Netherlands Journal of Geosciences

www.cambridge.org/njg

Original Article

Cite this article: Enters D, Haynert K, Wehrmann A, Freund H, and Schlütz F. A new ΔR value for the southern North Sea and its application in coastal research. *Netherlands Journal of Geosciences*, Volume 100, e1. https://doi.org/10.1017/njg.2020.19

Received: 29 June 2020 Revised: 3 December 2020 Accepted: 3 December 2020

Keywords:

radiocarbon dating; marine reservoir effect; Wadden Sea; WASA; *Mytilus edulis*; *Cerastoderma edule*

Author for correspondence:
Dirk Enters, Email: enters@nihk.de

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new ΔR value for the southern North Sea and its application in coastal research

Dirk Enters¹, Kristin Haynert², Achim Wehrmann², Holger Freund³ and Frank Schlütz^{1,4}

¹Niedersächsisches Institut für historische Küstenforschung, Viktoriastraße 26–28, 26382 Wilhelmshaven, Germany; ²Senckenberg am Meer, Südstrand 40, 26382 Wilhelmshaven, Germany; ³Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität, 26111 Oldenburg, Germany and ⁴Department of Palynology and Climate Dynamics, Albrecht von-Haller Institute for Plant Sciences, Georg-August University, 37073 Göttingen, Germany

Abstract

Accelerator mass spectrometry (AMS) radiocarbon (14 C) dating of *Cerastoderma edule* (Linnaeus 1767) and *Mytilus edulis* (Linnaeus 1758) shells sampled in AD 1889 near the island of Wangerooge gave a new local correction factor ΔR of -85 ± 17 14 C years for the Wadden Sea area. The value is considerably higher than the available scattered data from the North Sea, which were obtained from pre-bomb growth rings of living *Arctica islandica* (Linnaeus 1767). This can be explained by the incorporation of 14 C-depleted terrestrial carbon into the shell material which compensates the intensified exchange of CO_2 between atmosphere and shallow coastal water, e.g. by tidal currents. Additionally, two examples of application of the new ΔR value in coastal research give deeper insights into the dynamics of bivalve shell preservation in the Wadden Sea and the need for further research to clarify the Holocene reintroduction of *Mya arenaria* (Linnaeus 1758) into European waters.

Introduction

Radiocarbon dating of marine material such as bivalve shells or foraminifera tests requires an estimate of the marine reservoir effect, because the carbon reservoir of the oceans is depleted in $^{14}\mathrm{C}$ compared to the atmosphere (Stuiver et al., 1986; Stuiver and Braziunas, 1993; Alves et al., 2018). This leads to discrepancies between radiocarbon ages for marine and terrestrial material of the same calendar age, the marine samples appearing on average 400 $^{14}\mathrm{C}$ years older. For the mixed surface layer of the oceans, a global marine calibration curve exists (Marine20; Heaton et al., 2020). However, regional differences need to be corrected by including a specific offset ΔR (Stuiver et al., 1986; Reimer & Reimer, 2017). Rapid atmospheric $^{14}\mathrm{C}$ changes are dampened in marine waters and the marine calibration curve appears 'smoothed' relative to the atmospheric one. Hence, the use of the marine calibration curve in combination with a local correction factor ΔR should be preferred over the use of the terrestrial calibration curve with a generalised estimated age correction for the marine reservoir effect (Reimer & Reimer, 2001).

The local offset ΔR can be determined by ^{14}C dating of pre-bomb (commonly pre-AD 1955) material either from long-lived species with an 'internal' age control by annual growth bands (e.g. corals or bivalves) or from specimens of museum collections with known collection date. To go deeper in time, the dating of reliable paired marine and terrestrial material obtained from the same chronostratigraphic context can be used (e.g. Facorellis et al., 2016).

For the North Sea area, available ΔR values show ambiguous results. In the Calib database (www.calib.org/marine), the closest ΔR values available for the German Wadden Sea area are data obtained from a living *Artica islandica* (Linnaeus 1767) individual collected in the German Bight (Weidman, 1995). Accelerator mass spectrometry (AMS) ¹⁴C dating of annual pre-bomb growth rings (AD 1948, 1950 and 1954) of this long-lived bivalve resulted in ΔR values ranging from -189 ± 33 to 92 ± 116 years. This corresponds to reservoir ages between 219 and 488 ¹⁴C years. In the Oyster Ground area (southern North Sea), Witbaard et al. (1994) measured ΔR values between -473 ± 74 and -120 ± 60 ¹⁴C years for another *Arctica islandica* specimen. Finally, in fjords in northwestern Denmark, ΔR values obtained from several bivalve species vary from -32 ± 57 up to 375 ± 63 ¹⁴C years (Heier-Nielsen et al., 1995). Therefore, a calendar age difference in the range of several hundred years must be expected for a marine ¹⁴C date depending on the chosen reference for ΔR . This is particularly important when studying human-environment developments with possible leads and lags (Ascough et al., 2016).

Although coastal research, especially the reconstruction of former sea levels, largely relies on radiocarbon dating of inundated terrestrial material (e.g. basal peats; Meijles et al., 2018), dating of marine material is inevitable when reconstructing the dynamics of the sedimentation processes of the overlying marine sediments (e.g. Elschner et al., 2020). Here, terrestrial material is sparse or reworked, and often marine organisms that build calcium carbonate shells are the

2 Dirk Enters *et al*.

Fig. 1. Map of the southern North Sea area with the islands of Norderney (N), Langeoog (L), Spiekeroog (S) and Wangerooge (W). Additionally, locations are shown for which previous ΔR data are available: German Bight (green dot; Weidmann, 1995), Oyster Ground (blue dot; Witbaard et al., 1994) and Limfjorden (red dots; Heier-Nielsen et al., 1995). Crosses mark the positions of *Mya arenaria* shells of Essink et al. (2017). Data sources: DTM: EMODnet Bathymetry Consortium (2018) (http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6); coastline: EEA (www.eea.europa.eu/data-and-maps/data/); borders: Natural Earth (https://www.naturalearthdata.com).

Fig. 2. Glas cylinder with the original, sealed bivalves sampled in AD 1889 around the island of Wangerooge (A) and close-up views of the dated specimens Cerastoderma edule (B) and Mytilus edulis (C). Scale in mm (photographs (B) and (C) by Rolf Kiepe, NIhK).

only available material for ¹⁴C dating. Recently, transfer functions for relative sea-level changes based on assemblages of benthic foraminifera and ostracods have been established (e.g. Scheder et al., 2019). Sea-level reconstructions based on this approach also rely on ¹⁴C dating of marine material for chronological control.

