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Abstract

Variable structure systems with sliding modes have been widely discussed and
used in many different fields of applications. The precise behaviour at a switching
surface is complicated because there the system is non-analytic. The damped simple
harmonic oscillator with a nonlinear variable structure is discretised and analysed
in detail, revealing the occurrence and structure of pseudo-sliding modes which give
insight to the corresponding sliding modes for the continuous system. Necessary
and sufficient conditions are obtained and the analysis illustrated with graphs from
numerical solutions.

1. Introduction

Variable structure systems with sliding modes have been widely discussed [5]
and used in many different fields of applications [6]. Essentially the systems
are modelled mathematically by differential equations with discontinuous
righthand sides [2]. The precise behaviour at a switching surface is com-
plicated because there the system is non-analytic. Solutions are sometimes
presented graphically with an unconvincing sketched-in wiggly line down the
switching surface to represent the sliding mode. It is known [3] that the
necessary and sufficient condition for the existence of a sliding mode for a
continuous linear system is a necessary but not sufficient condition for the
existence of a pseudo-sliding mode for its sampled linear system.

It is the first purpose of the present paper to illustrate the occurrence and
structure of a sliding mode by considering a discrete variable structure system
based on the damped harmonic oscillator. The discretisation is taken in such
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a way that the discrete points in the phase plane lie exactly on the trajectories
for the continuous system [4], except for points on the switching lines, be-
cause on these the continuous solution does not exist; then the discretisation
is represented by an approximation which allows the switching lines to be
crossed and recrossed to give a possible chattering pseudo-sliding mode. It is
the second purpose of this paper to explore the relation between the system
parameters and the sampling period. Necessary and sufficient conditions for
the occurrence of a pseudo-sliding mode for the discrete system are derived
and shown to give the correct results for the limiting case of the continu-
ous system. The theory is illustrated by numerical results which indicate the
somewhat bizarre possibilities that can arise.

2. Damped harmonic oscillator: continuous system

Consider the variable structure system [5] given in state space form as the
ordinary differential equations
X, =X, (1)
% = [~ - fxy, ifx(cx; +x,)20 2)
27 | +ax, - fx,, ifx(cx, +x,)<0.
This system corresponds to a damped harmonic oscillator with x, represent-
ing displacement y(¢) say, with

y(O)+ fy(t) £ay(1) = 0. (3)
In matrix form this system can be written
X = Aix, (4)
where
ax[0 ! f] . 5)
The variable structure implied in (2) corresponds to a switching line
s=s5(x)=cx; +x,=0, (6)

so that the top sign in (5) is used for regions I and III in Figure 1 and the
bottom sign for regions II and IV.
The formal solution of the system is

x(t) = exp (A% (1 - 1)) x(tp), 7
where

exp (A%t) = exp(—a) [cos((ﬂt)+aﬂ_'sin(ﬂt) g~ sin(B1) ] ’
8

Fa)B " sin(B1) cos(B?) —aﬂ"sin(ﬂz)( )
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FIGURE |. The X, x, phase plane is divided into regions corresponding to the sign of
x5(x) where s(x) =x, +x, =0 is the switching line. For the shaded regions I and III the top
sign in (5) has to be taken; for Il and IV the bottom sign.

with
a=f/2, )
B =(1/2)\/+4a - /2. (10)

The constant g is real or pure imaginary.
It is well-known [1] that the necessary and sufficient conditions for s(x) = 0
to be a sliding mode, characterised by X, = —cx, , are

lim § <0, lim § > 0. (11)
s—+0 s—-0
Since
lim § = lim § = x,(cf -’ Fa), (12)
s—+0 s—+—0
there exists a stable sliding mode for 2 > 0 and ¢ > 0 provided that
t-a<cf<ct+a (13)

3. Damped harmonic oscillator: discrete system

We now consider a discretisation of the system by letting x(k) denote x
evaluated at time kh, where h is a discrete constant time interval. The
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system, apart from the variable structure, is a linear system. So ignoring for
the moment the switching lines, the linear differential equation (4) can be
discretised by the linear differential equation

x(k + 1) = exp(A*h)x(k), k=0,1,.... (14)
In effect this replaces the differential equation (4) by the difference equation
A*(exp(ATh) - )7V [x(k + 1) - x(k)] = AZx(k), (15)

rather than the usual simpler system
R [x(k + 1) — x(k)) = ATx(k). (16)

The discretisation (15) of the differential equation (4) is the ‘best’, in the
sense that, from any given initial point in the phase plane, the solution (14)
of (15) gives discrete points exactly on the corresponding solution curve (7)
of (4). This result is true regardliess of the magnitude of 4 [4].

