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Abstract. Wepresent some applications of the SubspaceTheorem to the investigation ofthe arith-
metic of the values of Laurent series f ðzÞ at S-unit points. For instance we prove that if f ðqnÞ is an
algebraic integer for in¢nitelymany n, then hðf ðqnÞÞmustgrow faster than n. Bysimilar principles,
wealsoprove diophantine results aboutpower sumsand transcendency results for lacunaryseries;
these include asveryspecial cases classical theorems ofMahler. Ourarguments often appear tobe
independent of previous techniques in the context.
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Introduction

In the recent papers [CZ1] and [CZ2] we exploited a simple application of the Sub-
space Theorem to exponential diophantine equations, which seemed new. This
originates in Lemma 2 of [CZ1] which, roughly speaking, states that a power-sum
cannot be too near to an integer unless it is itself an integer.
In the present paper we expand this principle to more general situations and we

give different types of applications. This development is represented by Theorem 4
below, which we view as a main tool for all the other results of this paper. It concerns
the approximation of an S-integer by a sum of S-units.
As a ¢rst application, we shall prove a theorem (Theorem 1) about values at

S-units of an in¢nite Laurent series with algebraic coef¢cients. Roughly speaking
we shall prove that if in¢nitely many such values are S-integers in a given number
¢eld, then their height must grow rapidly.
From this result we shall deduce (Corollary 1) information on the values of such

series at qn, for an algebraic number q: if the values are S-integers in a given number
¢eld for in¢nitely many n, then their height must grow faster then n. As a further
corollary (Corollary 2), they cannot all be rational integers.
As another application of Theorem 4, we prove (Theorem 2) a strengthening of a

previous diophantine result in [CZ1] for power sums with a ‘dominant root’. This
involves Puiseux expansions.
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Another type of application of the same principle concerns algebraic values of
lacunary series. The present Theorem 3 provides a transcendency criterion for series
including those of the form

P1

i¼1 a
mi where a is an algebraic number and the sequence

of integers mi grows exponentially. We recover in particular the classical results of
Mahler on the Fredholm series. We remark that these latter results may be vastly
generalized by expanding the techniques introduced by Mahler (see [M], [Lo-vdP],
[N], [Ma], [T]), which allow even algebraic independence results. On the other hand,
such techniques always rely on certain functional equations satis¢ed by the relevant
series, while our method only exploits lacunarity of the series.
We recall that the Subspace Theorem had been used also by Nishioka [N] in the

context of transcendency of Mahler’s series. However her application follows a com-
pletely different pattern and leads to different results.
All the above theorems hold by interpreting the values of the occurring series with

respect to any valuation of the involved number ¢eld.

NOTATION AND STATEMENTS

We let K be a number ¢eld and S be a ¢nite set of absolute values of K containing the
Archimedean ones. For every place u of K we note by j � ju a continuation of it to �QQ
and normalize it ‘with respect to K ’: according to this normalization, for x 2 K�

the absolute logarithmic Weil height reads hðxÞ ¼
P

u log
þ
jxju and the product for-

mula
Q

u jxju ¼ 1 holds. We note that these conditions determine uniquely our
normalizations. We also note that even in the Archimedean case the triangle-
inequality holds with these normalizations. In fact, the present absolute value is
obtained from the usual one by raising to a power between 0 and 1.
We ¢x an absolute value n of K and denote by Cn a completion of an algebraic

closure of Kn. Our notion of convergence, unless otherwise speci¢ed, refers to Cn.
We also de¢ne the S-height of a nonzero element x 2 K� to be

hSðxÞ ¼
P

u 62S log
þ
jxju: For S-integers this height vanishes, so it gives a mesure of

‘how far’ x is from being an S-integer.
For a vector z ¼ ðz0; z1; . . . ; zhÞ 2 Khþ1 n f0g, (hX 1), we de¢ne hðzÞ as the usual

projective logarithmic height. Also, we denote by ĥhðzÞ (resp. ĥhSðzÞ), the sum of
the hðziÞ (resp. hSðziÞ), 0W iW h. Moreover, we put, for an absolute value u,
jjzjju:¼ maxfjz0jn; . . . ; jzhjng.
Throughout, the capital ‘H’ will denote the exponential height.

By Laurent series (resp. Laurent polynomial) we mean, as usual, a series of the
form

P
nX�d anz

n (resp. ¢nite sum of the form
P

�dW nW k anz
n).

THEOREM 1. Let f ðzÞ ¼
P
iX�d aiz

i be a Laurent series with algebraic coef¢cients
in Cn, converging for 0 < jzjn < 1. Let S be a ¢nite set of absolute values of K con-
taining the Archimedean ones. Let zn (n ¼ 1; 2; . . .) be an in¢nite sequence of pairwise
distinct elements of K� such that f ðzÞ is de¢ned and belongs to K. Suppose that:
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(1)
hSðznÞ þ hSðz�1n Þ

hðznÞ
! 0 as n! 1;

(2)
hðznÞ

� log jznjn
is a bounded sequence;

(3) lim
n!1

hSðf ðznÞÞ
hðznÞ

¼ 0;

(4) lim inf
n!1

hðf ðznÞÞ
hðznÞ

< 1 :

Then f is a Laurent polynomial.

Remark. Condition (1) states that the algebraic numbers zn ‘tend to be’ S-units: in
fact, the vanishing of both hSðzÞ and hSðz�1Þ characterizes S-units. Analogously,
condition (3) requires that f ðznÞ tend to be S-integers for n! 1; it automatically
holds when the f ðznÞ are S-integers.
Note that, though we require that the coef¢cients ai are algebraic, we allow the

possibility that they generate a ¢eld of in¢nite degree over Q. This appears to
be new in this context.

COROLLARY 1. Let f ðzÞ;S be as in Theorem 1, f not a Laurent polynomial. Let
q 2 C�

n be algebraic with jqjn < 1. If f ðq
nÞ is an S-integer in K for all n in an in¢nite

sequence A � N, then

lim
n2A

hðf ðqnÞÞ
n

¼ 1:

If we just assume that f ðqnÞ is an algebraic number in K , the conclusion does not
follow in general, as is shown by simple examples like f ðzÞ ¼

P
zm.

As a particular case, we shall easily obtain the following corollary:

COROLLARY 2. Let f be a Laurent series with complex algebraic coef¢cients, q 2 C
be an algebraic number with 0 < jqj < 1. If f is not a Laurent polynomial, then the set
of positive integers n such that f ðqnÞ is a rational integer is ¢nite.

Remark. Let us consider the Fredholm series f ðzÞ ¼
P
i z
2i satisfying the func-

tional equation f ðz2Þ ¼ f ðzÞ � z. Iterating this relation we see that if f ðqÞ 2 K for
a q 2 K�, then f ðq2

n
Þ is an S-integer in K for all n; moreover, by the same iteration,

it may be also easily seen that hðf ðq2
n
ÞÞ=2n is bounded. This contradicts Corollary

1; therefore f ðqÞ is transcendental and we recover Mahler’s theorem. In Theorem
3 we shall prove a much more general result, holding for series which do not necess-
arily satisfy simple functional equations.