Within the WASA project (Bittmann et al., 2021) more than 60 samples of marine organisms have been 14 C dated in order to reconstruct coastal dynamics around the East Frisian island of Norderney. Thus, a local ΔR value for solid palaeoenvironmental reconstructions of this coastal environment is crucial. For example, suspension feeders such as *Cerastoderma edule* and *Mytilus edulis* may partially incorporate terrestrial carbon from nearby river discharge into the Wadden Sea. Poirier et al. (2019) hypothesise that coastal foraminifera take up 14 C-depleted carbon from terrestrial lignocellulose debris via an unexplored pathway involving bacteria.

Thus, a considerable ΔR offset in carbonate shells of the Wadden Sea from the global marine calibration curve can be expected.

In this study, we present results of 14 C datings of shells from two bivalve specimens collected in the 19th century and demonstrate two exemplary applications of the obtained ΔR value.

Methods

At the Landesmuseum Natur und Mensch, Oldenburg, Germany, several juvenile specimens of *Cerastoderma edule* and *Mytilus edulis* (zoological taxonomy follows WoRMS, www. marinespecies.org) sampled in AD 1889 near the island of Wangerooge (Fig. 1) are stored in a sealed glass cylinder in a mixture of ethanol, glycerine and water (Fig. 2). In 2018, the original seal was broken and one specimen of each species was withdrawn. These were

Table 1. Reported 14 C ages of two bivalves collected in AD 1889 with resulting regional offset ΔR from the global marine calibration curve Marine20. Please note that an earlier reported value of ΔR based on the Marine13 calibration curve (Reimer et al., 2013) is 74 ± 16 14 C years (Elschner et al., 2020).

Lab code	Species	¹⁴ C age (¹⁴ C years)	¹⁴ C error (1σ)	δ ¹³ C (‰)	ΔR (¹⁴ C years)	Δ R error (1 σ)
Poz-103589	Mytilus edulis	530	30	-0.5 ± 0.9	-95	30
Poz-103590	Cerastoderma edule ^a	544	21	-1.7 ± 0.5	-81	21
combined		540	17		-85	17

^aThis sample was dated with improved precision using two cathodes at the AMS laboratory in Poznań (573 ± 26 and 511 ± 27 ¹⁴C years, respectively).

cooked in distilled water to remove the soft parts and the preserving agent. The shells were submitted to the Radiocarbon Laboratory, Poznań, Poland, where the ventral margin of one shell of each species was used for AMS ^{14}C dating. The pre-treatment of samples included the removal of organic coatings and the outer carbonate layers with H_2O_2 and HCl, respectively. CO_2 from the remaining material was obtained in a vacuum line by leaching with concentrated H_3PO_4 and was then reduced with H_2 to prepare an AMS target. The IAEA C1 Carrara Marble was used as background sample.

The shell of *Cerastoderma edule* was measured with improved precision, i.e. two cathodes were prepared, analysed and the data averaged by the Radiocarbon Laboratory in Poznań.

The resulting 14 C dates were used to calculate the local reservoir effect for the German Wadden Sea using the online application at http://calib.org/deltar/. Both 14 C dates were combined using equations given by Ward & Wilson (1978) by calculating a weighted mean, and the ΔR value of this combined age was determined in the same way.

Results and discussion

The obtained 14 C ages for *Mytilus edulis* (530 \pm 30 14 C years; Table 1) and *Cerastoderma edule* (544 \pm 21 14 C years) are statistically similar (X²-test in Oxcal 4.3; Bronk Ramsey, 2009) and justify the calculation of a weighted mean. Similarly, Ascough et al. (2005) found no significant difference in the 14 C ages of several mollusc species from a distinct archaeological layer in Scotland. The resulting Δ R value of -85 ± 17 14 C years (Table 1) represents the first estimate of the local marine reservoir effect for the German Wadden Sea area and corresponds to a reservoir age of 427 14 C years.

This new ΔR value differs considerably from the previously available ΔR values of Weidman (1995) and Witbaard et al. (1994) for the German Bight and the Oyster Ground with weighted averages of -160 ± 93^{-14} C years and -261 ± 155^{-14} C years, respectively. These negative ΔR values imply the incorporation of carbon slightly enriched in 14C (and hence reservoir ages <400 ¹⁴C years), which can be explained by the hydrographical characteristics of the southern North Sea (Scourse et al., 2012). In these shallow waters and with relatively high primary production rates an enhanced exchange with the atmosphere takes place and the carbon reservoir of the sea water is comparably small. Located closer to the Strait of Dover, the Oyster Ground might be more affected by the inflow of Atlantic surface water into the North Sea. In contrast, the German Bight is affected by freshwater inflow from the Elbe, leading to lower salinity values (Janssen et al., 1999) and probably influencing the ¹⁴C content by water depleted in ¹⁴C (e.g. hardwater effect; Scourse et al., 2012). Philippsen (2013) reports reservoir ages of c.1900-3000 ¹⁴C years from water dissolved inorganic carbon (DIC) of the Alster, a tributary of the Elbe. Reservoir effects of similar magnitude exist for the Waal, the main distributary branch of the Rhine (Lanting & Van der

Plicht, 1998). A riverine influence may cause the less negative ΔR value obtained from the German Bight compared to the Oyster Ground.

In addition, the large variability within the data from the German Bight and the Oyster Ground is striking. In both studies, growth bands of *Arctica islandica* were analysed and showed variations of >100 14 C years in ΔR within one or two decades. It is speculative if this variability can be attributed solely to actual changes in the reservoir age of the North Sea water, possibly due to changing current regimes, or if larger uncertainties in the early days of AMS- 14 C dating also play a certain role (e.g. Chen et al., 2011).

Even though an intense mixing by tidal currents in the Wadden Sea should favour an atmosphere—sea CO_2 exchange, the new ΔR value obtained near the island of Wangerooge is considerably higher than at the two offshore sites. This might be because of a higher contribution of old, ¹⁴C-depleted terrestrial/fluvial carbon to the marine DIC, for example by CO_2 originating from the decomposition of organic sediments such as peat (Lanting & Van der Plicht, 1998). Although all three bivalve species discussed here are suspension feeders, species effects may likewise play a role, e.g. differences in the contribution of metabolic carbon to the shell carbonate. Gillikin et al. (2006) report a variable percentage (between 0 and 10%) of metabolic carbon in shells of *Mytilus edulis*, whereas this percentage seems to be more constant and close to the theoretically derived 10% for *Arctica islandica* (Beirne et al., 2012).

