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WHAT IS TYPICAL?

BY GÜNTER LAST AND HERMANN THORISSON

Abstract

Let ξ be a random measure on a locally compact second countable topological group,
and let X be a random element in a measurable space on which the group acts. In the
compact case we give a natural definition of the concept that the origin is a typical location
for X in the mass of ξ , and prove that when this holds, the same is true on sets placed
uniformly at random around the origin. This new result motivates an extension of the
concept of typicality to the locally compact case where it coincides with the concept of
mass-stationarity. We describe recent developments in Palm theory where these ideas
play a central role.

Keywords: Random measure; typical location; Poisson process; point-stationarity; mass-
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1. Introduction

The word ‘typical’is sometimes used in probability contexts in an informal way. For instance,
a typical element in a finite set—or in a finite interval—is usually interpreted as an element
chosen according to the uniform distribution. Also, after adding a point at the origin to a
stationary Poisson process, the new point is often referred to as a typical point of the process.
Note that in both these examples the choice of an element (point) is far from being arbitrary;
typical does not mean arbitrary. In this paper we attempt to make the term ‘typical’ precise.

We consider a random measure ξ on a locally compact second countable topological group
and a random element X in a measurable space on which the group acts. In the compact case
we give a natural definition of the concept that the origin is a typical location for X in the mass
of ξ , and prove that this property is equivalent to the more mysterious property that the same
is true on sets placed uniformly at random around the origin. This new result motivates an
extension of the concept of typicality to the locally compact case where it coincides with the
concept of mass-stationarity which was introduced in [8]. We then outline recent developments
in Palm theory of stationary random measures where these concepts play a central role.

2. Preliminaries

Let G be a locally compact second countable topological group equipped with the Borel
σ -algebra G. Then the mapping from G × G to G taking (s, t) to st and the mapping from G

to G taking t to t−1 are measurable. We refer to the neutral element e of G as the origin and
to the elements of G as locations.
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For a measure µ on (G, G) and a set C ∈ G such that 0 < µ(C) < ∞, define the conditional
probability measure µ(· | C) by

µ(A | C) = µ(A ∩ C)

µ(C)
, A ∈ G.

For convenience, we let µ(· | C) equal some fixed probability measure if µ(C) = 0. For
t ∈ G, let tµ be the pushforward of µ under the mapping s �→ ts, that is, tµ(A) := µ(t−1A),

A ∈ G. Let λ �= 0 be a left-invariant Haar measure; see, e.g. Theorem 2.27 of [6]. An example
is any countable group G with λ the counting measure. Another example is R

d under addition
with λ the Lebesgue measure.

Let ‘
D=’ denote identity in distribution. Let ξ be a nontrivial random measure on (G, G). Say

that ξ is stationary if

tξ
D= ξ, t ∈ G.

Let G act on a measurable space (E, E) measurably, that is, such that the mapping from G×E

to G taking (t, x) to tx is measurable. Let X be a random element in (E, E). For instance,
X could be a random field X = (Xs)s∈G and tX = (Xt−1s)s∈G for t ∈ G. Say that X is
stationary if

tX
D= X, t ∈ G. (2.1)

Set t (X, ξ) = (tX, tξ). Say that (X, ξ) is stationary if

t (X, ξ)
D= (X, ξ), t ∈ G.

Let (�, F , P) be the probability space on which the random elements in this paper are defined.
If S is a random element in (G, G), let S−1 denote the group inverse of S (and not the inverse
of S as a function defined on �).

3. Compact groups and typicality

In this section assume that G is compact. Then both λ and ξ are finite, and λ is also right
invariant (see, e.g. Theorem 2.27 of [6]). An example is any finite group with λ the counting
measure. Another example is the d-dimensional rotation group.

Let S be a random element in (G, G). Say that S is uniformly distributed on C ∈ G if S has
the distribution λ(· | C). Note that λ(· | G) = λ/λ(G).

Definition 3.1. (a) If S is uniformly distributed on G then S is a typical location in G.

(b) If S is a typical location in G and independent of X, then S is a typical location for X.