In the context of algebraic functions we have the following result about
diophantine equations with power sums. Given ci; ai 2 K�, i ¼ 1; . . . ; h, we consider
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the power sum

zn ¼ c1an1 þ � � � þ chanh: ð0:1Þ

THEOREM 2. Let zn be given by ð0:1Þ. Assume that for some absolute value n, we have
1 6¼ ja1jn > maxðja2jn; . . . ; jahjnÞ. Let g 2 K ½Z;X � be monic in X and suppose that for
an in¢nite sequence of n 2 N, the equation gðzn;X Þ ¼ 0 has a solution
X ¼ xn 2 K. Then there exist dj; bj 2 �KK�, j ¼ 1; . . . ; k, and an arithmetic progression
P such that we have

g
Xh
i¼1

ciani ;
Xk
j¼1

djb
n
j

 !
¼ 0; for n 2 P:

Remark. For simplicity we have introduced the condition that g is monic. It is a
well-known trick how to get rid of this (with a corresponding modi¢cation
of the conclusion); namely, we may replace gðZ;X Þ with the polynomial
aðZÞd�1gðZ;X=aðZÞÞ, where aðZÞ is the leading coef¢cient of g, with respect to X .
Similar results appear in our paper [CZ1], where however we considered in detail

only the case when the ai are natural numbers. Unlike that paper, the present treat-
ment is completely independent of Siegel’s theorem on integral points on curves.
Although the condition on the ‘dominant root’ a1 is crucial, the method allows much
£exibility concerning the assumptions on the zn. For instance, by a direct application
of Theorem 1 to Puiseux expansions, one can treat the case when the zn are S-units,
again independently of Siegel’s theorem or any tool from algebraic geometry.
(Siegel’s theorem had been used by De' bes [D] in connection with similar equations.)
A particular case concerns the equation gðmÞ ¼ zn, where g is a polynomial and zn

is as in the theorem. Such an equation is not covered by quite general results by M.
Laurent [L1], [L2], dealing with relations um ¼ vn, where u; v are recurrence
sequences.
We ¢nally remark that results of this type lead to explicit versions of Hilbert

Irreducibility Theorem and to the construction of simple Universal Hilbert Sets (see,
e.g., [D], [CZ1], [DZ]). For instance it can be proved that fzn þ ng is a Universal
Hilbert Set if zn 2 Z is as in the statement of Theorem 2.

Our next results deal with the transcendency of values of lacunary series at
algebraic points.

THEOREM 3. Let m1 < m2 < � � � be positive integers and a1; a2; . . . 2 K� be such
that

Pn
i¼1 hðaiÞ ¼ oðmnÞ. Let a 2 K�, jajn < 1 and consider the number g ¼P1

i¼1 aia
mi ;which is well de¢ned as a limit in the n-topology. Let N be a positive integer

and let L > hðaÞ=ðlog jaj�1n Þ be a real number. Consider the sequence N of integers n
such that mnþN > L �mn: Then, either g is transcendental, or for all but ¢nitely many
n 2 N there exists a set of integers An with f1; . . . ; ng � An � f1; . . . ; nþNg such
that g ¼

P
i2An aia

mi :
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This statement is rather involved, but leads quite easily to several simpler
corollaries. We now give a few examples:

COROLLARY 3. Let mi be an increasing sequence of integers satisfying

sup
N

lim sup
n

mnþN
mn

¼ 1:

Let ai be as in Theorem 3 and assume in addition that the ai are positive reals. Then the
real function de¢ned in ð0; 1Þ by the series

P1

i¼1 aix
mi takes transcendental values at all

algebraic points in ð0; 1Þ.

In the p-adic case we have the following analogue:

COROLLARY 30. Let mi be as in Corollary 3 and consider an ultrametric absolute
value n. If the ai are as in Theorem 3 and satisfy jaijn ¼ 1 for all i, then the n-adic
function de¢ned in the unit disk by the series

P1

i¼1 aix
mi assumes therein

transcendental values for algebraic x 6¼ 0.

COROLLARY 4. Let a 2 K�, jajn < 1 and let mi 2 N be an increasing sequence of
integers. Assume that for some positive integers h;N,

(i) mnþh �mn ! 1;

(ii) lim sup
n

mnþN
mn

>
hðaÞ

log jaj�1n
:

Then either
P
i a
mi is transcendental, or there exist pairwise disjoint ¢nite sets

B1;B2; . . . of natural numbers with the following properties:

(1) the union
S

Bi has ¢nite complement in N.
(2)

P
i2Bn a

mi ¼ 0, for n ¼ 1; 2; . . ..
(3) For each n, the set Bn is contained in some interval of length W h.

In particular, we see that if we may take hW 2 in ðiÞ, then
P
i a
mi is transcendental.

It can be shown that this is the case, e.g. when fmigi2N are the values of a recurrence
sequence such that for no positive integers d; r, the sequence fmdiþrgi2N is polynomial.
Note that in general the transcendency conclusion may be false. In fact, take for a

a root in the unit disk of a polynomial pðxÞ ¼ xd1 þ � � � þ xdh , with 0W d1 < � � � < dh.
Take now any lacunary series qðxÞ ¼

P1

i¼0 x
ei , where eiþ1 � ei ! 1. Consider ¢nally

an expansion of the product pðxÞqðxÞ. Evaluating at a, we immediately obtain the
required counterexample. (This construction however does not work in the
non-Archimedean context, as shown by Corollary 30.)
Another case when the transcendency conclusion holds unconditionally is

obtained by requiring that the sequence mi is strongly lacunary. In fact, we have
this further result.
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COROLLARY 5. Let mi 2 N be an increasing sequence of integers such that
lim infnðmnþ1Þ=mn > 1: Let a; ai be as in Theorem 3. Then

P
i aia

mi is transcendental.

Remark. These results appear to be new. They plainly include Mahler’s theorems
on lacunary series

P
n a
dn , as well as some results recently announced by Tanaka

(for instance, he obtains the conclusion of Corollary 5 under the assumptions
ai ¼ 1 and miþ1X 2mi for all i). On the contrary, it seems that Mahler’s techniques
do not apply in such generality. Our method could yield more general results;
for the sake of simplicty, we limited ourselves to the present statements.

1. An Auxiliary Result

The main technical point in all the proofs is the following consequence of the Sub-
space Theorem:

THEOREM4. Let K be a number ¢eld, S a ¢nite set of absolute values of K containing
the Archimedean ones, n be an absolute value from S, e be a positive real number,
NX 0 an integer. Finally, let c0; . . . ; cN 2 �KK

�
. For d > ðN þ 2Þe, there are only ¢nitely

many ðN þ 1Þ-tuples w ¼ ðw0; . . . ;wN Þ 2 ðK�Þ
Nþ1 such that the inequalities

(i) hSðwiÞ þ hSðw�1i Þ < ehðwiÞ for i ¼ 1; . . . ;N
(ii) jc0w0 þ c1w1 þ � � � þ cNwN jn < Hðw0ÞHSðw0Þ

Nþ1� ��1
ĤHðwÞ�d

hold and no subsum of the ciwi involving c0w0 vanishes.

