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INDICATOR SETS IN AN AFFINE SPACE OF ANY 
DIMENSION 

F. A. SHERK 

1. I n t r o d u c t i o n . I t is well known tha t a translation plane can be repre
sented in a vector space over a field F} where F is a subfield of the kernel of a 
quasifield which coordinatizes the plane [1; 2; 4, p.220; 10]. If II is a finite 
translation plane of order qr (q = pn, p any prime), then II may be represented 
in V2r(q), the vector space of dimension 2r over GF(g) , as follows: 

(i) T h e points of II are the vectors in V = V2r(ç)> 
(ii) The lines of II are 

(a) A set S^ of qr + 1 mutual ly disjoint r-dimensional subspaces of V. 
(b) All translates of y in V. 

(iii) Incidence is inclusion. 
5^ is called a congruence or a spread. In terms of the projective (2r — 1)-

space 2 = PG(2r — 1 , q)} whose points, l ines,. . . , i-flats are 1, 2, . . . , (i-\- 1)-
dimensional subspaces respectively of V, 5^ is a set of mutual ly skew (2r — 1)-
flats. T h u s y may be interpreted either as a set of qr + 1 mutual ly disjoint 
r-dimensional subspaces in F or as a set of qr + 1 mutual ly disjoint (r — 1)-
flats in S. 

Any given spread S^ completely determines some translation plane II, and 
therefore translation planes can be studied through spreads. T h e approach of 
this paper is to r e p r e s e n t ^ in V (or in 2 ) by a set J of qT points in AG(r , qT), 
the affine space of dimension r over GF(qr). J is called an indicator set, and it 
must satisfy a certain characteristic property, to be described presently. We 
then s tudy the s p r e a d ^ , and therefore the translation plane II, by observing 
the properties of the indicator set J. 

This approach has been used effectively in the case r = 2 by Bruen [3] and 
by Sherk and Pabs t [13]. T h e generalization for r > 2 which we develop here 
was suggested to me by T . G. Ostrom, who also commented t ha t it would be 
part icularly useful if this approach were to throw light on cases in which r is 
odd. Consequently, in what follows, we concentrate on the cases in which 
q = p, a prime, and r = 3. Where it is convenient to do so, however, we deal 
in greater generality. 

After necessary preliminary definitions, we develop, in Theorem 1, a neces
sary and sufficient condition for two indicator sets to define isomorphic t rans
lation planes. This is then easily adapted to yield a description of symmetries 
which an indicator set may possess (Theorem 2). Such symmetries are impor-
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tant for their close relationship to the collineations of the corresponding trans
lation plane. 

Section 6 is devoted to a study of permutations in the indicator r-space. We 
find the necessary and sufficient condition for a permutation to be a collinea-
tion (Theorem 3). 

Section 7 uses the foregoing work to give explicit information on the Desar-
guesian plane and the André planes. This includes the nature of a representa
tive indicator set, and some indication of the extent of the class of André 
planes. Section 8 deals with semifield planes of order p3, and exhibits an example 
of a semifield plane indicator set in the case p = 3. This example is shown in 
section 9 to have an interesting connection with Hering's plane of order 27. 

Throughout the paper some more or less standard notation will be used 
without comment. The greatest common divisor of two integers a and b will be 
denoted by (a, b). We shall denote the cardinality of a finite set 5 by | 5 |, and 
occasionally also use the same symbol, "I |", to denote a determinant. The 
symbol <A, B, C . . . > will denote the group generated by A, B, C, 
Finally, if H is a subgroup of a group G, then N(H) will denote the normalizer 
of H in G. 

The author is grateful to the referee for many helpful comments. 

2. The indicator r-space. Consider the vector space V = V2r(q) (q = Pn)-
As already noted, the points of a translation plane II, the kernel of whose 
coordinat ing quasifield contains F = GF(ç), can be identified with the 
vectors in V. After fixing a suitable basis in V, we can denote these vectors in 
matrix form by the order pairs (X F), where X and Fare I X r matrices over 
F. The set {(0 F)}, where 0 is the zero matrix and F ranges over all 1 X r 
matrices over F, is an r-dimensional subspace of V, as is the set {(X XM) ), 
where M is any given r X r matrix over F [10, p.5, 51]. We denote the former 
r-space by the matrix equation X = 0, and the latter by F = XM. 