(c) If S is a typical location for X and S−1X
D= X, then the origin is a typical location for X.

Theorem 3.1. Let G be compact.

(a) If S is a typical location for X then S−1X is stationary.

(b) The origin is a typical location for X if and only if X is stationary.

Proof. (a) If S is a typical location for X then so is St−1 for each t ∈ G. Thus, (St−1)−1X

has the same distribution as S−1X. But (St−1)−1X = t (S−1X). Thus, S−1X is stationary.
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(b) Let S be a typical location for X. If S−1X
D= X then X is stationary since S−1X

is stationary. Conversely, if X is stationary then S−1X
D= X follows from (2.1) and the

independence of S and X.

We shall now extend the above typicality concepts from the uniform distribution to random
measures.

Definition 3.2. (a) If the conditional distribution of S given ξ is ξ(· | G) then S is a typical
location in the mass of ξ .

(b) If S is a typical location in the mass of ξ and S−1ξ
D= ξ , then the origin is a typical location

in the mass of ξ .

(c) If S is a typical location in the mass of ξ and conditionally independent of X given ξ , then
S is a typical location for X in the mass of ξ .

(d) If S is a typical location for X in the mass of ξ and S−1(X, ξ)
D= (X, ξ), then the origin is

a typical location for X in the mass of ξ .

The following theorem says that the origin is a typical location for X in the mass of ξ if and
only if it is a typical location for X in the mass of ξ on sets placed uniformly at random around
the origin.

Theorem 3.2. Let G be compact. Then the origin is a typical location for X in the mass of ξ

if and only if, for all C ∈ G such that λ(C) > 0,

(V −1
C (X, ξ), UCVC)

D= ((X, ξ), UC), (3.1)

where

(a) UC is uniformly distributed on C and independent of (X, ξ), and

(b) VC has the conditional distribution ξ(· | U−1
C C) given (X, ξ, UC).

Proof. Suppose that (3.1) holds for all C. Then, in particular, V −1
G (X, ξ)

D= (X, ξ). More-
over, since U−1

G G = G, it follows from (b) that VG has the conditional distribution ξ(· | G)

given (X, ξ, UG). This implies that VG is a typical location in the mass of ξ and also that VG

is conditionally independent of X given ξ . Thus, the origin is a typical location for X in the
mass of ξ .

Conversely, suppose that the origin is a typical location for X in the mass of ξ . For
nonnegative measurable f and with UC and VC as above, we have

E [f (V −1
C (X, ξ), UCVC)] = E

[∫∫
1{u∈C} 1{v∈u−1C} f (v−1(X, ξ), uv)

ξ(dv)

ξ(u−1C)

λ(du)

λ(C)

]
.

Let S be a typical location for X in the mass of ξ . Then we obtain

E [f (V −1
C (X, ξ), UCVC)]

= E

[∫∫
1{u∈C} 1{v∈u−1C} f (v−1S−1(X, ξ), uv)

(S−1ξ)(dv)

(S−1ξ)(u−1C)

λ(du)

λ(C)

]

= E

[∫∫
1{u∈C} 1{S−1v∈u−1C} f ((S−1v)−1S−1(X, ξ), uS−1v)

ξ(dv)

(S−1ξ)(u−1C)

λ(du)

λ(C)

]

= E

[∫∫∫
1{u∈C} 1{s−1v∈u−1C} f (v−1(X, ξ), us−1v)

ξ(dv)

(s−1ξ)(u−1C)

λ(du)

λ(C)

ξ(ds)

ξ(G)

]
.
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Make the variable substitution r = us−1v (equivalently, u = rv−1s) and use right-invariance
of λ to obtain

E[f (V −1
C (X, ξ), UCVC)]
= E

[∫∫∫
1{v−1s∈r−1C} 1{r∈C} f (v−1(X, ξ), r)

ξ(dv)

(v−1ξ)(r−1C)

λ(dr)

λ(C)

ξ(ds)

ξ(G)

]

= E

[∫∫∫
1{s∈r−1C} 1{r∈C} f (v−1(X, ξ), r)

ξ(dv)

(v−1ξ)(r−1C)

λ(dr)

λ(C)

v−1ξ(ds)

ξ(G)

]

= E

[∫∫
1{s∈r−1C} 1{r∈C} f (S−1(X, ξ), r)

(S−1ξ)(ds)

(S−1ξ)(r−1C)

λ(dr)

λ(C)

]
.

