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RIEMANNIAN MANIFOLDS WITH DISCONTINUOUS
METRICS AND THE DIRICHLET INTEGRAL

MOSES GLASNER* AND MITSURU NAKAI**

Introduction

Consider a relatively compact region 2 of a Riemann surface R. The
term Dirichlet integral over 2, Dy(-), is used for the variation whose Euler-
Lagrange equation is 44 =0 on 2 and the term energy integral over 2,

5(-) = Eq(-), is used for the variation with Euler-Lagrange equation

() du = Pu, P=0 on 0.

If the second order differential P is defined on all of R one can consider
the space PD(R) of solutions of (x) with Dg(u) < co. In 1959 Royden [20]
gave some partial results about PD(R). He also remarked that ‘“‘the study
of (unbounded) solutions of (x) with a finite Dirichlet integral seems to me
particularly difficult because we are assuming less about them than the
natural assumption E(x) < o,

In 1961 Nakai [14] made some progress in the study of PD(R) as a result
of his observation that a weak form of the Dirichlet principle is valid for
(%): for 2 a relatively compact region of R, among all nonnegative subsolu-
tions of (%) with given boundary values, it is the solution of (*) that mini-
mizes Dy(-). Glasner-Katz [2] noted in 1969 that the Royden harmonic
boundary 4 of R serves for a maximum principle for PD(R). Only recently
considerable progress has been made by Nakai [17] concerning the class
PD(R) by observing the connection between PD(R) and the (Green) energy:

S SQR(x, y)u(x)P(x)u(y)P(y).
xR

b

In this paper we give a complete account of Dirichlet-finite solutions
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2 MOSES GLASNER AND MITSURU NAKAI

of (¥) on Riemannian manifolds R with discontinuous metric tensors. Attention
has been focused by Nakai [15] on examining such manifolds from the view-
point of harmonic functions. Since then several papers [10], [16], [4], [3]
have contributed to the tools of analysis on such manifolds. We begin by
presenting the tools necessary for the study of Dirichlet-finite harmonic
functions, the primary one being the Royden boundary. After the con-
nections between Dirichlet integral and (Green) energy are developed we
proceed to describe PD(R).

Among our principal results is the fact that the bounded Dirichlet-finite
solutions of (%) are dense with respect to the Dirichlet norm and the com-
pact convergence topology in PD(R). In particular, the nonexistence of
bounded solutions of (%) on R implies that PD(R) = {0}. We also give suf-
ficient conditions for a functions on the Royden harmonic boundary to be
the boundary value of a function in PD(R). This leads to a characterization
of the situation when the bounded Dirichlet-finite harmonic functions are
canonically isomorphic with corresponding solutions of (x).

Throughout the paper we make references only when we specifically
make use of someones result. The papers listed among the references and
the bibliography of [21] can be used to trace the counterparts, if any, of
our results on Riemann surfaces. Some of the results presented here dup-
licate the authors’ results on this sort of manifold [15], [16], [4], [3] and some
of the work in Section 6 has been inspired by F.-Y. Maeda’s work [10].

Before beginning with the exposition we mention that results corres-
ponding to ours for bounded or energy-finite solutions of (%) are easily
obtained and other generalizations of known results from Riemann surfaces
would be mere formalities.

§1. Preliminaries

1A. Riemannian manifolds. By a Riemannian manifold R we shall
mean a connected, separable and orientable m-dimensional (m = 2) C'-manifold
with a fundamental tensor (g;;) satisfying the following condition: in each
parametric ball Bc R, g;; is measurable and there is a constant x = xp
such that

(1) w7 E1P < &(g: )8 =< x|€]?

for every vector £ € E™ and for almost every 2 € B. The set of parametric
balls will be denoted by Z.
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DISCONTINUOUS METRICS AND THE DIRICHLET INTEGRAL 3

Let 4?(U) (0=<p=<m) be the space of measurable p-forms on U and
denote by 2?(U) the differentiable forms in 4?(U) and by 2%(U) those
forms in &?(U) with compact supports. Here U is any open subset of R.
If ¢ € 47(U), then in terms of local coordinates ¢ = ¢,dx° where a ranges
over all ordered multi-indices of length » and ¢, are measurable functions on U.
We employ the Einstein summation convention when no ambiguity arises.

An inner product on A?(U) is given in terms of local coordinates by
extending the following formula by linearity.

dz=-dz? = det (g**) a.e.,

where (¢*’) is the inverse matrix of (g;;) a.e. In the one dimensional space
A™(R) we choose o satisfying w+w =1 a.e. and call it the volume element.
In terms of local coordinates

(2) o=yYgdel A -+ A dx”"

where g = det(g*’) a.e.
The Hodge star operator maps * : A?(R)—> A™"?(R). If ¢ € A”(R), then
*o & A" P(R) is determined by its exterior products

(3) O NA*o= (4.0 a.e.

for all ¢ € 4?(R). It is easily seen that * gives an isomorphism and that
*1 = 0, *o = 1.

1B. Weak exterior derivative. We extend the usual exterior deri-
vative d: 2?U)—» 2?*(U) by the following: if ¢ € A?(U) and there is
¢ € AP*Y(U) such that (—1)"SU¢ Adr = Svsb AT for every re 7P Y(U), ther
the weak exterior derivative do of ¢ is ¢. It is obvious that d¢ exists i
and only if in terms of local coordinates the weak partial derivatives (¢,)=
of ¢, exist and are locally integrable for each multi-index «. In the
affirmative case dy = (¢,)ndz* A dz®. For a function f, i.e. a O-form, df i
locally fada®.

For a continuous function the property of possessing locally integrabl
weak partial derivatives in a parametric cube @, say @ = {|z7] <1|j =1
-+ +,m}, can be seen to be equivalent to f being absolutely continuou
along the lines in @ parallel to the z’-coordinate axis except for a set o
lines whose intersection with the coordinate hyperplane perpendicular t
the x’-axis is of (m — 1)-dimensional measure 0; here i ranges over 1, -+, m
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For brevity we call this property ACL.

1C. Coordinate calculations. For functions f, g with weak exterior
derivatives in U we calculate the expression df A *dg in terms of local co-
ordinates. From 1B we have dg = g»dx’. Suppose that ¢ € A(U), ¢ = ¢,dz’;

m

then to determine *¢ € A™"Y(U) we suppose that *¢ = _Z‘l(go*) GATEN oo A
Jj=

dai-t Adz it A - -« ANdx™. For fixed %, using (12) and (13) we obtain
dx® A *o = da*. (o, dx?y/ gdat A - -« Adax™
and consequently
(*0)p(—1)kdt A + + « A da™ = gk o/ TdEL A - -+ A dz™.
We conclude that

m

(4) *p = 2(—1)j“1/_gg“gaidx1 Ao Adei Pt AdeitTTA - Ade™
j=1
Thus

(5) df N*dg =9 79" fugudat A+« A da™ = g¥ faiga*l
In view of (1) and (5), we also see that -
rtgrad f|2<<*(df A *df)=<«k|grad f]?

a.e. in B, where |grad f|z = X f.

Let U be an open subset of R. We call the set . & (U) of continuous
functions f with weak exterior derivatives such that df A *df is locally in-
tegrable in U the set of Tonelli functions on U. From the remarks made in
1B and (5) we conclude that in terms of local coordinates Tonelli functions
are characterized by being continuous and having weak partial derivatives
that are locally square integrable. If f, g g (U) and V is a relatively
compact subset of U, then the mixed Dirichlet integral of f, g over V is given
by

Dulf, 9) = | ,dr A*dg

and we set Dy(f) = Dy(f, f), the Duirichlet integral of f.

1D. The Laplacian. The weak Laplacian of function f is formally
4f = *d*df. In terms of local coordinates from (4) we have
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*df = DDV GG fedt A -2 AdBITAdRINA - A da”

and hence, formally,
d*df = (Vg fedudx' A« -« A da™

We concluse that

wd*df = 7t/ Tg" fe

For simplicity of notation we shall use the symbols 2(U), 2,(U) instead
of 2°U), 2}(U).

Since we are dealing with a C'-manifold we take the definition of
Laplacian as follows: if for f e o (U), there exists a function 2 € LY(U) with

D(f, ¢) = —Ssoz*l, for every ¢ € Z(U),
then we set 47 = 4.

1E. The double. Let G be a region contained in R with 8G an
(m — 1)-dimensional C'-submanifold of R. We form the double G of G across
dG. Then in a natural fashion G becomes a Riemannian manifold of the
sort considered here. More precisely, take two copies of G, say G and G'.
Weld G and G’ along G by identifying corresponding points in 4G and
8G’. 'The resulting set G is the base space. Let j: G— G be the involution
associated with the doubling: a point p € G (resp. G’) is sent to the cor-
responding point j(p)e G’ (resp. G). We take B and j(B) as parametric
balls for G when B is a parametric ball B in R such that Bc G. If g,
is the tensor in B for R, we assign the same tensor g, to B and g,-°j
for j(B). For a parametric ball B in R with local parameter # such that
2¥@G N B)=0 and 2 (G N B)#=0 (i k), we take B=(GN B) U j(GN B) as
a parametric ball for G with the local parameter y such that y = z in
GNBand y'=—2'cj(i*k), and y*=2*0j in j(GNn B). If g, is the
tensor in B for R, then we assign g,, to B by setting g,, = g, on G N B and
Jw = gwej on j(G N B).

§2. The Royden algebra

In this section we introduce the basic properties of the Royden algebra.
Apart from providing a boundary that is very helpful in studying Dirichlet-
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finite harmonic functions or solutions of 4u = Pu, the various completeness
properties of the Royden algebra and the spaces related to it are fundamen-
tal in carrying out our analysis.

2A. Tonelli functions. We consider the set .7 (R) of Tonelli fun-
ctions on R. We first note that under the operations of pointwise min and
max, N, U, Z (R) is a vector lattice. In fact since 7 (R) is clearly a
linear space, we need only show that if fe 7 (R), then [f]€ Z(R). By
the remarks in 1B we need only check that in any parametric cube |f| is
ACL and |f|= are locally square integrable. But these trivially follows from
the corresponding properties of f. Also if f, g€ 7 (R), then fge 7 (R)
because the ACL property is preserved by taking products of locally bounded

functions and since (fg)= = fg= + gf»+ we have that (fg) is locally square
integrable.

LemMA. 7 (R) is a vector lattice under N and U and closed under multiplica-

tion. If fe 7 (R) and inf|f| >0, then 1/f € T (R).

The second assertion follows by appealing again to the ACL charac-
terization and (1/f)s = — fat| f2.

2B. The Dirichlet integral. For a function f € 7 (R) we define its
Dirichlet integral over R by the directed limit

D(f) = DR(f) = 1im9-RD9(f),

where 2 ranges over relatively compact subregions of R. We denote by
M(R) the subspace of Z7(R) consisting of functions f with D(f) < . For
f,» 9€ M(R) the mixed Dirichlet integral

D(f, 9) = Dg(f, 9) = limg.rDo(f, 9)
exists. The Royden algebra M(R) of R is the set of bounded functions in

M(R).

THEOREM. M(R) is an algebra and if fe M(R) with inf|f| >0, then
1/f € M(R). M(R) is a lattice under N, U and for any real number ¢

(6) D(f)=D(f Nnec)+ D(f U o).
Let a =sup | fl, b =suplgl, and ¢ =sup |fg|. Observe that

d(f9) N\ *d(fg) = g*df N *df + fidg N *dg
+ foldf A *dg+ dg A *df).
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Since we have
.Safg(df A *dg + dg A *df)‘ sZabggldf A *dg]

< 2abD3(f)D3(g),

we conclude that

¢ + Di(fg) < ab + (@D(f) + 2abD*(f)D*(g) + b*D(g))*
= ab + aD*(f) + bD*(g)
< (a+ D*(f))(b + D¥(g)) < oo.

In passing we observe that we have shown that M(R) is a normed

algebra under the norm sup | f| + D%( f). Similarly we can prove
D(1/f) < (inf | f)"*D(f)

and thus if inf|f]| > 0, then fe M(R).

To prove (6) we note that it is sufficient to consider the case ¢ =0
because D(f) =D(f—¢), D(fNc)=D(f—¢c) N0 and D(fUc)=D(f—¢c)
U 0). Also note that D(f) = D;so(f) + Dsoo(f) + Dyeo(f) where as D(f N 0)
= D;_o(f) + Dyoo(f) and D(f U 0) = Ds»o(f) + Dsoo(f). Thus all that is to be
proved is that D,.o(f) = 0.

