Compositio Mathematica 131: 319-340, 2002. 319
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Some New Applications of the Subspace Theorem

PIETRO CORVAJA!' and UMBERTO ZANNIER?

Dipartimento di Mat. e Inf., via delle Scienze, 206, 33100 Udine, Italy.

e-mail: corvaja@dimi.uniud.it

2IUAV — DCA, S. Croce, 191, 30135 Venice, Italy. e-mail: zannier@iuav.unive.it

(Received: 28 July 2000; accepted in final form: 21 December 2000)

Abstract. We present some applications of the Subspace Theorem to the investigation of the arith-
metic of the values of Laurent series f(z) at S-unit points. For instance we prove that if f(¢") is an
algebraic integer for infinitely many n, then /(f (¢"")) must grow faster than . By similar principles,
we also prove diophantine results about power sums and transcendency results for lacunary series;
these include as very special cases classical theorems of Mahler. Our arguments often appear to be
independent of previous techniques in the context.
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Introduction

In the recent papers [CZ1] and [CZ2] we exploited a simple application of the Sub-
space Theorem to exponential diophantine equations, which seemed new. This
originates in Lemma 2 of [CZ1] which, roughly speaking, states that a power-sum
cannot be too near to an integer unless it is itself an integer.

In the present paper we expand this principle to more general situations and we
give different types of applications. This development is represented by Theorem 4
below, which we view as a main tool for all the other results of this paper. It concerns
the approximation of an S-integer by a sum of S-units.

As a first application, we shall prove a theorem (Theorem 1) about values at
S-units of an infinite Laurent series with algebraic coefficients. Roughly speaking
we shall prove that if infinitely many such values are S-integers in a given number
field, then their height must grow rapidly.

From this result we shall deduce (Corollary 1) information on the values of such
series at ¢", for an algebraic number ¢: if the values are S-integers in a given number
field for infinitely many n, then their height must grow faster then n. As a further
corollary (Corollary 2), they cannot all be rational integers.

As another application of Theorem 4, we prove (Theorem 2) a strengthening of a
previous diophantine result in [CZ1] for power sums with a ‘dominant root’. This
involves Puiseux expansions.
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Another type of application of the same principle concerns algebraic values of
lacunary series. The present Theorem 3 provides a transcendency criterion for series
including those of the form ) °, o where  is an algebraic number and the sequence
of integers m; grows exponentially. We recover in particular the classical results of
Mahler on the Fredholm series. We remark that these latter results may be vastly
generalized by expanding the techniques introduced by Mahler (see [M], [Lo-vdP],
[N], [Ma], [T]), which allow even algebraic independence results. On the other hand,
such techniques always rely on certain functional equations satisfied by the relevant
series, while our method only exploits lacunarity of the series.

We recall that the Subspace Theorem had been used also by Nishioka [N] in the
context of transcendency of Mahler’s series. However her application follows a com-
pletely different pattern and leads to different results.

All the above theorems hold by interpreting the values of the occurring series with
respect to any valuation of the involved number field.

NOTATION AND STATEMENTS

We let K be a number field and S be a finite set of absolute values of K containing the
Archimedean ones. For every place v of K we note by | - |, a continuation of it to Q
and normalize it ‘with respect to K’: according to this normalization, for x € K*
the absolute logarithmic Weil height reads h(x) = Y, log™" |x|, and the product for-
mula [],|x], =1 holds. We note that these conditions determine uniquely our
normalizations. We also note that even in the Archimedean case the triangle-
inequality holds with these normalizations. In fact, the present absolute value is
obtained from the usual one by raising to a power between 0 and 1.

We fix an absolute value v of K and denote by C, a completion of an algebraic
closure of K,. Our notion of convergence, unless otherwise specified, refers to C,.

We also define the S-height of a nonzero element xe€ K* to be
hs(x) = a5 log* |x|,. For S-integers this height vanishes, so it gives a mesure of
‘how far’ x is from being an S-integer.

For a vector z = (29, 21, ..., z5) € K"t \ {0}, (h > 1), we define h(z) as the usual
projective logarithmic height. Also, we denote by iz(z) (resp. ils(Z)), the sum of
the A(z;) (resp. hs(z;)), 0 <i<h. Moreover, we put, for an absolute value v,
llzll,: = max{|zol,, . . ., zal,}-

Throughout, the capital ‘H* will denote the exponential height.

By Laurent series (resp. Laurent polynomial) we mean, as usual, a series of the
form ), . _,a,z" (resp. finite sum of the form » _, _, o, a.2").

THEOREM 1. Let f(z) =) _,. 4 a;z" be a Laurent series with algebraic coefficients
in C,, converging for 0 < |z|, < 1. Let S be a finite set of absolute values of K con-
taining the Archimedean ones. Let z, (n = 1, 2, . ..) be an infinite sequence of pairwise
distinct elements of K* such that f(z) is defined and belongs to K. Suppose that:
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is a bounded sequence,

< o0

Then f is a Laurent polynomial.

Remark. Condition (1) states that the algebraic numbers z, ‘tend to be’ S-units: in
fact, the vanishing of both hg(z) and hg(z~!) characterizes S-units. Analogously,
condition (3) requires that f(z,) tend to be S-integers for n — oo; it automatically
holds when the f(z,) are S-integers.

Note that, though we require that the coefficients @; are algebraic, we allow the
possibility that they generate a field of infinite degree over Q. This appears to
be new in this context.

COROLLARY 1. Let f(z), S be as in Theorem 1, f not a Laurent polynomial. Let
q € C) be algebraic with |q|, < 1. If f(¢") is an S-integer in K for all n in an infinite
sequence A C N, then

im V@ _

neA n

If we just assume that f(¢") is an algebraic number in K, the conclusion does not
follow in general, as is shown by simple examples like f(z) = >_ z™.
As a particular case, we shall easily obtain the following corollary:

COROLLARY 2. Let f be a Laurent series with complex algebraic coefficients, g € C
be an algebraic number with0 < |q| < 1. Iff is not a Laurent polynomial, then the set
of positive integers n such that f(q") is a rational integer is finite.