Introducing the coef¢cients ci is important for the application to Theorems 1,2
above. However, for other applications (e.g. to Theorem 3), we can take ci ¼ 1
for all i. In fact, the proof in the case of general ci is exactly the same as in the
case ci ¼ 1.
The condition about the subsum is somewhat typical of the theory of S-unit

equations and inequalities: we quote for instance the celebrated S-unit Theorem
by Evertse [E] and van der Poorten and Schlickewei [vdP-S], valid for vanishing
sums of S-units (see also [Sc, Thm. 2A]).
The new feature in our statement is represented by the role of the term w0. In our

applications it is crucial that w0 is an (almost) S-integer, i.e. HSðw0Þ is small com-
pared to Hðw0Þ; this fact allows (ii) to be veri¢ed in the cases of interest for us.
The above quoted results are usually proved under the stronger assumption that
w0 is an (almost) S-unit. For our applications it is very important not to have
w0 restricted to (almost) S-units. (As we have remarked above, particular cases
of this principle were already applied in [CZ1] and [CZ2].)
For this reason, moreover, our arguments follow a different pattern with respect

to the proof of the S-unit Theorem, as given, e.g., in [Sc, Thm. 2A]. In both contexts,
an application of the Subspace Theorem leads to a linear relation with ¢xed
coef¢cients among the wi’s, and this allows to reduce the number of variables by
a linear substitution. In the classical case, this procedure eventually leads to some
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constant ratio wi=wj (i 6¼ j), and the conclusion readily follows. In our case on the
contrary, due to the lack of symmetry of (ii), the stronger conclusion about
wi=wj is not generally true (consider, e.g., the example w0 ¼ 2n þ 3n;w1 ¼ �2n;
w2 ¼ �3n;w3 ¼ 2�n

2
). Therefore, at this point we have used a supplementary com-

binatorial argument from linear algebra (Lemma 1 below) to obtain a vanishing sum.
An alternative procedure, more similar to the classical one, would consist in

applying a result by Evertse [E] to linear relations with ¢xed coef¢cients among
w1; . . . ;wN .
As noted above, if we are satis¢ed with any linear relation with ¢xed coef¢cients

(not necessarily 0 or 1), a straightforward application of the Subspace Theorem
is suf¢cient.
We immediately state and prove the mentioned linear algebra result, which will be

used towards the end of the proof of Theorem 4.
We introduce just a bit of notation. We let k be an in¢nite ¢eld. We say that

T : knþ1 ! knþ1 is a truncation operator if there exists a set sðT Þ � f0; 1; . . . ; ng such
that

T ððx0; . . . ; xnÞÞ ¼ ðy0; . . . ; ynÞ; where yj ¼
xj if j 2 sðT Þ;
0 if j 62 sðT Þ:

	

We say that sðT Þ is the support of T . Note that sðT Þ determines T .
We let u:¼ ð1; . . . ; 1Þ 2 knþ1 be the vector with all components equal to 1.

LEMMA 1. Let V be a nonzero vector subspace of knþ1. Suppose that for every
x ¼ ðx0; . . . ; xnÞ 2 V, and for every index i 2 f1; . . . ; ng, either xi ¼ 0, or xi ¼ x0
or T ðxÞ � xiT ðuÞ 2 V for some truncation operator T ¼ Ti;x with 0 2 sðT Þ. Then
V contains a vector v ¼ ðv0; . . . ; vnÞ, where v0 ¼ 1 and vi 2 f0; 1g for all i ¼ 0; 1; . . . ; n.
Proof.We note at once that it suf¢ces to ¢nd any nonzero element v 2 V such that

vi 2 f0; 1g for all i. In fact, suppose this is the case, but v0 ¼ 0. Let vi ¼ 1 and choose
T ¼ Ti;v as in the assumption. Then the vector T ðuÞ � T ðvÞ satis¢es the conclusion.
We now argue by induction on n, the result being true for n ¼ 0. Let now n > 0.
Suppose that xj ¼ 0 for a certain j 2 f1; . . . ; ng and all x 2 V and let Pj be the

projection outside the jth coordinate. Then Pj induces an isomorphism of V with
a subspace of kn (whose coordinates we number with 0; . . . ; j � 1; j þ 1; . . . ; n).
On the other hand, if T is a truncation operator on knþ1, we have
Pj � T ¼ T 0 � Pj, where T 0 is the truncation operator on kn with support
sðT Þ n fjg. It follows at once that the assumptions of the Proposition are veri¢ed
for PjðV Þ in place of V . The induction assumption then implies the existence of
a nonzero v 2 V such that PjðvÞ has all its coordinates in f0; 1g. However this must
then hold also for v itself, proving the desired conclusion. The same argument works
if xj ¼ x0 for a certain nonzero j and all x 2 V .
Therefore we may assume that neither x0 ¼ 0 nor x0 ¼ xj holds identically on V .
Fix for the moment a nonzero index i and let T be a truncation operator with

0 2 sðT Þ. Put LT ðxÞ ¼ T ðxÞ � xiT ðuÞ, so LT is a linear operator on knþ1. Our assump-
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tion reads

V �
[
T

L�1
T ðV Þ

 !
[ V 0 [ V 00;

where V 0 (resp. V 00) is the subspace of V de¢ned by xi ¼ 0 (resp. xi ¼ x0). Recall that
we are assuming that both V 0;V 00 are proper subspaces of V . Therefore, since k is
in¢nite, V must be contained in some space L�1

T ðV Þ.
Namely, we may replace our assumption by the (apparently) stronger one

asserting that for all nonzero i there exists a truncation operator T (depending only
on i) with 0 2 sðT Þ, such that LT ðV Þ � V .
We now assume that the conclusion of the Lemma is not true and proceed to derive

a contradiction.
We consider all decompositions V ¼ V1 � V2, where V1;V2 are subspaces of V

satisfying the following: for some renumbering of f1; 2; . . . ; ng and for a certain index
i 2 f0; 1; . . . ; ng we have:

(a) xj ¼ x0 for 0W jW i and all x 2 V1;
(b) xj ¼ 0 for all jX i and all x 2 V2.