It is obvious from inspection that F = XM is disjoint from X = 0. Con
versely, 

LEMMA 1. Every r-dimensional subspace in V that is disjoint from X = 0 can 
be expressed in the form Y = XM for one and only one choice of M. 

Proof. Any r-space in V is the solution set (X Y) of a set of r simultaneous 
linear equations 

(2.1) £ (aijXi + Ptat) =0 (i = 1 , 2 , . . . , r) 

in the 2r variables (x\, . . . , xri yi, . . . . , yT) = (X F). As a matrix equation, 
(2.1) is 

(2.2) XP + YQ = 0, 
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where P and Q are r X r matrices over F. Now if Q is singular, then there is a 
matr ix Yx ^ 0 such tha t Y\Q = 0. Since OP + YiQ = 0, the r-space defined 
by (2.2) contains the vector (0 Y\) ^ (0 0) , and therefore has non-trivial inter
section with X = 0. Hence if an r-space I is disjoint from X = 0, and if (2.2) 
is the equation of /, then Q is non-singular. Thus we have 0 = OQ - 1 = 
(XP + YQ)Q~l = XPQ~l + F, and so / is given by the equation Y = I M , 
where M = —PQ~l. I t is obvious tha t two r-spaces represented by Y = J O f i 
and Y — XM2 respectively are identical if and only if Mi = Mi. 

Lemma 1 establishes a 1-1 correspondence between the setoff of r-spaces in 
F disjoint from X — 0 and the set ^ # o f r X r matrices over GF(g ) . 

Next let us consider the affine space stf = AG(r , qr) of dimension r over 
GF(qT), which can be described as follows: Let f(x) = xr — p r_iX r_1 — 
p r_2x r~2 — . . . — po be an irreducible polynomial over GF(g) , and let t be a 
primitive root of f(x) in GF(g r ) (regarded as an extension field of G F ( g ) ) . 
Then each element of GF(g r ) is uniquely denoted by the polynomial «o + a\t 
+ . . . + ar-it

T~l, where a0, . . . , a r_i £ GF(g) and tr = p0 + pit + . . . + 
Pr-itT~\ 

Notation. Elements of GF(g) and of GF(g r ) will be denoted by small Greek 
letters: a, j3, y, . . . , and small Latin letters: a, b, c, . . . , respectively. 

Any point of stf is identified by the coordinates 

(An + X21* + . . . + X ^ - 1 , . . . , Xlr + A2r* + . . . + \TTrr-1), 

which, expressed as a 1 X r matrix, is the product JM, where J = 
(1 tt2. . . tr~l) and 

(
An A12 • • • Ai r 

A2I A22 • • • A2r 

\ \ \ 
Arl Ar2 • • • \TT 

M of course is an r X r matr ix over GF(g) , and uniquely determines the point 
in <$/. T h u s we have a 1-1 correspondence between the set <Jt of r X v matrices 
over GF(#) and the points of stf. Recalling the above correspondence between 
oêf and ^Jé, we establish a 1-1 correspondence between the points of s$ and 
the r-spaces of <j£? in V. Thus each point of stf represents, or indicates an 
r-space in ££. 

Definition. T h e affine r-space s/ = AG(r , qT) is called the indicator r-space 
of J£, the set of r-dimensional subspaces Y = XM of V. 

I t is both convenient and suggestive of our use of indicator r-spaces to denote 
a point J M oisé simply by the matr ix M. Thus for example the point / itself 
is denoted by the r X r identi ty matr ix / . There is a rough analogy between 
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this convention and the well-known practice of denoting the points of the 

Argand plane by complex numbers . 
We now proceed to establish the fundamental relationship between the 

r-spaces of ££ and the points of s/\ 

LEMMA 2. Two r-spaces Y = XMX and Y = XM2 in f£ are disjoint if and 

only if Mi — M2 is non-singular. 

Proof. Suppose tha t Y = XM\ and Y = XM2 have a common vector 

{X' Yf) where Xr 5* 0. Then X'Mi = X'M2j so t h a t X'(Mi - M2) = 0; 

thus Mi — M2 is singular. T h e a rgument is reversible. 

Definitions. Any n elements ax, a2, . . . , an of GY(qT) are linearly dependent 
over GF(g) if there exist n elements Xi, X2, . . . , \n of G F ( g ) , not all zero, such 
tha t Xicii + \2a2 + . . . + \nan = 0. T h e elements are linearly independent 
over GF(<7) if they are not linearly dependent . 