To this end it is sufficient to prove that for a parametric cube @ c B
for some B e % we have Di_pne(f) =0. Assume @ = {x||2*] <1}. By (5

Dywonelf)=x | lgrad fltdat n - oo A dan,
(f=0)nQ

By the Fubini theorem

Gdat A\ - oo AN da™ =
(f=0)nQ

S: .. g:( S Fa(xt, - - -,x")dxi>dx1- o odxiTidxitte « o dx™,
(F=0N(-11)

Thus we have reduced the problem to proving SEgo’(t)“’dt = 0 for an absolu-

tely continuous function ¢ on [—1, 1] and E = {t €[—1, 1]| ¢(¢) =0}. Let

E; be the largest subset of E such that ¢'(¢) exists for t € E;. Set E,=

{t € E\]l¢’(t) =0}). Let ¢, be any point of E\E,. Since ¢(¢,) = 0 and ¢’(#,)

https://doi.org/10.1017/50027763000014756 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014756

8 MOSES GLASNER AND MITSURU NAKAI

# 0, #, is isolated in E. This shows that E\\E; is countable and hence of
measure 0. For an absolutely continuous function E\E, is of measure 0 and
thus ¢’(¢)2 =0 a.e. on E establishing the assertion.

2C. Topologies. Several modes of convergence can be introduced on
M(R). For a sequence {f.} we say f = C-lim f, if f, converges to f uni-
formly on compact subsets and f = B-lim f, if in addition {f,} is uniformly
bounded. We write f = D-lim f, for lim Dg(f, — f) =0 and f = CD-lim f,
or f = BD-lim f, to indicate two types of convergence.

Under the norm || f|| = sup | f| + D"%(f), M(R) becomes a normed algebra.

2D. Completeness.
THEOREM. Let {f.} © M(R) and f a real-valued function on R such that f =

C-lim f» and D(f,) < K for some constant K < . Then f & M(R) and D (f, g) =
lim D(f,, 9) for a subsequence {f} C {fa} and every g € M(R).

The space I'(R) of forms a € A'(R) with SRae A *a < oo is a Hilbert space

under the inner product (e, f) = SRa A *8. Thus the sequence {df,} c I'(R)
being bounded contains a weakly convergent subsequence {df,.,} with limit
a e 'R).

Consider any ¢ € 27 '(R) and note that San,‘dgo = _Sgdf"" A ¢ and

Sndf"" Ao = Sndf"* A *(*p) — Ska A ¢. Thus SRfdgo = ——SRa A ¢ and we con-
clude that f has weak exterior derivative df =« € I'(R). But this means
that f € M(R) and the assertions follow.

As an immediate consequence we have the

CoroLLARY. (M(R), ||-|) ¢ a Banach algebra.

In fact, if {f,} is Cauchy with respect to the norm |- ||, then there is
a bounded continuous function f = C-lim f,. Thus by the theorem f € M(R)
and D(f, g) = lim D(fa,, 9) for a subsequence {f,,}. Butsince {f,} is D-Cauchy,
this weak convergence must hold for the sequence {f.} itself. Moreover,
given ¢ > 0 we select N such that DV*(f, — fn) <é¢/2k for n, m=N, where
k = max,{D(f,), D(f)}. Then lim,D(f — fn) = lima(D(f — fu, fv — fa) + D(f,
f=Jx) = D(fn, f— Fn) Zlima D(f = fa, fv — fa). But if n=N then D(f —
Jns v — fa) S DVA(f — fo) DVA(fy — fa) < (DV¥(f) + D‘”(ﬂ))(—z% =¢&.
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CoRrOLLARY 2. If f=C-lim fa and {f.} is D-Cauchy, then f € M(R) and
f = D-lim f,.

2E. Approximation by smooth functions. The following is the key
to certain orthogonality properties and the relation between the Royden
algebra and Sobolev spaces to be discussed later.

TuEOREM. M(R) N (R) is dense in M(R) with respect to ||-||. Moreover,
if £ € M(R) has supp f C 2, where 2 is an open relatively compact set in R, then
the functions {f.} approximating f in the norm ||| can be chosen with supp f. C Q.

Let {¢.}; c c!(R) be a locally finite partition of unity such that supp
¢, is contained in some parametric ball B,. Given fe& M(R) and ¢ >0,
we need only find ¢, € D(B,) such that ||¢, — ¢.fll <¢/2", for then 31¢n
is the desired approximation. This can be achieved as in [22, pp. 29, 58].

Now suppose f & M(R) has supp fc 2 where 2 is a relatively compact
open set and an € >0 is given. Then there is an 2’ such that 2'c,
supgrar | £] < &/3 and Do 5(f) < €/3. Cover 2’ by a finite number of parametric
balls {B;} contained in 2. Then as above we can find a g.€ 2,(U B))
such that supyz,|g. — f| + Dus, (9. — f) <¢€/3. Thus g, has the required pro-
perties: |lg. — fll < & and supp g. € 2.

CoroLLARY. If Q is a relatively compact region with 9Q an (m — 1)-dimensional
Ct manifold, then M(Q) N = (2) is dense in M(Q), with respect to || |.

For the proof we merely apply the theorem to the double 2 of 2 across
9.

2F. Potential subalgebra. We denote by M, (R) the functions in
M(R) with compact support and by M,(R) the BD-closure of My(R). Then
MyR) is a BD-closed subspace of M(R) which is also an ideal. Indeed if
f e M/R) and g€ M(R), then take {f,} € My(R) such that f= BD-lim fa.
Clearly {gf.} € My(R) and gf = B-limgf,. Moreover D(gf — gf,)<2supo|f
— fn|2Da(9) + 2 suprio| f — fn|2Drva(9) + 2 supr|g|2De(f — fa), for any QcR.
Thus Tim, D(gf — ¢fn) < bDro(g), where b/2 = sup,(z]f — fn|?) < 0. Since D(g)
< oo, we can make the right side arbitrarily small and hence gf = D-lim ¢f».

2G. The Royden boundary. We consider the maximal ideal space
R* of the Banach algebra (M(R), ||-||) and view R as being imbedded in R*.
Then R* is a compactification of R with the functions in M(R) extending
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continuously to R* and separating the points of R*. We call I' = R¥\R the
Royden boundary of R. It is easily seen that the functions in M(R) have con-
tinuous extended real-valued extensions to R*.

Further set

4 ={pe R*|f(p) =0, for every f e MyR)}.

Then it is easily seen that 4 is a closed subset of I' called the Royden har-
monic boundary of R.

By the Stone-Weierstrass theorem M(R) is dense in the set of contin-
uous functions C(R*) on R* with respect to the sup norm. This denseness
and the lattice property of M(R) allows us to transfer the Urysohn property
from C(R*) to M(R). That is, given K,, K, disjoint compact subsets of R* there
s an f € M(R) such that fI1K, =0, fl|K,=1and 0< f<1.

Henceforth we shall use A to denote the closure of A in R* and 94
for the boundary of A in R.

2H. The space M R). We consider the set M;R) of functions which
are CD-limits of functions in M,.

TueoreM. Let f = CD-lim f,, {f.} € My(R). If either |f]| < on R or
4%+ ¢, then fe M(R) and f|4 = 0.

If we know that |f| <o on R, then by Corollary 2 of 2D we have
fe MR). If 4=¢, then the proof is complete. Now assume only
that 4+ ¢. In view of the approximation theorem we may assume that
{f2} © 2u(R). Then

Sn
R TR
is slso D-Cauchy and
S Blim S
e S TR VA

Thus f/(1+ |f]) € My(R) and since 4+ ¢, f/(1+ |f])=1. Thus f is finite
at some point of R and hence at every point of R. Again we conclude
that f & M(R) and in view of f/(1+ |f])|4 =0, we also have f|4 = 0.

§3. The structure of Au=0on R

We now point out that the harmonic functions on R satisfy the axioms
of Brelot. This is an efficient way of making the transition from the local
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results on uniformly elliptic differential equations in FEuclidean space to
properties that we shall need for the harmonic functions on R.

3A. Definitions. Let U be an open set and # a real-valued function
on U. Then u is harmonic on U, u € HU), if u € 7 (U) and

Dy(u, ¢) = 0 for every ¢ & Z(U).

By using a partition of unity it can be seen that # = H(U) if and only
if it is harmonic in a neighborhood of every point of U. We denote by
H*(U) the subset of H(U) which have continuous extensions to aU.

3B. The Brelot axioms. Suppose a presheaf # of continuous real-
valued functions are given on a locally compact topological space X. The
set of functions in Z# with domain 2 will be denoted by 2. A rela-
tively compact region 2 is called regular if for any f < C(62) there is a u €
Z7? such that # is continuous on 2 and #|éQ = f. Moreover, if f=0,
then #=0.

The axioms of Brelot are that % forms a complete presheaf of func-
_tions, with 72 a real vector space; there exists a basis for the topology of
X consisting of regular sets; given a region 2 in X, K compact in 2 and 2,
€ K, there is a constant M such that u|K << Mu(x,) for every « =0, u € S7°.
(Cf. 111, [8).

A lower semi-continuous function s on £ is superharmonic on @ if for
every regular set V with V c 2, s dominates any function # € 977 such
that s|aV=u|aV. (Actually this defines a hyperharmonic function on 2. In
the cases we consider the two notions coinside and therefore we take the
liberty of making this loose definition.) A function s is subharmonic on
if —s is superharmonic on 2.

We briefly summarize the results about 2 that we shall need. If 1 is
superharmonic on X then the weak maximum principle holds, i. e., a non-
constant superharmonic does not assume a negative minimum in the interior
of its domain. If 1 is harmonic on X, then the usual maximum principle
is valid. A boundary point x, of a region @ is regular for the Dirichlet
problem if and only if it is regular for the region 2 N U where U is a con-
nected neighborhood of #,. This is Brelot’s comparison theorem. Moreover,
the existence of a barrier function for z, with respect to @ N U implies that
%, is regular. For these results see Loeb [8]. In addition we shall use the
result of Loeb-Walsh [9] to the effect that positive or uniformly bounded
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families of harmonic functions are normal.

3C. The local results. J. Moser [11] has shown that the weak solu-
tions of (/g9*’u.").; =0 in Euclidean space satisfy Harnack’s inequality.
Thus by piecing together parametric balls it can be seen that the third
axiom is satisfied by the sheaf 27 of harmonic functions on the Riemannian
manifolds that we are studying. From Littman-Stampacchia-Weinberger [7]
we see that & forms a basis of regular sets for the topology of R.

3D. Regular regions. As we remarked before the regularity of z,
€ 02 with respect to the Dirichlet problem depends only on 42 near .
Thus we may use the results of [7] to the effect that x, € 62 is regular for
the usual Laplace equation on Euclidean space if and only if it is regular
with respect to the uniformly elliptic equation (7). Thus subregions of R
with boundaries that are C' submanifolds are regular for the Dirichlet pro-
blem. Also regions whose boundaries have slight irregularities such as finite
unions of parametric balls are regular for the Dirichlet problem unless two
are tangent to each other.

Henceforth a relatively compact region whose boundary is piecewise C'
will be called regular. We conclude with the observation that there is a
sequence {2,}7 of regular regions with 2,C 2,.; and R= U 2,. The se-
quence {2,}7 will be called an exhaustion of R. One possibility is to take
each 2, to be a finite union of parametric balls, no two of them being
tangent to each other.

§4. The global structure of HD

In this section we present the essentials of the Royden theory for
Dirichlet-finite harmonic functions on R. It will be shown that these func-
tions are completely determined by their behavior on the harmonic boun-
dary 4.

4A. Parabolicity. In order to carry out a systematic treatment of
Dirichlet-finite solutions of 4# = Pu on R we must rule out trivial situations,
namely R of parabolic type. To define this notion let {2,}5 be an exhaus-
tion of R and take w, € M(R) with w,|2, = 0, w,|R\2, =1 and w, € H(2.\2,).
By the maximum principle w,=w,.; and consequently the Harnack principle
gives w = B-lim w, exists and w € H(R\2,). Strictly speaking the Harnack
principle only gives the uniform convergence of {w,} on compact subsets of
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R\2,. To establish the uniform convergence of {w,} on compact subsets of
A — N\ A
R\, we form the double G of R\Q2, =G and extend each w, to w, on &
by requiring z;;:, = —&;\,,o j. We see by the Harnack principle that {;v\n} con-
verges uniformly on compact subsets of G and a fortiori compact subsets of
R\Q,.
There are two possibilities either w > 0 or w = 0; in the latter case R is
called parabolic and in the former Ayperbolic. The symbol 0q is used for the

set of all parabolic Riemannian manifolds.