We now take into account the nonlinear variable structure represented bz
(2). The discrete variable structure which decides which of the matrices A
to use is taken to be:

use top sign if x, (k)(cx, (k) + x,(k)) > 0 (17)
use bottom sign if x, (k)(cx, (k) + x,(k)) < 0. (18)

Whereas the trajectory for the continuous system stops if it reaches the switch-
ing line s(x) = 0, the discretisation allows the trajectory to cross the line
s(k) = cx,(k) + x,(k) = 0. If it does cross, then the matrix is changed to
that with the opposite designated sign. The particular details of the crossing
of the line and the subsequent discrete points will depend on the initial point
of the particular trajectory as well as on the magnitude of 4. But as will be
shown, the occurrence and stability of the chattering pseudo-sliding mode can
be qualitatively described and precise conditions quantitatively determined.

In summary, the ‘best’ discretisation is used when the switching lines are
not crossed, i.e. when x,(k)s(k)x,(k + 1)s(k + 1) > 0, and when this con-
dition does not hold, a switching line is crossed and the signed matrix then
swapped in accord with (17) and (18). A look-ahead at Figure 4 for example
will indicate that the continuous trajectory, stopping at the switching line,
is replaced by a discrete trajectory which crosses and recrosses the switching
line to give a chattering pseudo-sliding mode. While the discrete points stay
correctly on the continuous trajectory before the switching line is reached,
the details of the fine structure of the chattering depend on the initial point
taken and the magnitude of the stepsize.
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4. Conditions for psendo-sliding mode

We first determine the discrete analogue of the necessary and sufficient
conditions (11). A necessary condition for the occurrence of a stable pseudo-
sliding mode is that the trajectories approach the switching line s = 0 from
both sides. There are two possibilities. For a trajectory from region I (see
Figure 1) for which x;, and s are both positive, the requirement that the
trajectory crosses the switching line to region IV implies that in the limiting
case, if s(k) = 0, then the next value evaluated, s(k + 1), must be negative.
In the same way, from region III for which x, and s are both negative, the
next value s(k + 1) evaluated after an s(k) = 0 must be positive. In both
evaluations the top sign in (5) must be used. In summary, if s(k) =0, and
x,(k) and s(k + 1) are of opposite sign, then the top sign must be used. In
the second case, the requirement that the trajectory crosses the switching line
from region IV to I or II to III implies that s(k + 1) and x,(k) must be of
the same sign when the bottom sign of (5) is used.

The consequence of this argument leads to the formulation of the necessary
condition. From (6) it follows that

s(k) = cx, (k) + x,(k) = [c 1] x(k) (19)
and hence from (14) that
sk + 1) = [c 1] exp(AEh) x(k). (20)
For s(k) = 0, this yields
stk +1) = [c 1] exp(A%h) [1 —c)” x,(k). (21)
With the use of (8), it follows that

s(k + 1) = exp(—ah) B~ sin(Bh) x,(k) (cf - ¢’ F a). (22)

The necessary conditions for the existence of a stable pseudo-sliding mode,
namely that x,(k) and s(k +1) are of opposite signs for the top sign in (22)
and of the same sign for the bottom sign, are simply cf — ¢ -a <0 and
¢f —c*+a >0, equivalent to (13), since exp(—ah)B ™' sin(Bh) > 0.

The condition can be made to mimic a discretisation of (12) by recalling
that s(k) = 0, so that (22) can be written

stk + 1) — s(k)

_ _ 2
exp(—ah) B~ sin(Bh) =xk)(ef-cFa). (23)
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Since exp(—ah)B~'sin(Bh) = O(h), the left hand side of (23) approaches
$§ as h approaches zero, so that in the limit of the continuous system the
condition (12) is correctly obtained.

