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Abstract A probabilistic representation formula for general systems of linear parabolic equations, cou-
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fully analysed, and a theorem of local existence and uniqueness is proved. The aim of the probabilistic
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1. Introduction

Consider the Navier–Stokes equations in [0, T ] × R
3

∂tu + (u · ∇)u + ∇p = ν∆u + f,

div u = 0,

u(0, x) = u0(x).

⎫⎪⎬
⎪⎭ (1.1)

These equations describe, in Eulerian coordinates, the evolution of a viscous incompress-
ible Newtonian fluid, where u is the velocity field, p the pressure, f the body force and
ν > 0 the kinematic viscosity. The vorticity field ξ = curlu satisfies the equation

∂tξ + (u · ∇)ξ = ν∆ξ + (ξ · ∇)u + g, (1.2)
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with g = curl f . As we shall remark later on, the stretching term (ξ · ∇)u can be written
in the form

(ξ · ∇)u = Duξ,

where Du = 1
2 (∇u + ∇uT), which better describes the action of the deformation tensor

Du on ξ. The analysis of the vorticity field is a fundamental issue related to questions
like the possible emergence of singularities (see, for example, [3,10]), or the description
of three-dimensional (3D) structures (see, for example, [9]).

The Lagrangian formulation of the fluid dynamics is important when analysing the
vorticity field. Wide use has been made of it in the inviscid case (ν = 0) (see [28]).
Our aim is to extend this approach to the viscous case. Strictly speaking, even in the
presence of viscosity, fluid particles (we mean infinitesimal portions of fluid, not the single
molecules) move according to the deterministic law

Ẋ(t) = u(t, X(t)).

However, a virtual Lagrangian dynamic of the particles of the form

dX(t) = u(t, X(t)) dt +
√

2ν dWt (1.3)

(where Wt is an auxiliary 3D Brownian motion) allows us to describe the evolution of
quantities which not only are transported by the fluid, but have a diffusive character.
The vorticity has this property, as do many scalars or fields possibly spreading into the
fluid. Roughly speaking, we prove the representation formula

ξ(t, x) = E[V (t, 0)ξ0(X(0))] +
∫ t

0
E[V (t, s)g(s, X(s))] ds

where E[·] denotes the mean value with respect to the Wiener measure, ξ0 is the vorticity
at time zero, X(s) is the solution of Equation (1.3) with final condition X(t) = x and
V (r, s) is the solution of the 3 × 3 matrix equation

d
dr

V (r, s) = Du(r, X(r))V (r, s), r ∈ [s, t],

V (s, s) = I.

⎫⎬
⎭ (1.4)

The present paper is devoted to explaining the formula in detail, and using it to prove
a local-in-time existence and uniqueness result. As an application of the formula, we also
show a continuation principle similar to the criterion of Beale et al . [3] (we actually
give a different proof of the variant presented in [29]). This paper is in a sense the
continuation of that of the first author (see [7]), where the two-dimensional (2D) case
has been considered. In the 2D case the stretching term Duξ is zero, so V (r, s) = I. The
vorticity is purely transported and diffused, allowing for a global-in-time control which
yields global existence and uniqueness results. In Busnello [7], the probabilistic formula
is used to prove such a result, related to the deterministic work of Ben-Artzi [4], following
a suggestion of M. Friedlin (personal communication). Here, in the 3D case, a nonlinear
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mechanism is present in the equation for V (r, s), which may produce an increase of ξ,
by the first equation above, and blow-up may appear. Similarly to the Eulerian case
(ν = 0), the Lagrangian structure of the equations allows one to see rather easily the
influence of certain quantities (the deformation tensor Du here) on this hypothetical
blow-up procedure, and prove a corresponding continuation principle.

Around these ideas, let us also recall that global existence for (1.1) is known only
at the level of weak solutions, but we have to work at a higher level of regularity to
deal with the vorticity. In certain function spaces, global existence (and uniqueness) are
known for sufficiently small data; in principle the probabilistic formulation could lead to
such results, but we have found some obstacles, so a probabilistic proof of such a result
remains an open problem (except for the completely different approach of Le Jan and
Sznitman [26]).

At the technical level, Girsanov transformation is used in a basic part of the work,
and the Bismut–Elworthy–Li formula is also used to treat by probabilistic methods the
Biot–Savart law, which reconstructs u from ξ (necessary to solve (1.3)). In the 3D case
the Biot–Savart law and its probabilistic representation are

u(t, x) = − 1
4π

∫
R3

(x − y) × ξ(y)
|x − y|3 dy = 1

2

∫ ∞

0

1
s
E[ξ(t, x + Ws) × Ws] ds.