4B. Characterizations. The usefullness of the harmonic boundary
begins to appear.

TueorEM. The following are equivalent:

(1) R e 0g
(i) 1€ MyR).
(il1) 4 = 4.

For the proof we suppose R 0s;. Then w= B-limw, =0. We note

that (1 —w,) € My(R) and in view 2D Corollary 2 we must show that {w,}
is D-Cauchy in order to conclude that 1< M,(R). To this end, we have
D(9, w,s,) =0 for every ¢ € Dh(Ruip\Ry) and by Theorem 2E we have
D(wn — Wnyp, Wasp) = 0, SINCE SUPP Wy — Wysp = Rasp\Ro. Thus 0= D(w, — wasp)
= D(w,) ~ 2D(Wn, Wnsp) + DWnsp) = Dw,) — DWns,), which shows that {w,} is
D-Cauchy as required.
" "Clearly (ii) implies (iii). Now assume that 4 =¢. Then for every p €
R*, there exists an f, € My(R) such that f,(p)#0. We may assume that
f»(®)>1, f,==0 since a constant multiple of f} € M,(R) has this property.
The compactness of R* allows us to choose points p,, -+ -, py € R* such
that R* = UYU,, U, = {g € R*|f, @) >1}. The function f=3Wf, € M(R)
has infp f > 1. Thus 1/f € M and since M,(R) is an ideal of M, 1= f/fe
MyR). Thus there exists a sequence {¢;} < My(R) with 1= BD-lim ¢;.
Furthermore, as in 2F, it can be shown that for any ge M(R) we have
BD-lim¢.9.

For fixed » and k, ¢,w, has support in R,\R,, for some n,. Thus in
view of 2E we have D(p,w,, w) = 0. Consequently D(w,, w) = lim; D(@,wn., w)
=0 and D(w) = lim D(w,, w) = 0. This means that w=0 and the proof is
complete.

4C. Subregions with parabolic double. The harmonic boundary
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plays the following role discovered by Kuramochi-Kusunoki-Mori in deter-
mining the subregion of R whose doubles are parabolic.

TuEOREM. Leét G be a subregion of R with dG smooth such that G N 4 = ¢,
then G, the double of G, is parabolic.

Since G N 4=¢ for every p =G we can find an f, € M,(R) such that
fo(p)>1, f,==0 on R. From the compactness of G we deduce the existence’
of points py, -+ -,py € G such that G c U¥{ge R*|f,(q) >1}. Let {f.}c
My(R) such that f = BD-lim f,. We denote by f,, f the symmetric exten-
sions of f., f to G. Since infzf > 0, we have 1/f € M(G) and since {f,} C
My(G) and f = BD-lim f, we have 1 € M,(G). Theorem 4B now gives the
parabolicity of G.

4D. 0¢ Cc 0mp. We take a detour to establish the following result of
classification theory which is necessary in order to relate 4 to the behavior
of Dirichlet-finite harmonic functions.

TuEOREM. If R is parabolic, then every function in HD(R) = H(R) N M(R)
is constant.

For the proof let # € HD(R). Take an exhaustion {2,} of R and v,
M(R) such that v,|2, = 4, v,|R\2, =0, v, € (2,\2,). It is easily seen using
some of the reasoning of 44 and 4B, that v = BD-limv, exists on R.

Set #’ =u —v and for every positive integer m, u, = (' N m) U (—m).
Clearly #' = D-limu;. On the other hand, 0 = D(uj(1 —w;), #’). Since R
€ 0g, D-lim (1 —w;) =1 and we conclude that D{(u/, #’) = 0 and in turn that
D(u’) =0. Since #'|2, =0, we conclude #’' =0, i.e., » =v. Finally D(u) =
D(v, u) = lim,D(v,, #) = 0 and thus # must be a constant.

4E. HD-maximum principle. The harmonic boundary is sufficiently
large from the view point of Dirichlet-finite harmonic functions to give the
following.

ToEOREM. Let Q be any subregion of R and u € HD(Q). Suppose lim u(x)
. 2P
=m jor every p =92 U (R N 4), then u<m.

For the sake of simplicity we may assume m =0. If the theorem is
false, then we can choose a nonempty component F of the set {# > 0}.
Also choose an & > 0such that a component F’ of {# > 2¢} N F is nonempty.
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We construct a subregion G such that F' c G, G is contained in the open
set {0 <u <e} and 9G is smooth. Let {2,}5 be an exhaustion of R with
2, N G+ ¢, say. Let v, € M(G), the Royden algebra associated to G viewed
as a Riemannian manifold, such that v,|0G N 2, =u Ne, v,|G\GN Q) =u
Nne and v, € H(G N Q,). Then 0<v,<¢ and by the Harnack principle a
subsequence again denoted by {v,} converges uniformly on compact subsets
of G to a function v harmonic on G. Moreover Dg(v, — (# U €), v,) = 0 and
thus 0<< Dg(v, — (# N €)) = Dg(u N €) — Dg(v,). In view of Theorem 2D we
have v € M(G).

It can also be seen that v has continuous boundary values # Ne =u
on 3G. In fact fix an »n, and extend the functions v, —v,, to the double G.
They are all harmonic on G/r']\.(‘?n0 and thus converge uniformly on compact
subsets of G ¥ 2n, in particular, on G N 2,,;. Thus v —v,, =0 on G N
2ne-1- Since n, was arbitrary, the assertion about the boundary values of
v follows.

Now consider the function # —v on G. By the construction it vanishes
on G and has finite Dirichlet integral and thus it has an extension to G
which is in HD(G). Moreover since supgu > 2¢, supgu/—\v >¢ and conse-
quently is nonconstant. On the other hand the choice of F’ and the
hypothesis of the theorem gives F' N 4 =¢ and a fortiori G N 4 =¢. Thus
G € 0g C 0y which gives a contradiction establishing the theorem.

4F. The decomposition theorem. We shall call a compact set
K c R* distinguished if K N R = K and each component of 3(K N R) is smooth.
Note that K may be empty set.

TueorREM. Given f & M and K a distinguished compact subset of R*, there
exist functions u € M(R) and g € My(R) such that
1. f=u+g, v HBD(R\K)
fIK=ulK
Ju| | R\K < maxyxnpual fl
If f us superharmonic on R, then f=u.

[l

We begin by choosing an exhaustion {2,} of R and defining «, € M(R)
by #.|R U (2.\K) = f and u, € H(2,\K). Then the sequence {«,} is bounded
by sup |f| and contains a subsequence again denoted by {«,} which con-
verges uniformly on compact subsets of R\K. As in 4E, by using the double
of R\K, it can be shown that {«,} actually converges on compact subsets
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of R, i.e. u = B-limu, exists. Also as before it can be seen that u, is D-
Cauchy. Thus # = BD-lim u, € HD(R\K) and #|K N R = f. 'The continuity
of # on R* and the hypothesis on K gives u|K = f. Set g=u— f and
On = o — f. "Then g, € My(R) and g = BD-limg,, which gives g€ M,(R).
Finally property 3 of # follows from Theorem 4E and property 4 holds be-
cause f==u, if f is superharmonic.

4G. Duality. The definition of 4 is the set of common zeros of the
functions in M,(R). In the following theorem we show that M,(R) consists
of exactly those functions which vanish on 4.

THEOREM. M,(R) = {f € M(R)|f|4 = 0}.

Since any function in M,(R) vanishes on 4 we need only show that if
J € M(R) we and f|4 =0, then fe My(R). To this end we apply Theorem
4F to f with K=¢. We obtain f = u + g, where geM,(R) and u=HD(R),
u|d =0. In view of Theorem 4FE, # =0 and the assertion is established.

4H. The Evans superharmonic function. The Royden harmonic
boundary 4 gives a maximum principle for bounded superharmonic functions
on R.

THEOREM. Let F be a compact set in I'\d. There exists a continuous positive
superharmonic functions s € M (R) such that s|4 =0 and s|F = oco.

Choose K a distinguished compact set in R* such that F is contained
in the interior of K. Let {2,} be an exhaustion of R and set K, = K\Q,.
Take fe M with f|K=1 and f|4 =0 and let v, be the function # resulting
from Theorem 4F when it is applied with K = K,. By the maximum prin-
ciple 0=<v,.,;<v, and {v,} is D-Cauchy as before. Thus v, = BD-limu,
exists and v, € HBD(R). Since v,]4 =0, we have BD-limv, = 0.

Fix #, € R, and choose a subsequence {v,} of {v,} such that v, (z,) <
27% and D'2(v,,) < 27%. Set

v = gl}vnk and v = CD-lim, V5.
Clearly v € M(R) and is positive superharmonic on R. Since v N 1 = BD-lim

vm N1 and v, N1e My(R), we have vnle M (R). Thus vN1l]d=0 and
hence v|4 =0. To see that v = c on F note that v > v}, =m on K, D F.
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CoRrOLLARY. Let u be a subharmonic function bounded above. If Tim.,.,u(x)
<m for every p € 4, then u<m.

Let m’ be any number with m < m’. The set F = {p € I'|lim,.u(x) =
m'} is closed. Let s be as in the theorem and consider w = u — s/n. Then
lims.,w(x) < m’ for every p €' and w is bounded above. Thus the usual
maximum principle gives w=<m’ and hence w<m. Take 2 € R arbitrary.
Then u(x) — s(x)/n<m and letting n— o gives u(x) < m.

4I. Potentials in M(R). A positive superharmonic function on R whose
greatest harmonic minorant is 0 is called a potential.

THEOREM. Let p € M(R) be a positive superharmonic function. Then p is a
potential if and only if p € My(R) or equivalently p|d4 = 0.

If p= M(R) is a potential, then apply Theorem 4F with f=p and
K=¢. Then p=u, u € HD(R) and p|4 = u|4. We must then have # <0

and hence p|4 = 0.
On the other hand, suppose that p € My(R). Let u < H(R) and 0<u

<p. Then « is bounded above and lim,.,u(2) =0 for every p € 4. Thus
by Corollary 4H we have # = 0 which shows that p is potential.

§5. The Sobolev spaces

We introduce the Sobolev spaces for regular regions as an analytical
tool. In passing we indicate their connections with the Royden algebra
which sheds light on their natures. The key fact which we prove is that
the Dirichlet integral gives an inner product to make the Sobolev zero
space a Hilbert space.

5A. Definitions. In this section we deal exclusively with 2 a regular
subregion on R. Consider the inner product

Sy 9 =Dalf, 9+ | fom

on (). The Sobolev space WH%(Q) is the completion of & (2) in the norm
HIAI = <f, f>F and Wi-2(Q) is the closure of <y(@) in Wh(Q).

LemMa. WiQ) N L2(Q) N C(Q) = M(Q), Wi2(Q) N CQ) C M) and Wi-*
(2) N L7(Q) N C(Q) = My(Q).

In view of Theorem 2E a function f& M(Q) (M,Q) resp.) is the limit
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of functions in 2(Q) (Z,(R2) resp.) with respect to the norm |||]]| since
So*l < oo, The proof in the other direction is carried out by showing, as
in 2E, that any bounded continuous function f in W!2(Q) is the limit of a

sequence {f,} € () with respect to the norm | fll = supe|f| + D?;(f).

Now if f is a continuous function in W}-2(2) then choose {¢,} € <(RQ)
and and exhaustion {2} of 2 such that Do(f — ¢,) < 1/n, Dg\ (f) < 1/n and
0, € Do(2,). Then again the procedure of 2E gives f, € & (2) with ||f —
00 — fall <1/n and Dy(f,) < 2/n. Thus Do(f — ¢n — fn) < 4/n and f = CD-lim
(@n + fa), i.e., fE M(Q). If fe L=(Q) also, then clearly f e M,(Q).

5B. Parametric cylinders. Cover 2 by a finite number of para-
metric balls B, ---,Bye % For p, g2 consider any C! curve 7 C 2
joining the two points. Suppose 7 is covered by B;, .-, B, then let C
be an open neighborhood of 7 such that C c UB;, such that Cn 2 is con-
nected and C is diffeomorphic to the cylinder

[reE"0<<xi<a, (222+ .. + (x™)2<<b2}.