For a specific location, ΔR values are generally assumed to be constant in time (Hua, 2013) due to the lack of data. However, models suggest a large temporal variability of several hundred years for the regional marine reservoir effect during the late Quaternary (Franke et al., 2008). Regarding the use of marine ^{14}C dates for the Wadden Sea, even variations of a few decades can be crucial (see applications below). Tisnérat-Laborde et al. (2010) have used ^{14}C analyses of mollusc shells collected between AD 1823 and 1952 mainly from the French Atlantic coast to infer changes in the marine reservoir effect. They report a mean ΔR value of -7 ± 50 ^{14}C years for the pre-anthropogenic period and considerable variations of the marine reservoir age from around 90 to 170 ^{14}C years for the period between AD 1885 and 1950. These differences are correlated to changes in ocean currents and therefore in reservoir sources.

Given the large but often non-catalogued collections in natural history museums in Germany and across Europe, there seems to be ample opportunity for future research on this topic.

Applications

1 Dating of marine bivalves from sediments of the East Frisian Islands

Within the WASA project (Bittmann et al., 2021), 38 of the more than 60 AMS ¹⁴C-dated marine samples were bivalve shells (Table 2) with both valves still attached and partly occurring in

Dirk Enters *et al.*

Table 2. Compiled ¹⁴C dates of bivalves for the Wadden Sea area of the East Frisian Islands. pMC: percentage of modern carbon.