Taking i ¼ 0, V1 ¼ V , V2 ¼ f0g, we see that such a decomposition exists. We then
choose some decomposition corresponding to a maximal possible i. Suppose ¢rst
i ¼ n. Since we are assuming that no coordinate vanishes identically on V , we
see that V2 6¼ V . Therefore V1 contains a nonzero vector, which has by de¢nition
all of its coordinates equal. Hence u lies in V and in particular the conclusion
of the lemma holds in this case. Therefore we may assume i < n.
Let p:V ¼ V1 � V2 ! V1 be the projection on V1. Pick ‘ > i and let T be a

truncation operator as above corresponding to ‘, namely with 0 2 sðT Þ and such
that T ðxÞ � x‘T ðuÞ 2 V for all x 2 V . We put LðxÞ:¼ T ðxÞ � x‘T ðuÞ and, for x 2 V1,

LðxÞ ¼ ðp � LjV1 ÞðxÞ ¼ pðT ðxÞ � x‘T ðuÞÞ;

so L is an endomorphism of V1. (Note that we do not de¢ne L outside V1.)
Observe that y‘ ¼ 0 for all y ¼ ðy0; . . . ; ynÞ 2 ImL. In fact, the ‘th coordinate of

LðxÞ is plainly 0, for all x 2 V . Also, since ‘ > i, the projection on V1 does not alter
the ‘th coordinate, since by property (b) we have x‘ ¼ 0 for all x 2 V2.
Suppose x 2 kerL. This means y:¼ LðxÞ 2 V2. For all j, we have that yj is either

xj � x‘ or 0 according as j does belong to sðT Þ or not. Since x 2 V1, we then see
by (a) above that yj is either x0 � x‘ or 0 for jW i. Also, since y 2 V2, yj is 0 for
all jX i, by (b) above. Therefore the coordinates of y assume at most one nonzero
value. If y 6¼ 0, a nonzero multiple of y leads to the conclusion. So we may assume
that y ¼ 0 for all x 2 kerL, which amounts to the inclusion kerL � kerL:We con-
tend that

kerL \ ImL ¼ f0g: ð1:1Þ

326 PIETRO CORVAJA AND UMBERTO ZANNIER

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015594913393


In fact, let x 2 kerL \ ImL. In particular, we may write x ¼ ðp � LÞðyÞ for some
y 2 V1, so

x ¼ T ðyÞ � y‘T ðuÞ þ v; where y 2 V1; v 2 V2: ð1:2Þ

This implies x‘ ¼ 0, so LðxÞ ¼ T ðxÞ. Since x 2 kerL � kerL we have T ðxÞ ¼ 0,
which implies x0 ¼ 0, because 0 2 sðT Þ. Since x 2 V1, this fact in turn leads to
xj ¼ 0 for 0W jW i.
Put v ¼ ðv0; . . . ; vnÞ. Taking into account that y 2 V1 and v 2 V2 we get

vj ¼
xj � yj þ y‘ ¼ �y0 þ y‘ if j 2 sðT Þ and 0W jW i
0 if j > i or j 62 sðT Þ:

	

In particular the coordinates of v 2 V have at most one nonzero value. If v would be
nonzero, our conclusion would be true, so we can assume v ¼ 0. Plugging this into
(1.2) we see that

x ¼ T ðyÞ � y‘T ðuÞ; T ðxÞ ¼ 0:

The ¢rst equation shows that x 2 ImT , so x 2 ImT \ kerT , which is plainly 0. This
concludes the veri¢cation of (1.1).
It is now easy to conclude the proof of Lemma 1. By (1.1) we may write

V1 ¼ kerL� ImL, whence V ¼ ðkerLÞ � ImL� V2ð Þ: Observe that x 2 kerL �

kerL implies that x0 ¼ xj for 0W jW i (since x 2 V1) and x0 ¼ x‘ (since
x 2 kerL, i.e. T ðxÞ ¼ x‘T ðuÞ, and 0 2 sðT Þ). The equation T ðxÞ ¼ x‘T ðuÞ also implies
that xj ¼ x‘ ¼ x0 for all j 2 sðT Þ.
In conclusion, x0 ¼ xj for j 2 R:¼ f0; 1; . . . ig [ f‘g [ sðT Þ and all x 2 kerL.
Suppose now that x 2 ImL� V2. Then x 2 ImL� V2, so we may write

x ¼ T ðyÞ � y‘T ðuÞ þ v for some y 2 V , v 2 V2. This shows that xj ¼ 0 for j 62 R
and for j ¼ ‘.
Renumbering the indices fi þ 1; . . . ; ng by means of a permutation s, we may

assume that R ¼ f0; 1; . . . ; hg, where sð‘Þ ¼ h. We have thus found a new
renumbering of f1; 2; . . . ; ng and a decomposition for V of the required shape, where
i however has been replaced by h > i. This contradicts the maximality of i and con-
cludes the proof of the lemma. &

Proof of Theorem 4. We argue by induction on N. The case N ¼ 0 is easy: in fact,
the assumption (ii) contradicts Liouville’s bound for large Hðw0Þ. Therefore, the
¢niteness of the sequence of such w0 follows.
We now suppose that the theorem holds up to N � 1 and assume by contradiction

that there exist in¢nitely many ðN þ 1Þ-tuples w satisfying (i) and (ii), and admitting
no vanishing subsums of the terms ciwi involving c0w0.
Let us de¢ne, for every v 2 S,N þ 1 independent linear forms inX:¼ ðX0; . . . ;XN Þ

as follows: put

Ln;0ðXÞ ¼ c0X0 þ � � � þ cNXN
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and for v 2 S; 0W iW n; ðu; iÞ 6¼ ðn; 0Þ put Lu;iðXÞ ¼ Xi: Let as before w ¼

ðw0; . . . ;wN Þ 2 KNþ1 and consider the double product

Y
u2S

YN
i¼0

jLu;iðwÞju
jjwjju

;

where jjwjju ¼ max0W jWN jwjju. By putting

s ¼ c0w0 þ � � � þ cNwN ¼ Ln;0ðwÞ;

we can rewrite the double product as

Y
u2S

YN
i¼0

jLu;iðwÞju
jjwjju

¼ jsjn �
Y

u2Snfng

jw0ju

 ! Y
v2S

YN
i¼1

jwijv

 ! Y
u2S

jjwjju

 !�ðNþ1Þ

:

By applying the product formula to w1 � � �wN we can replace the termQ
u2S

QN
i¼1 jwiju

� 

in the above equation by

Q
u 62S

QN
i¼1 jwiju

� 
�1
which is bounded

above by HSðw�11 Þ � � �HSðw�1N Þ. Then we obtain the upper bound

Y
u2S

YN
i¼0

jLu;iðwÞju
jjwjju

W jsjn
Y

u2Snfng

jw0ju

 !YN
i¼1

HSðw�1i Þ
Y
u2S

jjwjju

 !�ðNþ1Þ

:

Since

Y
u2S

jjwjju ¼ HðwÞ �
Y
u 62S

jjwjju

 !�1

XHðwÞ �
YN
i¼0

HSðwiÞ
�1

and since HSðwiÞ �HSðw�1i Þ < HðwiÞ
e for every iX 1, by assumption, we obtain after

some calculations the upper bound

Y
u2S

Yn
i¼0

jLu;iðwÞju
jjwjju

W jsjn
Y

u2Snfng

jw0ju

 !YN
i¼1

HðwiÞ
eðNþ1ÞHðwÞ�N�1HSðw0ÞNþ1:

Also, we trivially have
Q

u2Snfng jw0ju WHðw0Þ, whence

Y
u2S

Yn
i¼0

jLu;iðwÞju
jjwjju

W jsjnHðw0Þ
YN
i¼1

HðwiÞ
eðNþ1ÞHðwÞ�N�1HSðw0ÞNþ1: ð1:3Þ

Observe that Ln;0ðwÞ ¼ s is nonzero, because of our assumption about vanishing
subsums. Therefore, by the Subspace Theorem, as formulated in [Sc], the lower
bound