The layout of the paper is as follows. In § 2 we state the precise representation for-
mula, the local existence and uniqueness result for the Navier–Stokes equation and the
continuation principle, with the main lines of their proofs. However, the full proof of the
representation formula, the local result and the continuation result are based on three
main items that we postpone to the next three sections:

(i) a general representation formula for linear systems of parabolic equations, which is
given in § 3;

(ii) the probabilistic representation of Biot–Savart law and a number of estimates on
it, which is given in § 4;

(iii) a series of estimates for the expected values appearing in the formula for the vor-
ticity, which is given in § 5.

We have chosen this ordering to highlight the results for the Navier–Stokes equation
at the beginning, for the reader who is not interested in the long list of estimates and
preliminaries necessary to prove the main theorem. About item (i) above we remark that
we use a method due to Krylov (in the scalar case) that introduces new variables in order
to eliminate the zero-order terms of the parabolic equation. Such a method in the case of
systems coupled through the zero-order part is particularly interesting because it reduces
the original system to a decoupled one. The representation proved in § 3 can be applied,
in principle, to several other systems of equations appearing in fluid dynamics, like the
equation for u itself (but the term ∇p appears in the right-hand side), the equation for
the magnetization variable (see, for example, [9]) and the equation for the transport of
passive scalars.
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Concerning the literature on the subject, at an advanced state of the present work
we became aware of the interesting papers by Esposito et al . [13] and by Esposito and
Pulvirenti [12], where a somewhat similar representation formula was introduced; this
paper differs from others in that we also treat probabilistically the Biot–Savart law,
we use different probabilistic tools, we analyse in detail the general case of systems
of probabilistic equations in order to understand rigorously the equivalence with the
probabilistic representation and we prove the local existence and uniqueness result in
different function spaces (in particular, for a class of less smooth initial conditions).

There is also a paper by Rapoport [30] dealing with a general class of equations on
manifolds which, in particular, throw light on the differential geometric structure of the
formula. The probabilistic representation of systems of parabolic equations has been
treated in the literature under certain assumptions (see [16,22,31]).

Finally, among the literature on probabilistic analysis of partial differential equa-
tions there are possible connections with the geometric approach of Gliklikh [21], with
investigations on the vortex method in three dimensions by Meleard (see, for exam-
ple, [15], where a similar probabilistic representation has been developed), and more
closely with [1], where a probabilistic representation for the velocity u is employed.

Concerning the huge literature on the deterministic analysis of the Navier–Stokes equa-
tions, more refined results of local existence and uniqueness have been proved in a great
amount of function spaces. Two almost-up-to-date collections of results can be found
in the review papers by Cannone [8] and von Wahl [32]. The solutions we find live in
rather classical spaces, similar to those considered by Majda and Bertozzi [28] (mainly
for the Euler equation). In a different direction, an intense recent research aimed at find-
ing the sharpest critical space (for example, of Besov type) where to solve the equations
(see [8] for more details). At present we cannot work in such a direction since we have
to solve the stochastic equation (1.3) and the linear equation (1.4), so we need a greater
regularity of u. However, the analysis of stochastic equations with rough coefficients is
under development, so we hope to get results in other function spaces by the probabilistic
representation formula in the future.

Our results are also related to the vorticity approach to the Navier–Stokes equations.
On such topics, one can refer to the work of Giga and Miyakawa [18], which deals with
very rough vorticity, and to the papers by Giga, Miyakawa and Osada [19], Kato [23]
and Giga [17], concerning the 2D approach. Again, at present we consider more classical
spaces in order to solve Equations (1.3) and (1.4) by well-established techniques, but we
believe that a generalization may be possible.

1.1. A heuristic interpretation of the probabilistic formula for the vorticity

We find that the probabilistic representation for the vorticity given above, apart from
the rigorous results it may produce, gives a new mental image of the motion of the fluid in
the 3D physical space and the associated transformations of the vorticity field: transport
and diffusion, stretching by the cumulative action of the deformation tensor along the
particle motion. Such a mental image is well known for the Euler equation; here we try to
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develop an extension in the presence of viscosity. Let us first recall it in the non-viscous
case and then proceed to the viscous case.