1 HV22944 Myro amenia 715 55 H. Freund, ICBM Withelmstuven 2 HV22947 Scrobicularia plano 780 65 H. Freund, ICBM Withelmstuven 4 HV22948 Myro amenia 880 55 H. Freund, ICBM Withelmstuven 6 HV24977 Cerostoderma edule 1030 45 H. Freund, ICBM Withelmstuven 6 HV24976 Cerostoderma edule 1210 45 H. Freund, ICBM Withelmstuven 7 HV22846 Myro subrunceta 1435 75 H. Freund, ICBM Withelmstuven 8 AA13211 Cerostoderma edule 631 59 Behrends et al., 2003 10 AA13223 Cerostoderma edule 77 52 Behrends et al., 2003 11 AA13226 Cerostoderma edule 77 52 Behrends et al., 2003 13 Por 97967 Branea candida 1015 pM C 0.34 WASA project 14 Por 97987 Branea candida 1015 pM C 0.34 WASA project 14 Por		Lab code	Species	¹⁴ C age (¹⁴ C years)	Error (¹⁴ C years)	Project/reference
3 InV 22948 Ayo arenaria 800 55 H. Freund, ICBM Wilhelmshaven 4 HV 22945 Ayo arenaria 840 75 H. Freund, ICBM Wilhelmshaven 5 HV 24576 Cerostoderma edule 1030 45 H. Freund, ICBM Wilhelmshaven 6 HV 24576 Cerostoderma edule 1210 45 H. Freund, ICBM Wilhelmshaven 7 HV 22946 Alya subtruncata 1435 75 H. Freund, ICBM Wilhelmshaven 8 AA13211 Cerostoderma edule 631 59 Behrends et al., 2003 10 AA13223 Cerostoderma edule 599 52 Behrends et al., 2003 11 AA13226 Cerostoderma edule 737 52 Behrends et al., 2003 12 AA13228 Cerostoderma edule 737 52 Behrends et al., 2003 14 Poz-9397 Barnac condido 101.51 pM C 0.34 WASA project 15 Poz-93918 Arias silipa 133.45 pM C 0.33 WASA project 15 <t< td=""><td>1</td><td>HV-22944</td><td>Mya arenaria</td><td>715</td><td>55</td><td>H. Freund, ICBM Wilhelmshaven</td></t<>	1	HV-22944	Mya arenaria	715	55	H. Freund, ICBM Wilhelmshaven
4 INV 2294S Mya arenoria 840 75 H. Freund, ICBM Withelmshaven 5 HV 24577 Cerastoderma edule 1030 45 H. Freund, ICBM Withelmshaven 6 HV 24576 Cerastoderma edule 1210 45 H. Freund, ICBM Withelmshaven 7 HV 22946 Mya subtractor 1435 75 H. Freund, ICBM Withelmshaven 8 A112211 Cerastoderma edule 631 99 Behrends et al., 2003 9 AA12213 Cerastoderma edule 589 52 Behrends et al., 2003 11 AA13225 Cerastoderma edule 737 52 Behrends et al., 2003 12 AA13226 Cerastoderma edule 1737 52 Behrends et al., 2003 14 Poz-39535 Mya arenara 100.79 pM C 0.34 WASA project 14 Poz-39536 Erastoderma edule 113.45 pM C 0.35 WASA project 15 Poz-39531 Erastoderma edule 113.45 pM C 0.35 WASA project 16 <t< td=""><td>2</td><td>HV-22947</td><td>Scrobicularia plana</td><td>760</td><td>65</td><td>H. Freund, ICBM Wilhelmshaven</td></t<>	2	HV-22947	Scrobicularia plana	760	65	H. Freund, ICBM Wilhelmshaven
5 HV 24577 Coractodorma edule 1030 45 H, Freund, ICBM Wilhelmshawen 6 HV 24576 Coractodorma edule 1120 45 H, Freund, ICBM Wilhelmshawen 7 HV 22966 Mylo subtrancato 1435 75 H, Freund, ICBM Wilhelmshawen 8 AA13211 Coractodorma edule 631 59 Behrends et al., 2003 9 AA13223 Coractodorma edule 2018 56 Behrends et al., 2003 10 AA13223 Coractodorma edule 2112 55 Behrends et al., 2003 11 AA13226 Coractodorma edule 737 52 Behrends et al., 2003 12 AA13226 Coractodorma edule 737 52 Behrends et al., 2003 13 P0e 37987 Borne coraclida 101,5 pM C 0.34 WASA project 14 P0e 379818 Enxis siliqua 113.45 pM C 0.35 WASA project 15 P0e 39519 Coractodorma edule 117.74 pM C 0.35 WASA project 16 <	3	HV 22948	Mya arenaria	800	55	H. Freund, ICBM Wilhelmshaven
6 HV 24576 Corastaderma edule 1210 45 H, Freund, ICBM Wilhelmshawen 7 HV 22946 Mya subtruncata 1435 75 H, Freund, ICBM Wilhelmshawen 8 AA13211 Corastaderma edule 631 59 Behrends et al., 2003 10 AA13223 Corastaderma edule 589 52 Behrends et al., 2003 11 AA13225 Corastaderma edule 737 52 Behrends et al., 2003 12 AA13225 Corastaderma edule 737 52 Behrends et al., 2003 13 Poz-97981 Samea candida 101.51 pM C 0.34 WASA project 14 Poz-98935 Mya areania 109.79 pM C 0.34 WASA project 15 Poz-98931 Corastaderma edule 117.74 pM C 0.35 WASA project 16 Poz-98931 Corastaderma edule 123.57 pM C 0.37 WASA project 18 Poz-93517 Corastaderma edule 123.57 pM C 0.36 WASA project 20 Poz-93	4	HV 22945	Mya arenaria	840	75	H. Freund, ICBM Wilhelmshaven
7 HV 22946 Mya subtuncata 1435 75 H. Freund. ICBM Wilhelmshawen 8 AA13211 Carastaderma edule 631 59 Behrends et al., 2003 9 AA13223 Carastaderma edule 589 52 Behrends et al., 2003 11 AA13223 Carastaderma edule 589 52 Behrends et al., 2003 12 AA13226 Carastaderma edule 737 52 Behrends et al., 2003 13 POP-97987 Bamea candido 101-51 pM C 0.34 WNSA project 14 POS-95935 Myo arcenara 109-79 pM C 0.34 WASA project 15 POz-93518 Ensis siliqua 113.45 pM C 0.35 WASA project 16 POz-93519 Carastaderma edule 112.77 pM C 0.35 WASA project 16 POz-93517 Carastaderma edule 123.57 pM C 0.37 WASA project 18 POz-93518 Ensis siliqua 125.67 pM C 0.39 WASA project 19 Poz-93514	5	HV 24577	Cerastoderma edule	1030	45	H. Freund, ICBM Wilhelmshaven
8 AA13211 Cerastoderma edule 631 59 Behrends et al., 2003 9 AA13213 Cerastoderma edule 2018 56 Behrends et al., 2003 10 AA13223 Cerastoderma edule 589 52 Behrends et al., 2003 11 AA13225 Cerastoderma edule 737 52 Behrends et al., 2003 13 Poz-9887 Bomea condida 101.51 pM C 0.34 WASA project 14 Poz-99818 Ensis Siliqua 113.45 pM C 0.34 WASA project 15 Poz-99318 Ensis Siliqua 113.45 pM C 0.35 WASA project 16 Poz-99319 Cerastoderma edule 123.57 pM C 0.37 WASA project 17 Poz-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 18 Poz-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 20 Poz-93514 Myo arenaria 127.84 pM C 0.38 WASA project 21 Poz-93524 <t< td=""><td>6</td><td>HV 24576</td><td>Cerastoderma edule</td><td>1210</td><td>45</td><td>H. Freund, ICBM Wilhelmshaven</td></t<>	6	HV 24576	Cerastoderma edule	1210	45	H. Freund, ICBM Wilhelmshaven
9 AA13213 Cerastoderma edule 2018 56 Behrends et al., 2003 10 AA13223 Cerastoderma edule 589 52 Behrends et al., 2003 11 AA13225 Cerastoderma edule 2112 55 Behrends et al., 2003 12 AA13226 Cerastoderma edule 737 52 Behrends et al., 2003 13 Poz-97987 Bornea candida 101.51 pM C 0.34 WASA project 14 Poz-99395 Myo arenaria 109.79 pM C 0.34 WASA project 15 Poz-99318 Ensis siliquo 113.45 pM C 0.35 WASA project 16 Poz-99391 Cerastoderma edule 112.74 pM C 0.35 WASA project 17 Poz-99317 Cerastoderma edule 122.57 pM C 0.37 WASA project 19 Poz-99517 Cerastoderma edule 122.57 pM C 0.36 WASA project 20 Poz-99517 Cerastoderma edule 122.67 pM C 0.38 WASA project 21 Poz-99529	7	HV 22946	Mya subtruncata	1435	75	H. Freund, ICBM Wilhelmshaven
10	8	AA13211	Cerastoderma edule	631	59	Behrends et al., 2003
11 AA13225 Cerastoderma edule 2112 \$5 Behrends et al., 2003 12 AA3226 Cerastoderma edule 737 \$2 Behrends et al., 2003 13 Poz-99937 Bomea candida 101.51 pM C 0.34 WASA project 14 Poz-99358 Mya arenaria 109.79 pM C 0.34 WASA project 15 Poz-993518 Ernás idiqua 113.45 pM C 0.35 WASA project 16 Poz-99319 Cerastoderma edule 117.74 pM C 0.35 WASA project 17 Poz-993519 Cerastoderma edule 123.08 pM C 0.37 WASA project 18 Poz-993517 Cerastoderma edule 123.57 pM C 0.36 WASA project 19 Poz-993515 Cerastoderma edule 125.57 pM C 0.36 WASA project 20 Poz-993514 Mya arenaria 127.84 pM C 0.38 WASA project 21 Poz-99324 Mya arenaria 127.84 pM C 0.38 WASA project 22 Poz-993428	9	AA13213	Cerastoderma edule	2018	56	Behrends et al., 2003
12 AA13226 Cerastoderma edule 737 52 Behrends et al., 2003 13 Poz-97987 Barnea condida 101.51 pM C 0.34 WASA project 14 Poz-99355 Mya orenaria 109.79 pM C 0.34 WASA project 15 Poz-93518 Ensis siliqua 113.45 pM C 0.35 WASA project 16 Poz-99399 Cerastoderma edule 117.74 pM C 0.35 WASA project 17 Poz-99519 Cerastoderma edule 123.08 pM C 0.37 WASA project 18 Poz-99517 Cerastoderma edule 123.57 pM C 0.36 WASA project 19 Poz-99519 Ensis siliqua 125.62 pM C 0.36 WASA project 20 Poz-99515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Poz-99524 Mya armania 128.24 pM C 0.40 WASA project 22 Poz-99427 Ensis siliqua 128.24 pM C 0.40 WASA project 24 Poz-993428 <	10	AA13223	Cerastoderma edule	589	52	Behrends et al., 2003
13	11	AA13225	Cerastoderma edule	2112	55	Behrends et al., 2003
14 Poz-95935 Mya arenaria 109.79 pM C 0.34 WASA project 15 Poz-93518 Ensis siliqua 113.45 pM C 0.35 WASA project 16 Poz-93519 Cerastoderma edule 117.74 pM C 0.35 WASA project 17 Poz-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 18 Poz-93517 Cerastoderma edule 122.57 pM C 0.37 WASA project 19 Poz-95929 Ensis siliqua 125.67 pM C 0.36 WASA project 20 Poz-93515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Poz-93427 Ensis siliqua 127.84 pM C 0.40 WASA project 22 Poz-93428 Ensis siliqua 128.24 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93529 Ensis siei 130.02 pM C 0.39 WASA project 26 Poz-93529 <	12	AA13226	Cerastoderma edule	737	52	Behrends et al., 2003
15 Poz-93518 Ensis siliqua 113.45 pM C 0.35 WASA project 16 Poz-95930 Cerastoderma edule 117.74 pM C 0.35 WASA project 17 Poz-93519 Cerastoderma edule 123.05 pM C 0.37 WASA project 18 Poz-93517 Cerastoderma edule 123.57 pM C 0.36 WASA project 19 Poz-95929 Ensis siliqua 125.37 pM C 0.36 WASA project 20 Poz-93515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Poz-93524 Mya arenaria 127.84 pM C 0.38 WASA project 22 Poz-93427 Ensis siliqua 128.24 pM C 0.40 WASA project 24 Poz-93428 Ensis leei 128.41 pM C 0.40 WASA project 25 Poz-93429 Ensis siliqua 131.06 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 En	13	Poz-97987	Barnea candida	101.51 pM C	0.34	WASA project