Y
u2S

YN
i¼0

jLu;iðwÞju
jjwjju

> HðwÞ�N�1�e
ð1:4Þ

holds outside the union of a ¢nite set of hyperplanes of KNþ1. Since for the height of
the projective point ðw0: . . . :wN Þ we have the bound Hðw0: . . . :wNÞ ¼ HðwÞW
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Hðw0Þ � � �HðwN Þ, we get from (1.3), (1.4) that outside the mentioned exceptional set,

1W jsjn �Hðw0Þ
1þe

�HSðw0Þ
Nþ1

YN
i¼1

HðwiÞ
ðNþ2Þe: ð1:5Þ

Since d > ðN þ 2Þe, the bound (1.5) contradicts assumption (ii) of Theorem 4.
Therefore, almost all our ðN þ 1Þ-tuples lie in the said exceptional set and for our

purpose we deal from now on with in¢nitely many of them lying in a ¢xed hyperplane
of equation

A0c0X0 þ . . .þ ANcNXN ¼ 0; Ai 2 �KK :

Let V be a maximal vector subspace of �KK
Nþ1

with the following property: there
exists an in¢nite sequence R of the above ðN þ 1Þ-tuples such that, for every
ðx0; . . . ; xNÞ 2 V and for every w ¼ ðw0; . . . ;wN Þ 2 R, we have x0c0w0 þ � � �þ

xNcNwN ¼ 0.
We may and will assume that ðA0; . . . ;ANÞ 2 V , so V in particular is nonzero. We

proceed to verify the assumptions of Lemma 1 for V .
Let x ¼ ðx0; . . . ; xN Þ 2 V be a nonzero vector and pick any index i 2 f1; . . . ;Ng.

Suppose that xi is different from both x0 and 0.
Let w 2 R. From the relation x0c0w0 þ � � � þ xNcNwN ¼ 0 we express ciwi as a lin-

ear combination of cjwj, j 6¼ i. Substituting, we ¢nd

s ¼ sðwÞ ¼
X
j2J

1�
xj
xi

� �
cjwj; ð1:6Þ

where J is the subset of f0; . . . ;Ng made up of those j for which xj 6¼ xi. Note that
0 2 J but i 62 J. Also, the terms in the right side of (1.6) are nonzero.
We want to apply the inductive assumption for Theorem 4 (with suitable new data)

to (1.6).
Given w 2 R, we let w0 to be the vector in K�J whose components are w0j ¼ wj , for

j 2 J. Also, we let c0j ¼ ð1� ðxj=xiÞÞcj, for j 2 J.
We show that the assumptions ðiÞ, ðiiÞ in the statement of Theorem 4 are veri¢ed,

with c0j in place of cj , for the w
0 corresponding to the w 2 R. In fact, ðiÞ is trivial

and ðiiÞ follows from (1.6) and the inequality ĤHðw0ÞW ĤHðwÞ.
We observe now that also w0 runs through an in¢nite sequence. In fact, if w0 has

¢nitely many possibilities for w 2 R, then sðwÞ has ¢nitely many possibilities as well,
by (1.6). Therefore sðwÞ must vanish for almost all w, since jsðwÞjn ! 0, in view of
assumption ðiiÞ. But this contradicts our initial assumption about vanishing subsums.
Since w0 takes in¢nitely many values, as we have proved, we may conclude from

the inductive assumption for Theorem 4, that for all w in an in¢nite subsequence
ofR, some subsum (containing the term with j ¼ 0) of the right side of (1.6) vanishes.
By taking a further in¢nite subsequence, we may in fact assume that the same

subsum occurs for all elements of the subsequence.
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This means that there exists a J 0 � J, with 0 2 J 0, such that for w0 in the
mentioned subsequence, we have

P
j2J 0 ð1� ðxj=xiÞÞcjwj ¼ 0. We rewrite this asP

j2J 0 ðxi � xjÞcjwj ¼ 0: By the maximality of the space V (relative to all in¢nite
sequences), we have that V contains the vector whose j-th coordinate is 0 if
j 62 J 0 and xi � xj otherwise. Letting T be the truncation operator with support
J 0 (see the de¢nitions just before the statement of Lemma 1), we then have that
T ðxÞ � xiT ðuÞ 2 V .
Therefore, the assumptions of Lemma 1 are true for V ; hence, V contains a vector

ðv0; . . . ; vN Þ such that v0 ¼ 1 and vi 2 f0; 1g for all i.
By the present de¢nition of V , there exists an in¢nite sequence of w 2 R such that

for all of them we have v0c0w0 þ . . .þ vNcNwN ¼ 0. This relation however represents
a vanishing subsum for all the ðN þ 1Þ-tuples in an in¢nite subsequence of R, con-
trary to our assumptions. &

2. Proof of Theorem 1 and Corollaries 1,2

The idea for the proof of Theorem 1 is as follows. By using a suitable partial sum of
the Laurent series de¢ning f ðzÞ we approximate the values f ðznÞ by a ¢nite sum.
The assumptions for Theorem 1 will then allow an application of Theorem 4, which
will immediately give the conclusion.
We now go on with the details. Since the series for f ðzÞ converges in the unit disk,

we have for i > i0 an estimate jaijn W 2i. We write, for a given M > d,

f ðzÞ ¼
X

�dW i<M

aizi þ rMðzÞ:

Therefore, for M > i0 and jzjn < 1=4, we have an inequality

jrMðzÞjn W 2ð2jzjnÞ
M : ð2:1Þ

Since the zn are distinct, we have in particular that hðznÞ ! 1. Observe that
assumption ð2Þ implies that jznjn ! 0 and in fact the stronger inequality

hðznÞWC1 log jznj�1n ; ð2:2Þ

for some positive constant C1. By assumption (4) there exists a positive constant C2
such that the inequality

hðf ðznÞÞWC2hðznÞ; ð2:3Þ

holds for all n in an in¢nite sequence. By considering only this sequence we may
assume that (2.3) holds for all n 2 N.
We are going to apply Theorem 4.
We ¢rst choose anM > i0 þ 2C1C2 and de¢ne N as the number of nonzero terms

among the ai, for �dW i <M.
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We put c0 ¼ 1 and we let c1; . . . ; cN to be the nonzero terms ai, �dW i <M, in
some order.
For a given n, we de¢ne w ¼ wn by putting w0 ¼ �f ðznÞ and, for i ¼ 1; . . . ;N,

wi ¼ zjn if ci ¼ aj.
Finally, we choose a positive e and put d ¼ ðN þ 3Þe.
We can assume that n 2 S. We proceed to verify assumptions ðiÞ; ðiiÞ for Theorem

4, for large n, provided e is small enough.
The present assumption ð1Þ implies ðiÞ of Theorem 4, for all large n.
To verify ðiiÞ, observe that, with the above conventions,

c0w0 þ � � � þ cNwN ¼ �f ðznÞ þ
X

�dW iWM�1

aizin ¼ �rMðznÞ:

By the inequalities (2.1) and (2.2) we thus have

jc0w0 þ � � � þ cNwN jn W 2ð2jznjnÞ
M
W 2Mþ1HðznÞ

�MC1 : ð2:4Þ

On the other hand we have, by (2.3),

Hðw0ÞWHðznÞ
C2 ; ð2:5Þ

and

ĤHðwÞ ¼ Hðw0Þ
YM�1

i¼�d

HðzinÞWHðznÞ
C2þd2þM2

: ð2:6Þ

Further, in view of assumption ð3Þ of Theorem 1, we have for all large n,

HSðw0ÞWHðznÞ
e: ð2:7Þ

Combining (2.5), (2.6), (2.7) we ¢nd

Hðw0ÞHNþ1S ðw0ÞĤHdðwÞWHðznÞ
C2þðNþ1ÞeþðNþ3ÞeðC2þd2þM2Þ: ð2:8Þ

We now assume that e is so small to ensure that

C2 þ ðN þ 1Þeþ ðN þ 3ÞeðC2 þ d2 þM2ÞW
M
2C1

:

This will be possible sinceM > 2C1C2 and N is ¢xed. By (2.4) and (2.8) we then get

jc0w0 þ � � � þ cNwN jn W 2Mþ1HðznÞ
�MC1

W 2Mþ1HðznÞ
� M
2C1 Hðw0ÞHNþ1S ðw0ÞĤHdðwÞ
� 
�1

:

For large n we have 2Mþ1HðznÞ
� M
2C1 < 1 and ðiiÞ for Theorem 4 follows.

Theorem 4 now implies that for all large n some subsum of c0w0 þ � � � þ cNwN
involving w0 vanishes. This means that f ðzÞ coincides with a ¢xed Laurent polyno-
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mial at the points z ¼ zn for all n in a suitable in¢nite sequence. Since the zn are
distinct and converge to 0, Theorem 1 follows. &

Proof of Corollary 1. This is a simple application of Theorem 1. By enlargingK , we
may assume that q 2 K . We enlarge S so that q is an S-unit. In Theorem 1, let us put
zn ¼ qn. Assumptions ð1Þ, ð2Þ are trivially veri¢ed, and so is ð3Þ if f ðqnÞ is an S-integer.
If the conclusion of Corollary 1 is not true, then condition (4) for Theorem 1 would
also be veri¢ed. But then f would be a Laurent polynomial, against the assump-
tion. &

Proof of Corollary 2.We apply Corollary 1 with n equal to the absolute value onC.
We take K ¼ Q and S ¼ f1g. We have j f ðqnÞj ¼ Oðjqj�ndÞ, where d is the order of
the pole of f at 0. Therefore, if f ðqnÞ is a nonzero rational integer we have

hð f ðqnÞÞ ¼ log j f ðqnÞj ¼ OðnÞ:

In conclusion, by Corollary 1, either f is a Laurent polynomial or the set of positive
integers n with that property is ¢nite. &

3. Proof of Theorem 2

We work only in the case ja1jn > 1 and consider the Puiseux expansions at z ¼ 1 of
the solutions X ¼ X ðzÞ of gðz;X Þ ¼ 0. The arguments in the case ja1jn < 1 are com-
pletely analogous and use the expansions at z ¼ 0.
For large n, any solution xn of gðzn;X Þ ¼ 0 will be given by some Puiseux

expansion, considered n-adically; this is because jznjn ! 1. We may assume that
for all n in an in¢nite sequence R the same expansion occurs, so we have, for
the n-adic convergence,

xn ¼ spz
p
e
n þ sp�1z

p�1
e
n þ � � � ; ð3:1Þ

for some determination of the e-th root and some algebraic numbers si, iW p. It is
well known that the coef¢cients si in fact lie in a ¢xed number ¢eld.
In the sequel C1;C2; . . . will denote positive numbers depending only on gðZ;X Þ

and on the ci; ai.

Since ja1jn > jaijn for i ¼ 2; . . . ; h, we have binomial expansions

z
j
e
n ¼ c

j
e
1a
jn
e
1 1þ

Xh
i¼2

ci
c1

ai
a1

� �n !j
e

¼ c
j
e
1a
jn
e
1

X1
r¼0

j
e

r

� � Xh
i¼2

ci
c1

ai
a1

� �n !r
;

for some choice of the eth roots of c1 and a1, which we may assume to be ¢xed for all
n 2 R.

332 PIETRO CORVAJA AND UMBERTO ZANNIER

https://doi.org/10.1023/A:1015594913393 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015594913393


Combining (3.1) with this expansion it is easy to see that we may write, in the
n-adic convergence,

xn ¼
X1
j¼1

tjgnj ; n 2 R; ð3:2Þ

where the tj 2 �KK and the gj are distinct and lie in the multiplicative group generated
by a

1
e
1 and a2; . . . ; ah. Also, it is easy to see that the gj tend n-adically to zero.

Suppose ¢rst that the series on the right of ð3:2Þ is not a ¢nite sum. Then we assume
that no tj is zero and that the gj are written in decreasing order, i.e.
jg1jn X jg2jn X � � � > 0.
Now, both the binomial expansion and the series on the right of (3.1) converge

absolutely for all large n. It follows that we may write

X1
j¼1

jtjjnjgjj
C1
n WC2: ð3:3Þ

We are going to apply Theorem 4, after approximating xn by a ¢nite sum extracted
from (3.2). We enlarge K at once and assume that it contains all the a

1
e
i and all the

coef¢cients sj in the Puiseux series. In particular, we may assume that K contains
all the tj; gj.
We estimate the tails of the series on the right of (3.2). We have, for NX 0

X1
j¼Nþ1

jtjjnjgjj
n
n ¼

X1
j¼Nþ1

jtjjnjgjj
n�C1
n jgjj

C1
n WC2jgNþ1j

n�C1
n ; ð3:4Þ

where we have used (3.3).
For later purposes we need an estimate of HðxnÞ. We derive it from the equation

gðzn; xnÞ ¼ 0. Observe that an estimate HðznÞWC3Cn4 follows immediately from
(0.1). On the other hand, we can estimate the height of the roots of an equation
in terms of the heights of the coef¢cients. We ¢nally obtain

HðxnÞWC5Cn6 : ð3:5Þ

We choose N so that

jgNþ1jnC6 < 1: ð3:6Þ

Also, we choose a ¢nite S so that it contains n and all Archimedean absolute values of
K . Moreover we require that all the cj; aj, all the nonzero coef¢cients of gðZ;X Þ and
t1; . . . ; tN are S-units. In particular, with this choice all the gj are S-units. Also,
the zn are S-integers and gðZ;X Þ is monic in X ; therefore, the xn too are S-integers,
in view of the equations gðzn; xnÞ ¼ 0.
We shall apply Theorem 4 with ci ¼ 1 for i ¼ 0; . . . ;N. We put w0 ¼ �xn and, for

i ¼ 1; . . . ;N, we put wi ¼ tigni . If w0 ¼ �xn ¼ 0 for in¢nitely many n 2 N, then
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gðzn; 0Þ ¼ 0 for such values, whence gðZ; 0Þ ¼ 0 identically, since zn ! 1. In this
case the conclusion of the theorem is veri¢ed by choosing k ¼ 0.
Therefore we suppose from now on that xn 6¼ 0 for all n 2 R. Observe that w0 is an