Remark. Let us consider the Fredholm series f(z) =), z satisfying the func-
tional equation f(z%) = f(z) — z. Iterating this relation we see that if f(¢) € K for
a g € K*, then f(¢*") is an S-integer in K for all n; moreover, by the same iteration,
it may be also easily seen that i(f(¢*'))/2" is bounded. This contradicts Corollary
1; therefore f(q) is transcendental and we recover Mahler’s theorem. In Theorem
3 we shall prove a much more general result, holding for series which do not necess-
arily satisfy simple functional equations.

In the context of algebraic functions we have the following result about
diophantine equations with power sums. Given ¢;, o; € K*,i =1, ..., h, we consider
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the power sum
zy = crof + - - + cpo. (0.1)

THEOREM 2. Let z, be given by (0.1). Assume that for some absolute value v, we have
1 # |ay|, > max(|oaly, - - -, lagly). Let g € K[Z, X] be monic in X and suppose that for
an infinite sequence of neN, the equation g(z,,X)=0 has a solution
X = x, € K. Then there exist d;, ﬁj € I_(X,j =1,...,k, and an arithmetic progression
P such that we have

h k
g(Z cioy, Z%ﬁf) =0, forneP.
i1 =1

Remark. For simplicity we have introduced the condition that g is monic. It is a
well-known trick how to get rid of this (with a corresponding modification
of the conclusion); namely, we may replace g(Z, X) with the polynomial
a(Z)d_l g(Z, X /a(Z)), where a(Z) is the leading coefficient of g, with respect to X.

Similar results appear in our paper [CZ1], where however we considered in detail
only the case when the o; are natural numbers. Unlike that paper, the present treat-
ment is completely independent of Siegel’s theorem on integral points on curves.
Although the condition on the ‘dominant root’ o4 is crucial, the method allows much
flexibility concerning the assumptions on the z,. For instance, by a direct application
of Theorem 1 to Puiseux expansions, one can treat the case when the z, are S-units,
again independently of Siegel’s theorem or any tool from algebraic geometry.
(Siegel’s theorem had been used by Débes [D] in connection with similar equations.)

A particular case concerns the equation g(m) = z,, where g is a polynomial and z,
is as in the theorem. Such an equation is not covered by quite general results by M.
Laurent [L1], [L2], dealing with relations u,, = v,, where u,v are recurrence
sequences.

We finally remark that results of this type lead to explicit versions of Hilbert
Irreducibility Theorem and to the construction of simple Universal Hilbert Sets (see,
e.g., [D], [CZ1], [DZ]). For instance it can be proved that {z, + n} is a Universal
Hilbert Set if z, € Z is as in the statement of Theorem 2.

Our next results deal with the transcendency of values of lacunary series at
algebraic points.

THEOREM 3. Let my < my < --- be positive integers and a1, ay, ... € K* be such
that Y7}, h(a;) = o(my). Let a€ K*, |ul, <1 and consider the number y=
32, ai™, which is well defined as a limit in the v-topology. Let N be a positive integer
and let L > h(x)/(log |oc|‘,_1) be a real number. Consider the sequence N of integers n
such that m,n > L -my. Then, either vy is transcendental, or for all but finitely many
n e N there exists a set of integers A, with {1,...,n} C A, C{l,...,n+ N} such
that y =) o4 aio™.
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This statement is rather involved, but leads quite easily to several simpler
corollaries. We now give a few examples:

COROLLARY 3. Let m; be an increasing sequence of integers satisfying

. My N
sup lim sup—— = o0
N n My

Let a; be as in Theorem 3 and assume in addition that the a; are positive reals. Then the
real function defined in (0, 1) by the series Y .-, a;x™ takes transcendental values at all
algebraic points in (0, 1).

In the p-adic case we have the following analogue:

COROLLARY 3'. Let m; be as in Corollary 3 and consider an ultrametric absolute
value v. If the a; are as in Theorem 3 and satisfy |a;|, = 1 for all i, then the v-adic
function defined in the unit disk by the series Y - aix™ assumes therein
transcendental values for algebraic x # 0.

COROLLARY 4. Let o € K*, |a|, < 1 and let m; € N be an increasing sequence of
integers. Assume that for some positive integers h, N,

(1) My — My — 00,
i m h(o
(i1) lim sup"—+N > (—)71
n Mu loglaf;
Then either ) ;o™ is transcendental, or there exist pairwise disjoint finite sets
By, By, ... of natural numbers with the following properties:

(1) the union \J B; has finite complement in N.

(2) ZieB” o =0, forn=1,2,....
(3) For each n, the set B, is contained in some interval of length < h.

In particular, we see that if we may take # < 21in (i), then ), o™ is transcendental.
It can be shown that this is the case, e.g. when {m;},.n are the values of a recurrence
sequence such that for no positive integers d, r, the sequence {m1,,,};cN 1S polynomial.

Note that in general the transcendency conclusion may be false. In fact, take for o
a root in the unit disk of a polynomial p(x) = x4 4 --- + x%, with0 < d| < --- < dj.
Take now any lacunary series g(x) = Y -, x%, where e;y; — ¢; — 0o. Consider finally
an expansion of the product p(x)g(x). Evaluating at o, we immediately obtain the
required counterexample. (This construction however does not work in the
non-Archimedean context, as shown by Corollary 3'.)

Another case when the transcendency conclusion holds unconditionally is
obtained by requiring that the sequence m; is strongly lacunary. In fact, we have
this further result.
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COROLLARY 5. Let m; € N be an increasing sequence of integers such that
liminf,(m,11)/m, > 1. Let o, a; be as in Theorem 3. Then ), a;o™ is transcendental.

Remark. These results appear to be new. They plainly include Mahler’s theorems
on lacunary series Y, o, as well as some results recently announced by Tanaka
(for instance, he obtains the conclusion of Corollary 5 under the assumptions
a; = 1 and m;,; = 2m; for all i). On the contrary, it seems that Mahler’s techniques
do not apply in such generality. Our method could yield more general results;
for the sake of simplicty, we limited ourselves to the present statements.

1. An Auxiliary Result

The main technical point in all the proofs is the following consequence of the Sub-
space Theorem:

THEOREM 4. Let K be a number field, S a finite set of absolute values of K containing
the Archimedean ones, v be an absolute value from S, ¢ be a positive real number,
N = Oaninteger. Finally, letcy, ..., cy € K'. Ford > (N + 2)e, there are only finitely
many (N + 1)-tuples w = (wo, ..., wy) € (K*)V! such that the inequalities

@) hs(wi) + hs(wi ) < eh(w;) fori=1,...,N 1
(i) leowo + cowr + -+ + exwyl, < (HOvo)Hs(wo)¥ ™) H(w)™
hold and no subsum of the c;w; involving cowq vanishes.