16 Poz-95930 Cerastoderma edule 117.74 pM C 0.35 WASA project 17 Poz-93519 Cerastoderma edule 123.08 pM C 0.37 WASA project 18 Poz-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 19 Poz-93515 Cerastoderma edule 125.37 pM C 0.36 WASA project 20 Poz-93515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Poz-93524 Mya arenaria 127.84 pM C 0.38 WASA project 22 Poz-93427 Ensis siliqua 128.24 pM C 0.40 WASA project 23 Poz-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93429 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932	14	Poz-95935	Mya arenaria	109.79 pM C	0.34	WASA project
17 Po2-93519 Cerastoderma edule 123.08 pM C 0.37 WASA project 18 Po2-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 19 Po2-95929 Ensis siliqua 125.37 pM C 0.36 WASA project 20 Po2-93515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Po2-93524 Mya arenaria 127.84 pM C 0.40 WASA project 22 Po2-93428 Ensis siliqua 128.24 pM C 0.40 WASA project 23 Po2-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Po2-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Po2-93429 Ensis siliqua 131.06 pM C 0.38 WASA project 26 Po2-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Po2-95932 Cerastoderma edule 540 40 WASA project 28 Po2-100389 Cerast	15	Poz-93518	Ensis siliqua	113.45 pM C	0.35	WASA project
18 Po2-93517 Cerastoderma edule 123.57 pM C 0.37 WASA project 19 Po2-9529 Ensis siliqua 125.37 pM C 0.36 WASA project 20 Po2-93515 Cerastoderma edule 125.62 pM C 0.39 WASA project 21 Po2-93524 Mya arenaria 127.84 pM C 0.40 WASA project 22 Po2-93427 Ensis siliqua 128.24 pM C 0.40 WASA project 23 Po2-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Po2-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Po2-93429 Ensis siliqua 131.06 pM C 0.38 WASA project 26 Po2-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Po2-95932 Cerastoderma edule 540 40 WASA project 28 Po2-100289 Cerastoderma edule 600 30 WASA project 30 Po2-95923 Mytilus edulis <td>16</td> <td>Poz-95930</td> <td>Cerastoderma edule</td> <td>117.74 pM C</td> <td>0.35</td> <td>WASA project</td>	16	Poz-95930	Cerastoderma edule	117.74 pM C	0.35	WASA project
19 Poz-95929 Ensis siliqua 125,37 pM C 0.36 WASA project 20 Poz-93515 Cerastoderma edule 125,62 pM C 0.39 WASA project 21 Poz-93524 Mya arenaria 127,84 pM C 0.38 WASA project 22 Poz-93427 Ensis siliqua 128,24 pM C 0.40 WASA project 23 Poz-93428 Ensis leei 128,41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129,85 pM C 0.39 WASA project 25 Poz-93512 Ensis leei 130,02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131,06 pM C 0.38 WASA project 27 Poz-93521 Ensis siliqua 131,06 pM C 0.38 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-93523 Mytilus edulis	17	Poz-93519	Cerastoderma edule	123.08 pM C	0.37	WASA project
20 Poz-93515 Cerastoderma edule 125,62 pM C 0,39 WASA project 21 Poz-93524 Mya arenaria 127,84 pM C 0.38 WASA project 22 Poz-93427 Ensis siliqua 128,24 pM C 0.40 WASA project 23 Poz-93428 Ensis leei 128,41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129,85 pM C 0.39 WASA project 25 Poz-93429 Ensis leei 130,02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131,06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 540 40 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 595 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-979899 Cerastoderma edule 600<	18	Poz-93517	Cerastoderma edule	123.57 pM C	0.37	WASA project
21 Poz-93524 Mya arenaria 127.84 pM C 0.38 WASA project 22 Poz-93427 Ensis siliqua 128.24 pM C 0.40 WASA project 23 Poz-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93521 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-959322 Cerastoderma edule 540 40 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 595 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-95989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630	19	Poz-95929	Ensis siliqua	125.37 pM C	0.36	WASA project
22 Poz-93427 Ensis siliqua 128.24 pM C 0.40 WASA project 23 Poz-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93429 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 540 40 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30	20	Poz-93515	Cerastoderma edule	125.62 pM C	0.39	WASA project
23 Poz-93428 Ensis leei 128.41 pM C 0.40 WASA project 24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93429 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 540 40 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-95922 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30	21	Poz-93524	Mya arenaria	127.84 pM C	0.38	WASA project
24 Poz-93514 Cerastoderma edule 129.85 pM C 0.39 WASA project 25 Poz-93429 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 133.37 pM C 0.38 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-99525 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 1330 <td< td=""><td>22</td><td>Poz-93427</td><td>Ensis siliqua</td><td>128.24 pM C</td><td>0.40</td><td>WASA project</td></td<>	22	Poz-93427	Ensis siliqua	128.24 pM C	0.40	WASA project
25 Poz-93429 Ensis leei 130.02 pM C 0.39 WASA project 26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 133.37 pM C 0.38 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 1330 30 WASA project 36 Poz-93425 Limecola balthica 1350 30	23	Poz-93428	Ensis leei	128.41 pM C	0.40	WASA project
26 Poz-93521 Ensis siliqua 131.06 pM C 0.38 WASA project 27 Poz-95932 Cerastoderma edule 133.37 pM C 0.38 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-93990 Barnea candida 1350 30	24	Poz-93514	Cerastoderma edule	129.85 pM C	0.39	WASA project
27 Poz-95932 Cerastoderma edule 133.37 pM C 0.38 WASA project 28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95228 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 <td< td=""><td>25</td><td>Poz-93429</td><td>Ensis leei</td><td>130.02 pM C</td><td>0.39</td><td>WASA project</td></td<>	25	Poz-93429	Ensis leei	130.02 pM C	0.39	WASA project
28 Poz-100289 Cerastoderma edule 540 40 WASA project 29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA pro	26	Poz-93521	Ensis siliqua	131.06 pM C	0.38	WASA project
29 Poz-93523 Mytilus edulis 560 30 WASA project 30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 630 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 40 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA proj	27	Poz-95932	Cerastoderma edule	133.37 pM C	0.38	WASA project
30 Poz-100382 Mytilus edulis 595 30 WASA project 31 Poz-97989 Cerastoderma edule 600 30 WASA project 32 Poz-95925 Cerastoderma edule 600 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 40 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-97986 Spisula solida 1510 30 WASA pro	28	Poz-100289	Cerastoderma edule	540	40	WASA project
Poz-97989 Cerastoderma edule 600 30 WASA project	29	Poz-93523	Mytilus edulis	560	30	WASA project
32 Poz-95925 Cerastoderma edule 600 30 WASA project 33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 40 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	30	Poz-100382	Mytilus edulis	595	30	WASA project
33 Poz-93522 Cerastoderma edule 630 30 WASA project 34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	31	Poz-97989	Cerastoderma edule	600	30	WASA project
34 Poz-97994 Donax vittatus 715 30 WASA project 35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	32	Poz-95925	Cerastoderma edule	600	30	WASA project
35 Poz-95928 Limecola balthica 740 30 WASA project 36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	33	Poz-93522	Cerastoderma edule	630	30	WASA project
36 Poz-93425 Limecola balthica 1330 30 WASA project 37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	34	Poz-97994	Donax vittatus	715	30	WASA project
37 Poz-97990 Barnea candida 1350 30 WASA project 38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	35	Poz-95928	Limecola balthica	740	30	WASA project
38 Poz-93422 Cerastoderma edule 1395 30 WASA project 39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	36	Poz-93425	Limecola balthica	1330	30	WASA project
39 Poz-95934 Limecola balthica 1400 30 WASA project 40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	37	Poz-97990	Barnea candida	1350	30	WASA project
40 Poz-93424 Cerastoderma edule 1445 30 WASA project 41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	38	Poz-93422	Cerastoderma edule	1395	30	WASA project
41 Poz-100383 Limecola balthica 1510 30 WASA project 42 Poz-97986 Spisula solida 1510 30 WASA project	39	Poz-95934	Limecola balthica	1400	30	WASA project
42 Poz-97986 Spisula solida 1510 30 WASA project	40	Poz-93424	Cerastoderma edule	1445	30	WASA project
	41	Poz-100383	Limecola balthica	1510	30	WASA project
43 Poz-97993 <i>Mytilus edulis</i> 1535 30 WASA project	42	Poz-97986	Spisula solida	1510	30	WASA project
	43	Poz-97993	Mytilus edulis	1535	30	WASA project