Any line in the indicator r-space se is determined by two dist inct points on 
it. If a line / contains the distinct points A = (ai} a2, . . . , ar) and B = 
(61, b2l. . . ,br), then any point on /, except B, is given by the coordinates 
(a 1 + k(bi — di),a2 + k(b2 — a2), . . . , ar + k(br — aT)) for some k Ç G F (qr). 
Using the term of classical geometry, we call the ordered set of elements 
{bi — czi, b2 — a2, . . . , br — ar) the set of direction numbers of /. Up to homo
geneity, the direct numbers of / are the same for any choice of A and B on /. 

L E M M A 3. Two r-spaces Y = XMi and Y = XM2 in ££ are disjoint if and 
only if the direction numbers of the line joining the points Mi and M2 in ,S$ are 
linearly independent over GF(g ) . 

Proof. By Lemma 2, Y = XMX and Y = XM2 are disjoint if and only if the 
matr ix Mi — M2 is non-singular. T h e line in stf which joins the points Mi and 
M2 has direction numbers {JCi, . . . , JCr}, where J = (1 t t2 . . . tr~l), as 
before, and C\, . . . , Cr are the column matrices of Mi — M2. Mi — M2 is 
non-singular if and only if its column matrices (considered as vectors over 
GF(g ) ) are linearly independent . This establishes Lemma 3. 

Definition. Two points Mi and M2 in S$ are compatible if the corresponding 
r-spaces Y = XMi and Y = XM2 in f£ are disjoint. Otherwise M\ and M2 

are incompatible. 

T h u s by Lemma 3, Mi and M2 are compatible if and only if the direction 
numbers of the line MiM2 are linearly independent over GF(g ) . 

3. Spread se t s a n d i n d i c a t o r s e t s . Let ^ be a spread in V. By suitable 
choice of basis in F , we may assume tha t one of the qr + 1 components of f/ 
is the r-dimensional subspace X = 0. T h e other components are then 
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r-subspaces { Y = XMt) (i = 0, 1, . . . , qr — 1) in «if, and are mutually dis
joint. The set of matrices 

(3.1) S = {Mo, Mlt . . . , M^} 

is called a spread set [2, 4; p. 220], and has the property that M{ — M j 
(i,j = 0, 1, . . . , qT — 1; i F^ j ) is non-singular. The set S may also be viewed 
as a set 

(3.2) J = {Mo, Mu . . . , M^i] 

of gr points in the indicator r-space s/. We call J the indicator set of the 
spread 5^. By Lemma 3, J has the characteristic property that the line 
joining any two points Mt and M j has direction numbers which are linearly 
independent over GF{q). 

An indicator set consists of qT points, representing all but one of the qr + 1 
components of the spread in V. The component not represented is the subspace 
X — 0. From the point of view of determining a plane from a given indicator 
set, this blemish presents no difficulties. However, it does complicate the iso
morphism problem (see Section 4), and can be removed by the following 
process: Add to the indicator r-space s/ a single ideal point, denoted by the 
symbol oo , in the same manner in which an ideal point is added to a Euclidean 
r-space to form an inversive r-space. oo has the property that it lies on every 
line of j / . Let J / * denote s/ VJ {oo }. 

Definition. An augmented indicator set J* m S$* is the union of an indicator 
set J in s/, and the point oo. 

Now | */* | = qT + 1 and there is a 1-1 correspondence between the points 
of */* and the components of the spread 5f indicated by J>. 

4. Isomorphism and equivalence of indicator sets. In the remainder 
of this paper, we shall let q = p (p a prime) so that F = GF(q) = GF(p) is a 
prime field. This restriction, without which some of the arguments following 
would need qualification, does not cut out any translation planes from con
sideration. It only eliminates some indicator set representations of some planes, 
forcing a higher value of r. 