Introducing the coefficients ¢; is important for the application to Theorems 1,2
above. However, for other applications (e.g. to Theorem 3), we can take ¢; = 1
for all i. In fact, the proof in the case of general ¢; is exactly the same as in the
case ¢; = 1.

The condition about the subsum is somewhat typical of the theory of S-unit
equations and inequalities: we quote for instance the celebrated S-unit Theorem
by Evertse [E] and van der Poorten and Schlickewei [vdP-S], valid for vanishing
sums of S-units (see also [Sc, Thm. 2A]).

The new feature in our statement is represented by the role of the term wy. In our
applications it is crucial that wy is an (almost) S-integer, i.e. Hg(w) is small com-
pared to H(wy); this fact allows (ii) to be verified in the cases of interest for us.
The above quoted results are usually proved under the stronger assumption that
wo is an (almost) S-unit. For our applications it is very important not to have
wo restricted to (almost) S-units. (As we have remarked above, particular cases
of this principle were already applied in [CZ1] and [CZ2].)

For this reason, moreover, our arguments follow a different pattern with respect
to the proof of the S-unit Theorem, as given, e.g., in [Sc, Thm. 2A]. In both contexts,
an application of the Subspace Theorem leads to a linear relation with fixed
coefficients among the w;’s, and this allows to reduce the number of variables by
a linear substitution. In the classical case, this procedure eventually leads to some
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constant ratio w;/w; (i # j), and the conclusion readily follows. In our case on the
contrary, due to the lack of symmetry of (ii), the stronger conclusion about
w;/w; is not generally true (consider, e.g., the example wy = 2" + 3", w; = =2",
wy = =3" w3 = 2_"2). Therefore, at this point we have used a supplementary com-
binatorial argument from linear algebra (Lemma 1 below) to obtain a vanishing sum.

An alternative procedure, more similar to the classical one, would consist in
applying a result by Evertse [E] to linear relations with fixed coefficients among
Wi, ..., WN.

As noted above, if we are satisfied with any linear relation with fixed coefficients
(not necessarily 0 or 1), a straightforward application of the Subspace Theorem
is sufficient.

We immediately state and prove the mentioned linear algebra result, which will be
used towards the end of the proof of Theorem 4.

We introduce just a bit of notation. We let k be an infinite field. We say that

T: k"' — k"is a truncation operator if there exists a set s(T) C {0, 1, ..., n} such
that
. )y ifjes(D),
T((x()a'~~’x}’l))_(,y()7~~'7yn)a Where yj - {0 lf‘]gs(T)
We say that s(7) is the support of T. Note that s(7) determines 7.
We let u:=(1,...,1) € kK"*! be the vector with all components equal to 1.

LEMMA 1. Let V be a nonzero vector subspace of kK"*'. Suppose that for every

X = (xg,...,x,) € V, and for every index i € {1,...,n}, either x; =0, or x; = xg
or T(x) —x;T(n) € V for some truncation operator T = T;x with 0 € (T). Then
V contains a vectorv = (g, . .., v,), where vo = L andv; € {0, 1} foralli =0,1, ..., n

Proof. We note at once that it suffices to find any nonzero element v € ¥ such that
v; € {0, 1} for all i. In fact, suppose this is the case, but vy = 0. Let v; = 1 and choose
T = T;y as in the assumption. Then the vector T'(u) — T'(v) satisfies the conclusion.

We now argue by induction on #, the result being true for n = 0. Let now n > 0.

Suppose that x; =0 for a certain j € {1,...,n} and all x € VV and let P; be the
projection outside the jth coordinate. Then P; induces an isomorphism of V' with
a subspace of k" (whose coordinates we number with 0,...,j—1,j+1,...,n).
On the other hand, if 7 is a truncation operator on k"', we have
PioT =T 0oP;, where T’ is the truncation operator on k" with support
s(T)\ {j}. It follows at once that the assumptions of the Proposition are verified
for Pi(V) in place of V. The induction assumption then implies the existence of
a nonzero v € V such that P;(v) has all its coordinates in {0, 1}. However this must
then hold also for v itself, proving the desired conclusion. The same argument works
if x; = xp for a certain nonzero j and all x € V.

Therefore we may assume that neither xo = 0 nor xp = x; holds identically on V.

Fix for the moment a nonzero index i and let 7 be a truncation operator with
0 € s(T). Put Ar(x) = T(x) — x;T(u), so A7 is a linear operator on k"', Our assump-
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tion reads

VC (UA;%V)) uvr'ur,
T

where V7 (resp. V") is the subspace of V" defined by x; = 0 (resp. x; = x¢). Recall that
we are assuming that both V', 7 are proper subspaces of V. Therefore, since k is
infinite, 7 must be contained in some space A}I(V).

Namely, we may replace our assumption by the (apparently) stronger one
asserting that for all nonzero i there exists a truncation operator T (depending only
on i) with 0 € s(T), such that Ap(V) C V.

We now assume that the conclusion of the Lemma is not true and proceed to derive
a contradiction.

We consider all decompositions V = V| & V,, where V', V> are subspaces of V'
satisfying the following: for some renumbering of {1,2, ..., n} and for a certain index
ie{0,1,...,n} we have:

@ x;=x¢for0<j<iandall xeV;
(b) x;=0forallj>=iandall x e V>

Taking i =0, V; = V, V, = {0}, we see that such a decomposition exists. We then
choose some decomposition corresponding to a maximal possible i. Suppose first
i =n. Since we are assuming that no coordinate vanishes identically on V, we
see that V, # V. Therefore V; contains a nonzero vector, which has by definition
all of its coordinates equal. Hence u lies in V' and in particular the conclusion
of the lemma holds in this case. Therefore we may assume i < n.

Let m: V = V1@ V, — V; be the projection on Vi. Pick £ > i and let T be a
truncation operator as above corresponding to ¢, namely with 0 € s(7') and such
that T(x) — x,T(u) € V for all x € V. We put A(X): = T(x) — x,T(u) and, for x € 7,

L(x) = (m o Aly)(x) = 2(T(x) — x,T'(w)),

so L is an endomorphism of V}. (Note that we do not define L outside V.)