(Continued)

Table 2. (Continued)

	Lab code	Species	¹⁴ C age (¹⁴ C years)	Error (¹⁴ C years)	Project/reference
44	Poz-100288	Cerastoderma edule	1540	30	WASA project
45	Poz-97991	Limecola balthica	1705	30	WASA project
46	Poz-93430	Cerastoderma edule	2260	30	WASA project
47	Poz-93426	Cerastoderma edule	2325	30	WASA project
48	Poz-95933	Cerastoderma edule	3000	30	WASA project
49	Poz-95926	Cerastoderma edule	4525	35	WASA project
50	Poz-97995	Scrobicularia plana	7360	30	WASA project

Fig. 3. Cumulative probability distribution for 35 marine ¹⁴C dates of bivalve shells from the Wadden Sea around the East Frisian Islands. Blue line: sea-level curve (Behre, 2007); red line: 95% percentile based on a randomisation procedure as described in the text.

living position. They were sampled at various depths in sediment cores around the island of Norderney (Fig. 1). This dataset is complemented by seven previously unpublished 14C dates from bivalves from Langeoog (H. Freund) as well as five 14C measurements of Cerastoderma edule obtained around Spiekeroog published by Behrends et al. (2003; Table 2). Radiocarbon dates of Cerastoderma edule published by Flessa (1998) were not included, because this study focuses on reworked (transported) shells collected from surficial sediments. Articulated specimens were specifically excluded. No other published ¹⁴C dates of marine bivalves are accessible from the Wadden Sea of the East Frisian Islands. Further available radiocarbon dates of pooled individuals of the foraminifera Ammonia tepida (Cushman 1926; WASA project) as well as dates obtained from the aquatic snail Peringia ulvae (Pennant 1777; courtesy of H. Freund) are not included in this example. In contrast to articulated bivalve shells, foraminifera and gastropods can potentially be reworked.

With the exception of two dates, all ¹⁴C dates are younger than 3000 cal BP. Fifteen samples of the WASA project resulted in modern ages (percentage of modern carbon (pMC) > 100%) and will not be considered here. However, their young ages reflect the highly dynamic sedimentation processes in the Wadden Sea with localised, rapid sediment accumulation. For the remaining 35 samples, a cumulative probability distribution (cpd) was

calculated in R (R Core Team, 2019) based on the algorithms provided in package CLAM (version 2.3.2; Blaauw, 2010) using the Marine20 calibration curve (Heaton et al., 2020) and our new ΔR value of $-85 \pm 17^{-14} C$ years. Cumulative (or summed) radiocarbon probability distributions are commonly used in archaeology as a proxy record for human activity phases to be compared with palaeoenvironmental records (e.g. Feeser et al., 2019). However, Williams (2012) notes that false peaks can be obtained during the calibration process due to 'steep' portions in the calibration curve, whereas plateaus in the calibration curve will cause a dampening of peaks. To assess these effects, the following randomisation test was carried out: for the time period between 0 and 3000 cal BP, n = 35 calendar ages with an assumed error of 30 14C years were randomly selected from a uniform distribution, their radiocarbon age determined based on the Marine20 calibration curve and a ΔR of -85 \pm 17 ^{14}C years and the cpd calculated as described above. This step was repeated 2000 times, and from the resulting dataset the 95% percentile was calculated. Any peak in the cpd of the original dataset that exceeds the 95% percentile of 2000 cpds of 35 randomly distributed ¹⁴C dates can therefore be considered to be significant on a 95% level.

The results of these calculations are shown in Fig. 3, together with the sea-level curve obtained by Behre (2007). The cpd of the Wadden Sea 14 C dataset exhibits two prominent peaks at

6 Dirk Enters *et al*.

Table 3. Reported ¹⁴C dates of *Mya arenaria* by Essink et al. (2017). All highlighted calibrated age ranges include periods younger than AD 1492 and hence do not necessarily date the introduction of *Mya arenaria* to Europe before Columbus landed in America.