Again, apply the fact that S is a typical location for X in the mass of ξ (and recall that we are
assuming that the origin is a typical location for X in the mass of ξ ) to obtain

E[f (V −1
C (X, ξ), UCVC)]

= E

[∫∫
1{s∈r−1C} 1{r∈C} f ((X, ξ), r)

ξ(ds)

ξ(r−1C)

λ(dr)

λ(C)

]

= E

[∫ (∫
1{s∈r−1C}

ξ(ds)

ξ(r−1C)

)
1{r∈C} f ((X, ξ), r)

λ(dr)

λ(C)

]

= E

[∫
1{r∈C} f ((X, ξ), r)

λ(dr)

λ(C)

]
= E [f ((X, ξ), UC)],

that is, (3.1) holds. In the above calculation expressions like ((s−1ξ)(u−1C))−1 can be given
some fixed (arbitrary) value if (s−1ξ)(u−1C) = 0. This requires some care but can be
accomplished as in the first part of the proof of Theorem 6.3 of [8].

4. Locally compact groups, typicality, and mass-stationarity

We shall now drop the condition that G is compact. Then λ and ξ are only σ -finite, so
Definitions 3.1 and 3.2 do not extend immediately to the locally compact case. However,
Theorem 3.2 suggests a way to define typicality of the origin in this case: demand that the
origin is a typical location for X in the mass of ξ on sets placed uniformly at random around
the origin.

Definition 4.1. (a) If (3.1) holds for all relatively compact λ-continuity sets C with λ(C) > 0
then the origin is a typical location for X in the mass of ξ .

(b) If (3.1) holds with X deleted then the origin is a typical location in the mass of ξ .

(c) If (a) is true with ξ = λ then the origin is a typical location for X.

The reason we choose here to restrict C to be a λ-continuity set (that is, a set with boundary
having λ-measure zero) is that then the property in the definition is exactly the property used in
[8] to define mass-stationarity: (X, ξ) is called mass-stationary if the origin is a typical location
for X in the mass of ξ in the sense of Definition 4.1.

Now recall (see, e.g. [6] for the G = R
d case and [7] for the general case) that a pair (X, ξ)

is called a Palm version of a stationary pair (Y, η) if, for all nonnegative measurable functions f
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and all compact A ∈ G with λ(A) > 0,

E[f (X, ξ)] = E

[∫
A

f (t−1(Y, η))η(dt)

]/
λ(A).

In this definition (X, ξ) and (Y, η) are allowed to have distributions that are only σ -finite and
not necessarily probability measures. The distribution of (X, ξ) is finite if and only if η has
finite intensity, that is, if and only if E[η(A)] < ∞ for compact A. In this case the distribution
of (X, ξ) can be normalized to a probability measure.

The following equivalence of mass-stationarity and Palm versions was established in [8] in
the Abelian case and extended to the non-Abelian case in [7].

Theorem 4.1. Let G be locally compact and allow the distributions of (X, ξ) and (Y, η) to be
only σ -finite. Then (X, ξ) is mass-stationary (that is, the origin is a typical location for X in
the mass of ξ) if and only if (X, ξ) is the Palm version of a stationary (Y, η).

An important ingredient in the proof of this theorem is the intrinsic characterization of Palm
measures derived in [11].

5. The Poisson process and reversible shifts

We now turn to the other example mentioned in the introduction. This example concerns a
stationary Poisson process η to which we add a point at the origin, thereby yielding the process
ξ := η + δ0. In this setting, the new point is often referred to as a typical point of ξ .