Observe that y, =0 for ally = (3o, ..., y») € Im L. In fact, the £th coordinate of
A(x) is plainly 0, for all x € V. Also, since £ > i, the projection on V] does not alter
the £th coordinate, since by property (b) we have x, = 0 for all x € V5.

Suppose x € ker L. This means y: = A(x) € V>. For all j, we have that y; is either
x; — x¢ or 0 according as j does belong to s(7') or not. Since x € V;, we then see
by (a) above that y; is either xo — x; or 0 for j <i. Also, since y € V>, y; is 0 for
all j = i, by (b) above. Therefore the coordinates of y assume at most one nonzero
value. If y # 0, a nonzero multiple of y leads to the conclusion. So we may assume
that y = 0 for all x € ker L, which amounts to the inclusion ker L C ker A. We con-
tend that

ker LN Im L = {0}. (1.1)
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In fact, let x € ker LN Im L. In particular, we may write X = (r o A)(y) for some
y € V1, so

x=T(y)—y;T(u)+v, whereye V|,ve V,. (1.2)

This implies x, = 0, so A(x) = T(x). Since x € ker L C ker A we have T(x) =0,
which implies xy = 0, because 0 € (7). Since x € V7, this fact in turn leads to
x;=0for 0<j<i

Put v = (v, ..., v,). Taking into account that y € V] and v € V, we get

Vi — Xi—Yi+ye=—yo+y ifjes(T)and 0 <j<i
7710 ifj>iorjgs(T).

In particular the coordinates of v € J have at most one nonzero value. If v would be
nonzero, our conclusion would be true, so we can assume v = 0. Plugging this into
(1.2) we see that

x=T(y)—yTw), Tx) =0.

The first equation shows that x € Im 7', so x € Im 7' N ker T, which is plainly 0. This
concludes the verification of (1.1).

It is now easy to conclude the proof of Lemma 1. By (1.1) we may write
Vi=kerL®ImL, whence V = (kerL)® (ImL & V). Observe that x € ker L C
ker A implies that xp=x; for 0<,j<i (since xe V) and xo=x, (since
x € ker A,i.e. T(x) = x,T(u),and 0 € s(7T")). The equation T(x) = x, T (u) also implies
that x; = x; = x¢ for all j € s(T).

In conclusion, xo = x; for j € Ri={0,1,...i} U {£} Us(T) and all x € ker L.

Suppose now that xeImL@® V,. Then xe ImA @ V>, so we may write
x=T(y) —yeT(u)+v for some y e V, ve V,. This shows that x; =0 for j ¢ R
and for j = ¢£.

Renumbering the indices {i + 1, ...,n} by means of a permutation g, we may
assume that R=1{0,1,...,4}, where o(¢{) =h. We have thus found a new
renumbering of {1, 2, ..., n} and a decomposition for V' of the required shape, where
i however has been replaced by /& > i. This contradicts the maximality of /i and con-
cludes the proof of the lemma. O

Proof of Theorem 4. We argue by induction on N. The case N = 0 is easy: in fact,
the assumption (ii) contradicts Liouville’s bound for large H(wy). Therefore, the
finiteness of the sequence of such wy follows.

We now suppose that the theorem holds up to N — 1 and assume by contradiction
that there exist infinitely many (N + 1)-tuples w satisfying (i) and (ii), and admitting
no vanishing subsums of the terms c;w; involving cowy.

Let us define, for every v € S, N + 1 independent linear forms in X: = (X, ..., Xy)
as follows: put

L,o(X)=coXo+ -+ cnXy
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and for ve S, 0<i<n, (v,i)#»,0) put L,;(X)=X;. Let as before w=
(Wo, ..., wy) € KNt and consider the double product

|Ll) l(w)|l)
l_[ l_[ lwil,

ves i=
where ||w||, = maxo <; <~ |Wjl,- By putting
o =cowo + -+ enwn = Ly o(W),

we can rewrite the double product as

nn'ﬁ[]vlv(ﬁv)'”: |< [1 IvVoll))(l_[]ﬂ[iwm) (1‘[||w||u>(N+l).

veS i= veS\{v} vesS i=1 veS

By applying the product formula to wjy---wy we can replace the term
(]_[UGS My, |w,»|U> in the above equation by (Hugs My, |wi|v> which is bounded
above by Hg(w;!)--- Hs(wy'). Then we obtain the upper bound

1—“—[|L[,,(w)|u < |O_|v< I |W0|U)HHS(W1) (l‘[llwnu) <N+1>.

vES i= ||u veS\{v} veS

Since

—1 N
[Tiwil, = Hw)- (1‘[ ||w||u> > H(w)- [ [HsOw)™
i=0

veS vgS

and since Hs(w;) - Hs(w;') < H(w;) for every i > 1, by assumption, we obtain after
some calculations the upper bound

N
l_“_[|L|D|vlv(IVIV)IU S |0’|V< 1—[ |Wo|v> HH(Wi)E(NH)H(W)fN*lHS(WO)NH-

veS i= veS\{v} i=1

Also, we trivially have [],cg ) [wol, < H(wo), whence

N
I1 H Lot 11 1 wo) | | HOny ™+ How ™ H(rg) . (1.3)

veS i= llw ||“ i=1

Observe that L, o(w) = ¢ is nonzero, because of our assumption about vanishing
subsums. Therefore, by the Subspace Theorem, as formulated in [Sc], the lower
bound

I l—[ |Ly,i(W)I, = Hw)y N1 (1.4)

ves o WL

holds outside the union of a finite set of hyperplanes of KN*!. Since for the height of
the projective point (wp:...:wy) we have the bound H(wy:...:wy) = H(w) <
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H(wy) --- H(wy), we get from (1.3), (1.4) that outside the mentioned exceptional set,

N
1< Jol, - HOwo)'* - Hs(wo)" ™' [T HOwp) " +2". (1.5)

i=1

Since 0 > (N + 2)¢, the bound (1.5) contradicts assumption (ii) of Theorem 4.

Therefore, almost all our (N + 1)-tuples lie in the said exceptional set and for our
purpose we deal from now on with infinitely many of them lying in a fixed hyperplane
of equation

AgcoXo+ ...+ Ayey Xy =0, AI'GI_(.