The set C together with the diffeomorphism are part of the atlas of R and
the tensor (g;,) satisfies (1).

LeEMMA. There exists a constant ¢ such that
(7) lloll L2y < ¢ De(p)
Jor every 0 € o(Q).

Here of course we extend ¢ € 2(2) to &(C) by setting ¢ equal to 0
21
on C\2. For any # € C and ¢ € &(2) we have ¢(zx) = So ¢0.1d2! where ¢ =
(#!, « - «,2™) and hence by the Schwarz inequality

0% (z) < aS:goildxl < aS: |grad ¢|2dz.
Integrating this inequality over C gives
cha? dx sﬁSclgrad oldz,

with dx the Euclidean volume element. In view of the validity of (1) on
C we obtain

K—n/2gc¢2*l < a2ﬁn+2/2scg7d S"x‘?’x’*ly

ie., llpll2ec, < @*&™*'De(p).
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5C. The Dirichlet norm on W} -2(2). The main result of this section
now follows.

TuEOREM. DL'%(-) is equivalent to ||| -]l] on W}-2(Q).

In veiw of the definition of W -2(Q) it is sufficient to show the existence
of a constant ¢ such that ||¢||xg < c¢D(p), for every ¢ € &,(2). To this end
we find a finite number of parametric cylinders G, - - -, C, which cover Q.
If we denote the constant of (7) corresponding to C; by c¢; then we can

choose ¢ = (2We¢,;®)%  In fact |loll20 < 2ol ey < 2 cIDE(9).

§6. The Green’s function

Using the properties of the Green’s function in parametric balls we con-
struct the Green’s function for regular regions and derive its properties.
We further develop the theory of potentials and the energy integral.

6A. The Poisson equation. Throughout this section we consider a

regular region 2. Given a function fe W!¥Q) such that there exists
1€ L) with

8) —Ssol*l = Dqo(p, f) for every 0 € o(f),

then in 1D we called 2 the Laplacian of f and set 2 = 4f. Note that in view
of 2E if (8) is valid for ¢ € &7y (Q), then it also holds for ¢ € M,(R2). We
begin by proving the

THEOREM. Given any 2 € (), then there exists f & My(Q) such that Af
= A. In addition f vanishes continuously on 4Q.

For the proof consider the linear functional ga—»—Sngoz*l on Wi2(Q).
By the Schwarz inequality and Theorem 5C we have

], o2%1/< Il ol 220 = ' D)

for some constant ¢’. The linear functional being bounded on W{-3(2) with
respect to the Dirichlet inner product, which is a Hilbert space inner pro-
duct again in view of 5C, implies that there is an fe W}-3(2) with 4f = A.
Since in particular 2 is continuous we deduce from [7, Theorem 2.4] that f
is continuous on parametric balls B contained in 2 and therefore on 2.
From 54 we see that f € M,(2). We note that f € HD(2\S) where S = supp
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2. Thus by Theorems 2H and 4E we see that |fi] <maxs |f;], in par-
ticular f € M,(2). We complete the proof by noting that the regularity of
22 enables us to find 2 € HD(2\S) such that 2 vanishes continuously on 42
and f—h € M,(2\S). From 4E we conclude f =k and thus f vanishes on
02 continuously.

6B. The Green’s function for parametric balls. We extend the
definition of Laplacian as follows: given g a finite Borel measure and
v e LYQ), then gz is called the weak Laplacian of u and write 4,u = p if

Sudl*l = gxd,a

for every A€ M,(2) such that 42 € &,(Q).
For a fixed parametric ball Be & there is a uniquely determined
function gs(x, y) on B x B satisfying the following three properties:

(i) gs(-, y) is superharmonic on B; gs(-, y) € H(B\{y}), vanishes con-
tinuously on 4B, for every y € B and is continuous on B x B.

(i1) gs(x, y) ~ |2 — y|2™™ for m > 2 and gz(x, y) ~ log [x — y|~! for m = 2.

In particular gs(-, y) € LY(B) and if ¢ is a finite Borel measure on B, then
fos(-, wanw e L1B).

(i) 4,gs(+, y) = —&y, where ¢, is the unit point mass at y.
For the details see [20], [7], [5].

6C. The Green’s function for regular regions. Let 2 be a regular
region and fix y € 2 and a parametric ball B with y € Bc Bc 2. Consider
the family F= F(2, y) = {s|s=0, s is superharmonic on £, s|B — gs(+,¥)
is positive continuous superharmonic on B and bounded by a constant K}.

First we shall show that the constant K can be chosen so that F is
nonempty. Take B’ c B such thaty € B’ c B’ B. Set m = maX;pgs(-,y).
Consider v € H(2\B’) such that v|dB’ = m, v|6Q2 = —c, where ¢ is a con-
stant chosen so as to make v|dB<0. Set s=min (v, g5) + c on B\B’ and
extend the definition of s by setting s =v+c¢ on 2\B and s =gz + ¢ on B'.
Then if K is chosen to be sups s|B — gs(+, y) we have s € F. At this point
we remark that K can be chosen uniformly with respect to a small change
in y. This follows by observing the nature of the constants in the above
argument and the continuity of gs(%, y) on B X B.
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LeEMMA. F=F(2, y) is a Perron family on 2\{y}.

Suppose s;, s;€F, then min (s;, s2)=0 and superharmonic. Moreover,
0<-min (s;, s2)|B—gz(+, y)<K. Thus F is downward directed. Let V be
a regular region with closure in 2\{y} and s, the function equal to s on
2\V and on V, sy equals the harmonic function with boundary values s.
Then s > sy and clearly s, € F if s F.

Set go(-, ¥) = irelzfr s(+). Then go-, y) is called the Greer’s function for 2
with singularity at y. Also we have go(-, y)€H(2\{y}) and since 32 is regular
for the Dirichlet problem go(+, y) has continuous boundary value zero on
2. If we view 2 c 2, the double of 2, then we can extend go(-, ¥) har-
monically across the boundary of 2. Thus go-, ¥) has finite Dirichlet
integral over a neighborhood of 2. On the other hand go(-, ¥) — gs(-, ¥)
e H(B\{y}) and 0= gy(+, ¥)—gs(-, y)<< K. Thus it has a harmonic extension
to B. Moreover, go(-, ¥)=9gs(+, ¥).

We summarize the properties of go(x, y) in the

THEOREM. (i) go(+, y) is superharmonic on £, ga(-, y) € H(2\{y}) and
vanishes continuously on 992, for every y € Q.

(ii) go(x, y) ~ |z —y[>™™ for m > 2 and go(x, y) ~ log|z — y|™* for m = 2.
In particular go(-, y) € LNR) and for any finite Borel measure p on 2, Sgg(- ,yldp
(y) & LY(Q).

(ii1)  dwgo(-, y) = —&y.

Properties (i) and (ii) have been verified in the course of the con-
struction. In order to verify (iii) consider an ¢ € My(Q2) with 4o € &7 (Q).
Choose B, B, parametric balls such that B, c B, B, B and ¢ € 2\
B), ¢ DBy, ¢2 € Do(Bsy) with do = ¢, + ¢,. Now take ¢; such that
do; = ¢;, 01 € M,(Q\B,) and ¢, € My(B;). For any positive integer n set g, =
(9a(+, ¥) N n). Then g, € My(2) and {go(-, ¥)dp:*1 = lima[gad0,*1 = —lim, Dy
(gn, ¢1). For all sufficiently large #, in view of (ii), g, is harmonic on 2\B,
and therefore D(g,, ¢;) =0, i.e. Sgn(~ , Yo *1 =0, Thus Sgg(- , Y)do*l = Sgg
(+, y)do*1. Let o3 € <¥y(B) such that ¢;|B, =1. If we view 4o, € & (B)
and ¢, € My(B) with supp ¢, C B,, then we have —S¢3(gg(- , Y) — gg(, ¥))do,
*1 = Da(es(ga(+, ¥) — ga(+, ¥), @2) = Dp(ga(+, ¥) — ga(+, ¥), ¢2) = 0 since go(-, ¥)
—gg(+, ¥) is harmonic on B. We conclude that Sgg(- , y)do*l = SgB(- , y)do,
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*1 = —o,(y) = —o(y) establishing the assertion.

Remark. For later reference we note that gy(-, y) remains unchanged
if the constant K in the definition of the family F(y, ) is replaced by a
larger one. Consequently we may redefine F(y, 2) by allowing the constant
to depend on s.

6D. Superharmonic functions. Consider se< M(Q2). Hervé [5,
Théoréme 4] has shown that s is superharmonic on a parametric ball Bc
2 if and only if Ds(s, ¢)=0 for every ¢ € &y(B), ¢==0. Thus by using
a partition of unity and the fact that superharmonicity is a local property
we see that s is superharmonic on 2 if and only if Dy(s, 9)==0 for every ¢ &
,(2), 9==0. This fact combined with 64 gives the

THEOREM. Given ¢ € (R), ¢ =0, then there exists a potential g, = My(Q)
such that 4g, = —¢, t.e.,

®) Dq(gy, ¢) = Sasosb*l Jor every ¢ € Z(9).
and hence for every o € M, (R).

The existence of g, € M,(2) follows directly from 6A. Since ¢ =0 we
see from (8) that Dy(g,, ¢)=0 for ¢ € &(2), ¢=0. Thus g, is superhar-
monic and in view of Theorem 41, g, is a potential.

6E. The continuity of Green’s potentials. We digress from the
central theme to prove the following elementary

TuroreMm. If ¢ € L™(Q), then the function Xngg(-, ¥)P(y)*1 is continuous on

2 and vanishes on 3.

Fix 2,2 and Be % such that 2, € Bc Bc 2. Also take B such
that there is a constant k&’ with go(x, ¥) <k'|z —y|™? if m > 2 or golx, ¥)
<~k logle —y| if m=2 for 2, y € B (cf. Theorem 6C (iii)). For x& B
and ¢ a small positive number we denote by B.(x) the open Euclidean ball
with center at z and radius ¢ in B. Take & > 0 arbitrary but so small that
B, (x,) c B. For any z « B.(%,) we have

©) {01000, 9) = galae, D)I(@)y 141

glawa, YL+ K| golwe, )L,

B(xg)

<

B(zg)
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where k£ comes from the bound no |¢|. If m > 2, then we have

SB (x )gg(xo’ S k/g |2y — y[* ™dy,
(zq

B.(x4)

sk’k”g l@o — y1*"dy,

B (xg)

where the constant %k’ comes from (1) and dy is the Euclidean volume
element. Thus

(10) {, . got@o wyri=wi| (rardo
. e\ZLo

m

= L g e
Zkk I,e?,

with S, the boundary of the unit ball and I',, its area in E™. We also
obtain

By (x)

|, . gotw, ym1=( gulw, w1
B.(x()
(11)
sk’k"SBZ‘(x)lx — y|rmdy = KT e
Here we used the fact that
B,(2y) C By (%) C By (%,) for any z € B,(,).

If m = 2 instead of (10) and (11) we obtain

(10) SB . G, YL < Kk"x(e%2 — e%log ¢)
S\ L.

and

(11/) SB . g4l Y)¥L < Kk"n(26? — 4&%log 2e),
(2o

Note that the constants in (9), (10), (11) or (10’), (11’) are determined by
¢, go and the choice of B. Therefore, given any > 0 we may choose ¢ > 0
so that

(12) [, o900 ) = om0, V)10 1¥1 < 5

for any « € B,(%,). On the other hand, if € B,2(%,), then [go(%, ¥) — g(@0,
¥)|1¢(y)] is a bounded function of y on 2\B,(%,) and therefore the bounded

convergence theorem gives
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(13) lga(®, ¥) — gal2e, )| ¢ (¥)[*1 = 0.

lim S
229 J 2\Be(z)

From (12) and (13) we conclude that

lim
2%y

[ (o, ) — galao, W01| <5

and hence the limit exists and is 0. This is precisely the continuity of
ggg(-, Y)$)*1 at z, € Q2.