Lab code	¹⁴ C age (¹⁴ C years)	¹⁴ C error (¹⁴ C years)	Reservoir age (¹⁴ C years)	Reported 2 σ calibrated age range (years AD)	Recalibrated 2σ age range with $\Delta R = -85 \pm 17$ (years AD)
GrN 26651	1000	20	400	1300-1405	1311-1541
GrN 18009	1015	20	400	1275–1425	1306–1525
GrN 32873	1000	50	400	1290–1415	1296–1578
GrN 32849	885	50	400	1310-1495; 1600-1615	1403–1681
GrN 31434	910	20	400	1405–1440	1406–1646
GrN 32940	900	45	400	1315–1465	1397–1669
GrN 738	955	50	400	1300-1440	1330–1628
GrA 61270	1110	40	840	1485–1800	not recalibrated ^a

^aSee text for discussion.

c.100–350 cal BP and 800–1000 cal BP exceeding the 95% percentile level. In contrast, only a few ¹⁴C dates cover the time periods 500-650 cal BP and 1350-1600 cal BP. These intervals coincide remarkably with phases of rising sea levels (peaks in the cpd) as identified by Behre (2007) and phases with relatively stable sea level (few ¹⁴C dates and low cpd). Apparently, bivalves are preserved in the sediment record during transgressive phases and presumably rapid sediment deposition. During phases of relatively stable sea level, highly dynamic processes of erosion and redeposition of sediments in the Wadden Sea probably prevented the sedimentological conservation of bivalves in living position. Articulated bivalves were preferentially preserved during phases of rapidly rising sea levels when a net accumulation of sediments prevailed and the abrasion base of the sea moved upwards. These findings are in agreement with conclusions of Brett (1995) who states that conservation Lagerstätten are typically found during transgressive and early highstand phases.

Although the dataset used is still limited (e.g. by its small sample size) and an (unintentional) sampling bias cannot be excluded, it suggests a remarkable relationship between taphonomic preservation and sediment dynamics controlled by sea-level changes.

2 ¹⁴C dates and the timing of Mya arenaria introduction to the eastern North Atlantic

In a recent study, Essink et al. (2017) analysed a total of eight specimens of the marine bivalve Mya arenaria (Linnaeus 1758), which were found in sediment records at several sites in the Netherlands (Fig. 1). Mya arenaria disappeared in Europe during the Pleistocene (Strasser, 1999) until its reintroduction from North America, either by French colonisers or earlier by Vikings (Norse) via Greenland. Originally, the Mya arenaria shells were 14C-dated and calibrated using the atmospheric calibration curve (Intcal13; Reimer et al., 2013) with an estimated reservoir age of 400 ¹⁴C years for fully marine specimens and 840 ¹⁴C years (Essink et al., 2017) for a sample with riverine influence. The ranges of these calibrated dates predate the landing on the American continent of Columbus in AD 1492, and therefore an introduction of this species to Europe by Viking settlers from northeastern North America was postulated. This hypothesis seems to be supported by additional datings of Mya arenaria. Petersen et al. (1992) reported an age of AD 1245-1295 for northern Denmark, and Behrends et al. (2005) dated Mya arenaria shells in the southern Baltic Sea to AD 1310 \pm 70 years using aspartic acid racemisation.

When recalibrating the dates reported by Essink et al. (2017) with Calib 8.2 (Stuiver et al. 2020) using the Marine20 calibration curve and the new ΔR value of $-85 \pm 17^{-14} C$ years, all seven recalibrated samples might be younger than AD 1492 (Table 3). The age of Mya arenaria published by Petersen et al. (1992) is lacking crucial information such as the original ¹⁴C age and a possibly applied marine reservoir correction and can therefore not be recalibrated. The aspartic acid racemisation method applied on Mya arenaria samples from the Baltic Sea relies itself on cross-calibration against ¹⁴C-dated bivalves from the Wadden Sea (Behrends et al., 2005). For this, several samples of Cerastoderma edule shells were 14 C-dated and calibrated using a reservoir age of 377 \pm 16 14 C years (Behrends et al., 2003). Although detailed information is lacking, it is likely that recalibration of these dates will change this crosscalibration and lead to a new assessment of these results, especially if slower racemisation rates are also taken into account (Behrends et al., 2005). In addition, a direct ¹⁴C dating of these samples would be preferable for comparison, using available ΔR values for the Baltic Sea for calibration (e.g. Lougheed et al., 2013).

In contrast to the conclusion by Essink et al. (2017), the recalibrated ^{14}C age ranges do not provide conclusive evidence to support the hypothesis of an introduction of *Mya arenaria* to the European North Atlantic prior to Columbus' contact with the American continent. More ^{14}C dates of *Mya arenaria* and solid estimates of ΔR values for the Dutch Wadden Sea and of this particular timespan are necessary to solve this question.

Acknowledgements. We gratefully acknowledge Christina Barilaro and Kay Fuhrmann of the Landesmuseum Natur und Mensch in Oldenburg, Germany, for providing us with shells from their collection and Tomasz Goslar from the Poznań Radiocarbon Laboratory for his support. Two anonymous reviewers made helpful comments. The reported research is part of the WASA project (The Wadden Sea as an archive of landscape evolution, climate change and settlement history: exploration – analysis – predictive modelling), funded by the 'Niedersächsisches Vorab' of the VolkswagenStiftung within the funding initiative 'Küsten- und Meeresforschung in Niedersachsen' of the Ministry for Science and Culture of Lower Saxony, Germany (project VW ZN3197).

References

Alves, E., Macario, K., Ascough, P. & Bronk Ramsey, C., 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Reviews of Geophysics 56: 278–305.

Ascough, P.L., Cook, G.T., Dugmore, A.J., Scott, E.M. & Freeman, S.P.H.T., 2005. Influence of mollusk species on marine ΔR determinations. Radiocarbon 47: 433–440.