1.1.1. Evolution of the vorticity in the non-viscous case

Let us first recall the Lagrangian formulation of the Euler equations. Let ξ(t, x) be
the value of the vorticity at time t and point x ∈ R

3. The material point that occupies
position x at time t = 0 moves according to the law

Ẋ(t) = u(t, X(t)),

X(0) = x,

where u is the velocity field of the fluid. From the Eulerian description of the evolution
of ξ,

∂tξ + (u · ∇)ξ = Duξ + g,

we deduce the Lagrangian formulation

d
dt

ξ(t, X(t)) = Du(t, X(t))ξ(t, X(t)) + g(t, X(t)), (1.5)

which gives us

ξ(t, X(t)) = V (t, 0)ξ0(x) +
∫ t

0
V (t, s)g(s, X(s)) ds, (1.6)

where
d
dr

V (r, s) = Du(r, X(r))V (r, s), r ∈ [s, t],

V (s, s) = I.

⎫⎪⎬
⎪⎭ (1.7)

Take g = 0 for simplicity (the general case is similar); Equations (1.5) and (1.6) say that
the initial vorticity ξ0(x) at point x is transported along the path X(t), and during this
motion it is modified by the deformation tensor. For instance, the vorticity is stretched
when it is sufficiently aligned with the expanding directions of Du; of course the relative
position of ξ with respect to the expanding and contracting (remember that TrDu = 0)
directions of Du changes in time, so ξ(t, X(t)) may undergo a complicated evolution
with stretching, rotations and contractions. Heuristic reasoning and numerical experi-
ments show a predominance of the stretching mechanism, which could yield a blow-up
of ξ(t, X(t)) in finite time, for a certain initial point x.

If we want to know ξ(t̄, x̄) at a certain time t̄ and position x̄, we have to solve the
backward equation

Ẋ(t) = u(t, X(t)), t ∈ [0, t̄],

X(t̄) = x̄,

}
(1.8)

to find the initial position x = X(0) which moves to x̄ at time t̄; then

ξ(t̄, x̄) = V t̄,x̄(t̄, 0)ξ0(X t̄,x̄(0)) +
∫ t̄

0
V t̄,x̄(t̄, s)g(s, X t̄,x̄(s)) ds, (1.9)
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where we have denoted by X t̄,x̄(·) the solution of (1.8), to stress the dependence of the
final condition x̄ at time t̄, and by V t̄,x̄(r, s) the corresponding solution of Equation (1.7).

1.1.2. Path integral modification in the viscous case

In the viscous case the position X(t) of a material point still evolves under the deter-
ministic equation Ẋ(t) = u(t, X(t)). However, the vorticity carried by the fluid particle
at time t = 0 is not simply transported along its motion and modified by the action
of the tensor Du; a diffusion of ξ takes place. To describe it, let us introduce a virtual
evolution of fluid particles,

dX(t) = u(t, X(t)) dt +
√

2ν dWt,

where Wt is 3D Brownian motion. In a sense, in the non-viscous case we considered only
one trajectory Xx(t), for every given initial position x. On the other hand, in the viscous
case, we introduce an infinite family of trajectories, parametrized by the initial condition
x and the noise path Wt. Let us describe the transformations to which the vorticity is
subject, in this new framework.

Let (Ω, F ,P ) be the Wiener space of 3D continuous curves starting at zero, with P

being the Wiener measure, and let W (t, ω) = ω(t) be the canonical process: the 3D
Brownian motion. Let us decompose the initial vorticity ξ0(x) at every point x with
respect to the measure P :

ξ0(x) =
∫

Ω

ξ0(x)P (dω).

The vector ξ0(x)P (dω) will be the infinitesimal component of ξ0(x) that will travel along
the path X(t, ω). The vector ξ0(x)P (dω) is also subject to the action V (t, s) of Du along
the path X(t, ω) (we should write V x(t, s, ω) to emphasize the dependence on x and ω).
Therefore, given the realization ω of the Brownian motion, ξ0(x)P (dω) transforms at
time t into the vector

V (t, 0)ξ0(x)P (dω)

(we consider here the case g = 0 for the sake of brevity).
We have now reached the following picture: we have a family of virtual particle motions

Xx(t, ω), parametrized by x and ω, in place of the single true particle motion Xx(t). We
then decompose ξ0(x) with respect to P and observe, for every x and ω, the evolution
V (t, 0)ξ0(x)P (dω) of the infinitesimal component ξ0(x)P (dω) along the path Xx(t, ω).

Now, V (t, 0)ξ0(x)P (dω) is not the total value of the vorticity field at time t and point
x̄ = X(t, ω), but only the contribution due to the ω-evolution started from position x:
other initial positions x′ and other ω′-evolutions will reach the point x̄ at time t, and we
have to add all of these contributions. Therefore, to compute ξ(t̄, x̄) at a certain time t̄

and point x̄, we have to solve the backward stochastic equation

dX(t) = u(t, X(t)) dt +
√

2ν dWt, t ∈ [0, t̄],

X(t̄) = x̄

}
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to find the various positions X(0, ω) which move to x̄ at time t̄ under different noise
paths W (t, ω). Each ω add a contribution to ξ(t̄, x̄) given by

V t̄,x̄(t̄, 0; ω)ξ0(X t̄,x̄(0; ω))P (dω)

(see (1.9) and (1.5)), so the total vorticity ξ(t̄, x̄) is given by

ξ(t̄, x̄) = E[V t̄,x̄(t̄, 0)ξ0(X t̄,x̄(0))].