For the Poisson process on the line (G = R), this is motivated by the fact that the intervals
between the points of ξ have independent and identically distributed (exponential) lengths and,
thus, if the origin is shifted to the nth point on the right (or on the left) then the distribution of
the process does not change:

ξ(Tn + ·) D= ξ, n ∈ Z. (5.1)

Here T0 := π0(ξ) := 0 and

Tn := πn(ξ) :=
{

nth point on the right of the origin if n > 0,

−nth point on the left of the origin if n < 0.

Since ξ looks distributionally the same from all its points, it is natural to say that the point at
the origin is a typical point of ξ .

It is well known that on the line the typicality property (5.1) characterizes Palm versions ξ

of stationary simple point processes η (but it is only in the Poisson case that the Palm version is
of the form η + δ0). Thus, due to Theorem 4.1, (5.1) is equivalent to the origin being a typical
location in the mass of ξ in the sense of Definition 4.1. Thus, on the line, calling the point at the
origin a typical point is not only natural because of (5.1) but also consistent with Definition 4.1.

Property (5.1) is a more transparent definition of typicality than Definition 4.1, but it does
not extend immediately beyond the line: if d > 1 and we go out from the origin in any fixed
direction, then we shall (almost surely) not hit a point of the Poisson process. One might
conceive of mending this by ordering the points according to their distance from the origin, but
this does not yield (5.1) as is clear from the following example.

Example 5.1. If ξ = η + δ0 is the Palm version of a Poisson process η and we shift the
origin to the point T that is closest to the origin, then the Poisson property is lost: the shifted
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process ξ(T +·) is sure to have a point (the point at the old origin −T ) that is closer to the point
at the origin than to any other point of ξ(T + ·). This is not a property of ξ as the following
argument shows.

The stationary Poisson process η need not have a point that is closer to the origin than to any
other point of η since there is a positive probability that η has no point in the unit ball around
the origin and that a bounded shell around that ball is covered by the balls of diameter 1

2 with
centres at the points in the shell.

Thus, for the Poisson process in the plane (G = R
2)—and in higher dimensions (G = R

d )
and beyond—there is no obvious motivation (save the analogy with the line) for calling the
new point at the origin typical. However, adding that point to the stationary Poisson process
yields its Palm version, and, by Theorem 4.1, the origin is a typical location in the mass of
the Palm version. Thus, calling the point at the origin a typical point is again consistent with
Definition 4.1.

Now although property (5.1) does not extend immediately beyond the line, a generalization
of (5.1) does. The key property of πn defining Tn in (5.1) is that they are reversible: a measurable
map π taking each ξ having a point at the origin to a point T = π(ξ) is reversible if it has a
reverse π ′ such that

π ′(ξ(T + ·)) = −T and π(ξ(T ′ + ·)) = −T ′, where T ′ = π ′(ξ).

Above, the shift from the point at the origin to the nth point on the right (or left) is reversed by
shifting back to the nth point on the left (or right). In Example 5.1 on the other hand, the shift to
the closest point is not reversible because there can be more than one point having a particular
point as its closest point. The following example of reversible πn yielding a generalization of
(5.1) is from [1].

Example 5.2. Let d = 2, and consider ξ = η + δ0, where η is a stationary Poisson process
in R

2. Link the points of ξ into a tree by defining the mother of each point as follows: place
an interval of length 1 around the point parallel to the x-axis and send the interval off in the
direction of the y-axis until it hits a point, let that point be the mother of the point we started
from. Define the age order of sisters by the order of their x coordinates. This procedure (see
[1]) links the points into a one-ended tree such that each point has an ancestor with a younger
sister.

Now set

π(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

oldest daughter of 0 if 0 has a daughter,

oldest younger sister if 0 has a younger sister but no daughter,

oldest younger sister of youngest

ancestor who has a younger sister otherwise.

This π is reversible with reverse π ′ defined by

π ′(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mother of 0 if 0 has no older sister,

youngest older sister if 0 has a daughterless youngest

older sister,

last in youngest-daughter offspring-line

of the youngest older sister otherwise.
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Set T0 := π0(ξ) := 0 and recursively, for n > 0,

Tn := πn(ξ) := π(ξ(Tn−1 + ·)), T−n := π−n(ξ) := π ′(ξ(T−(n−1) + ·)).
With this enumeration of the points of ξ, the typicality property (5.1) holds; see [1].