We turn to the boundary values. Take a regular region 2’ such
that @ ¢ @’ and any 2, 92. Choose a parametric ball B with 2, Bc
B c 2" and satisfying the property relating to the Green’s function of 2’ in
the preceding argument. Consider any & >0 so small that B,(x,) c 2.
For any z € B.(%,) N 2 we have the estimates

gole, DIsWIM = ool vlow)*

SB‘(xo)na B (x4)

skSB‘(IO)gD,(x, yrl
kk'k"z(e? — 4e?log &), if m = 2,
= { 2kK'E"T ne?, if m > 2.
Here the constants are as above and thus given § >0 we can choose € > 0

so that

(14) go(®, ¥)|¢(y)|*1 <o

SB,(xo)nD

for any z € B,(z)) N 2. If 2 & B,s(x,) N 2, then go(x, y)|¢(y)] is bounded
on 2\B,(x,) and therefore by the bounded convergence theorem

(15) go(2, ¥)|$(y)] =0.

im S
229 J 2\B (o)

From (14) and 115) we conclude that

im|{ gol@, wpwr| <5,
%9l J 2

which shows that the limit exists and is equal to 0.

6F. The Green’s function and potentials. As one already expects
from the classical setting we have the

THEOREM. For ¢ € =(R2) and ¢ =0
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(16) gu(@) = {gu(z, 9oL in 2.
Take any ¢ € M,(2) such that 49 € &7y(2). Then
17 Joul, eyt = —[ode, = —o().
We multiply both sides of (17) by ¢(y) and integrate over 2

g, p)ao@o@r1r1 = —ppr1.
On applying Fubini’s theorem the definition of weak Laplacian gives

u{gol@, VP = —(a).

On the other hand, for every ¢ € M,(Q) with 4o € &,(2) we have S.%ASD*l
= —D(g¢, 50) = '——Sgbgo*l, i.e. Awg¢ = -——S[).
Since 2 =g, — Sga( -, ¥)¢(y)*1 is bounded and continuous on 2, 2 & LQ).

From 4,2 =0 we obtain that S,Mﬂ =0 for every 0 € M,(2) with 40 € &r,(2).
In view of Theorem 6A and the denseness of <,(2) in L2*2) we conclude
that 2 = 0.

6G. The energy of functions in &(2). The previous theorem gives
the following fundamental

TueoreMm. If ¢, 6 € y(R), ¢, =0 then

(18) Dalgy 0 = | [ ao@, v)o@)i@yisL,

2x

)

We have using (8) and (16) successively and Fubini’s theorem
Dalgs, 90) = | goowm1

= | {gota, wigoapn,
2x 92

As an easy consequence of the symmetry to the Dirichlet integral we have
the

COROLLARY. go(®, ¥) = goy, %).

6H. The energy of functions in L.(2). In the case ¢ € &), ¢
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=0, it was shown that g,(x) = S 9(x, ¥)¢(y)*1. We now extend the definition
of g, to L™(R2) by means of this formula.

THEOREM. For ¢ € L™(R2), ¢ =0, set g,(x) = Sggo(x, v)¢(y)*1l. Then g, &
MyR2), and

(19) )= {oda, wpwrag@rL
2x 92

X

Moreover, if ¢ € (RQ), then

(20) Dalg, ) = | pon1.

From Theorem 6E we also have that g, vanishes continuously on af2.

Since 2 is relatively compact and ¢ € L), we may choose a sequence
{¢.} € =5y(R) such that ||¢, — ¢y —>0 and |¢,| <k, for some constant £.
Using Theorem 6C (iii) we have the existence of the integrals

gy(2) = Sggn(x, y)¢(y)*1, for every z € 2

and
!

Moreover, since gqo(®, ¥)¢.(¥)— go(%, ¥)¢(y) a.e. in 2 and the sequence is

{ o, no@g@pLAL.
Q2

X

dominated by kgo(®, y¥) which is integrable, we have for every = € 2,

(21) 90.(®) = {_gola, ¥)pu@1- | gola, v)pyr1

and since go(%, ¥)Pn(¥)da(2) = go(2, ¥)d(y)¢(x) a.e. in 2 x 2 and the sequence
is dominated by k%gq(%, y) which is integrable, we have

(22) [, 0@, v0a@Iga@r1e1 | oo, oot

On the other hand by Theorem 6E, g,, — g,,,, = 94,-4,., and by Theorem 6F

oG-t = Hgox DIG(Y) = G ep(W)] 1$2(2) — G p(w) [F1¥1

2x 82

Sa(g ga(, y*1>|¢ () = Pnap(®)[*1,
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which tends to 0 as #— co uniformly with respect to p. Thus {g,} is D-
Cauchy and we conclude that there is an f < W}-%2) such that |||g, — fII|
—0 (cf. 5C). In view of (21), f=g, a.e. in 2 and thus g, W{-*2). To
complete the proof we use 6E to show that g, is continuous on £ and
vanishes on 2. The fact thatbgtp € M, then follows from Lemma 5A.

§7. The Green’s function for R

We now extend the results of the previous section to hyperbolic R.
This will be the main tool in studying Dirichlet-finite solutions of 4u = Pu
on R.

7A. The existence. Fix an arbitrary point y € R and choose an
exhaustion {2,} of R with y € 2,. Consider the sequence {go,(-, ¥)} where
90,(+, y) is the Green’s function of 2, with singularity at y. Since g,,,,(+,¥)
|2, € F(2,, y), we have go ,(+, y)=go,(+, ¥). Thus by the Harnack prin-
ciple gz(+, y) = C-limgo, (-, ) is either o or gx(:, y) € H(R\{y}). A criterion
for the existence of gg(-, ¥) and the fact that it is independent of the choice
of y € R and {R,} is given by the

THEOREM. R € 0g if and only if gx(-, y) exists.

Suppose R € 0s. For any positive number ¢ we may choose a regular
region 2, containing y such that gg(-, ¥)|2o > c. Then the sequence {w.}
(cf. 4A) constructed relative to the exhaustion {2,}7 has the property 1 = B-
limw, on R. But by the maximum principle go (-, ¥)=cw, and letting » —
co gives gg(+, y)=c. Hence gg(-, y) = oo.

Conversely assume R & 0; and choose a parametric ball B about the
point y. Take 2, a regular region such that 2,c B and gz(-, ¥)|2, > 2,
say. Set @ = max;s,95(+, ¥) and also b = max,s w, w the function used to
define parabolicity with respect to the exhaustion {2,};. Cleary a=2 and
b<1. Consider the function on B\2, defined by

s = min (Ti—bw, (—l—i—-b—) —a+ gB).

Note that aw/(1 — b) = a/(1 — b) on 32, whereas a/(1 — b) — a + gz < a/(1 — b) on 38,.
Also aw/(1 — b) < ab/(1 — b) on B whereas a/(1 — b) —a + g5 = ab/(1 — b). Thus
if we extend s to R by setting s =a/(1~b) —a+ gz on 2, and s = aw/(1 — b)
on R\B, then s € F(2,, y) for every n. We conclude that g, (-, y)<s and
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hence gz(-, y) exists.

In view of the continuity of gz(#, ¥) on B X B the constant can be chosen
so that s € F(2,, y) for every y in a small neighborhood. Thus for all z,
y that are sufficiently close we have gz << grz<s and we conclude that gx(z,
y)~ |z —y|*™ if m > 2 and gxlz, y) ~ —log |z — y| if m = 2.

From the symmetry of g, (x, ¥) (cf. 6G) we conclude that of gz, ¥).
Thus gz(%, ¥) — gs(x, y) is harmonic in each variable and form the Harnack
inequality we conclude that it is continuous on B X B. Thus gx(%, ¥) is con-
tinuous in the neighborhood of the diagonal on R x R and by the harmonicity
of ge(#, y) in each variable and the Harnack inequality we have that gx(z,
y) is continuous on R x R. It can also be seen that gz(x, ¥) is a potential.

7B. The energy of locally bounded measurable forms. We now
give the extension of Theorem 6H to the whole Riemannian manifold R.

THEOREM. Suppose R & Og and P is a nonnegative locally bounded element of
A™(R) such that

[ (g, »P@PE@) < oo,

RxR
Then | gs(, 9P e FLR),
(23) (| gxl+» »P@)) = SS (@, ¥)P(z, ¥)P@)P(),
X R
(24) D(SRgR(- ) SgoP for every ¢ € D y(R).

For the proof we take again an exhaustion {£,}; of R and since *P e
L=(R,), we can apply the results of Theorem 6H. The functions Sa 90,(*,¥)
P(y) are in My(2,) and vanish on 42,, and therefore can be viewed as being

in My(R). The monotone convergence theorem gives S S 9o, (2, ¥)P(x)P(y) /
RxR

S SgR(x, y)P(z)P(y) and therefore the numbers on the left form a Cauchy

sequence of real numbers. Thus by (19) the numbers D(Sn go,(, y)P(y))

also form a Cauchy sequence.
On the other hand, by (20) we have

([, gl wPW), {, 02+, 0)PW))

={,.(1, oo, wP@Y)P@)

https://doi.org/10.1017/50027763000014756 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014756

DISCONTINUOUS METRICS AND THE DIRICHLET INTEGRAL 29

and

D({, g0, wPW) = | ([, 9ular, 1)PW))Pl@).

2,

But the right hand side of the above equalities are the same and conse-
quently

D({, g0 01PW) =, s (. 9)PW)

= (],

This shows that [Sa ga,(+, y)P(y)} is D-Cauchy.

990 y)P(y)> - D(ggngan( “ y)P(y)>.

n

The function SRgR(- , ¥)P(y) is continuous on R as can be seen by using

the same argument as in 6E. Also

[, g0, P #{ gat-, w1PW)

and consequently by Dini’s theorem the convergence is uniform on compact
subsets of R. Hence by Theorem 2H we have that SRgR(-, y)P(y) € MyR).
To establish (24) we note that by (20)

D(SD 92,(+» ¥)P(y), so> = So 2
for ¢ € 2r(R) and every »n with supp ¢ € 2,, and let n— oo,

7C. Subregions with smooth boundary. In this number we con-
sider a subregion U of R with U a (nonempty) smooth submanifold and
specialize the results of 7B. Fix a y € U and take an exhaustion {U,}5 of
U with y € U,. Then consider a function v € C(U) such that v|U, =1, v|aU
=0, ve HU\U,) and 0<v=<1. Such a function can be constructed by
using Theorem 4F. Then clearly w,<wv, where w, are the functions in 44
constructed relative to {U,}5 and U. Thus U & 0; and we can speak of the
Green’s function gy(-, y) of U.

Set m = maxgy,(-, ¥). Then for every =, gy (+, ¥y)<mv on U,\U,, by
the maximum principle. Letting #n — oo gives gy(+, ¥) < mv on U\U, and this
in turn shows that gy(-, ¥) vanishes continuously on aU.

TeEOREM., If U is a subregion of R with oU smooth and P a nonnegative
locally bounded element of A™(R) such that
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S gv(x, y)P(x)P(y) < oo,
UxU

Then in addition to the conclusions of Theorem 7B we have SUgU(-, y)P(y) vanishes
continuously on 8U.

The proof is carried out as in 6G.

§8. The notion of flux on R.

On Riemann surfaces the extension of Theorem 4F to M(R) is achieved
by the use of Green’s formula. The role that is played by Green’s formula
is that it relates the “‘average” values assumed by a function on the boun-
dary of a region to its Dirichlet integral. In this section we introduce a
decive that serves the same purpose and indicate its applications.

8A. The Dirichlet integral of the harmonic measure. Let {2.}7
be an exhaustion of R. The functions w, in terms of which parabolicity
is defined (cf. 44) are superharmonic on 2,. Thus as in 64, there is a
positive measure p, = g, on 2, associated with w,:

D(wn, ¢) = S?’dﬂn for ¢ € 2 (2,).

Since D(w., ¢) is independent of the behavior of ¢ on 2, we must have
supp #. N 2, =¢. On the other hand, for every ¢ € &7 (2,\2) Dw., 9) =0
since w, € H(2,\2,). Therefore, supp #, C 02,. Moreover the norm of the
measure p, is given by Sd;zn = D(w,).

As we saw in 4B, the sequence {w,} is D-Cauchy and hence the mea-
sures {#,} are bounded. By the selection theorem we may choose a subse-
quence with weak *limit z.

TueoreM. For any ¢ € My, D(p, w) = Sgody. In particular R € 04 if and
only if p=0.

Take ¢ € M,(R) and {¢.} © M,(R) such that ¢ = BD-lim ¢,. For a fixed
k, choose n, so large that supp ¢, Csupp w.,. Then for every n > n, we
have

D(py, wn) = Swdﬂn

and letting #— oo gives D(p,, w) = Sga,,d,u. Now letting k— o gives the
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assertion.
8B. The decomposition of M(R).