This is the probabilistic representation.

2. Main result on the probabilistic representation for the vorticity

2.1. Some definitions and notation

First we recall some classical spaces, like the space Lp(R3, R3) of 3D vector fields whose
p-power is summable, with norm

‖f‖p =
(∫

R3
|f(x)|p dx

)1/p

,

the space Ck
b (R3, R3) of k-times differentiable vector fields, with norm

‖g‖Ck
b

=
∑

|β|�k

‖Dβg‖∞,

and finally the space Ck,α
b (R3, R3) of vector fields whose kth-order derivatives are Hölder-

continuous with exponent α, with norm

‖g‖Ck,α
b

= ‖g‖Ck
b

+ [g]k+α,

where

[g]k+α =
∑

|β|=k

sup
x,y∈R3

|Dβg(x) − Dβg(y)|
‖x − y‖α

.

Next we define the spaces where our problem will be set. The velocity field of Navier–
Stokes equations will be in the space

Uα(T ) = {u ∈ C([0, T ];C1
b (R3, R3)) ∩ L∞(0, T ; C1,α

b (R3, R3)) | div u(t) = 0}, (2.1)

endowed with the norm
sup ess
0�t�T

‖u(t)‖C1,α
b

,

while the vorticity will be in the space

Vα,p(T ) = C([0, T ];Cb(R3, R3) ∩ Lp(R3, R3)) ∩ L∞(0, T ; Cα
b (R3, R3)), (2.2)

endowed with the norm
sup ess
0�t�T

‖v(t)‖Lp∩Cα
b
,
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where ‖ψ‖Cα
b ∩Lp = ‖ψ‖p + ‖ψ‖Cα

b
. We will use also the space

Uα
M (T ) =

{
u ∈ Uα(T )

∣∣∣ sup ess
t�T

‖u(t)‖C1,α
b

� M
}

, (2.3)

and the space

Vα,p
L (T ) =

{
ψ ∈ Vα,p(T )

∣∣∣ sup ess
t�T

‖ψ(t)‖Lp∩Cα
b

� L
}

. (2.4)

2.2. Probabilistic representation for the vorticity

The formulation of the 3D Navier–Stokes equations

∂tu − ν∆u + (u · ∇)u + ∇P = f,

div u = 0,

u(0, x) = u0(x),

lim
|x|→∞

u(t, x) = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

can be given in terms of the vorticity field ξ = curlu as

∂tξ − ν∆ξ + (u · ∇)ξ − (ξ · ∇)u = g,

ξ(0, x) = ξ0(x),

ξ = curlu,

div u = 0,

lim
|x|→∞

u(t, x) = 0,

where g = curl f . We shall write the term (ξ · ∇)u as (∇u)ξ. Moreover, the same term
can be written as Duξ, where Du is the deformation tensor, the symmetric part of ∇u,

Du = 1
2 (∇u + ∇uT),

since

(∇u)ξ − Duξ = 1
2 (∇u − ∇uT)ξ = ξ × ξ = 0.

As we explained intuitively in § 1.1 and we shall describe rigorously in the remainder of
the paper, using the representation formula of Theorem 4.4 and the generalized Feynman–
Kac formula of Theorem 3.12, the formulation of Navier–Stokes equations can be given
in the following way:

ξ(t, x) = E[Ux,t
t ξ0(X

x,t
t )] +

∫ t

0
E[Ux,t

s g(t − s, Xx,t
s )] ds,

u(t, x) = 1
2

∫ ∞

0

1
s
E[ξ(t, x + Ws) × Ws] ds,

⎫⎪⎪⎬
⎪⎪⎭ (2.6)
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where the Lagrangian paths (Xx,t
s )0�s�t are processes solutions of the following stochastic

differential equations

dXx,t
s = −u(t − s, Xx,t

s ) ds +
√

2ν dWs, s � t,

Xx,t
0 = x,

}

and the deformation matrices (Ux,t
s )0�s�t are the solutions to the following differential

equations with random coefficients

dUx,t
s = Ux,t

s Du(t − s, Xx,t
s ) ds, s � t,

Ux,t
0 = I.