- Ascough, P.L., Cook, G.T., Dugmore, A.J., Barber, J., Higney, E. & Marian Scott, E., 2016. Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46: 611–620.
- Behre, K.-E., 2007. A new Holocene sea-level curve for the southern North Sea. Boreas 36: 82–102.
- Behrends, B., Goodfriend, G.A. & Liebezeit, G., 2003. Amino acid dating of recent intertidal sediments in the Wadden Sea, Germany. Senckenbergiana Maritima 32: 155–164.
- Behrends, B., Hertweck, G., Liebezeit, G. & Goodfriend, G., 2005. Earliest Holocene occurrence of the soft-shell clam, Mya arenaria, in the Greifswalder Bodden, Southern Baltic. Marine Geology 216: 79–82.
- Beirne, E.C., Wanamaker, A.D. & Feindel, S.C., 2012. Experimental validation of environmental controls on the δ^{13} C of Arctica islandica (ocean quahog) shell carbonate. Geochimica et Cosmochimica Acta 84: 395–409.
- Bittmann, F., Bungenstock, F. & Wehrmann, A., 2021. Introduction to drowned palaeo-landscapes: archaeological and geoscientific research at the Southern North Sea coast. Netherlands Journal of Geosciences.
- Blaauw, M., 2010. Methods and code for 'classical' age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518.
- Brett, C.E., 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. PALAIOS 10: 597–616.
- Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360.
- Chen, J., Guo, Z. and Liu, K., 2011. Development of accelerator mass spectrometry and its applications. Reviews of Accelerator Science and Technology 4: 117–145.
- Elschner, A., Scheder, J., Bungenstock, F., Bartholomä, A., Becker, T.M., Capperucci, R.M., Enters, D., Karle, M., Schlütz, F., Wehrmann, A. & Hoffmann, G., 2020. Microfauna- and sedimentology-based facies analysis for palaeolandscape reconstruction in the back-barrier area of Norderney (NW Germany). Netherlands Journal of Geosciences 99: https://doi.org/10.1017/njg.2020.16.
- Essink, K., Oost, A.P., Streurman H.J. & Van der Pflicht J., 2017. Are Medieval Mya arenaria (Mollusca; Bivalvia) in the Netherlands also clams before Columbus? Netherlands Journal of Geosciences/Geologie en Mijnbouw 96: 9–16.
- Facorellis, Y., Maniatis, Y. & Kromer, B., 2016. Apparent ¹⁴C ages of marine mollusk shells from a Greek island: calculation of the marine reservoir effect in the Aegean Sea. Radiocarbon 40: 963–973.
- Feeser, I., Dörfler, W., Kneisel, J., Hinz, M. & Dreibrodt, S., 2019. Human impact and population dynamics in the Neolithic and Bronze Age: multi-proxy evidence from north-western Central Europe. The Holocene 29: 1596–1606.
- Flessa, K.W., 1998. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26: 187–190.
- *Franke, J., Paul, A. & Schulz, M.,* 2008. Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past 4: 125–136.
- Gillikin, D.P., Lorrain, A., Bouillon, S., Willenz, P. & Dehairs, F., 2006. Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ¹³C_{DIC} and phytoplankton. Organic Geochemistry 37: 1371–1382.
- Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., Grootes, P.M., Hughen, K.A., Kromer, B., Reimer, P.J., Adkins, J., Burke, A., Cook, M.S., Olsen, J. & Skinner, L.C., 2020. Marine20 the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62: 779–820.
- Heier-Nielsen, S., Heinemeier, J., Nielsen, H.L. & Rud, N., 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37: 875–882.
- Hua, Q., 2013. Radiocarbon dating of marine carbonates. In: Rink, W.J. & Thompson, J.W. (eds): Encyclopedia of scientific dating methods. Springer (Dordrecht): 676–679.
- Janssen, F., Schrum, C. & Backhaus, J.O., 1999. A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Deutsche Hydrografische Zeitschrift 51: 5–245.
- Lanting, J.N. & Van der Plicht, J., 1998. Reservoir effects and apparent ¹⁴C-ages. Journal of Irish Archaeology 9: 151–165.

- Lougheed, B.C., Filipsson, H.L. & Snowball, I., 2013. Large spatial variations in coastal ¹⁴C reservoir age: a case study from the Baltic Sea. Climate of the Past 9: 1015–1028.
- Meijles, E.W., Kiden, P., Streurman, H.-J., van der Plicht, J., Vos, P.C., Gehrels, W.R. & Kopp, R.E., 2018. Holocene relative mean sea-level changes in the Wadden Sea area, northern Netherlands. Journal of Quaternary Science 33: 905–923.
- Petersen, K.S., Rasmussen, K.L., Heinemeier J. & Rud, N., 1992. Clams before Columbus? Nature 359: 679.
- Philippsen, B., 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1: 24.
- Poirier, C., Baumann, J. & Chaumillon, E., 2019. Hypothetical influence of bacterial communities on the transfer of ¹⁴C-depleted carbon to infaunal foraminifera: implications for radiocarbon dating in coastal environments. Radiocarbon 61: 845–865.
- R Core Team, 2019. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, https://www.R-project.org/ (Vienna).
- Reimer, P.J. & Reimer, R.W., 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43: 461–463.
- *Reimer, R.W. & Reimer, P.J.*, 2017. An online application for ΔR calculation. Radiocarbon **59**: 1623–1627.
- Reimer, P.J., Bard, B., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. & Van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55: 1869–1887.
- Scheder, J., Frenzel, P., Bungenstock, F., Engel, M., Brückner, H. & Pint, A. 2019. Vertical and lateral distribution of Foraminifera and Ostracoda in the East Frisian Wadden Sea: developing a transfer function for relative sea-level change. Geologica Belgica 22: 99–110.
- Scourse, J.D., Wanamaker Jr, A.D., Weidman, C., Heinemeier, J., Reimer, P.J., Butler, P.G., Witbaard, R. & Richardson, C.A., 2012. The marine radiocarbon bomb pulse across the temperature North Atlantic: a compilation of Δ^{14} C time histories from Arctica islandica growth increments. Radiocarbon 54: 165–186.
- Strasser, M., 1999. Mya arenaria: an ancient invader of the North Sea coast. Helgoländer Meeresuntersuchungen 52: 309–324.
- Stuiver M. & Braziunas, T., 1993. Modelling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples to 10,000 BC. Radiocarbon 35: 137–189.
- Stuiver M., Pearson, G.W. & Braziunas, T., 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28: 980–1021.
- Stuiver, M., Reimer, P.J. & Reimer, R.W., 2020. CALIB 8.2 [WWW program] at http://calib.org, accessed 13 November 2020.
- Tisnérat-Laborde N., Paterne, M., Métivier, B., Arnold, M., Yiou, P., Blamart, D. & Raynaud, S., 2010. Variability of the northeast Atlantic sea surface Δ¹⁴C and marine reservoir age and the North Atlantic Oscillation (NAO). Quaternary Science Reviews 29: 2633–2646.
- Ward G.K. & Wilson, S.R., 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20: 19–31.
- Weidman, C.R., 1995. Development and application of the mollusc Arctica islandica as a paleoceanographic tool for the North Atlantic Ocean. Woods Hole Oceanographic Institution, Massachusetts Institute of Technology (Cambridge, MA): 203 pp.
- Williams, A.N., 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39: 578–589
- Witbaard, R., Jenness, M.I., Van der Borg, K. & Ganssen, G., 1994. Verfication of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research 33: 91–101.