TueoreM. Let K be a distinguished compact set in R* and suppose R 1is
hyperbolic if K =¢. For any f & M(R), there exisis a unique pair of functions
h, g such that f=h-+g, h€ HD(R\K), g = M,R), g|R =0. Moreover, D(h)<
D(f) and if f is subharmonic, f=0, then f<h.

For the proof we consider first the function f/ = f U 0. Take {2,]}7 an
exhaustion of R and let %] € M(R) such that %/ = f on (R\2,) UK and &}
€ H(Q,\K). Set gi=f"—h;. Then as in preceeding arguments we see
that D(f’) = D(h}) + D(g;) and also 0< D(h},, — h.) = D(h}) — D(h},,), 1i.e.
{n}} is D-Cauchy.

Since {4} is positive a subsequence again denoted by {k.} converges
uniformly on compact subsets of H(R\K) to &’ € H(R\K) or to o. If K+ ¢,
then each function 4; — k], can be extended harmonically to K N 2,, and
hence converges uniformly in a neighborhood of 4K N 2,,-; to a harmonic
funcion which vanishes on 9K N 2,,;. Thus C-limk;, = &’ exists on R and
WK = f'|K.

If K=¢, then R is hyperbolic by hypothesis. Assume %’ = C-lim 4] =
o, By Theorem 8H and the Schwarz inequality we have

S(hé — f)dr = D(—gs, w) < D'*(g) D"*w) < D'*(f)D'"*(w).

This is a contradiction in view of the facts that f’ is finite on 02,, D(w) is
nonzero, and g is nontrivial. Thus %4’ € H(R) and ¢ = CD-limg;, € Mi(R).
This procedure applied to f” = (—f) U0 gives f” = h” = g” with the same
properties. Then f= (' —h")+ (g —¢")=h + g is the desired decomposi-
tion. By Lemma 2H we have f|4 = h|d4. If h+ §= f were another such
decomposition then % —hk e HD(R\K) and h — h|4 =0 would give # =k in
view of Theorem 4E. '

From the construction we see that % = CD-lim (k}, — h7) and as before
we can deduce that D(f) = D(h}, — k") + D(g}, — ¢%). Thus D(k) < D(f) follows.
If /=0, then f=f, h=h' and if in addition f is subharmonic, then we
have f’<h;<h7 which gives f<h.

8C. A continuous linear functional on C(4). Note that the assoc-
jation of a function # € HD(R\K) to an f & M(R) is a linear process and
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set z8f = h. In case K = ¢ we merely write zf. In view of the maximum
principle (4E) if f=f on 4 for f, f€ M(R) then zf=af. Thus if we
denote by M(4) the restriction of M(R) to 4 then = is well-defined on M(4).
The maximum principle also shows that = is a positive mapping and =l = 1.
For a fixed point #, € R consider the positive linear functional ~: M(4)— R
given by =f(2,) and extend it positively using the Hahn-Banach theorem to
all of C(4), the continuous extended real-valued function on 4. Since /1=
1 it is continuous on the bounded functions. We make the following
remark.

LemMA. The dominated convergence theorem is valid for +. That is, if {hi}
C M(4) such that h, — h pointwise on 4, h € M(d) and there is a g€ M(d) such

8D. The density of HBD(R) in HD(R). We shall employ the fun-
ctional analytic viewpoint of 8C to prove the

TuEOREM. Every h € HD(R) is the CD-limit of a sequence {h,} c HBD(R),
where hi|d = (h N k) U (—Fk)|4.

Consider f, = (k Nk) U (—k) € M(R). Then clearly z = D-lim f;. Also
set h; =nxf, and observe that n(k — fi)<h — h,. Thus D(h — h,)<D(h —
i) — 0 and consequently the sequence {# — %;} is equicontinuous. In view of
{h(xo) — hi(2,)} being bounded, we can find a subsequence {k — h;} con-
verging uniformly on compact subsets of R to a function v. By Corollary 2
of 2D, v = CD-lim (h — h;,) and in turn we have that D@) =0, i.e. v is a
constant. Since || € M(R) and |h;,| < ||, from Lemma 8C we have sk,
—<h and therefore v =0. If an infinite number of terms remain in {# —
e \{h — k), then we repeat the process. Thus i = CD-lim k.

8E. Another criterion for parabolicity. We give a criterion here
that is not strictly necessary for our purposes but is interesting in its own
right. The modulus = of an open set U whose boundary is regular and
consists of two disjoint sets of components a, 8 is D '(w) where w is the
harmonic function on U with continuous boundary values 1 on « and 0 on
B.

We now consider an exhaustion {2,}7 of R and set z;; equal' to the
modulus of 2,\2,. Also consider w;; € M(R) such that w;;|2; =1, w,;|R\Q; =
0, wi; € HR)\2,). Then z;;=D"'w,,).
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From 84 we know that there is a measure g;; on 92, such that D(p,
w;;) = Sgod,uij for every o€ &4(2,). Consequently Dw; ;) = Sdpi,- and 77} = deij.
It was also shown then that there is a weak * convergent subsequence of
{#:;}3-;+1 and parabolicity is equivalent to the weak * limit being 0. Here
we make use of the observation that the discussion in 84 is valid for any
choice of 2, By disregarding some elements of any exhaustion we can
always achieve the situation that for each j the sequence {g;;}3-;+; is itself
weak * convergent. Thus we can rephrase the result of 84, by noting
that weak * limit 0 implies that 1imigdyi ; =0, as follows:

R € 0 if and only if limyz;; = oo for some j and hence for every j.

The modular criterion can now be given.

THEOREM. There exists an exhaustion {2;}5 of R such that ‘l;‘z-i,i_l = oo if
and only if R € 0q.

If R =04 then let {2,} be any exhaustion. By the above remark we
can find an #», such that z, =1, an #, such that z,,,, =1, and so on. If
we set n, =0, the desired exhaustion is {2, }5-..

Conversely assume that for an exhaustion {2}, 3l ;-1 = . Denote by
u;; the function z;;0;;. Then clearly z;; = D(u;;). For any positive integer
n we have

Tn0 = D(Un,) = Da,.\s:o(“n,o) = nga,\o,_,(un.o)-

For the sake of brevity we write here D;(-, -) instead of Dy o, ,(+, ). Then
by the Schwarz inequality

| D3 (th1,1-1, n.o)
Di(thr,0) = Di(w;,i-1) '

Also Di(ui,i—ls ”n,o) = Tn,ogui,i—ld.un,o- But ui,i-1laQo = Ti,i-1 and Sd,un,o = Tﬁ.})-
Thus D;(#;, -1, #n,0) = 7i,i-1 and the right side of the above inequality is
merely z;;;,. We conclude that limaz,, = o, i.e. R € 0g.

§9. The structure of Ju = Pu on R

Although the local results about 4u = Pu on R are available in the
recent work of M. and R. Hervé [6], many of them can be derived from
the properties of 44 =0 on R quite economically. In this section we carry
this out relying on the tools developed in §6. When this approach does
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not have the virtue of economy we do resort to quoting from the literature.

9A. Definition. We consider a locally bounded nonnegative measura-
ble m-form P on R. We denote by E(2) the subspace of M(®2) with Sa fP<
. For functions f, g E(2) the mixed energy integral over 2 of f and ¢
is defined by E.(f, 9) = Do(f, 9) + Sn fgP. For the sake of simplicity we set
Eo(f, f) = Ealf)-

To an open set Uc R we associate the space P(U)={ue 7 (U)|Ey
(u, 9) =0 for every ¢ € &, (U)}, and by P*U) the subset of P(U) with con-
tinuous extensions to 8U.

We call the elements of the space P(U) solutions of 4u = Pu on U or
simply solutions on U. Clearly # is a solution on U if and only if it is a
solution in a neighborhood of every point of U. We consider the complete
presheaf . %" = {P(U)|U open subsets of R}, and our first goal is to show it
satisfies the axioms of Brelot and 1 is a ‘‘superharmonic” function or

supersolution in this setting.

We shall need the following preliminary property of solutions.

LemMma. Let u € PY(U) with U relatively compact, such that wulou >0, then
u=0.

For the proof we suppose that the open set = {x € Ulu(x) <0} is
nonempty. If ¢ € 9 (), ¢=0, then 0= Eo(u, ¢) = Do(p, u) + SﬁugoP.
Thus Do(e, u) =0 for ¢ € Zo(¢7), =0, and consequently # is superhar-
monic on 7. In view of |67 =0, we have u|¢” =0, a contradiction.

9B. An integral operator. For a parametric ball B, consider the
operator 7 defined by czu(x) = SBgB(x, yu(y)P(y). If we allow # to range

over C(B), for example, then by Theorems 6F and 6H, rzu & M,(B) and
vanishes continuously on 4B.

TueoreM. The operator norm of g can be made less than ¢, 0 <c¢ <1 by

choosing B small; i.e. ||eau||i=m =< cllt]|1=z).

For Be & fixed we denote its center by %, and consider the Euclidean
balls By,»(z) = B,(x) of radius 2 and center at z, in . Fix n, such that
g%, Y)<k|x —y|>™ if m>2 or gs(x, y)<—k'log |z —y| if m =2 for =,y
€ B,, (). Consider any n==no/2 and = € By, (x,). Set k = supg*P. If m >
2, then
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<7 *
[, cootmceot@ OPW)ZH| gale, y1

sw| Je—ylrsmn| z—ylrrdy

Ba,(xg) B,(x)
= kk'k"T 272",

If m =2, then we obtain
[, o saneol, DIP() < bk"n(2-71 — 2-tnlog 27),
20T 0
In either case by choosing 7 sufficiently large we can make

SBM(IO) 95..z(®, Y)P(y)=<c¢

for every z & B;,(x,). We set B = B,,(%,) for such an # and note that
Tl = SBgB(-, y)P(y)<c and

llzget |l zooemy < ol Leoemllralll Loemy < clletll z=m

for every u € C(B).

Observe that the theorem is true even if P=0 is not postulated. In

fact in the above proofs we only have to replace P by [P| in the suitable
places.

9C. The operator I + zp. We fix our considerations to parametric
balls of the sort given by the previous theorem. In this case T5 =1+ 5
gives a positive isomorphism of C(B) onto itself. The following will be im-
portant in establishing the local properties of solutions.

THEOREM. The operator Ty = I + tp restricted to P°(B) gives an isomorphism
of P%(B) onto H°(B) which preserves order and Tpu|oB = u|oB.

Let # € P4(B). Then by the previous theorem Tzu € C(B) and Tzu|oB
= u|dB. Note that Tzu € < (B) since this is true for czu € M,(B) (cf.
Theorem 6H). Suppose that ¢ € &r(B). Then Ejs(u, ¢) =0 and therefore
Ds(u, ¢) = — upP. Now

DB(TBu9 90) = DB(uy SD) + DB(TBu’ 9’) =0

in view of the above and formula (20). Thus Tzu € H(B).
That T is a isomorphism is clear since T'p acting on C(B) is. Also Ty

https://doi.org/10.1017/50027763000014756 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014756

36 MOSES GLASNER AND MITSURU NAKAI

is obviously positive. If Tpu=0, for u € P%(B), then #]|dB=0 and by
Lemma 94 # =0, showing that Tz is order preserving.

Finally we must show that T is onto. If v € H°(B), then we can find
# € C(B) by the remark made at the beginning of this no. such that T«
=v. Since v& 9 (B) and czu € M,(B), we must have u € 97 (B). More-
over, 0 = Dg(u + t5u, ¢) = Dg(u, ¢) + Dy(rsu, ¢) = Ep(u, ¢) by (20) for every ¢
9:B). Thus u € P°(B).

9D. The axioms for Ju=Pu on R. We may choose a countable
basis &’ for R consisting of parametric balls B for which 9B is valid.

THEOREM. The sheaf 9 satisfies the axioms of Brelot. In addition 1 is a
supersolution on R.

First we osberve that the sets in the basis %’ are regular. In 94 we
showed that if v € P¢(B), v|0B=0, then v=0. If f=C@®BB), for Be &%,
then take # € H(B) such that #|0B = f. The function T3;'u € P%(B) also
has boundary values f and therefore B is regular.