}

Here Du is either ∇u or the deformation tensor (the name deformation matrices of Ux,t
s

refers to the latter case). Note that, with respect to § 1, we have made a time-reversion
which simplifies the mathematical analysis.

A sufficiently regular solution of the classical formulation (2.5) is a solution of (2.6)
and vice versa. The main aim of this section is to show that, under suitable conditions,
problem (2.6) has a unique local-in-time solution.

Theorem 2.1. Given p ∈ [1, 3
2 ), α ∈ (0, 1) and T > 0, let ξ0 ∈ Cα

b (R3, R3)∩Lp(R3, R3)
and g ∈ Vα,p(T ), and set

ε0 = ‖ξ0‖Cα
b ∩Lp +

∫ T

0
‖g(s)‖Cα

b ∩Lp ds.

There then exists τ ∈ (0, T ], depending only on ε0, such that there is a unique solution
u ∈ Uα(τ), with ξ ∈ Vα,p(τ), of problem (2.6).

Proof. The theorem will be proved using a fixed point argument. Namely, we will show
that there are suitable L, M and τ such that the map BS◦NS, where BS : Vα,p(τ) → Uα

M (τ)
is defined as

BS(ξ)(t, x) = 1
2

∫ ∞

0

1
s
E[ξ(t, x + Ws) × Ws] ds,

and NS : Uα
M (τ) → Vα,p(τ) is defined as

NS(u)(t, x) = E[Ux,t
t ξ0(X

x,t
t )] +

∫ t

0
E[Ux,t

t g(t − s, Xx,t
s )] ds,

is a contraction. By the Banach fixed point theorem, the claim will follow.
First, in view of Corollary 4.5, M � C̃L. Using Proposition 5.5, we see that NS maps

Uα
M (τ) to Vα,p(τ) if

e3τM (1 + τM)ε0 � L. (2.7)

By means of Corollary 4.5 and Proposition 5.6, BS ◦ NS is a contraction if

C̃C(ν, p)CM (τ)ε0 < 1, (2.8)

where C(ν, p) is a constant depending only on p and ν, and limτ→0 CM (τ) = 0. Hence,
it is sufficient to choose τ small enough in order to have both conditions (2.7) and (2.8)
verified. �
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Remark 2.2. As usual, the statement of the above theorem can be read in terms of
small initial data. More precisely, for each fixed time T , there is a constant ε such that,
if ε0 � ε, there exists a unique solution u ∈ Uα(T ), with ξ ∈ Vα,p(T ), of problem (2.6).

2.3. A continuation principle

In this section, as an application of the probabilistic representation we have developed
in the previous section, we prove a continuation principle for problem (2.5), similar to
the celebrated blow-up criterion presented in [3]. We state it in the variant of Ponce [29],
which says that a mild control of the magnitude of the deformation tensor gives global
existence. Such a form of the principle is particularly suited for our representation (and
indeed, the proof is almost straightforward), because the probabilistic formula tends to
emphasize the role of the deformation tensor (see also Remark 2.4). Without loss of
generality, we can assume that g ≡ 0.

Theorem 2.3 (continuation principle). Assume that for each T > 0 there is an
M1 such that ∫ T

0
‖Du(s)‖L∞ � M1.

Then, for each T > 0 there is an M > 0 such that u ∈ Uα
M (T ).

If for each M > 0 there is a maximal existence time TM for the solution u ∈ Uα
M (TM )

and limM→+∞ TM = T∗, then

lim
t↑T∗

∫ t

0
‖Du(s)‖L∞ = +∞.

Proof. From Theorem 2.1 we know that if the initial condition has finite Cα
b ∩ Lp

norm, then there is a unique local solution. Hence, it is possible to continue the solution
as long as the norm ‖ξ(t)‖Cα

b ∩Lp is finite. By virtue of Lemma 2.5, such a claim is true
if the integral ∫ t

0
‖∇u(s)‖L∞ ds

is bounded. As final step of the proof, we show that the integral above is bounded
by
∫ t

0 ‖Du‖L∞ . Indeed, since Du is the symmetric part of ∇u and the entries of the
antisymmetric part are given by the components of ξ, it is straightforward that

‖∇u‖L∞ � ‖Du‖L∞ + ‖ξ‖L∞ .

Finally, using Lemma 5.2,

|ξ(t, x)| = |EUx,t
t ξ0(X

x,t
t )| � ‖ξ0‖L∞ exp

{∫ t

0
‖Du‖L∞ ds

}
,

and hence the theorem follows. �
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Remark 2.4. The original blow-up criterion given by Beale et al . [3] involved the
estimate of the L∞ norm of the vorticity, rather than the same norm of the deformation
tensor, as in the above theorem. The double exponential estimate of Lemma 2.5 prevents
us from deducing the original criterion from our representation.