S-integer and that, due to our choice of S, the wi are S-units for iX 1. In particular,
assumption ðiÞ for Theorem 4 is veri¢ed for any choice of e > 0.
We proceed to verify assumption ðiiÞ for all large n 2 R, provided we choose a

small enough e and put d ¼ ðN þ 3Þe.
By using (3.2) and (3.4) we ¢nd

jw0 þ w1 þ � � � þ wN jn ¼ j � xn þ
XN
i¼1

tigni jn WC2jgNþ1j
n�C1
n : ð3:7Þ

To compare this estimate with the right side of ðiiÞ of Theorem 4, we ¢rst observe
that HSðw0Þ ¼ 1, since w0 ¼ �xn is an S-integer. Moreover, in view of (3.5) we
may write

ĤHðwÞ ¼ HðxnÞHðt1gn1Þ � � �HðtNgnN ÞWC5C
n
6

YN
i¼1

HðtiÞ
YN
i¼1

Hðgni ÞWAB
n; ð3:8Þ

where we may take A ¼ C5Hðt1Þ . . .HðtN Þ and B ¼ C6Hðg1Þ . . .HðgN Þ. We observe
that A;B depend on N but not on n.
We now choose e so that

jgNþ1jnC6B
d < 1: ð3:9Þ

This will be possible for small e in view of (3.6), recalling our choice d ¼ ðN þ 3Þe.
In view of (3.7), (3.5) and (3.8), the veri¢cation of ðiiÞ of Theorem 4 will follow

from

C2jgNþ1j
n�C1
n < ðC5Cn6 Þ

�1
ðABnÞ�d;

which is the same as

ðjgNþ1jnC6B
dÞ
n < ðC2C5AdÞ

�1
jgNþ1jn

C1 :

However, this latter inequality follows from (3.9) for large n.
Therefore, by Theorem 4 we may conclude that for all large n 2 R some subsum of

w0 þ w1 þ � � � þ wN , involving w0, vanishes. Going to an in¢nite subsequence R0 of
R, we may assume that for all n 2 R0 the subsum corresponds to the same set
of terms. Namely, there exists a set I � f1; . . . ;Ng, such that xn ¼

P
i2I tig

n
i ;

n 2 R0: Recall that we are assuming that the right side of (3.2) has in¢nitely many
terms. If this is not the case, however, our last conslusion is automatic.
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We change notation and write
P
i2I tig

n
i ¼

Pk
i¼1 dib

n
i ; plugging into gðzn; xnÞ ¼ 0

we ¢nd

g
Xh
i¼1

ciani ;
Xk
j¼1

djb
n
j

 !
¼ 0; for n 2 R0: ð3:10Þ

But now the Skolem^Lech^Mahler Theorem (see, e.g., [vdP]) implies that the left
side of (3.10) vanishes for all n in a suitable arithmetic progression. This concludes
the proof.

Remark. It may be shown (and also follows from the proof) that the di; bi and a
relevant arithmetic progression may be found effectively. Examples like
zn ¼ 2n þ 1� ð�1Þn, gðZ;X Þ ¼ Z � X 2, show that in general we cannot expect that
the conclusion holds for all n 2 N. This will be possible however under suitable
additional conditions on the roots ai of the recurrence sequence zn; for instance
it is easy to obtain the stronger conclusion when the ai are multiplicatively
independent.

4. Proof of Theorem 3 and its Corollaries

To prove Theorem 3, we start by verifying that the series de¢ning g in fact converges
(absolutely) in the n-adic topology. Note that the assumptions imply that
hðanÞ ¼ oðmnÞ. In particular, for large n we have hðanÞ < ðlog jaj�1n =2ÞÞmn. Therefore

janjn WHðanÞ < jaj�
mn
2

n ;

concluding the argument.
Assuming that g is algebraic, we shall apply Theorem 4 with the following data.

We ¢rst enlarge K so that g 2 K . Then we choose S such that it contains n, the
Archimedean places of K and such that a is an S-unit. The integerN already appears
in the statement of Theorem 3.
For an integer n 2 N we put w0 ¼ �gþ

Pn
j¼1 aja

mj and, for i ¼ 1; . . . ;N, we put
wi ¼ aiþnamiþn .
Finally, we choose ci ¼ 1 for i ¼ 0; 1; . . . ;N.
We ¢rst estimateHðw0Þ and for this purpose we note that for every place v of K we

have

jw0jvW maxð1; jnþ 1jvÞ �maxðjgjv; ja1a
m1 jv; . . . jana

mn jvÞ

W maxð1; jnþ 1jvÞ �maxðjgjv; ja1jv; . . . janjvÞ �maxð1; jajvÞ
mn :

ð4:1Þ

From this inequality we obtain, on taking the product of maxð1; jw0jvÞ over all
places,

Hðw0ÞW ðnþ 1ÞHðgÞHða1Þ . . .HðanÞHðaÞmn : ð4:2Þ
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From (4.1) we also derive, taking into account that a is an S-unit, that

HSðw0ÞWHðgÞHða1Þ . . .HðanÞ: ð4:3Þ

For the wi, i ¼ 1; 2; . . . ;N, we have

HðwiÞWHðaiþnÞHðaÞmiþn ;

whence

ĤHðwÞW ðnþ 1ÞHðgÞHða1Þ . . .HðanþNÞHðaÞmnþ���þmnþN : ð4:4Þ

Let e < 1=2 be a positive real number (which will be speci¢ed later). From the
assumption hðarÞ ¼ oðmrÞ we deduce the inequality jarjn < jaj�emr

n valid for
r > r0ðeÞ. Therefore, for n > r0ðeÞ,

jw0 þ � � � þ wN jn W
X
r>nþN

jarjnjaj
mr
n W

X
r>nþN

jajmrð1�eÞ
n

W jajmnþNþ1ð1�eÞ
n

X1
s¼0

jajsð1�eÞ
n WC1jajmnþNþ1ð1�eÞ

n ;
ð4:5Þ

where we can take C1 ¼
P1

s¼0 jaj
s=2
n , since e < 1=2.

We are going to apply Theorem 4 with d ¼ ðN þ 3Þe.
We ¢rst verify assumption ðiÞ for every choice of e, provided we take n to be large

enough with respect to e. In fact, for i ¼ 1; . . . ;N we have hSðwiÞ ¼ hSðaiÞ (resp.
hSðw�1i Þ ¼ hSða�1i Þ). Hence, hSðwiÞ þ hSðw�1i ÞW 2hðaiÞ. On the other hand hðwiÞX
mihðaÞ � hðaiÞ. The conclusion follows since hðaiÞ ¼ oðmiÞ.
To verify ðiiÞ we shall compare the estimate for its left side, given by (4.5), with an

estimate for its right side given by (4.2), (4.3) and (4.4) above. These latter
inequalities give, after a short calculation,

Hðw0ÞHSðw0Þ
Nþ1ĤHðwÞd

W ðnþ 1Þ1þd HðgÞHða1Þ . . .HðanÞð Þ
Nþ2þd

�

� Hðanþ1Þ . . .HðanþN Þð Þ
dHðaÞmnþd

PN

j¼1
mnþj :