For d > 2, the same approach works to establish (5.1). In that case place a (d − 1)-
dimensional unit ball around each point and send the ball off in the dth dimension until it hits
a point. When d = 3, this again strings up all the points of ξ into the integer line. However,
when d > 3, this yields an infinite forest of trees, and the tree containing the point at the origin
only strings up a subset of the points; see [1].

More sophisticated tree constructions can be found in [4] and [14]; see also [5]. In particular,
the points can be linked into a single tree in all dimensions. This is true not only for the Poisson
process but for Palm versions of arbitrary stationary aperiodic simple point processes in R

d .

6. Simple point processes and point-stationarity

Property (5.1) is a well-known characterization of Palm versions ξ of stationary simple point
processes on the line. When a random element X is involved and (X, ξ) is the Palm version of
a stationary pair, then the characterization reads as follows (recall that T −1

n = −Tn is the group
inverse of Tn):

T −1
n (X, ξ)

D= (X, ξ), n ∈ Z.

This is implied by the property that

T −1(X, ξ)
D= (X, ξ) for all T = π(ξ) where π is reversible, (6.1)

which is in turn implied by the property that

T −1(X, ξ)
D= (X, ξ) for all T = π(X, ξ) where π is reversible; (6.2)

here π reversible means that π has a reverse π ′ such that π ′(T −1(X, ξ)) = T −1 and
π(T ′−1(X, ξ)) = T ′−1, where T ′ = π ′(X, ξ).

The latter two properties are not restricted to the line, as we saw in Example 5.2. In [2] and
[3], property (6.1) is used to define point-stationarity, a precursor of mass-stationarity. There
it was proved, for simple point processes on Abelian G, (i) that point-stationarity characterizes
Palm versions of stationary pairs, (ii) that (6.1) can be replaced by (6.2), and (iii) that in (6.1)
it suffices to consider π such that π ′ = π (such π are said to induce a matching).

Point-stationarity was introduced earlier in [12] (see also [13, Chapter 9]) for simple point
processes on G = R

d , but the definition there was more cumbersome, involving stationary
independent backgrounds: a random element Z (possibly defined on an extension of the
underlying probability space) is a stationary independent background for (X, ξ) if

(i) Z takes values in a measurable space on which G acts measurably, and

(ii) Z is stationary and independent of (X, ξ).

In [12] ξ is a simple point process on R
d and the pair (X, ξ) is called point-stationary if, for all

stationary independent backgrounds Z,

T −1((Z, X), ξ)
D= ((Z, X), ξ) for all T = π((Z, X), ξ) where π is reversible. (6.3)
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This property was proved to characterize Palm versions (X, ξ) of stationary pairs and to be
equivalent to what later became the definition of mass-stationarity. The proof of the fact that
(6.3) implies (3.1) with C = [0, 1)d is sketched in the following example. The result for
C = [0, h)d is obtained in the same way, and the result for relatively compact C then follows
by a simple conditioning argument.

Example 6.1. Consider G = R
d . Let UC be uniform on C = [0, 1)d , and let U be uniform

on [0, 1). Let UC and U be independent and independent of (X, ξ). Set Z = (U−1
C Z, U), and

let shifts leave U intact. Let πn(Z, ξ) be the nth point of ξ after the point at the origin in the
circular lexicographic ordering of the points in the set U−1

C C. These πn are reversible (with π ′
n

obtained from the reversal of the lexicographic ordering), and so is the mapping π defined by

π((Z, X), ξ) := π(Z, ξ) := π[Uξ(U−1
C C)](Z, ξ).

Now VC := π(Z, ξ) has the conditional distribution ξ(· | U−1
C C) given ((Z, X), ξ), and, thus,

also given (X, ξ, UC) since UC and Z are measurable functions of each other. Thus, (6.3)
implies (3.1) for this particular set C.

The results mentioned above together with Theorem 4.1 yield the following theorem.