The result of Stampacchia [20, Théoréme 8.1] gives the Harnack in-
equailty in parametric balls B and consequently the third axiom is easily
verified for %"

To see that 1 is a supersolution, take Be &’ and v € PB) such that
v|dB=1. Note that v=0. Then 1 =Tz =v+730. Since =0, we
have v=1 on B.

The first half of the theorem is true also for not necessarily nonnegative
P by the remark made at the end of 9B.

9E. Comparison of 57 and %°. 4u =0 and 4u = Pu are related
as follows.

Let # be a positive harmonic function on a region 2, let Be %/, BC
2, and let v € P*(B) such that v|6B = u|6B. Then in view of Theorem 9C
we have # =Tz =v+15v. Thus #=v on B and we have shown that «
is a supersolution. Thus in the terminology of Loeb [7, p. 196] we have
“H = %7, S majorizes K .

A consequence of the above observation is that positive superharmonic
functions are supersolutions. Therefore if a point %, € 2 possesses a barrier
with respect to harmonic functions, then the same holds for solutions. " Thus
the exhaustions {,})7 that we consider consist of regions that are regular
for the Dirichlet problem with respect to solutions as well.
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Another result that we shall use is that a positive subsolution is sub-
harmonic.

9F. Supersolutions in M(2). The operator T also leads to a char-
acterization of supersolutions as follows.

TueorEM. A function s € M(Q) is a supersolution on 2 if and only if E(s,
9)=0 for every ¢ € (), ¢ =0.

Suppose that E(s, ) =0, for ¢=0, ¢ € Z,(2). Take Be %’ and u =
P¢(B) such that s|B = u|6B and we are to show s=u. Consider D(Tgs,
¢) = Ds, ) + Dleas, 9) = Dis, ¢) + Jos P= Els, ¢)=0 for p € 2(Q), 9=0,
in view of (20) and the hypothesis. Thus Tss is superharmonic on B and
hence Tps=Tjzu. Since Ty is order preserving we have s=u on B.

Conversely suppose that s is a supersolution on 2. Choose B e &’ such
that Bc 2. By adding a suitable solution we may without loss of generality
assume that s|B<0. We claim that the function Tss is superharmonic on
B. In fact take any parametric ball B’ with B’ c B. Let u € H(B'’) such
that #|0B’ = Tgs|0B’ = s|0B’ 4+ zzs|dB’. Note that since zps is superharmohic
on B (cf. 6G), 7zs —u is superharmonic on B’ and =0 on aB’. Thus it is
=0 on B’ and hence a supersolution on B’. On 8B/, 735 —u = —s and a
fortiori rzs —u=—s on B’, i.e. Tgs=u on B’.

We now can assert that for ¢ € y(B), ¢=0, 0<D(Tgs, ¢) = D(s, ¢)
+ D(zgs, @) = E(s, ¢). The inequality follows for any ¢ € &), ¢=0 by
taking a partition of unity.

9G. The Dirichlet problem for Ju = Pu. That the Dirichlet problem
for 4u = Pu on a regular region 2 is solvable was a consequence of the
abstract theory of harmonic spaces. However, the following direct analytic
proof is also worthwhile mentioning.

Consider the operator 7z, defined by zou(x) = Sagg(x, Yu(y)P(y) and T,
=]+, If ueC), then

[ru(x) — zou(x’)| < llullmmsnlga(w, y) — go(x’, y)| P(y)

and the same estimate as in 6E proves that ro is a compact operator from
C(2) into itself. Suppose u = —zou. By Theorem 6H, rou € M,(2) and 4drou
= —uP, i.e. u € P°(2) and vanishes on 82. Lemma 9A assures that « = 0.
This means that the null space of the operator T, is of dimension zero.
From the well-known property of compact operators we are now able to
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conclude that T, is a bijective operator between C(2) and itself.

Let f < C(62) be arbitrary. Choose v € H°(Q) with v[92 = f. By the
surjectiveness of T, we can find a # € C(2) with Tzu =v. Since ve 7 (Q)
and 7,4 € My(Q) we must have u € 77(2). Therefore since du = A(v — z,u)
= Pu and 7,u]62 =0 we conclude that z € P*(Q) and «|oQ = f.

§10. The space of Dirichlet-finite solutions of Ju = Pu

We begin our study of the global properties of Dirichlet-finite solutions
of 4u = Pu. In order to carry out our arguments we must exclude the
case where R & 0,. Since there are no Dirichlet finite solutions on such R
this is no restriction. After showing that the functions in this space also
satisfies the maximum principle on 4, we show that it is a vector lattice
which is isomorphic with a subspace of HD(R). As in the harmonic case,
the bounded Dirichlet-finite solutions are dense in the Dirichlet-finite solu-
tions.

10A. PD(R) for parabolic R. We denote by PD(R) the space P(R) N
M(R). We begin our study of PD(R) by showing that it is trivial if R is para-
bolic and after this we shall exclude parabolic manifolds from consideration
to keep our arguments from degenerating.

THEOREM. R € 0g itmplies that PD(R) = {0}.

Assume R€0; and # € PD(R), u+0. We take an exhaustion {2,}5 of
R and assume that #|Q, > 0, without loss of generality.

Take u; € M(R) with «}|R\2, = 0 and u}]Q, = u, u) € P(2,\2,). By the
maximum principle #3,, <u#$ and thus B-limu) = u’ exists. Moreover,
Eul,p, — ul, ul,,) = 0in view of the fact that u},, —u5 can be approximated
by functions in < o(R.:5\2,). Thus 0< E(ul,, — ud) = E(ul) — E(u},,) and
{u3} is E-Cauchy, in particular D-Cauchy. The function #° belongs to M(R)
in light of Corollary 2 of 2D.

We consider v = # — «°. Then v & PD(R\®,), v[2 =0 and v+ 0. The
function ' =v U 0 is a subsolution on R\Q, and therefore E(v’, ¢)<0 for
o € D (R\R), ¢=0. Since v'=0, we see that D(’, ¢)=<0 for ¢ as above.
For any positive integer k set uj =u' N k. Also take {w,} the sequence used
to define parabolicity (cf. 4A). Then D(w,v}, v') <0 and since BD-lim w,v},
= v, we have D(v, v')=<0. This in turn gives D(v') =<0, because v’ = D-lim
v;. Thus v/ is a constant which must be 0 due to the fact that v'|Q, =0.
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By symmetry we have (—v) U0 =0 and thus » =0, a contradiction.

10B. Riesz decomposition. We denote the bounded functions in
PD(Q) by PBD(Q). The following is fundamental in our study.

Tueorem. If u € PD(R), (resp. PBD(R)), then there exist u*, u~ € PD(R),
(resp. PBD(R)), such that u*=0, u==0, u =u*—u~ and u*|d=u U0, u~|4
= (—u) U 0.

In view of 10A we may assume R & 0g. Set '’ =u U0 and take {2,}7 °
an exhaustion of R. Consider the function #; & M(R) with u}|R\Q, = u’,
u;, € P(Q,). Since #’ is a subsolution on R, we have u’ <u}<u},,. Since
u; — u;,, can be approximated by functions in Z,(2,.,) (cf. 2E) we conclude

B} — tsp, thy) =0. Thus Dl — ey, thep) = §<u:,+,, — ul)u},,P=0 and

0=<D(u, — u;np) = D(u,) — 2D(u., u1;+p) + D(u7lz+p)
=< D(u;) — D(uy.p).
Thus the sequence {«;} is D-Cauchy. A subsequence of this positive se-
quence, again denoted by {«;} has the property that «* = C-lim«, exists
and «* € P(R) or u* = co. Note that {#' — u,} € My(R) and is C-convergent

and D-Cauchy. In view of R & 0; and Theorem 2H we conclude that u’
—u* € My(R), and also that u* € PD(R), u*|4d =u U 0|4.

Starting with #” = (—«) U 0 gives a sequence {«,} with #~ = CD-lim u}
and #~ |4 = (—u) U 0|4. Since u|Q, = u}|Q, — u?|Q., we have u =u*—u-.
If u is bounded, then clearly the process gives bounded u*, u~.

10C. PD-Maximum principle. The harmonic boundary also serves
to give a maximum principle for PD(R).

Lemma. For any u € PD(R), there exist h*, h~ € HD(R) such that u* < h*,
u~<h" and u* —h*|d=0=u"— h~|4.

We merely apply Theorem 8B: set 2* =zu*. Then h* € HD(R) with
u* — h*|4 =0. Since #* is nonnegative it is also subharmonic and we have
u*=<h*. Similarly for -

THEOREM. If u € PD(R), then infy(u N 0) <u <sup,(u U 0). In particular
lu| <supglu].

We recall that by Theorem 4E we have A* <sup,k*. Thusin view of
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10B, we conclude that
u<u"<<h*=<<supsh* = sup,u* = supsu U 0.
The other inequality follows by replacing # by —u.

10D. The lattice structures of PD(R). For u, v P(R) we denote
by # Vv the smallest element of P(R) which dominates # U v, if it exists,
and by # A v the largest element of P(R) which is dominated by u nwv, if
it exists.

TaEOREM. PD(R) (resp. PBD(R)) is a vector lattice under the operatoins V,
A. Moreover, u Vv|d =u Uv|d, u Av|id=u Nv|d

For the proof we take # € PD(R) (resp. PBD(R)) and note that u#*e
PD(R) (resp. PBD(R)) has the property #*=u U0 and #*|4=u U 0|4 (cf.
10B). Thus # Vv 0 exists and #*=u VvV 0. Suppose #’ € PD(R) (resp. PBD(R))
with #’=#u U 0. Then #'—u*|4=0 and the maximum principle gives u’
=u*. We conclude that u* =# Vv 0. If u, ve PD(R) (resp. PBD(R)), then

(u —v) VO exists and we have # Vv=(u—v)vVO+v as in PD(R) (resp.
PBD(R)).

The corresponding result for # A v now follows from « A v = —((—u) Vv
(—v)). The assertion about the behavior on 4 is obvious.

10E. The spaces PD(R) and HD(R). We continue studying the
structure of PD(R) with the following

TueoreM. There exisis an isomorphism Tg: PD(R)— HD(R) with u|d =
Truld. Tr is an isometry on the subspace PBD(R). If h € HD(R), h=0 with

(25) | {gatz, n)r(@)P@)R@)PE) < o
RXR

then there is a u € PD(R), with Tgu = h. In particular, if

(26) | {st@, v1P@PW) <
Rx R
then Tr: PBD(R)— HBD(R) is onto.
We being by assuming that » € PD(R), # > 0. Consider an exhaustion
{2,} of R and the operators Tou = u + ro,u, where zgu = Sa ga.(*» Y)P(¥).
Then as in 9C we can verify that T,u € H(Q,) and Tou%|0Q2, = #]02,.
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Since 74,,,4 =175, we have T,,,,u =T, u. Also observe that D, (To.u, to.u)
=0 and consequently

D, (u) = Do, (T, u) + Dg,(o.u).

From S S 90.(2%, ¥)u(2)P(x)u(y)P(y) << Dy.(u) << D(u) < o we conclude that
2.%x 2,

| [oste, vu@P@u@)P@) < o.

RxR
Thus from 7B we have that zz¢ = SRgR( -, Yu(y)Ply) € MA(R). Set Tru =u +
cpt.  Then D(Tzu, ¢) = Du, ¢)+ D(zzu, ¢) = E(u, ¢) =0 for ¢ € & y(R).
Thus Tru € HD(R) and Tzu|d = u|4. By virtue of 7,4 / zzu we also have
Tou /Tru. If we extend Tr to PD(R) using Theorem 10B we preserve
the property Tru|d =u|d. Therefore, by Theorems 10C and 4E we have
an isomorphism and an isometry on PBD(R).

Now suppose that € HD(R), k>0 and (25) holds. Take u, € P(Q.,)

such that #,[0Q2, = £]82,. Since & is a supersolution on R, #ns; < u,<h.
Thus C-lim#, =u € P(R). Moreover, from (25) and # <& we infer

| {onte, pu@P@uEIPE) < o
RxR

and thus from Theorem 7B, rzu = SgR( ., Yu(y)P(y) € My(R). As in the first
part of the proof we see T,u, = h|Q2,. Consequently, h —u, = zou, and
letting #n-— oo gives h —u = czu by the dominated convergence theorem.
Thus Trh = u.