We conclude the section by giving the technical lemma we have used in the proof of
the above theorem.

Lemma 2.5. We have

‖ξ(t)‖Cα
b ∩Lp � F

(
‖ξ0‖Cα

b ∩Lp ,

∫ t

0
‖∇u(s)‖∞ ds

)

for a function F , which is given explicitly in the proof.

Proof. First, using (5.3),

|ξ(t, x)| = |EUx,t
t ξ0(X

x,t
t )| � exp

{∫ t

0
‖∇u‖∞

}
‖ξ0‖L∞ ,

and, from formula (5.2),

‖ξ(t)‖p
Lp �

∫
R3

E|Ux,t
t ξ0(X

x,t
t )|p dx

� exp
{

p

∫ t

0
‖∇u‖

}∫
R3

|ξ0(X
x,t
t )|p dx

= ‖ξ0‖p
Lp exp

{
p

∫ t

0
‖∇u‖∞

}
.

Finally, if x, y ∈ R
3,

|ξ(t, x) − ξ(t, y)| � E|Ux,t
t ξ0(X

x,t
t ) − Uy,t

t ξ0(X
y,t
t )|

� E|Ux,t
t | · |ξ0(X

x,t
t ) − ξ0(X

y,t
t )| + E|ξ0(X

y,t
t )| · |Ux,t

t − Uy,t
t |

� exp
{

(1 + α)
∫ t

0
‖∇u‖

}(
[ξ0]α + ‖ξ0‖L∞

∫ t

0
[∇u(s)]α ds

)
|x − y|α,

and, since [∇u]α � C[ξ]α (it is a classical singular integral operator estimate, see, for
example, [28]), we get

[ξ(t)]α � e(1+α)A(t)[ξ0]α + C‖ξ0‖L∞e(1+α)A(t)
∫ t

0
[ξ(s)]α ds

and, by Gronwall’s lemma, the proof of the estimate is complete. �
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3. The Feynman–Kac formula for a deterministic system of
parabolic equations

This section is devoted to the development of a probabilistic representation formula for
the following system of parabolic equations with the final condition

∂tvk + 1
2

∑
i,j

aij∂
2
xixj

vk +
d∑

i=1

bi∂xi
vk + (Dv)k + fk = 0,

vk(T, x) = ϕk(x), x ∈ R
d,

⎫⎪⎪⎬
⎪⎪⎭ k = 1, . . . , l, (3.1)

for (t, x) ∈ [0, T ]×R
d, or the following system of parabolic equations with initial condition

∂tvk = 1
2

∑
i,j

aij∂
2
xixj

vk +
d∑

i=1

bi∂xivk + (Dv)k + fk,

vk(0, x) = ϕk(x), x ∈ R
d,

⎫⎪⎪⎬
⎪⎪⎭ k = 1, . . . , l, (3.2)

where a = σσ∗ and
σ : [0, T ] × R

d → R
d×d,

b : [0, T ] × R
d → R

d,

D : [0, T ] × R
d → R

l×l,

ϕ : R
d → R

l,

f : [0, T ] × R
d → R

l

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

are Borel-measurable functions. Additional assumptions will be stated below.
At first, for simplicity, assume that f ≡ 0 and all the data are regular. If l = 1, the

equation (3.1), with the final condition, has a unique solution given by the Feynman–Kac
formula:

v(t, x) = E

[
ϕ(Xt,x

T ) exp
{∫ T

t

D(r, Xt,x
r ) dr

}]
,

where Xt,x
s is the solution of the stochastic differential equation (SDE)

dXt,x
s = b(s, Xt,x

s ) ds + σ(s, Xt,x
s ) dWs, s ∈ [t, T ],

Xt,x
t = x,

}
(3.4)

where (Wt)t�0 is a d-dimensional Brownian motion on some filtered probability space.
Our aim is to extend such a formula to the case l > 1.

Note that, in the case l = 1, for each ω, the function

ut,x
r = exp

{∫ r

t

D(s, Xt,x
s ) ds

}

is the solution of the following equation (now D is a scalar):

dut,x
r = ut,x

r D(r, Xt,x
r ) dr, r ∈ [t, T ],

ut,x
t = 1.