Theorem 6.1. Let ξ be a simple point process on a locally compact Abelian G having a point
at the origin. Allow the distributions of (X, ξ) and (Y, η) to be only σ -finite. Then the following
claims are equivalent:

(a) the pair (X, ξ) is mass-stationary,

(b) the pair (X, ξ) is the Palm version of a stationary (Y, η),

(c) the pair (X, ξ) is point-stationary,

(d) property (6.1) holds with π restricted to be its own reverse (matching),

(e) property (6.2) holds,

(f) property (6.3) holds for all stationary independent backgrounds Z.

Proof. The only claim that has not been proved is that (f) can be added to the equivalences
(a) through (e) in the general Abelian case. For that purpose, assume that (b) holds, and let Z

be stationary and independent of (X, ξ) and (Y, η). Then ((Z, X), ξ) is the Palm version of
((Z, Y ), η), and the equivalence of (b) and (e) yields (f). Conversely, (e) follows from (f).

7. Measure-preserving allocations

For a measurable map π taking a random measure ξ to a location π(ξ) in G, define the
associated ξ -allocation τ by

τ(t) = τξ (t) = tπ(t−1ξ), t ∈ G.

Similarly, for a measurable map π taking (X, ξ) to a location π(X, ξ) in G, define the associated
(X, ξ)-allocation τ by

τ(t) = τ(X,ξ)(t) = tπ(t−1(X, ξ)), t ∈ G.

The π in the definition of reversibility above is defined for simple point processes ξ having a
point at the origin. If we define π for simple point processes ξ not having a point at the origin
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by π(ξ) = 0 and π(X, ξ) = 0, respectively, then π is reversible if and only if the associated τ

is a bijection. The bijectivity of τ is further equivalent to τ preserving the measure ξ , that is,
for each fixed value of ξ the image measure of ξ under τ is ξ itself:

ξ({s ∈ G : τ(s) ∈ A}) = ξ(A), A ∈ G,

or, in probabilistic notation,

ξ(τ ∈ ·) = ξ.

Preservation and bijectivity are, however, only equivalent if we restrict to the simple point
process case. Preservation (rather than reversibility/bijectivity) turns out to be the property that
is essential for going beyond simple point processes.

Say that π is preserving if the associated τ preserves ξ . In [8] it was shown that the analogue
of (6.1),

T −1(X, ξ)
D= (X, ξ) for all T = π(ξ) where π is preserving, (7.1)

does not suffice to characterize the Palm versions of stationary random measures with point
masses of different positive sizes since an allocation cannot split a positive point mass. Neither
does (7.1) with T = π(X, ξ) for the same reason. One might therefore want to restrict attention
to diffuse random measures, that is, random measures with no positive point masses. It is not
known yet whether (7.1) does suffice to characterize Palm versions in the diffuse case. However,
this is true when G = R

d if stationary independent backgrounds are allowed. The following
result is from the forthcoming paper [10].

Theorem 7.1. Let ξ be a diffuse random measure on R
d having the origin in its support. Then

the following claims are equivalent:

(a) the pair (X, ξ) is mass-stationary,

(b) for all stationary independent backgrounds Z,

T −1((Z, X), ξ)
D= ((Z, X), ξ) for all T = π(Z, ξ) where π is preserving,

(c) for all stationary independent backgrounds Z,

T −1((Z, X), ξ)
D= ((Z, X), ξ) for all T = π((Z, X), ξ) where π is preserving.

8. Cox and Bernoulli randomizations

Stationary independent backgrounds constitute a certain kind of randomization. Another
kind of randomization, a Cox randomization, yields a full characterization of mass-stationarity
in the Abelian case as we now explain.

Consider a Cox process driven by (X, ξ), that is, an integer-valued point process which
conditionally on (X, ξ) is a Poisson process with intensity measure ξ . Intuitively, the Cox
process can be thought of as representing the mass of ξ through a collection of points placed
independently at typical locations in the mass of ξ . Thus, if (X, ξ) is mass-stationary (if the
origin is a typical location for X in the mass of ξ ) and we add an extra point at the origin to the
Cox process, then the points of that modified Cox process N are all at typical locations in the
mass of ξ .