We noted in the proof of Lemma 1 that any r-dimensional subspace in V is 
the set of vectors (X Y) for which XP + YQ = 0, with given fixed r X r 
matrices P and Q. It is easy to show that GL(2r, p), the group of all non-
singular linear transformations in V, is transitive on the set of all r-dimen
sional subspaces, and this is why we lose no generality in always choosing a 
spread $f that has the r-space X = 0 as one of its components. The linear 
transformations may be represented by non-singular matrices in the block 
form 

(A C\ 
\B D/ ' 
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where A, B, C, and D are r X r matrices, and where 

\A C\ 

\B D\ 

A linear transformation 

- ( A c) 
\B DI may correspond to a permuat ion of points in s/* = s/ U {oo }. Clearly this 

will be t rue if and only if Y fixes the subset J ? * = i f U | I = 0} of r-spaces in 
V. But r may also carry a subset of «if* (a spread, for example) onto another 
subset of «if* wi thout actually fixing «if*. In this case, a set of points in s/* 
is carried onto another set of points in s/* by some mapping induced by F in 
S$* which does not necessarily include images for all the points of <$/*. For 
convenience, we call this mapping a partial permutation of s/. 

Now let 5^i and 5^ 2 be any two spreads in V, both containing the component 
X = 0. Let III and II2 be the translation planes defined by Sf\ and 5^2. Now 
it can be shown t h a t ITi and H2 are isomorphic if and only if there is a non-
singular linear transformation F in V taking S^\ onto 5^2 [7, p.82; 8, p.486]. If 
J i* and J * are the corresponding augmented indicator sets in J^*, then ITi 
and n 2 are isomorphic if and only if there is a part ial permutat ion in s/* 
taking J x* onto J2*. 

Definition. Two indicator sets J?\ and J^2 are equivalent if the corresponding 
planes Hi and II2 are isomorphic. 

To be more specific, let J^ and ^ 2 * be the sets of points {oo \J Mt) and 
{oo \J Nx\ (i = 0, 1, . . . , pr — 1) respectively in &/*. These correspond to 
the spreads <fx = {(0 F) U (X XM,)} a n d ^ 2 = {(0 F) U (XXNt)} o f ^ * 
in V respectively. J \ and , / 2 are equivalent if and only if there is a linear 
transformation 

\B Dl 

of V t ak ing5^ i onto 5^2- Therefore 

(0 ¥)(£ £ ) = (YB F D ) e ^ 2 . 

Hence (YB YD) = (0 F ) , or else (YB YD) = (X XNf) for some value of t. 
I t follows t h a t either B = 0 or else B is non-singular (since if B ^ 0 then YB 
cannot be 0 for any value of F ^ 0) . In the lat ter case, (YB YD) = 
( F S YBB~lD) = ( I I ^ 1 ! ) ) = ( X X 7 V , ) , s o t ha t B ^ D = TV, for some i. 
More generally, 

(X X M , ) ( ^ ^ J = (X.4 + XMtB XC + Z M i C ) 

= (X(A + MtB) x(c + MtD)) e y*. 
Since this must therefore be either oo or Nj for some value of j , we have 
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THEOREM 1. Jx = {Mt} and J\ = {N^ (i = 0, 1, . . . , pr — 1) are equiva
lent indicator sets if and only if there exist r X r matrices A, B, C, and D over 
GF(p) with the following properties: 

(a) A C 
B D 

7^0. 

(b) Either 
(i) B = 0, A is non-singular, and for each ij j £ {0, 1, . . . , pr — 1} such 

that A~l(C + MtD) = Nj or 
(ii) B is non-singular, and there is one value of j £ {0, 1, . . . , pr — 1} such 

that B~1D = Nj. Also, there is one value of i such that A + MtB = 0. 
For each of the other i, A + MtB is non-singular and 3 j such that 
(A +MiB)~l(C + M1P) = Nj. 

Notation. We shall denote a partial permutation of J^/* in the form M —> 
(A + MB)~l{C + MD), where M denotes any point of J / * . 

Note that GO —* oo or B~lD, depending on whether or not B = 0. Also, if 
B 9^ 0, then — AB~~l —> oo. In all other cases, the image of M is obtained by 
the indicated matrix operations. 

It is interesting to note that the partial permutations of J#* considered here 
are reminiscent in their form of the classical linear fractional transformations. 

Another necessary and sufficient condition for equivalence (of spread sets) is 
given by Maduram [8, p.487]. 

5. Collineations and Symmetries. Theorem 1 provides a criterion for 
determining when two indicator sets J\ and J1\ are equivalent. In the case 
that J\ — J\, any partial permutation T taking . / i * to J<? permutes the 
points of J^i* and is a symmetry of J *. In the corresponding translation plane 
Hi, r induces a collineation which fixes the point (0 0), i.e. it lies in the 
translation complement of the full collineation group of III [11, p. 197]. Con
versely, since a collineation belonging to the translation complement of III is 
given by a non-singular linear transformation in V which fixes the spread S^i 
[1, p. 178; 10, p.52], it induces a symmetry of J^i*. It follows that the symmetry 
group of J * is a homomorphic image of the translation complement of Hi. The 
kernel of the homomorphism is the group denoted by the matrices 

lu o\ 
\ 0 \II 

(X <E GF(p)). 