Let V' be a maximal vector subspace of K" with the following property: there
exists an infinite sequence R of the above (N + 1)-tuples such that, for every
(x0,...,xy) € V and for every w=(wyp,...,wy) € R, we have xocowo+---+
XNCNWN = 0.

We may and will assume that (4, ..., Ay) € V, so V in particular is nonzero. We
proceed to verify the assumptions of Lemma 1 for V.

Let x = (xg, ..., xy) € V be a nonzero vector and pick any index i € {1, ..., N}.
Suppose that x; is different from both xy and 0.

Let w € R. From the relation xocowg + - - - + xycywy = 0 we express ¢;w; as a lin-
ear combination of ¢;w;, j # i. Substituting, we find

¢ = a(w) = Z(l - %)c,w_,-, (1.6)

jeJ !

where J is the subset of {0, ..., N} made up of those j for which x; # x;. Note that
0 e J buti¢gJ. Also, the terms in the right side of (1.6) are nonzero.

We want to apply the inductive assumption for Theorem 4 (with suitable new data)
to (1.6).

Given w € R, we let W' to be the vector in K*/ whose components are w; = w, for
J €J. Also, we let ¢; = (1 — (x;/x;))¢;, for j € J.

We show that the assumptions (i), (ii) in the statement of Theorem 4 are verified,
with ¢} in place of ¢;, for the w correspondingA to the we R. In fact, (i) is trivial
and (ii) follows from (1.6) and the inequality H(w') < H(w).

We observe now that also w’ runs through an infinite sequence. In fact, if w' has
finitely many possibilities for w € R, then o(w) has finitely many possibilities as well,
by (1.6). Therefore o(w) must vanish for almost all w, since |o(w)|, — 0, in view of
assumption (ii). But this contradicts our initial assumption about vanishing subsums.

Since w’ takes infinitely many values, as we have proved, we may conclude from
the inductive assumption for Theorem 4, that for all w in an infinite subsequence
of R, some subsum (containing the term with j = 0) of the right side of (1.6) vanishes.

By taking a further infinite subsequence, we may in fact assume that the same
subsum occurs for all elements of the subsequence.
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This means that there exists a J' C J, with 0 € J’, such that for w in the
mentioned subsequence, we have Zje (1 = (xj/x;))cjw; = 0. We rewrite this as
Zje 7 (xi —xj)cjw; = 0. By the maximality of the space V' (relative to all infinite
sequences), we have that V' contains the vector whose j-th coordinate is 0 if
Jj&J and x; —x; otherwise. Letting T be the truncation operator with support
J' (see the definitions just before the statement of Lemma 1), we then have that
Tx)—x;T(w)e V.

Therefore, the assumptions of Lemma 1 are true for V; hence, V' contains a vector
(vo, ..., vy) such that vy = 1 and v; € {0, 1} for all i.

By the present definition of V/, there exists an infinite sequence of w € R such that
for all of them we have vocowg + . .. + vyeywy = 0. This relation however represents
a vanishing subsum for all the (N + 1)-tuples in an infinite subsequence of R, con-
trary to our assumptions. [

2. Proof of Theorem 1 and Corollaries 1,2

The idea for the proof of Theorem 1 is as follows. By using a suitable partial sum of
the Laurent series defining f(z) we approximate the values f(z,) by a finite sum.
The assumptions for Theorem 1 will then allow an application of Theorem 4, which
will immediately give the conclusion.

We now go on with the details. Since the series for f(z) converges in the unit disk,
we have for i > iy an estimate |¢;|, < 2'. We write, for a given M > d,

f@= Y a+ru.

—d <i<M
Therefore, for M > iy and |z|, < 1/4, we have an inequality

rm(@)ly < 2(2121,)Y. 2.1

Since the z, are distinct, we have in particular that /(z,) — oco. Observe that
assumption (2) implies that |z,|, — 0 and in fact the stronger inequality

h(z,) < Ciloglz,l; ", (22)

for some positive constant C;. By assumption (4) there exists a positive constant C,
such that the inequality

h(f (zn)) < Coh(zy), (2.3)

holds for all #» in an infinite sequence. By considering only this sequence we may
assume that (2.3) holds for all » € N.

We are going to apply Theorem 4.

We first choose an M > iy + 2C;C, and define N as the number of nonzero terms
among the q;, for —d <i < M.
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We put ¢y = 1 and we let ¢y, ..., cy to be the nonzero terms @;, —d <i < M, in
some order.
For a given n, we define w = w, by putting wy = —f(z,) and, for i=1,..., N,

w; = 2{1 if ¢; = a.

Finally, we choose a positive ¢ and put 6 = (N + 3)e.

We can assume that v € S. We proceed to verify assumptions (i), (ii) for Theorem
4, for large n, provided ¢ is small enough.

The present assumption (1) implies (i) of Theorem 4, for all large n.

To verify (ii), observe that, with the above conventions,

cowo+ - +eywy =—fE)+ Y. @izl = —ru(z).
—d<i<M-1

By the inequalities (2.1) and (2.2) we thus have

lcowo + -+ + eywyl, < 221z )" < 2Y H(z) (2.4)
On the other hand we have, by (2.3),

H(wo) < H(z)®, (2.5)
and

M-1
H(w) = H(wo) [] H(Z) < H(zy) (2.6)
i=—d

Further, in view of assumption (3) of Theorem 1, we have for all large n,
Hs(wo) < H(z,)". 2.7)
Combining (2.5), (2.6), (2.7) we find

H(Wo )H§V+l (Wo)ﬁlé (W) < H(Zn)C2+(N+l)£+(N+3)8( Cy+-d>+M?) ) (2 8)

We now assume that ¢ is so small to ensure that

Cy+ (N4 De+ (N +3)e(Cy +d> + M?) < TR
This will be possible since M > 2C;C, and N is fixed. By (2.4) and (2.8) we then get
Jcowo + -+ exwyl, < 2 H(z,)
< 2 ) (o) Y ) EO)

For large n we have 2M+1H(zn)7% < 1 and (ii) for Theorem 4 follows.