}
(3.5)
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So, in the same way, in the case l > 1, we will consider the process U t,(x,Y ), the solution
of the equation

dU t,(x,Y )
r = U t,(x,Y )

r D(r, Xt,x
r ) dr, r ∈ [t, T ],

U
t,(x,Y )
t = Y,

}
(3.6)

where now both D and U t,(x,Y ) are l × l matrices. If Y ≡ I, we may write U t,x in place
of U t,(x,I). Now, the natural conjecture is that, under suitable regularity conditions, the
solution of (3.1) is

v(t, x) = E[U t,x
T ϕ(Xt,x

T )]. (3.7)

In § 3.1 we will prove (3.7), under suitable regularity conditions on the coefficients.
Such a formula needs to be modified in order to handle the case f 
≡ 0, as we show in
§ 3.2. In § 3.3 we shall provide sufficient conditions for the uniqueness of strong solutions
to system (3.1). Finally, in § 3.4 we shall give a Feynman–Kac representation for the
solutions of the system (3.2), with an initial condition.

Remark 3.1. When l = 1, we can write both ut,x
r D and Dut,x

r without distinction
in formula (3.5), since they are both scalars. If l > 1, the lack of commutativity for the
matrix products gives the result that U t,x

r D and DU t,x
r are different. The choice in the

order of the matrix product in Equation (3.6), and in formula (3.7), derives from the
form of the term D · v in system (3.1). In order to understand this fact, the reader can
see the computations in the proof of the uniqueness in Proposition 3.9 (it is convenient
to take f ≡ 0 for simplicity). However, when one uses backward stochastic equations to
represent solutions, the order of Ur and D in Equation (3.6) changes (see § 3.4).

3.1. The homogeneous case

Throughout this section, we will assume

f ≡ 0

and that the functions b, σ and D, given in (3.3), are Borel-measurable functions such
that

(A1) b, σ are sublinear with respect to x, uniformly in t,

(A2) b, σ are locally Lipschitz-continuous in x, uniformly in t,

(A3) a is differentiable in x and ∂xi
a are locally Lipschitz-continuous in x, uniformly

in t,

(A4) D is bounded and locally Lipschitz-continuous in x, uniformly in t,

(A5) ϕ is bounded and continuous.

In particular, assumptions (A1), (A2) and (A4) ensure the existence of strong solutions,
having the property of uniqueness in law, for Equations (3.4) and (3.6). Moreover, from
Assumption (A4), it easily follows that

‖U t,x
T ‖Rl×l � eT‖D‖∞ , (3.8)
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where ‖D‖∞ is the sup-norm. Finally, the previous formula and Assumption (A5) imply
that the function v given by (3.7) is well defined and bounded.

We can now state the main result of this section.

Theorem 3.2. Assume (A1)–(A5) and ϕ ∈ Cb(Rd, Rl). Then the function

v(t, x) = E[U t,x
T ϕ(Xt,x

T )]

is continuous and bounded and solves the Kolmogorov equation (3.1) in the sense of
distributions, i.e.∫ T

0

∫
Rd

vM∗η dxdt = 0, for all η ∈ C∞
c ((0, T ) × R

d, Rl), (3.9)

where
M∗η = −∂tη + 1

2

∑
ij

∂2
xixj

(aijη) −
∑

i

∂xi(biη) + D∗η. (3.10)

Remark 3.3. The operator M∗ makes sense since, by Assumptions (A2), (A3), the
functions bi, ∂xj aij are Lipschitz-continuous, and hence by Rademacher’s theorem (see,
for example, [14]), almost everywhere (a.e.) differentiable. Consequently, the functions
∂xixj aij and ∂xi

bi are well defined a.e. and essentially bounded on compact sets. More-
over, M∗η is bounded in compact sets.

To prove Theorem 3.2, we shall use the method of new variables given by Krylov [24].
Krylov used such a method in order to transform a parabolic equation on R

d × [0, T ] with
a potential term into a parabolic equation on R

d+2 × [0, T ] without a potential term. As
observed in § 1, we extend this method to systems of parabolic equations. In our case, the
elimination of the potential term has the additional advantage that the coupling between
the equations in (3.1) disappears. In other words, we turn the system (3.1) into a system
of l independent parabolic equations on R

d+l×l × [0, T ] without the potential term.
We define the new variables x̄ = (x, Y ) ∈ R

d+l×l, and, for each function ψ : R
d → R

l,
we define the function ψ̄ : R

d+l×l → R
l as ψ̄(x̄) = Y ψ(x). Finally, if u(t, x) : [0, T ]×R

d →
R

l, we set ū(t, x̄) = Y u(t, x).
Prior to the computation of the derivatives of v̄, we give some notation. We denote by

0m×n the m × n matrix with all entries equal to zero. Given a column vector α ∈ R
d

and an l × l matrix A, we define the (d + l) (exotic) column vector [ α
A ], where the first

d rows are given by the components of α and the other l rows are the rows of A (the
apparent inconsistency is inessential, since we shall only use the scalar product defined
below). The scalar product between two such vectors is defined as〈[

