Solution of a Problem proposed by Dr Muir.

By R. E. Allardice, M.A.

The problem is to show that the expression

$$
\left\{\left(a^{\frac{1}{2}}+b^{2}\right)^{4}-c\right\}\left\{\left(a^{\frac{1}{2}}+\omega b^{\frac{1}{4}}\right)^{4}-c\right\}\left\{\left(a^{\frac{1}{2}}+\omega^{2} b^{\frac{1}{2}}\right)^{4}-c\right\}\left\{\left(a^{\frac{1}{2}}+\omega^{8} b^{\frac{1}{2}}\right)^{4}-c\right\},
$$

where ω is an imaginary fourth root of unity, is symmetrical with respect to a, b, and c.

First Method.-Denote the above expression by P. Then, by means of the identity $x^{4}-y^{4}=(x+y)(x+\omega y)\left(x+\omega^{2} y\right)\left(x+\omega^{3} y\right), \quad \mathrm{P}$ may be expressed as the product of sixteen factors, namely, the sixteen values of $a^{k}+\omega^{*} b^{\ddagger}+\omega^{\star} c^{\ddagger}$, where r and s have successively the values $1,2,3,4$. This product is obviously symmetrical, and the symunetry is not destroyed to the eye by a re-combination of the factors in sets of four, the form thus obtained being

$$
\begin{aligned}
& \left(a+b+c-2 a^{\frac{1}{2}} b^{\frac{1}{2}}-2 b^{\frac{1}{2}} c^{\frac{1}{2}}-2 c^{\frac{1}{2}} a^{\frac{1}{2}}\right)\left(a+b+c-2 a^{\frac{1}{2}} b^{\frac{1}{2}}+2 b^{\frac{1}{2}} c^{\frac{1}{2}}+2 c^{\frac{1}{2}} a^{\frac{1}{2}}\right) \\
& \times\left(a+b+c+2 a^{\frac{1}{3}} b^{\frac{1}{2}}-2 b^{\frac{1}{4}} c^{\frac{1}{2}}+2 c^{\frac{1}{4}} a^{\frac{1}{2}}\right)\left(a+b+c+2 a^{\frac{1}{2}} b^{\frac{1}{4}}+2 b^{\frac{1}{4}} c^{\frac{1}{2}}-2 c^{\frac{1}{4}} a^{\frac{1}{4}}\right) . \\
& \text { Second Method.-Since }
\end{aligned}
$$

$$
\left(a^{\frac{1}{2}}+\omega b^{\frac{1}{4}}\right)^{4}-c=\omega^{12}\left(a^{\frac{1}{2}}+\omega b^{\frac{1}{2}}\right)^{4}-c=\left(\omega^{3} a^{\frac{1}{4}}+b^{\frac{1}{2}}\right)^{4}-c,
$$

P is evidently symmetrical with respect to a and b. Further, since the change of $b^{\frac{1}{2}}$ into $\omega b^{\frac{1}{2}}$ does not alter P, P is rational in b and therefore also in a. When $b=0, \mathrm{P}$ becomes $(a-c)^{4}$ which is symmetrical in a and c. Hence P has been proved symmetrical in a and b, and symmetrical in a and c except in those terms which contain all the three letters. Thus

$$
\mathrm{P}=\Sigma a^{4}+\mathrm{A} \Sigma a^{3} b+\mathrm{B} \Sigma a^{2} b^{2}+\mathrm{C}\left(a^{2} b c+a b^{2} c\right)+\mathrm{D} a b c^{2}
$$

It remains to prove $C=D$.
The co-efficient of c^{2} in P is $\Sigma\left(a^{\frac{1}{2}}+b^{\frac{1}{4}}\right)^{4}\left(a+\omega b^{\frac{1}{2}}\right)^{4}$ and D is equal to the value of this when $a=b=1$, less twice the value when $a=1, b=0$, that is $-112-2 \times 6=-124$.

The co-efficient of c in P is $-\Sigma\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^{4}\left(a^{\frac{1}{4}}+\omega b^{\frac{1}{2}}\right)^{4}\left(a^{\frac{1}{2}}+\omega^{2} b^{\frac{1}{4}}\right)^{4}$ and 2 C is equal to the value of this when $a=b=1$, less twice the value when $a=1, b=0$, that is $-(256-2 \times 4)=-248=2 \mathrm{D}$.

Therefore $\mathbf{C = D}$.

