, if we take the diagram
in Figure 2 with h = 0 and d = 0 we get a cycle structure of xyt with the points a, a'
and a" fixed, b, b' and b" contained in three 4-cycles, and the remaining cycle structure
comprising a five cycle and a fixed point.

4. THE PROOF OF THE THEOREM

The proof of Theorem 1 relies heavily on the following theorem of Jordan (see
Wielandt [9]).

THEOREM 2 . Let G be a transitive permutation group on a set of size n such
that G is primitive and contains a p-cycle for some prime p < n — 2. Then G is either
An or Sn-

Take I and m to be positive integers with m ^ 1. We shall now utilise our diagrams
by forming a 'chain' of I + 1 copies of P(k + 8d), m + 1 copies of Q(k + 8d) and one
copy of R(k + 8d).

To this end, for k = 6,10 and 11, form a chain of / copies of P(k + 8d) by joining
each handle [a, b]P to the next handle [a',b']P. Each P(k + 8d) in this chain will then
have one free handle remaining, namely [a",b")P (except the first and last diagram in
the chain which will have two free handles each—but more on that later). Then attach
771 copies of Q[k + 8d) to this chain by joining [a, b]q to [a",b"]P.

For k — 7,9 and 13 chain the P(k + 8d) together by joining [a,b]P to [a",b"]P

and attach the Q(k + 8d) by joining [a,b]Q to [a',b']P. For k = 8 and 12, join [a',b']P

to [a",b"]P and [a,b]Q to [a,b]P.
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In any case, once this has been done attach one more copy of P(fc + 8d) to one
end of the chain of P's and one more Q(k + 8d) to this P .

Finally, attach one copy of R(k + 8d) to the whole structure in the following way.
If fc = 6,10 or 11 attach R(k + 8d) to the bottom P(k + 8d) in the chain by joining
[a,b]R to the free handle [a',b']P. For k = 7,8,9,12 or 13 attach R(k + 8d) to the top
P(fc + 8d) in the chain by joining [a, b]R to [a' ,6']p.

Let us now use P, Q and R to denote the number of vertices of the diagrams
P(k + 8d),Q(k + 8d) and R(k + 8d), for any choice of k and d.

By the above process we obtain a diagram S(k + 8d) for A*(2,4, k + 8d) that has
(I + 1)P + (771 + 1)Q + R vertices, where / and m are positive integers with m $J I.

Observe that for fc = 6,8,10 or 12, and fixed d, we get P = 24 + 4(fc - 6) + 32d and
Q = 25+4(fc - 6)+32d. Similarly, for k = 7,9,11 or 13, we have P = 42+6(Jfc - 7)+48<Z
and Q = 43 + 6(fc - 7) + 48d.

In either case (for any fixed k and d) P and Q differ by one and hence are
relatively prime.

Since any sufficiently large integer can be expressed in the form n = (I + 1)P -f-
(m + 1)Q+R for some I and m ^ I, we now have transitive permutation representations
of A*(2,4,r) of degree n for all but finitely many n.

In order to take advantage of Theorem 2, the reader should note that for fixed
fc 6 { 6 , 7 , . . . , 12,13} and any fixed d, the structure of xyt in one of the diagrams
P(fc + 8d),Q(k + 8d) or R(k + 8d) contains a cycle of prime length. Furthermore, this
prime cycle has length not dividing the order of any other cycle in the resulting diagram
5(fc + 8d). Hence, there exists an integer s such that (xyt)' is just a power of this
prime cycle. These prime cycles have been highlighted in the cycle structures given
in Section 3. Note also that for some values of fc and d, these prime cycles arise
through cycles including points from handles being juxtaposed through composition in
the construction of 5(fc + 8d).

We now have all the hypotheses for Theorem 2 except for primitivity. Suppose that
the representation depicted by S^r) is imprimitive. Then all the points of the prime
cycle (xyt)' must lie in the same block B of imprimitivity. The reader can check that
every prime cycle highlighted in Section 3 contains a point and its image under the
action of x, a point and its image under the action of y, and a fixed point of t. (The
last of these assertions is clear since the distrubution of points in any cycle of xyt must
be symmetric about the <-axis.) Hence x,y and t all fix the block B, contradicting
imprimitivity.

Finally, recall that the diagrams R(r) depict representations with t acting as an
odd permutation. By Theorem 2, we deduce that the permutation group depicted by
S(r) is the symmetric group Sn • However, x and y yield even permutations in Sn and
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since the subgroup < x, y > has index two in A*(2,4,r) we obtain the desired result.

This completes the proof of Theorem 1.