From Theorem 1, we now have 

THEOREM 2. Let J = {Mt\ (i = 0, 1, . . . , pT — 1) be an indicator set. The 
symmetries of J* are the partial permutations M —> (A + MB)~l(C + MD), 
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where 

(a)\A
B £ * 0 . 

(b) Either 
(i) B = 0, A is non-singular, and for each ij j £ {0, 1, . . . , pr — 1} such 

that A~l{C + MP) = Mj or 
(ii) B is non-singular and there is one value of j Ç {0, 1 , . . . , pT — 1} such that 

B~lD — M j . Also there is one value of i such that A + M tB = 0. For each of the 
other values of i, A + MtB is non-singular and 3 j such that (A + M\B)~l 

(C + MtD) = M j . 

6. S o m e special p e r m u t a t i o n s of sf*. A S we noted in Section 4, a part ial 
permuta t ion of sf* is not necessarily a permutat ion of all the points of sf*. 
I t is easy to show, in fact, t ha t a part ial permutat ion M —> (A + AIB)~l 

(C + AID) is a permutat ion olsf* if and only if B = 0. In this case, GO is fixed 
and we have a permuta t ion T: M —• A~lC + ^4~1M£) of the points of <£/. 
(Note t ha t for T to be a permuta t ion , D mus t be non-singular) . I t is instructive 
to determine the circumstances under which T is then a collineation of se, 
and the na ture of t ha t collineation. 

In the series of lemmas which follow, we make cons tant use of the fact t h a t 
s$ can be thought of as a vector space of dimension r over GF(pT). T h e points 
of s/, which we are denoting by the r X r matrices {AI} over GF(^>), are the 
vectors in this vector space, and vector addit ion can be identified with matr ix 
addit ion. T o avoid confusion, we shall use the symbol M to represent the vector 
corresponding to the point AI. (We continue to let AI denote both the matr ix M 
and the point of sf determined by M.) T h u s for example the symbol a M 
denotes the vector M multiplied by the scalar a G GF(pr), bu t the symbol a M 
has no meaning unless a G GF(p). 

The semi-linear t ransformations are collineations in s/ fixing 0. Any other 
collineation of s/ is the product of a semi-linear transformation and a t rans
lation [4, p.32]. 

LEMMA 4. F: AI —̂  A~lC + A~lAID is a translation of s/ if and only if 
A = D = I. All translations of s/ are present as permutations of sf. 

Proof. HA = D = I, then r is AI —» C + AI. In the vector space interpre
tat ion of sf, r is M —•» C + M, which is a t ranslat ion in sf. Conversely, any 
translation in sf is given in the form M —» C + M. 

In vir tue of Lemma 4 and Theorem 1 we can conclude tha t any indicator set 
is equivalent to some indicator set containing 0. T h u s no generali ty is lost in 
restricting our consideration of indicator sets to those which contain 0, and 
this we now consistently do. 

We proceed to examine the question of when a permuta t ion of sf fixing 0 
is a semi-linear t ransformation. Such a permuta t ion has the form AI —> A~lAID. 
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Certainly M —» MD is a linear transformation, since M = IM. So M —> .MX> 
is a collineation of J^/ for any (non-singular) matrix D. 

Next, let W be the point such tha t W = eï, where e is a primitive root of 
GF(pr). Then e'l = W\ and W has period pT - 1. 

LEMMA 5. 77*e points on the line OM are 0 and WlM (i = 0, I, . . . ., pr — 2) . 

Proo/. The points are the vectors 0 and elM = e ' J M = WlM = WlM. 

One semilinear transformation of S$ is the mapping r: (xi, X2, . . . , x r) —> 
(x^, x2

p, . . . , x / ) . Let T be the point with coordinates (1, tp, t2p, . . . , trp). 
Under r, if? —> PAf ; therefore the permutat ion M —> TM is a collineation 
of j / . 

LEMMA 6. 7 T F P - 1 = Wp. 

Proof. Under the mapping r, W = eI->epT = WPT. Therefore T W = I ^ p r . 