A sufficient condition for the existence of a pseudo-sliding mode will be
derived as a combination of two conditions. The first is (13) or (23) which
guarantees that the asymptote is on the correct side of the switching line
(see Figure 2). Although (13) forms by itself a sufficient condition for the
continuous case, it does not for the discrete case as a further condition on
the magnitude of 4 is required. This second condition can be determined
from the following argument. It is clear that the condition must involve a
restriction on the magnitude of #, for this controls the sizes of the steps along
a trajectory. What is required is that when a trajectory is being stepped out,
a step across the switching line must be sufficiently small so that region which
forces the return in the direction to the switching line is not over-stepped.
This region is bounded by the switching line s(x) = c¢x; + x, = 0 and the
asymptote

r(x)=(a+7)x, +x,=0, (24)

where
y=(1/20\/4a + f~. (25)

The region is represented in Figure 2 by regions IIB and IVB, and it will be
noted that the fifteenth step is approximately from a point on the switching
line to a point just out of the region IVB so that the trajectory veers away.

The limiting case occurs when a step is from the switching line to the
asymptote, that is, from s(k) =0 to r(k + 1) = 0. As in the derivation of
(20),

rtk+1)=[a+y 1]exp(ATh) [1 —c]" x,(k), (26)
which leads to

r(k+1) = [(;a +a’+ay-cy)B " sin(Bh) + (@ +7 —c) cos(ﬂh)] x, (k).

(27)

The condition r(k + 1) = 0 places an upper bound on the value of 4 given
by

H=p"atan[fa+y - c)/(a—a’ —ay +cy)]. (28)

Only the top sign is used because r(k+1) is calculated from a previous point
in region I or III for a trajectory just straddling region IVB or IIB.

It is interesting to recover the result for the continuous system by taking
the limit as # approaches zero. This implies H =0 and hence from (28)

a+y—c=0, (29)
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FIGURE 2. The phase plane is further subdivided by the asymptote r(x) = 0. The heavily
shaded regions IIB and IVB correspond to regions where the trajectories move towards the
switching line s(x) = 0. The trajectory shown illustrates a system which is stable but without a
pseudo-sliding mode, correspondingto c=1, a=9, f=-3.49, h =0.049.

or R

cf—¢c"+a=0. (30)
This agrees with the one of the equalities in (13). The other arises from
the necessity to maintain a region IVB, which is lost if the line r(x) = 0
coincides with or lies above the switching line s(x) = 0.

5. Numerical results

The constant ¢ in (2) is positive and the rescaling x, — x,/c, t — ct
enables ¢ to be taken equal to unity for numerical calculations without loss
of generality. To explain the scaling procedure, suppose that in the given
system ¢ = 2 in order to give a sliding mode with a time constant of 0.5
seconds and that the system starts from rest with x, representing an angle
with initial value 10 degrees. Then in Figure 3 on p. 372, for example, a unit
on the x, axis represents 10°, a unit on the X, axis 20°/sec and A = 0.002
a step-size of 0.001 seconds.

Initial values of x; = 1 and x, = x; = 0 are useful for comparison pur-
poses, representing starts from rest at an initial displacement of magnitude
unity.
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FIGURE 3. A stable pseudo-sliding mode with the following values: c=1, a=9, f=-7,
h =0.002.

Figure 3 illustrates a stable pseudo-sliding mode with ¢ = 1, a = 9,
f=-=7, h=0.002. The value of f corresponds to ‘large’ negative friction
but is still in the range —8 < f < 10 for a stable sliding-mode for the
continuous system (see (13)). The value of the step-size 4 is less than the
upper bound H = 0.00627 calculated from (28).

Figure 4 illustrates a stable pseudo-sliding mode with the same parameters
as in Figure 3 except that the friction is now positive. The ‘chattering’ tends
to be above the switching line rather than below. The value of the upper
bound is H = 0.722, considerably increased.