Theorem 4 now implies that for all large n some subsum of cowy + -+ + cywy
involving wy vanishes. This means that f(z) coincides with a fixed Laurent polyno-
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mial at the points z = z, for all n in a suitable infinite sequence. Since the z, are
distinct and converge to 0, Theorem 1 follows. O

Proofof Corollary 1. This is a simple application of Theorem 1. By enlarging K, we
may assume that ¢ € K. We enlarge S so that ¢ is an S-unit. In Theorem 1, let us put
z, = ¢". Assumptions (1), (2) are trivially verified, and so is (3) if f(¢") is an S-integer.
If the conclusion of Corollary 1 is not true, then condition (4) for Theorem 1 would
also be verified. But then f would be a Laurent polynomial, against the assump-
tion. [

Proofof Corollary 2. We apply Corollary 1 with v equal to the absolute value on C.
We take K = Q and S = {o0}. We have | f(¢")| = O(|¢|™"?), where d is the order of
the pole of f" at 0. Therefore, if f(¢") is a nonzero rational integer we have

h(f(q") = log|f(¢g")| = On).

In conclusion, by Corollary 1, either f is a Laurent polynomial or the set of positive
integers n with that property is finite. O

3. Proof of Theorem 2

We work only in the case |o1], > 1 and consider the Puiseux expansions at z = oo of
the solutions X = X(z) of g(z, X) = 0. The arguments in the case |a;|, < 1 are com-
pletely analogous and use the expansions at z = 0.

For large n, any solution x, of g(z,, X) =0 will be given by some Puiseux
expansion, considered v-adically; this is because |z,|, — oco. We may assume that
for all » in an infinite sequence R the same expansion occurs, so we have, for
the v-adic convergence,

14 =1
Xn = O-pZ;;+O-p—]Zn@ +---, (31)

for some determination of the e-th root and some algebraic numbers g;, i < p. It is
well known that the coefficients ¢; in fact lie in a fixed number field.

In the sequel Cj, Cs, ... will denote positive numbers depending only on g(Z, X)
and on the ¢;, ;.

Since |oq], > |oy|, for i =2, ..., h, we have binomial expansions

I ) r
L; Lﬂ hci“in@é/.goo% hC,’OC,'n
a=an(1+ 20 (0) J=an X (N 2o (5) )
im €1 \%1 —o V' \iZ3 €1\
for some choice of the eth roots of ¢; and oy, which we may assume to be fixed for all
neR.
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Combining (3.1) with this expansion it is easy to see that we may write, in the
v-adic convergence,

Xo=) 1)), neR, (3.2)
j=1

Wherle the 7; € K and the 7; are distinct and lie in the multiplicative group generated
by of and oa, ..., . Also, it is easy to see that the y; tend v-adically to zero.
Suppose first that the series on the right of (3.2) is not a finite sum. Then we assume
that no t; is zero and that the y; are written in decreasing order, i.e.
71y Z 1920y = -+ > 0.
Now, both the binomial expansion and the series on the right of (3.1) converge
absolutely for all large n. It follows that we may write

D Iyl < G (3.3)
=1

We are going to apply Theorem 4, after approximating x,, by a finite sum extracted
from (3.2). We enlarge K at once and assume that it contains all the o and all the
coefficients ¢; in the Puiseux series. In particular, we may assume that K contains
all the 1;, V-

We estimate the tails of the series on the right of (3.2). We have, for N >0

] ]

—C C —C
ookl =)0 Il il < Gy 74 (34)
J=N+1 j=N+1

where we have used (3.3).

For later purposes we need an estimate of H(x,). We derive it from the equation
8(zy, x,) = 0. Observe that an estimate H(z,) < C3Cj follows immediately from
(0.1). On the other hand, we can estimate the height of the roots of an equation
in terms of the heights of the coefficients. We finally obtain

H(x,) < CsC. (3.5)

We choose N so that

Iy n+1lCe < L. (3.6)

Also, we choose a finite S so that it contains v and all Archimedean absolute values of
K. Moreover we require that all the ¢;, «;, all the nonzero coefficients of g(Z, X') and
T1,..., Ty are S-units. In particular, with this choice all the y; are S-units. Also,
the z, are S-integers and g(Z, X) is monic in X; therefore, the x, too are S-integers,
in view of the equations g(z,, x,) = 0.

We shall apply Theorem 4 with ¢; =1 fori =0, ..., N. We put wy = —x,, and, for
i=1,...,N, we put w; =19]. If wo =—x, =0 for infinitely many »n € N, then
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g(z4, 0) = 0 for such values, whence g(Z, 0) = 0 identically, since z, — co. In this
case the conclusion of the theorem is verified by choosing k = 0.

Therefore we suppose from now on that x,, # 0 for all # € R. Observe that wy is an
S-integer and that, due to our choice of S, the w; are S-units for i > 1. In particular,
assumption (i) for Theorem 4 is verified for any choice of ¢ > 0.

We proceed to verify assumption (ii) for all large n € R, provided we choose a
small enough ¢ and put 6 = (N + 3)e.

By using (3.2) and (3.4) we find

N

wo+wi+ -+ wyly ==X+ Y17l < Calyys i (3.7)
i=1

To compare this estimate with the right side of (ii) of Theorem 4, we first observe
that Hg(wy) = 1, since wy = —x, is an S-integer. Moreover, in view of (3.5) we
may write
A N N
H(W) = H(x)H (1)) - Hnyy) < GC [ [H@) [ [HOD < 4B', (3.8)
i=1 i=1

where we may take 4 = CsH(t1)...H(ty) and B= C¢H(y,)... H(yy). We observe
that A4, B depend on N but not on n.
We now choose ¢ so that

Py41l,CeB® < 1. (3.9)

This will be possible for small ¢ in view of (3.6), recalling our choice 6 = (N + 3)e.
In view of (3.7), (3.5) and (3.8), the verification of (ii) of Theorem 4 will follow
from

Calyy 1" < (CsCH ™ (ABM) ™,

which is the same as

(711l CeB%)" < (C2CsA°) a1,

However, this latter inequality follows from (3.9) for large n.

Therefore, by Theorem 4 we may conclude that for all large n € R some subsum of
wo + wy + - - - + wy, involving wy, vanishes. Going to an infinite subsequence R’ of
R, we may assume that for all n € R’ the subsum corresponds to the same set
of terms. Namely, there exists a set I C {l,..., N}, such that x, =),/
n € R'. Recall that we are assuming that the right side of (3.2) has infinitely many
terms. If this is not the case, however, our last conslusion is automatic.
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We change notation and write ) ,_; 1)} = Zf:] d;p?; plugging into g(z,, x,) =0
we find

h k
g(Z ¢l Z@ﬁ;) =0, forneR. (3.10)
i=1 j=1

But now the Skolem-Lech—Mahler Theorem (see, e.g., [vdP]) implies that the left
side of (3.10) vanishes for all z in a suitable arithmetic progression. This concludes
the proof.