It turns out that mass-stationarity reduces to mass-stationarity with respect to this modified
Cox process; for a proof, see [9].
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Theorem 8.1. Let ξ be a random measure on an Abelian G. Then the following claims are
equivalent:

(a) the pair (X, ξ) is mass-stationary,

(b) the pair (X, N) is mass-stationary,

(c) the pair ((X, ξ), N) is mass-stationary.

In the diffuse case, the modified Cox process N is a simple point process and mass-
stationarity reduces to point-stationarity by Theorem 6.1.

Corollary 8.1. Let ξ be a diffuse random measure on an Abelian G. Then the following claims
are equivalent:

(a) the pair (X, ξ) is mass-stationary,

(b) the pair (X, N) is point-stationary,

(c) the pair ((X, ξ), N) is point-stationary.

Owing to this result, the various reversible shifts that are known for simple point processes
can now be applied to diffuse random measures through the modified Cox process N .

Yet another kind of randomization, a Bernoulli randomization, works in the discrete case.
A Bernoulli transport refers to a randomized allocation rule τ that allows staying at a location
s with a probability p(s) depending on s−1(X, ξ), and otherwise chooses another location
according to a (nonrandomized) allocation rule. Call the associated π Bernoulli. This makes
it possible to split discrete point masses. The following result is from [9].

Theorem 8.2. Let ξ be a discrete random measure on an Abelian G. Then (X, ξ) is mass-
stationary if and only if

T −1(X, ξ)
D= (X, ξ)

for all T = π(ξ) where π is preserving and Bernoulli.

9. Mass-stationarity through bounded invariant kernels

We conclude with a more analytical characterization of mass-stationarity. A kernel K(X,ξ)

from G to G is preserving if∫
K(X,ξ)(s, A)ξ(ds) = ξ(A), A ∈ G,

and invariant if

K(X,ξ)(t, A) = Kt−1(X,ξ)(0, t−1A), t ∈ G, A ∈ G.

Note that if τ is a preserving allocation then the kernel defined by

K(X,ξ)(t, A) = 1A(τ(t))

is preserving and invariant. It is also Markovian and, therefore, bounded.
In the Abelian case the following result is from [8]. For the general case, which can be

handled as in Section 3.8 of [7], we need the modular function 	 : G → (0, ∞) of G (	 ≡ 1
in the Abelian case).
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Theorem 9.1. The pair (X, ξ) is mass-stationary if and only if, for all preserving invariant
bounded kernels K and all nonnegative measurable functions f ,

E

[∫
f (s−1(X, ξ))	(s−1)K(X,ξ)(0, ds)

]
= E[f (X, ξ)]. (9.1)

If G isAbelian and K(X,ξ) is Markovian, then (9.1) means that T −1(X, ξ)
D= (X, ξ), where T

has conditional distribution K(X,ξ)(0, ·) given (X, ξ). It is not known yet whether ‘bounded’
in the theorem can be replaced by ‘Markovian’.

Theorem 9.1 and Theorem 4.1 yield the following extension of Theorem 3.1(b) to the locally
compact case.

Theorem 9.2. The pair (X, λ) is mass-stationary (that is, the origin is a typical location for
X) if and only if X is stationary.

Proof. Suppose that X is stationary. Then so is (X, λ). A stationary (X, λ) is the Palm
version of itself. Thus, Theorem 4.1 yields the fact that (X, λ) is mass-stationary. Conversely,
assume that (X, λ) is mass-stationary. Fix an arbitrary t ∈ G, and let K(X,λ) be the invariant
kernel with K(X,λ)(0, A) = 	(t) 1A(t). This kernel is preserving and from (9.1) we obtain
E[f (t−1(X, λ))] = E[f (X, λ)]. Since this holds for all nonnegative measurable f, it holds
in particular for f that are constant in the second argument and, thus, X

D= Y . Hence, X is
stationary.

Theorem 9.2 shows that mass-stationarity is a generalization of the concept of stationarity.
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