We assume that n is so large thatHða1Þ . . .HðarÞ < 2emr for all rX n. We also assume
that d ¼ ðN þ 3Þe < 1 and that ðnþ 1Þ2 < 2emn. Using these bounds in the last dis-
played inequality we get

Hðw0ÞHSðw0Þ
Nþ1ĤHðwÞd < HðgÞNþ32eðNþ4Þmn2demnþNHðaÞmnþdNmnþN :

Finally, for small enough e we see that we have the bound

Hðw0ÞHSðw0Þ
Nþ1ĤHðwÞd < HðaÞmnþC2eNmnþN ; ð4:6Þ

where C2 depends only on a and g. We observe that this bound holds provided e is
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small enough with respect to N and provided n is suf¢ciently large with respect
to e.
We have not yet used the fact that n 2 N . We shall exploit this in the

comparison of (4.5) and (4.6). In view of these inequalities the veri¢cation of ðiiÞ
of Theorem 4 amounts to the following:

C1jaj
mnþN 1�eþ hðaÞ

log jajn
C2Ne

� �
�mn

hðaÞ

log jaj�1n
n < 1: ð4:7Þ

Since n 2 N , we have mnþN > Lmn, whence the exponent of jajn in (4.7) is at least

mn L 1� eþ
hðaÞ

log jajn
C2Ne

� �
�
hðaÞ

log jaj�1n

 !
:

For small e this exceeds lmn, for a suitable positive l (depending on a, N, e). There-
fore (4.7) holds for all large n 2 N .
From Theorem 4 we deduce that, for all but a ¢nite number of n 2 N , some

subsum of type w0 þ
P
i2I wi vanishes, where I ¼ In is a subset of f1; . . . ;Ng

depending on n 2 N . Putting An ¼ f1; . . . ; ng [ fnþ i: i 2 Ing, we get the conclusion
of Theorem 3. &

Proof of Corollary 3. Let a be a real algebraic number in ð0; 1Þ. We have to show
that g:¼

P1

i¼1 aia
mi is transcendental. (That the series is convergent is proved in

Theorem 3.)
We enlarge K to contain a. The ¢eld Qða; a1; a2; . . .Þ is implicitly embedded in R.

We are going to apply Theorem 3 taking n to be any extension to K of the corre-
sponding real valuation.
Put L:¼ 2hðaÞ= log jaj�1n . By the assumptions, there existsN such that the sequence

N of integers n satisfying mnþN > Lmn is in¢nite.
Assuming by contradiction that g is algebraic, the conclusion of Theorem 3 implies

that g is equal to a ¢nite partial sum of the de¢ning series. This is however impossible
since all the terms in the series are positive. &

The proof of Corollary 30 is similar. We have only to observe that no sumP
i2I aix

mi can vanish if jxjn < 1 and I is nonempty; in fact, all the terms which appear
have pairwise distinct absolute values.

Proof of Corollary 4. Let a; n be as in the statement. We start with a lemma, which
is signi¢cant only in the Archimedean case.

LEMMA 2. There is a number C1 depending only on a with the following property.
Suppose that b1 < b2 < . . . are positive integers, that

P1

i¼1 a
bi ¼ 0 and that, for an

integer r,
Ps
i¼1 a

bi 6¼ 0 for s ¼ 1; 2; . . . ; r. Then brþ1 � b1 < r!Cr1.
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In the sequel C2;C3; . . . denote positive numbers depending only on a.
First we have, for sX 1,

Xs
i¼1

abi
�����

�����
n

¼
X1
i¼sþ1

abi
�����

�����
n

WC2jajbsþ1n ;

where we may take C2 ¼
P1

i¼0 jaj
i
n ¼ ð1� jajnÞ

�1.
For s ¼ 1 this gives jajb1�b2n WC2, whence b2 � b1WC3.
For general s we get

Xs
i¼1

abi�b1
�����

�����
n

WC2jajbsþ1�b1n :

For sW r the left side does not vanish. Therefore, by Liouville’s inequality we have

�h
Xs
i¼1

abi�b1
 !

W � C4ðbsþ1 � b1Þ þ C5:

On the other hand we have hð
Ps
i¼1 a

bi�b1 ÞW sC6ðbs � b1Þ. In conclusion

bsþ1 � b1W sC7ðbs � b1Þ þ C8; s ¼ 1; 2; . . . ; r:

Iterating we have the result.
We now prove Corollary 4. Assume that g:¼

P1

i¼1 a
mi is algebraic. Let L be a real

number between hðaÞ= log jaj�1n and lim supn mnþN=mn. Then the sequence N of
Theorem 3 is in¢nite. We apply Theorem 3 and take n 2 N so large that
g ¼

P
i2An a

mi and msþh �ms > h!Ch1 for sX n, where C1 is as in Lemma 2 and h
is as in the statement of the present corollary.
We denote by fa1 < a2 < . . .g the sequence of mj , for j varying over the comp-

lement of An in N. Then
P1

i¼1 a
ai ¼ 0. We apply Lemma 2 with bi ¼ ai for all i. Since

bhþ1 � b1 > h!Ch1 by construction, we deduce that some subsum aa1 þ . . .þ aas ¼ 0,
where sW h.
Therefore

P1

i¼sþ1 a
ai ¼ 0. We put bi ¼ aiþs and repeat the procedure, and so on.

We plainly obtain sets Bi satisfying the conclusion. &

Proof of Corollary 5.We may plainly suppose that miþ1 > lmi for i ¼ 1; 2; . . ., for
some l > 1. This gives in particular miþN=mi > lN for all i. Therefore, the sequence
N of Theorem 3 is in¢nite if N is suf¢ciently large.
We ¢x such anN and we apply Theorem 3, assuming that g:¼

P
aiami is algebraic.

Choose a positive e < minððl� 1Þ=ðlþ 1Þ; 12Þ and let An be as in the conclusion of
Theorem 3, with n 2 N large enough with respect to e. In view of Liouville’s
inequality and the assumption hðarÞ ¼ oðmrÞ, we may write for large n,

maxðjarjn; jarj
�1
n ÞW jaj�emr

n ; 8rX n: ð4:8Þ
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The conclusion of Theorem 3 givesX
i 62An

aiami ¼ 0: ð4:9Þ

De¢ne b as the minimal integer not in An. In particular, we have b > n. Equations
(4.9) and (4.8) give

jabamb jn W
X1
i¼1

jabþijnja
mbþi jn W

X1
i¼1

jajmbþið1�eÞ
n

W jajmbþ1ð1�eÞ
n

X1
i¼1

jajðmbþi�mbþ1Þð1�eÞ
n W jajmbþ1ð1�eÞ

n
1

1� jaj1�e
n

WC9jajmbþ1ð1�eÞ
n ;

where we can take C9 ¼ 1=ð1�
ffiffiffiffiffiffiffi
jajn

p
Þ. Using mbþ1 > lmb we obtain jabjn W

C9jajmbðl�1�leÞ
n ; and, comparing with (4.8) (recall that bX n) we ¢nally get

1WC9jajmbðl�1�le�eÞ
n : Since l� 1� le� e > 0 and mbX b > n this inequality cannot

hold for large n. Therefore g must be transcendental. &
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