Lemma 6 has three corollaries: 

COROLLARY 1. The collineation M —» M P T ^ x ^ //^ ttwe OP* (i = 0, 1, . . . ) . 

Proof. P W = WpT implies P W = WpiT, i.e. P W = H ^ T 7 . The result 
follows from Lemma 5. 

COROLLARY 2. T has period r, and J, P, T2,. . . , T^1 are linearly independent. 

Proof. T has period r since the semi-linear transformation r clearly has 
period r. If I, P, . . . , Tr~l are not linearly independent, then some vector Tl 

(0 S i < r) can be uniquely expressed as a linear combination 

aj^ + aj^+ . . . + anT^ (n<r;0 ^ j u . . . Jn <r), 

where i ^ ji, . . . ,jn, Tjl, . . . , Tjn are linearly independent, and no #i, a2, . . . an 

is 0. Now by Corollary 1, 

J^W = WpiTi = epiT^. 

T h u s 

e^T1 = (aiT1* + . . . + anT^)W = axW
phT^ + . . . + anW

pJnTj« 

= a1e
phTJï+ . . . + ane

pfnf^. 

Since the expression for Tl as a linear combination of Tjl, . . . , T3n is unique, 

But this is a contradiction since i ^ J i , j2 , . . . ,jn, and 0 ^ i , j i , . . . , j n < r. 

COROLLARY 3. < I 7 , P > = i V « l f » w G L ( r ^ ) . 

Proc»/. By Lemma 6, T normalizes <W>. If A £ 7 V ( < ^ F > ) , then 4 W 
= W \ 4 , i.e. PF fixes the line CL4. But the eigenvectors of the linear transfor-
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mation M —> MW are the linearly independent vectors I, T, . . . , Tr"\ so t h a t 
line OA = line 0Tb (b = 0, 1, . . . , r - 1). T h u s A = WaTb for some a, b. 

T H E O R E M 3. The permutation T: M —> A~lC + A~lMD is a collineation of se 
ij and only if A £ < W, T>. 

Proof. V is the product of the permutat ion IV M —» A~lMD and the 
translation M —> A~lC + M, so t ha t T is a collineation if and only if Ti is a 
collineation. But since M —* MD~~lA is a collineation, T1 is a collineation if 
and only if T2: M —» ^ 4 - 1 M ^ is a collineation. 

If T2 is a collineation, then T2 fixes the line 0 / since it fixes / . Therefore 
A~lWA = Wl for some i, and so A Ç 7V(< W > ) = < PF, T > . On the other 
hand, we have already noted tha t M —> TM is a collineation, and it is easy to 
show tha t M —» PFikf is the collineation (dilatation) M —* gM. I t follows then 
t ha t iVf —> I ^ a r 6 M D is a collineation, and the proof of Theorem 3 is complete. 

7. D e s a r q u e s i a n a n d André p l a n e s of order pr. In this section we exhibit 
indicator sets for Desarguesian and André planes of order pr. In view of the 
large number of partial permuta t ions M —» (A + MB)~l(C + AID) relating 
equivalent indicator sets, the choice of indicator set for any plane is very 
great. The choice of a representat ive indicator set is therefore somewhat 
a rb i t ra ry ; we choose the representat ives t ha t are the simplest to grasp a n d / o r 
which display their symmetr ies to best advantage . 

T h e most obvious indicator set is the set of all points on a line whose direc
tion numbers are linearly independent . By Theorem 1 and the theory developed 
in the last section, it is easy to show tha t all such indicator sets are equivalent , 
so we choose the points of the line 0 / as a convenient representat ive. This 
indicator set is 

j D = ( o u r ) (i = o, i, ...,y-2). 
The matrices {0 U Wl) clearly form a ring, and therefore the translation plane 
defined by J> D is the Desarguesian plane [4, p.220]. 

Let G be the group of symmetr ies of JD. By Theorem 2 and the lemmas of 
Section 6, the usual well-known facts about G are easily derived. For example, 
G is t ransi t ive on J>D since GO —> 0 under M —> M~l and oo —> Wl under 
M —>M~,1(JT+ MW1) ( tha t the above are symmetr ies of JD is instant ly 
verified). But G is doubly t ransi t ive on JD, since M —» Wl + M fixes GO and 
carries 0 into Wl. Finally, G is tr iply t ransi t ive on J1

 D since M —> MW1 fixes oo 
and 0, and carries / into W\ T h e analysis can even be carried one s tep further 
to note t ha t there is a symmet ry of J*D, different from the identi ty, which fixes 
oo , 0, and I, namely M —> TMT~l. Under this symmet ry , W —> Wp (Lemma 
6) ; the symmet ry induces a non-projective collineation of the Desarguesian 
plane defined by JD. 