Remark. It may be shown (and also follows from the proof) that the d;, §; and a
relevant arithmetic progression may be found effectively. Examples like
2, =2"4+1—(=1)", g(Z, X) = Z — X?, show that in general we cannot expect that
the conclusion holds for all » € N. This will be possible however under suitable
additional conditions on the roots o; of the recurrence sequence z,; for instance
it is easy to obtain the stronger conclusion when the o; are multiplicatively
independent.

4. Proof of Theorem 3 and its Corollaries

To prove Theorem 3, we start by verifying that the series defining y in fact converges
(absolutely) in the v-adic topology. Note that the assumptions imply that
h(a,) = o(m,). In particular, for large n we have h(a,) < (log |oc|v_1/2))mn. Therefore

_mm
lan|, < H(ap) <ol *,

concluding the argument.

Assuming that y is algebraic, we shall apply Theorem 4 with the following data.
We first enlarge K so that y € K. Then we choose S such that it contains v, the
Archimedean places of K and such that o is an S-unit. The integer N already appears
in the statement of Theorem 3.

For an integer n € N we put wo = —y + )/, @ and, for i = 1,..., N, we put
w; = tl,‘+n(1m“*”.

Finally, we choose ¢; =1 for i=0,1,..., N.

We first estimate H(wy) and for this purpose we note that for every place v of K we
have

Iwol, < max(l, [n+ 11,) - max(lyl,, laro™|,, ... lano™],) @
< max(l, |n + llv) : max('?'vv |a1 |vv cee |an|v) : max(l, |Cx|v)m”‘ '
From this inequality we obtain, on taking the product of max(1, |wy|,) over all
places,

Hwy) < (n+ 1D)H()H(ay) ... H(a,)H()™. 4.2)
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From (4.1) we also derive, taking into account that o is an S-unit, that

Hg(wo) < H(y)H(a1) ... H(ay,). 4.3)
For the w;, i=1,2,..., N, we have

H(wi) < H(ajn)H ()",
whence

Hw) < (n+ DH@)H(a1) . .. H(apyn)H(o)™ (4.4)

Let ¢ < 1/2 be a positive real number (which will be specified later). From the

assumption #h(a,) = o(m,) we deduce the inequality |a,|, < |o| " wvalid for
r > ro(¢). Therefore, for n > ry(e),
[wo + - +wyl, < Z la |, o7 < Z |a|$ny(1fs)
r>n+N r>n+N
(4.5)

o0
< |a|cnn+1v+1(1*8) Z |(x|i(1*8) < Cl|a|tﬁyl+1v+l(1*8)7
s=0

where we can take C; = Y 2 ||/, since & < 1/2.

We are going to apply Theorem 4 with 6 = (N + 3)e.

We first verify assumption (i) for every choice of ¢, provided we take n to be large
enough with respect to ¢. In fact, for i =1,..., N we have hs(w;) = hs(a;) (resp.
hs(wi') = hs(a;7')). Hence, hs(w;) + hs(w;') < 2h(a;). On the other hand A(w;) >
m;h(o) — h(a;). The conclusion follows since /(a;) = o(m;).

To verify (i) we shall compare the estimate for its left side, given by (4.5), with an
estimate for its right side given by (4.2), (4.3) and (4.4) above. These latter
inequalities give, after a short calculation,

H(wo)Hs(wo)V 1 H(w)’
< (n+ D" HH(@) ... H(a,)M 7 x

J SS N mys
X (H(an-H) . H(arH—N))()H(d)anr Z/_:] My .

We assume that n is so large that H(a;) ... H(a,) < 2°™ for all r = n. We also assume
that & = (N + 3)e < 1 and that (n+ 1)*> < 2°m,,. Using these bounds in the last dis-
played inequality we get

H()Vo)Hs(Wo)N+lﬁ(W)6 < H(y)N+328(N+4)m”2(56)11W+NH(O()m,,+(5Nm,,+N )
Finally, for small enough ¢ we see that we have the bound

H(WO)HS(WO)N+1ﬁ(W)5 < H(oc)ln,,+C2l:Nl71y,+N" (46)

where C; depends only on « and y. We observe that this bound holds provided ¢ is
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small enough with respect to N and provided r is sufficiently large with respect
to e.

We have not yet used the fact that n e N. We shall exploit this in the
comparison of (4.5) and (4.6). In view of these inequalities the verification of (i)
of Theorem 4 amounts to the following:

My N (l 71;+7]0/§"2|\‘ CZN&) —ny, )

Cilaly RS 4.7)

Since n € N, we have m,y > Lm,, whence the exponent of |«|, in (4.7) is at least

my, L(l—e—{— ho) CZNS)_hL)I )
log|al, log|al,

For small ¢ this exceeds Am,,, for a suitable positive 4 (depending on o, N, &). There-
fore (4.7) holds for all large n € N.
From Theorem 4 we deduce that, for all but a finite number of n € A/, some

subsum of type wo+ ) ,; w; vanishes, where I =1, is a subset of {I,..., N}
depending on n € . Putting A, = {1,...,n}U{n+i:i € I,}, we get the conclusion
of Theorem 3. O

Proof of Corollary 3. Let o be a real algebraic number in (0, 1). We have to show
that y:= ) >°, @;0™ is transcendental. (That the series is convergent is proved in
Theorem 3.)

We enlarge K to contain a. The field Q(x, a1, ay, . . .) is implicitly embedded in R.
We are going to apply Theorem 3 taking v to be any extension to K of the corre-
sponding real valuation.

Put L: = 2h(x)/ log |oc|v_l . By the assumptions, there exists N such that the sequence
N of integers n satisfying m,, x > Lm, is infinite.

Assuming by contradiction that y is algebraic, the conclusion of Theorem 3 implies
that y is equal to a finite partial sum of the defining series. This is however impossible
since all the terms in the series are positive. O

The proof of Corollary 3’ is similar. We have only to observe that no sum
> ey @ix™ can vanishif |x|, < 1 and I is nonempty; in fact, all the terms which appear
have pairwise distinct absolute values.

