Eliminating $F(r)$ gives

$$
\frac{\alpha^{\prime}(r)}{\alpha(r)}=-\frac{1}{r}
$$

so that $\alpha(r)=\lambda / r$ where $\lambda$ is a constant. Hence $F(r)=\lambda / r^{2}$, the familiar inverse square force. For such a force the equation (3) can be integrated trivially to yield the first integral

$$
\mathbf{h} \times \dot{\mathbf{r}}=\lambda \mathbf{r} / r+\mathbf{k},
$$

where $\mathbf{k}$ is a constant vector (the so-called Lenz-Runge vector).
The equation of motion (1) is a second-order differential equation, and so its general solution will involve two arbitrary constant vectors of integration. Since $h$ and $k$ are just two such vectors, one would expect the orbit of the particle to be expressed in terms of $\mathbf{h}$ and $\mathbf{k}$. This can be done by computing k.r:

$$
\mathbf{k} \cdot \mathbf{r}=(\mathbf{h} \times \dot{\mathbf{r}}) \cdot \mathbf{r}-\lambda r=-(\mathbf{r} \times \dot{\mathbf{r}}) \cdot \mathbf{h}-\lambda r=-h^{2} / m-\lambda r .
$$

Hence

$$
k r \cos \theta=-h^{2} / m-\lambda r,
$$

or

$$
\frac{1}{r}=\frac{-\lambda m}{h^{2}}\left(1+\frac{k}{\lambda} \cos \theta\right),
$$

which is the familiar polar form of the orbit.

> C. D. COLLINSON

Department of Applied Mathematics, The University, Hull HU6 7RX

## Correspondence

## Selecting university mathematicians

## Dear Editor,

Recently, one of my pupils attended for interview at the mathematics department of a university. The 'interview' consisted, in part, of a problem-solving session done on a blackboard under the scrutiny of the interviewers. For this pupil, who is by nature a quiet reserved person, the interview became an ordeal and mathematical thinking was impossible.
I feel very concerned at the inclusion of a seemingly unnecessary factor into consideration of a prospective undergraduate. Please will any university interviewer reading this letter be more appreciative of the reactions of young people if a similar procedure is contemplated?

Yours sincerely,
R. E. HAWORTH

Fleetwood Grammar School, Lancs.