If h € HBD(R) then either by Theorem 8B or Theorem 10B, z = A* —
h~ where h*, h~ € HBD(R) are nonnegative. If (26) holds, then (25) is valid
for 2* and %~ and therefore there exist #*, u~ € PD(R) such that Tzu* = i,
Tru~ = h~; hence Tzu = h. Since u|4 = k|4 is bounded, by 10C we have
u € PBD(R).

In the process of proving the theorem we have shown the following which
we record for future reference.

CoroLrarY. If u € PD(R), then
e = gel-, Wu@)PW) € MAR)

and Die) = | [ gate, 9)u(@)P)u(y)Pw) < o.
RxR
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10F. The density of PBD(R) in PD(R). We are now in a position
to establish one of our main results.

THEOREM. Every u € PD(R) is the CD-limit of a sequence {v,} < PBD(R)
such that v, |4 = (u Nk) U (—k)|4.

We first treat the case # >0. Then Tru = u + 7z is the function =u
e HD(R) (cf. 8B and 10E). Set #, = Nk and choose an exhaustion {Q,}
of R. Let vz, € P(2,) such that v,,]02, = #,]02,. Since u, is a superso-
lution #, = v4n ==V, »+1 and consequently v, = B-lim,vsn € P(R). Set

(27) Rin =T Vkn;

then in view of the construction in 8B, a subsequence again denoted by
{hes} has BD-limit equal to h, = zu,. We observe that 0=g,,(%, ¥)via(y)
< g%, V)ur(y) < gr(x, ¥)u(y) and czu exists. Hence by the dominated con-
vergence theorem we obtain k; = v; + 7z, from (27). From 8D we know
that 4 = CD-lim k,. Note that for fixed n, v4n <<Vys1,»<u, which gives v,
< vy =<u and hence C-limv, =v & P(R) and v<u. Consider # —v, = (h —
hy) —rp(u —v,) and let k— . We obtain # —v = —zx(u —v). The left
hand side is nonnegative whereas the right is nonpositive and consequently
u =,

Since tx(u — v,) € My(R), we have D(h — h;, tp(u —v,)) =0 and conse-
quently

D(u —vy) = Db — hy) + D(zr(u — vy)).

From (23) we have

Dieslu —v.)) = | {gale, ) — v)(@)P(2)@ — v)()PW)
RxR
which converges to 0 by the monotone convergence theorem. We therefore
have lim D(# —v,) = 0. Note that v, |4 = h,|d = u|4 = u N k| 4.

If w = PD(R) we use the Riesz decomposition # =u*—u~. We can
find {v;}, {v;} € PBD(R) with u* = CD-limv;, #* = CD-limv; and vi|4d =u* N
kld, vi=u"Nk|d. But then v [d=vi—vz|d=((xeU0)NEk) —((—u) Nkl
=(u Nk)U (—k)|4 and clearly # = CD-limv, which establishes the theorem.

We remark that the theorem shows that in case PBD(R) = {0}, then
also PD(R) = {0}.

https://doi.org/10.1017/S0027763000014756 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014756

DISCONTINUOUS METRICS AND THE DIRICHLET INTEGRAL 43

§11. The behavior of PD(R) on 4

As it was already shown in Section 10, the harmonic boundary 4 is
significant in determining the structure of PD(R). We now sharpen this
notion by showing that the space PD(R) is determined by the subset 4, of
P-energy nondensity points in 4. We also give sufficient conditions for a
function in M(R) to be the boundary value of a PD(R) function and char-
acterize the situation when HBD(R) and PBD(R) are isomorphic.

11A. Relative classes. For U an open subset of R with each com-
ponent of 3U smooth we cosider PD(U, aU) (resp. HD(U, 3U)) of Dirichlet-
finite solutions (resp. harmonic functions) on U which vanish continuously
on 3U. Also the subspace of bounded functions is denoted by PBD(U, a8U)
(resp. HBD(U, 3U)). If 9U is nonempty, then each component of U is not
in 0¢ by 7C. Define gy(z, y) to be gy(z, y) if 2, y € U;,, where U; is a
component of U and to be 0 otherwise. This defines gy(%, y) on U.

The Riesz decomposition (10B) as well as a maximum principle on 4 is
valid for PD(U, aU) and PBD(U, 3U).

Tueorem. If u € PD(U, dU), (resp. PBD(U, aU)) then there exist u*, u~ <
PD(U, 3U) (resp. PBD(U, 3U)) such that u*=0, u==0, u =u* —u~ and u*|4 N
U=uU0ld, u'ldnNU=(—u)U0ldnU. Moreover, u*<supsgu U0, u~ <<
supsnp(—u) U 0.

Set #’=# U0 and extend #' to all of R by setting it equal to 0 on
R\U. Then #’ = M(R). Take an exhaustion {2.}5 of R and set U, =R N
2.. Consider the functions «», & M(R) with u}|R\U, = «’, u} € P(U,). Since
#’ is a subsolution on R, we have #’ <u;<u;.,. The u; being positive also
makes them subharmonic on R and therefore by Theorem 8B, zBUu/ = uj.
On the other hand, =AUy} =a®0y’. Thus #* = C-limu, exists on U. In
view of zR¥u’=u* we can extend #* continuously to R by setting it equal
to 0 on R\U. Thus by Dini’s theorem #* = C-lim #; on R. As in 10B we
also have {;} is D-Cauchy. Thus #* = CD-lim#«, and by Theorem 2H we
have u* —u’'|4 =0. If we view u*, #’ as only defined on U, then «*|4 n
U=u'l4n0.

From Theorem 4E we have z®7u’ <supsz®lu’ and therefore u* <
supsp#’. The remainder of the assertion now follows easily.

In the course of the proof we have established the
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Cororrary. If PD(U, aU) # {0}, then R & Og.

If w e PD(U, aU), u # 0, then suppose #*+ 0, for example. We have
seen that #®7x'=u* and in view of the maximum principle 4E we conclude
that U N 4+ ¢, in particular 4+ ¢.

11B. The canonical extension. In this number we associate a global
function to each element of PD(U, aU).

TueoreM. There is an isomorphism A : PD(U, dU) — PD(R) such that u|4 N
2 =2udN2 and u|\2 =0. In particular, 2 is isometry on PBD(U, 3U).

First consider the case # > 0. Setting # equal to 0 on R\U makes it a
subsolution on R. Consider an exhaustion {2,}* of R and {v,} € M(R) such
that v,|R\2, = #, v, € P(2,). Since u# is a subsolution # <v,<wv,,;. On
the other hand each v, being a positive subsolution is also subharmonic.
Thus zu = av,=v, and consequently v = C-limv, € P(R). As in 10B we
can see that {v,} is D-Cauchy, and we have v = CD-limv,. In addition, » —
v e My(R). This gives u|4 =wv]|4. Set iz =v and in view of 11A we may
extend 2 linearly to all of PD(U, 9U). If 2u =0, then #|U N 4=0 and by
11A we have # =0. The isometry of 2 on PBD(U, aU) follows from 11A
and 10C.

11C. P-energy nondensity points. The subsets 4, of 4 which we
proceed to define is the natural boundary for the space PBD(R). For a
neighborhood U* of a point p €4 we set U=U*N R. A point pE4is a
P-energy nondensity point if there is a neighborhood U* of p such that

| oo, »P@PE) < o
uxu
where gy(#, ) is defined in 11A. This property for open set U* shall be
called property (BD). Since the Green’s function decreases with the region
U we may assume that each component of U is smooth. We use the
symbol 4p for the set of all P-energy nondensity points in 4.
Our first observation is the

THEOREM. If u € PD(R), then u|d\dp =0, consequently, |u|<supgs|ul.

We may assume that # >0. Also suppose that p €4 and u(p) > 0.
Then there is a neighborhood U* of p and a 6 >0, such that «|U* > 3. By
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Corollary 10E, o > D(zzu) = S SgU(x, yu(x)P(x)u(y)Ply) > 528 SgU(x, y)P(2)P(y).
UxU UxvU

11D. T, acting on PD(U, 3U). Here again we assume each component
of 3U is smooth. Then for every U, a component of U we have gy (-, ¥)
vanishing continuously on aU,. We extend the definition of the operators
defined in 10E to PD(U) by setting Tyu|U, = Tyu and tyu|U, = tyu for
every component U, of U. By Theorem 7C we see that ryu|oU, = 0. Thus
we have the

THEOREM. T, gives an isomorphism of PD(U, 8U) onto HD(U, 8U) with
uldNU=PuldnU. Ty is an isometry on PBD(U, 3U). If h € HD(U, 3U)
with h=0 and

| {90t @ P@REIPEY) < o,

UxU
then there is a w € PD(U, 3U) with Tyu = h. In particular, if U satisfies property
(BD), then Ty : PBD(U, oU)—~ HBD(U, aU) ts onto.

The proof is carried out as in 10E except that instead of appealing to
Theorem 7B we use Theorem 7C.

11E. Boundary values of PBD(R). Since we have seen every u
PD(R) vanishes on 4\dp, it is natural to ask whether every function in M(R)
which vanishes on 4\4p is the boundary value of some function in PD(R).
To this end we prove the

Tueorem. Given an f e M(R) with supp fl4d C dp. There exists a u €
PBD(R) such that u|d = f|4.

For every p» € supp f|4, thereis a neighborhood U} of p with Uj N 4
4p and U} satisfies property (BD). The compactness of supp f|4 gives a
finite number U%, - - -, Uf of U}’s which cover supp f|4. The Urysohn
property (cf. 2B) and lattice property of M(R) allow us to find ¢, -+ -, ¢
in M(R) with supp ¢, < Uf and lf}goi =1 on supp f|4. Set z®\Vip,f = h; €
HBD(U,, 3U;), i=1,--+,k Since each U% satisfies property (BD) from
Theorem 11D we have u; € PBD(U,, 3U,) such that Tyu, = h;. We take the
canonical extensions Au; of u; and set u = 3\ %iu; € PBD(R).

The functions # has the required boundary values. In fact iu;|4\U; =
0 and Au;|dNU;=Tyu|dU;, = hi|ldnNTU; = ¢:f|4 U U;. Thus u; = ¢;f on
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4 and hence u = f on 4.

11F. An alternate characterization of 4,. First note that 4, is an
open set. Let p e 4, and take U* a neighborhood of p such that U* n 4
c 4p. Consider f € M(R) with f(p) =2 and f|R¥N\U* =0, 0< f<2. Then
supp f|4 € 4, and Theorem 11E gives # € PBD(R) such that «#(p) =2. By

Corollary 10E we have S SgR(x, y)u(x)P(x)u(y)Ply) < . Set V* = {p € R*|
RxR
#(p) >1}. Then V* is a neighborhood of p and

(28) [ § onta, 9)P@)P@W) < oo.
VxVv

THEOREM. p € 4, if and only if there is neighborhood V* of p such that
(28) holds for V.

If (28) holds for V, then in view of gz(2, y)=g,(x, ¥) we conclude that
V satisfies property (BD).

11G. Isomorphism of PBD(R) and HBD(R). An isometric isomor-
phism S : PBD(R) - HBD(R) onto is called canonical if Su —u is a potential
for evrery u € PBD(R). In view of Theorem 4I, S is canonical if and only
if Su —uld=0 for evrey u € PBD(R). We summarize our results by giving
the following criterion for the existence of a canonical isomorphism.

TuEOREM. There exists a canonical isomorphism S : PBD(R) — HBD(R) if and
only if there is a neighborhood U* of 4 with

| gstz, »P@)PY) < oo,
UxU

In case S exisis it is equal to Tp

If such a U* exists then by Theorem 11F, 4, = 4. We claim that Ty :
PBD(R)— HBD(R) is canonical. To this end we merely need to show it is
onto because we already know Tru|d = u|d (cf. 10E). Take an h € HBD(R)
and in view of Theorem 11E we can find a »« € PBD(R) with u|4 = h|4.
Consequently Tru|d = h|4 and by Theorem 4E we conclude Tzu = k.

Conversely if a canonical isomorphism S exists, then 4 = 4, because
every function in PBD(R) vanishes on 4\4p, whereas for every point in 4\
4p there is a function in HBD(R) which does not wvanish there (cf. 4F).
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Therefore, again by Theorem 11E we know that there is a function # € PBD(R)
with #|4 =2. The set U* = {p € R*|u(p) > 1} has the desired property since

| [ 9nte, vu@ P@wwIP@) < o

xR

x

(cf. 10E).
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