A generalized André plane is usually described in terms of its coordinatizing 
quasifield Q [5, 9, 10] (for a characterization in terms of collineations, see [9]). 
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T h e elements of Q are identified with the elements of the field K = GF(pr), 
addition in Q is addition in K, bu t multiplication is defined by x • m = xv m, 
where X is an integer dependent upon m. The spread for the plane is obtained 
from the spread for the Desarguesian plane by replacement of the components 
{y = xm} by the components {y = xp m\. In terms of indicator sets, this 
amounts to a series of replacements of sets of points { Wa>'} (j = 1, 2, . . . , n) by 
points {WaiTh) [10, p.27]. 

For example, the indicator sets of the André planes are obtained from 
JD = {0 \J Wl) (i = 0, 1, . . . , pr — 2) by replacement of some of the sets 
{<%*] = {{W*+w\} (i = l , 2 , . . . , ( £ ' - l ) / ( / > - l ) ; * = 0, 1, . . . ,p-2) 
by the sets {<% kT

b*} (bk = l , 2 , . . . , r - 1). The lines O r ° \ 0 (a = 0 , 1 , . . . , r - 1) 
are each part i t ioned into p — 1 disjoint sets of points °tt{Fa, °ll\Ta:, . . . , 
^P-2T

a, and it is not difficult to show tha t each point of ^/kT
a is compatible 

with each point of °U jTb whenever j ^ k. Thus the indicator set of any André 
plane may be taken to be sets of points: 

^oTa\ °U{Ta\ . . . , ^ p _ 2 7 ^ - 1 , lying on lines 
OTa\ 0Ta\ . . . , 0Tav~\ together with the point 0. 

By means of indicator sets, much detailed knowledge on André planes can 
be won. We illustrate by considering the case in which p = r = 3. 

T H E O R E M 4. Aside from the Desarguesian plane, there is only one André plane 
of order 27. 

We shall call this plane the proper André plane of order 27, to distinguish it 
from the Desarguesian plane. 

Proof. Any indicator set of the Desarguesian plane of order 27 is equivalent 
to the set JD = {0 U ^ 0 U ^ i } , where, as before, <%k = {Wk+2i} 
(i = 0, 1, . . .-, 12) for k = 0, 1. Now °tik can be replaced by <%kT or <%kT

2 to 
yield the indicator set J' of an André plane. Applying the collineation 
M —» MT or M —-> MT2 and invoking Theorem 1, wre have t ha t J'/ is equiva
lent to an indicator set containing 0 and ^ 0 . So aside from J*D, we have a t 
most two non-equivalent indicator sets, J>\ = { 0 U ^ o U °tt\T\ and 
/ 2 = | 0 U f 0 U °lt{r2\. But the collineation M - » WMT takes J2 into 
c / i , so J \ and Jr

2 are equivalent. 

Theorem 3 is the first of a whole class of counts of André planes of given 
order. Similar reasoning yields for example tha t there are, aside from the 
Desarguesian plane, eight non-isomorphic André planes of order 125. 

Collineation groups of generalized André planes (and therefore symmetry 
groups of the corresponding indicator sets) have been determined by Foulser 
[5]. 

8. Semif i e ld p lanes . As we have already observed, the spread set of a 
semifield plane is closed under addition [4, p. 220]. Interpret ing this property 
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in the indicator r-space se, we easily see t h a t the indicator set J , of a semifield 
plane of order pr in se is the orbit of points under a translat ion group of 
order pT. 

With the help of Theorem 1, equivalence classes of indicator sets of semifield 
planes can be set up. When r = 3 it can be shown tha t any such indicator set 
is equivalent to one which contains the p2 points (X + ^, X/ + /x/2, \t2 + ju/3) 
(X, jLt Ç GF(p)) on the line 0 / . Such a ' 'canonical form" is useful in determining 
the number of non-equivalent semifield plane indicator sets; I used it to show 
tha t there are only two semifield planes of order 27, including the Desar-
guesian plane. 