Proofof Corollary 4. Let o, v be as in the statement. We start with a lemma, which
is significant only in the Archimedean case.

LEMMA 2. There is a number C; depending only on o with the following property.
Suppose that by < by < ... are positive integers, that Y oo, o = 0 and that, for an
integer r, Y i, abi £ 0 for s=1,2,...,r. Then b,y — by < rCy.

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015594913393

338 PIETRO CORVAJA AND UMBERTO ZANNIER

In the sequel C,, Cs, ... denote positive numbers depending only on .
First we have, for s > 1,

N o0
> - [$5 2
i=1 i=s+1
where we may take C; = Y. afi = (1 — |«],)"".

For s = 1 this gives |¢|>~% < C,, whence b, — b; < C;.
For general s we get

s
E obi=h
i=1

For s < r the left side does not vanish. Therefore, by Liouville’s inequality we have

< Golafb,

v v

< C2|ot|€"+]7b‘.

v

—h (Z ch’b‘> < — Cy(bgp1 — b1) + Cs.

i=1
On the other hand we have h(3_}_, «"~") < sC¢(hs — by). In conclusion
bsr1 — by < sC7(bg — by) + Cg, s=1,2,...,r.

Iterating we have the result.

We now prove Corollary 4. Assume that y: = Y >, & is algebraic. Let L be a real
number between /i(x)/ log|oc|v_1 and limsup, m, y/m,. Then the sequence N of
Theorem 3 is infinite. We apply Theorem 3 and take n € N so large that
y = Z,EAW o and mgy, — myg > h!C{’ for s > n, where C; is as in Lemma 2 and £
is as in the statement of the present corollary.

We denote by {a; < a» < ...} the sequence of m;, for j varying over the comp-
lement of A, in N. Then ) 7°, o = 0. We apply Lemma 2 with b; = g, for all i. Since
bpi1 — by > h!C{’ by construction, we deduce that some subsum o® + ...+ a% =0,
where s < A.

Therefore )_° % = 0. We put b; = a;;, and repeat the procedure, and so on.
We plainly obtain sets B; satisfying the conclusion. OJ

Proof of Corollary 5. We may plainly suppose that m; | > im; fori=1,2, ..., for
some / > 1. This gives in particular m; y/m; > " for all i. Therefore, the sequence
N of Theorem 3 is infinite if N is sufficiently large.

We fix such an N and we apply Theorem 3, assuming that y: = > ¢;0™ is algebraic.
Choose a positive ¢ < min((2 — 1)/(4 + 1), %) and let A, be as in the conclusion of
Theorem 3, with n € N large enough with respect to ¢. In view of Liouville’s
inequality and the assumption /(a,) = o(m,), we may write for large n,

max(|a,,, la, ;") < lol, ™, Vr = n. (4.8)

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015594913393

SOME NEW APPLICATIONS OF THE SUBSPACE THEOREM 339

The conclusion of Theorem 3 gives

Z a;o™ = 0. 4.9)

igA,

Define b as the minimal integer not in A,. In particular, we have b > n. Equations
(4.9) and (4.8) give

o0 o0

lapo™ |, < Y lapely ™, < Y Jal 070

i=1 i=1
1
1 — o

v

o0
< |O(|mb+1(1*l¢) Z |a|$ﬁ1b+,’*mh+1)(1*1:) < |O(|Tb+1(1*8) |17€
i=1 v

< C9|OC|<,"”+'(17£),

where we can take Cy = 1/(1 — /]«],). Using mypy; > Amp we obtain |ap|, <
Cola|™*=1=%) " and, comparing with (4.8) (recall that b >n) we finally get
1< C9|oc|"f1h“_1_i‘°'_£). Since 4 — 1 — Ae — ¢ > 0 and m; > b > n this inequality cannot
hold for large n. Therefore y must be transcendental. O

References

[CZ1] Corvaja, P. and Zannier, U.: Diophantine equations with power sums and universal
Hilbert sets, Indag. Math. 9 (1998), 317-332.

[CZ2] Corvaja, P. and Zannier, U.: On the diophantine equation f (¢, y) = b", Acta Arith.
94(1) (2000), 25-40.

[D] Deébes, P.: On the irreducibility of the polynomials P(¢", Y), J. Number Theory 42
(1992), 141-157.

[DZ] Débes, P. and Zannier, U.: Universal Hilbert subsets, Math. Proc. Cambridge
Philos. Soc. 124 (1998), 127-134.

[E] Evertse, J.-H.: On sums of S-units and linear recurrences, Compositio Math. 53
(1984), 225-244.

[L1] Laurent, M.: Equations exponentielles-polyndmes et suites récurrentes linéaires II,
J. Number Theory 31 (1989), 24-53.

[L2] Laurent, M.: Equations exponentielles polynomes et suites récurrentes linéaires,

Astérisque 147-148 (1987), 121-139, 343-344.

[Lo-vdP] Loxton, J. H. and van der Poorten, A.: Transcendence and algebraic independence
by a method of Mahler, In: Baker, Masser (eds), Transcendence Theory, Academic
Press, New York, 1977.

[M] Mabhler, K.: Arithmetische Eigenschaften der Losungen einer Klasse von
Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.

[Ma] Masser, D.: Algebraic independence properties of the Hecke—Mabhler seires, Quart.
J. Math. 50 (1999), 207-230.

[N] Nishioka, K.: Algebraic independence by Mahler’s method and S-unit equations,
Compositio Math 92 (1994), 87-110.

[vdP] van der Poorten, A. J.: Some facts that should be better known, especially about
rational functions, in Number Theory and Applications (Banff, 1988), Kluwer Acad.
Publ., Dordrecht, 1989, pp. 497-528.

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015594913393

340 PIETRO CORVAJA AND UMBERTO ZANNIER

[vdP-S] van der Poorten, A. J. and Schlickewei, H. P.: The growth conditions for recurrence
sequences, Macquarie Univ. Math. Rep. 82-0041, North Ryde, Australia, 1982.

[Sc] Schmidt, W. M..: Diophantine Approximations and Diophantine Equations, Lecture
Notes in Math. 1467, Springer, New York, 1991.
[T] Tanaka, T.: Algebraic independence results related to linear recurrences, Osaka J.

Math. 36 (1999), 203-227.

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015594913393