Figure 5 again illustrates a stable pseudo-sliding mode with the friction
changed to f = —3.49. The value of the stepsize is taken as 2 = 0.046,
just less than the upper bound H = 0.0467. Any overstepping of the region
between the switching line and the asymptote is just prevented.

Figure 6 on p. 374 illustrates a stable system without a pseudo-sliding
mode. The data is as for Figure 5 except that » = 0.05, which just exceeds
the upper bound. The trajectory appears to be approaching the origin in a
pseudo-sliding mode but suddenly veers away to circuit the origin before clos-
ing in again. This behaviour is repeated indefinitely. Figure 2 also illustrates
a stable system without a pseudo-sliding mode starting from a different initial
position, and with A = 0.049.
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FIGURE 4. A stable pseudo-sliding mode with the same data as for Figure 3 except that
f =1, corresponding to positive rather than negative friction.
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FIGURE 5. A stable pseudo-sliding mode with the same data as for Figure 2 except that
h = 0.046, just less than the upper bound.
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FIGURE 6. A stable system without a pseudo-sliding mode. The data is the same as for Figure
5 except that h = 0.005, exceeding the upper bound. Compare with Figure 2.

x2

FIGURE 7. A stable system without a pseudo-sliding mode. The data is the same as for Figure
6 except the initial point is taken as x; = 0.01, x, =3.0.
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X2

FIGURE 8. An unstable system. The same data as for Figure 7 except that 2 = 0.06,
considerably larger than the upper bound.

For Figure 7, the data is exactly the same as for Figure 6 except that the
initial point is taken as x; = 0.01, x, = 3.0. The ‘small bird in a big bird’
picture again corresponds to a stable system without a pseudo-sliding mode.

For Figure 8, the system is unstable, with the same values as for Figure 7
except for 7 = 0.06, considerably greater than the bound H = 0.0467.

6. Discussion

The fact that the variable structure system considered in this work is,
apart from the switching logic, a linear system with constant coefficients, has
enabled a ‘best’ discretisation to be taken in the sense that from any point
not on a switching line the discrete points are taken to be exactly on the
continuous trajectory emanating from that point. This does not imply that the
solution obtained in a particular case is independent of the initial point or the
value of A because changes in these would alter the discrete step the discrete
solution takes as it crosses a switching line. But because of the discretisation
used a qualitative analysis has proved possible and in particular the exact
analysis of the discrete system has enabled necessary and sufficient conditions
for the occurrence of a pseudo-sliding mode to be determined. These are
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substantiated by numerical results. The well-known theory of continuous
variable structure systems has been confirmed in the limit as the discrete
stepsize approaches zero, and Figure 4 for example illustrates how the pseudo-
sliding mode approaches the sliding mode—and gives a more convincing
representation than a hand-drawn wiggly line.

Further work is being done on more complicated systems and on applica-
tions to the control of robots.

Acknowledgements

The authors are indebted to the Australian Research Council for an award.
One of the authors (R.B.P.) expresses his gratitude to Professor Mike Brady
and Dr Ron Daniel for their hospitality at the Robotics Laboratory, Oxford
University, where this research was initiated.

References

[1] E. A. Barbashin, Introduction to the theory of stability (Wolters-Noordhoff, Groningen,
1970).

[2] A. F. Filippov, Differential equations with discontinuous righthand sides (Kluwer, Dor-
drecht, 1988).

[3] C. Milosavljevic, “General conditions for the existence of a quasisliding mode on the
switching hyperplane in discrete variable structure systems”, Automat. Remote Contr.
46 (1985) 307-314.

[4] R. B. Potts, “Differential and difference equations”, Am. Math. Monthly 89 (1982)
402-407.

[5] V. I Utkin, “Discontinuous control systems: state of art in the theory and applications™
10th IFAC World Congress on Automatic Control, 1 (Munich 1987).

(6] K-K. D. Young, “Controller design for a manipulator using theory of variable structure
systems”, IEEE Trans. Syst., Man and Cyb. SMC-8 (1978) 101-109.

https://doi.org/10.1017/50334270000008481 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008481