COROLLARY 3 . For any fixed r ^ 6, all but finitely many of the symmetric

groups Sn can be generated by elements x, y and t that satisfy

x2 = y4 = (xy)r = e = {xt)2 = (yt)2 - 1,

and all but finitely many of the alternating groups An can be generated by elements x

and y that satisfy
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TABLE 1

Diagram

P(6 +

d=\
d>2

P(7 +

d = l
d > 1(

P(8 +

d = l
d> 2

P(9 +

d = 1
d> 2

P(10-

d = 1
d> 2

P(l l -

O
 

rH
 

C
M

II 
II A

l
13 

13 
-a

P(12

d = l
d>2

P(13

d= 1
d > 2

<?(6 +
<f=0
d = l
d > 2

8d)

8d)

8d)

8d)

f 8d)

f 8d)

f 8d)

f 8d)

8d)

Cj/c/e Sfntcture

aa'o"(64)(6'4)(fe"4)15
a a1 a" (63)(b'3)(6"8) 124 42 52 9
a a' a" (63)(6'3)(i"7) 1 28+4(d"2) 42 54 64(d-2) 83

aa'a"(65)(6'5)(6"14)210
a a' a" (68)(6'9)(6"3) 1 27 32 43 1516
a a' a" (65)(6'5)(6"3) 213+6(d-2) 32 43 5 66(d-2) 85 1416

aa'a"(636"3)(i'7)162

aa'a"(63)(6'3)(6"7)124428102

a a' a" (63)(6'3)(6"7) 128+4(d-2) 42 52 64(d-2> 83 92

ao'a"(618)(6'76"7)2 72

a a1 a" (621)(6'5)(6"17) 27 3 43 5 811
a a' a" (65)(6'5)(6"7) 213+6(d"2) 3 43 66(d"2) 7 84 1419

aa'a"(68)(6'8)(6"8)19
a a' a" (63)(b'3)(6"12) 124 42 9213
a a' a" (63)(6'3)(6"11) 1 28+4(d"2) 42 52 64<"-2) 82 9212

aa'a"(69)(6'9)(6"22)218
a a' a" (613)(6'13)(6"7) 27 3 43 7 19 20
a a' a" (65)(6'9)(6"7) 213+6(d-2) 3 43 66(d~2> 7 84 9 1214 20

aa'a"(63)(t'3)(6"ll) 1 24 42 12 142

a a' a" (63)(6'3)(6"11) 128+4(d"2) 42 52 64<"-2) 8212132

aa;a"(626)(6'116"ll)2112

a a' a" (625)(6'9)(6"21) 27 3 43 9 12 15
aa'a"(65)(6'9)(6"ll) 213+6(d-2) 343 66(d-2) 84 9 1112 14 24

o(65)567
a(69)24343729
a (65) 28+4(d"2) 3 43 61+4<d-2> 73 83
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d=0
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Q(13-
d=0
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R(6 +

d = l
d> 2

R{7 +

a.
 

ft
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ft
.

IV
 

II 
II

to
 

H
 

o

8d)

Sd)

Sd)

f Sd)

tSd)

f8d)

f Sd)

Sd)

8d)

a(65)8142

o(69)26324357192

a (65) 212+6(d-2) 32 43 53 66(d-2) 7 84 182

a(68)729
a (612) 24 3 43 7813
a (65) 28+4(d-2) 3 43 61+4(d-2> 7 83112

o(618)7820
a(623)2632435812 23
a (65) 212+6(d"2) 32 43 53 e6^"2) 84 11 222

a (69) 91011
a(613)2 4 34 3 l l 2 13
a (65) 28+4<d-2) 3 43 61+4(d-2) 82113 12

a(69)12 222

a(613)263243511272

a (65) 212+6(d-2) 32 43 53 66(d-2> 83 1112 262

a (612) I I 2 1 3
a(616)243431112l7
a (65) 28+4(d-2' 3 43 61+4(d~2) 821112152

o(626)111228
a(631)26324351216 31
a (65) 212+6(d"2) 32 43 53 66<d-2) 83 1215 302

a(64)245681217
a (b8 )12 n 3 4 4 5 58910121418
a (65) 1221+10<ci-2> 34 45 53 e^1 0^-2) 73 87111416

a (63) 6211
a(63)24435103

a (63) 28+4(d-2) 43 5 62+4(d-2> 84 10
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R(8 +
d = 0
d=l
d>2

R(9 +

d= 1
d>2

iZ(10H
d = 0
d=l
d>2

-R(1H

d = 1
d>2

12(12 H

d= 1
d> 2

R(lZ-\

d= 1
d>2

Sd)

Sd)

h8d)

hSd)

-8d)

-8d)

o(65)33511
o(69)2433425710
a (65) 28+4(''-2) 33 42 52 62^d~2) 83 10

a (67) 11
o(611)223412
a (65) 24+2(d-2) 3 4 62(d-2> 81012

a(68)128910 12 20 29
a (bl2) 1 211 34 45 9 1213 14 16 22 26
a (65) 1221+1°(d-2) 34 4s 52 61+10(d-2) 7 85 9 II2 122 15 22 24

a (69) 13
a (613) 22 3 414

a (68) 32 5 719
a(613)2433425 61118
a (65) 28+4(d-2) 33 42 5 62+4^-2) 82 91218

a(69)5 62

a (613) 22 3 4 63
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