Let us call the non-Desarguesian semifield plane of order 27 the proper 
semifield plane of t ha t order. Of the many equivalent indicator sets defining 
this plane, one with considerable symmet ry by collineations of s$ is the 
following: Let 

/ 0 - 1 1\ / I - 1 - 1 \ 
/3 = t _ 1, U = _ 1 1 1 ] , P 0 = [ 0 1 1 L 

\ 1 - 1 1 / \ 0 0 1 / 

Let P i = U*P0U, P2 = U&P0U
2. T h e indicator set, which we denote by Js, 

consists of the points X0Po + XiPi + X2P>2 (X* € O F ( 3 ) ) . I t is a mat te r of 
straightforward verification to show t h a t the points of J s are mutua l ly com
patible, so tha t J & is indeed an indicator set. J' s does not however indicate a 
Desarguesian plane, since the equivalent spread set {\0I + \1P1P0~1 + 
MP2Po~1} is not closed under multiplication [4, p.220]. Now (again by direct 
verification) the permuta t ion T: M —> USMU is a symmet ry of Js- T h u s 

(8.1) J s = { O U U^PoUi]U Uu(-Po)Ui} (i = 0, 1, . . . , 12). 

Since U fixes the line 07, U Ç <W> and therefore T is a collineation of s/ 
(Theorem 3). 

9. Her ing ' s p l a n e of order 27. Hering's plane [6] can be described in terms 
of the matrices 

\o A) and f = \c D) ' 
where 

E = I - 1 0 - 1 1 , ^ = 1 - 1 0 0 ) , B = 
0 - 1 0> 

- 1 0 - 1 
1 0 o, 

- 1 0 ov 

- 1 1 0 
- 1 - 1 - L 

- 1 0 oN 

- 1 1 0 
1 - 1 - 1 , 

C = I - 1 1 0 I, D = 
\ - l - 1 - 1 / 

over G F ( 3 ) . T h e spread consists of the components X = 0, Y = 0, and 
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images of these under the linear transformations r and s. In particular 

{ Y = 0} U { Y = X) and [X = 0} U { Y = Z C - 1 ^ } , where 

0 0\ 
- 1 0 ] = X, say. 

0 - 1 / 

Applying 5 to { Y = J\T} and { Y = XX}, we obtain the spread set 

(9.1) ( O U E - ' i ' U E - ^ * ) (i = 0, 1 12). 

If we now apply the permutation M —-> R~1MS1 where 

we obtain the equivalent indicator set 

(9.2) A = | 0 U U^PoU* VJ Z78iQC7'} 

where 

Ï7 = - 1 1 1 and Po = P - 1 5 
'1 - 1 - 1 
0 1 1 
,0 0 1 

the same as in the semifield plane of Section 8. Also, 

/ - 1 1 o\ 
G = P - ^ 5 = 0 - 1 - 1 1 . 

\ 0 0 - 1 / 

Comparing (9.2) with (8.1), we see that JHC\ J s = {0U f/3iPof/'}, and 
the remaining set of 13 points { U%iQUl) in J ^ i§ a replacement for the set 
{ Uu(-Po) Ul) in , / s. Thus we have 

THEOREM 5. The Hering plane of order 27 can be derived from the proper 
semifield plane of order 27 by replacement of a net of degree 13. 

Theorem 5 is an interesting analog to the manner in which the proper 
André plane of order 27 is derived from the Desarguesian plane of order 27 by 
replacement (cf. Section 7 and [10, pp.8, 54]). 

10. The plane of Rao and Rao. This plane, which is of order 27 and flag 
transitive [12], is also given by displaying the spread set. We reproduce it 
here since it is a good illustration of the use of partial permutations in genera
ting indicator sets. 
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Using the language of Theorem 1 and the notation of [12], consider the 
partial permutation T: M —> (MQ)'l{P + MR), where 

1 1 l \ /o - l r 
0 - 1 1 , <2 = • ° 

0 1 
- 1 - 1 0/ \ 1 - i o, 

P =\ 0 - 1 1 , O = 0 0 1 , R = 

over GF(3). Under T, oo -> Q-'R = M2, Mt-*Q~lMclP + M2 = Mi+1 

(i = 2, 3, . . . , 26) and M2i -> 0 -> oo. The set «/^ = {0, M2, M3, . . . , M27} 
is an indicator set of the Rao-Rao plane. 
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