α

A

]
,

[
β

B

]〉
= α · β + 〈A : B〉,

where, as usual, 〈A : B〉 = Tr(A · B) =
∑l

i,j=1 AijBij.
Given u ∈ C1([0, T ] × R

d; Rl), since

∂ūh

∂Yij
=

∂(Y u)h

∂Yij
=

∂

∂Yij

∑
k

Yhkuk = δihuj , h = 1, . . . , l, (3.11)
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it follows that, for each h = 1, . . . , l, the gradient ∇x̄ūh of ūh with respect to all its
variables is given by the following (exotic) column vector:

∇x̄ūh =

[
∇x(Y u)h

∇Y ūh

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇x(Y u)h

01×l

...
u
...

01×l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the d-column vector is the gradient with respect to x and the l × l matrix has all
its rows equal to the l-dimensional vector 01×l = (0, . . . , 0)T except for the hth, which is
the vector u.

Next we evaluate the scalar product〈[
b

Y D

]
,∇x̄ūh

〉
.

Since
(Y D)ij∂Yij (Y u)h = (Y D)ijδihuj = (Y D)hjujδih,

it follows that 〈(
b

Y D

)
,∇x̄ūh

〉
= b · ∇x(Y u)h + (Y Du)h.

In particular, if Y = I, the above quantity is equal to b · ∇xuh + (Du)h.
Let

α(t, x̄) =

(
a(t, x) 0d×l2

0l2×d 0l2×l2

)
, β(t, x̄) =

[
b(t, x)

Y D(t, x)

]
, (3.12)

where we understand that α is defined in blocks, where each entry is a matrix itself
(note that D2

x̄ūh is also defined in blocks, and the product 〈α : D2
x̄ūh〉 is defined as

the sum of the four 〈 · : · 〉-products of the corresponding blocks). With this notation, if
u ∈ C1,2([0, T ] × R

d; Rl), we have, for each h = 1, . . . , l,

∂tūh + 1
2 〈α : D2

x̄ūh〉 + 〈β,∇x̄ūh〉

= (Y ∂tu)h + 1
2

∑
i,j

aij∂
2
xixj

(Y u)h +
∑

i

bi∂xi(Y u)h + (Y Du)h

=
[
Y

(
∂tu + 1

2

∑
i,j

aij∂
2
xixj

u +
∑

i

bi∂xiu + Du

)]
h

.

From this identity it is straightforward to prove that a field u is a strong solution of (3.1)
if and only if ū is a strong solution of system (3.13), where by ‘strong solution’ we mean
a continuous function having continuous first derivatives in time and second derivatives
in space, and satisfying the corresponding equation pointwise. In the same way, applying
the same ideas used above on the adjoint operator, we have the following equivalence.
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Proposition 3.4. A function u is a weak solution of system (3.1), with a final condi-
tion, if and only if ū is a weak solution of

∂tūh + 1
2 〈α : D2

x̄ūh〉 + 〈β,∇x̄ūh〉 = 0, h = 1, . . . , l, (3.13)

with the final condition ū(T, x̄) = Y ϕ(x).

Below we prove that, under suitable conditions, the vector field v̄(t, x̄) = Y v(t, x),
where v is given by (3.7), is a weak solution of (3.13). In view of Proposition 3.4, this
implies that the function given by (3.7) solves system (3.1) in the weak sense.

The main part of the proof that v̄(t, x̄) is a weak solution of (3.13) is contained in the
following proposition, where we relax some regularity assumptions on the coefficients of
a theorem of Krylov [24]. Indeed, the drift and the diffusion defined in formulae (3.12)
are neither bounded nor globally Lipschitz-continuous, in contrast to the assumptions
of [24]. The same problem occurs for the final condition. On the other hand, both the
drift and the diffusion are locally Lipschitz-continuous and have linear growth (in all
variables, including Y ).

Proposition 3.5. Let m ∈ N and consider the scalar parabolic equation

∂tu + 1
2 〈α : D2u〉 + 〈β,∇u〉 = 0, (t, x) ∈ [0, T ] × R

m, (3.14)

with final condition u(T, x) = ψ(x), where α = γγ∗ and

β : [0, T ] × R
m → R

m, γ : [0, T ] × R
m → R

m×m, ψ : [0, T ] × R
m → R,

and assume that

(i) β, γ are Borel measurable, sublinear and locally Lipschitz-continuous in x, uni-
formly in t,

(ii) ψ is continuous and has polynomial growth,

(iii) γ(t, ·) is continuously differentiable for each t and ∂xiγ are locally Lipschitz-
continuous in x, uniformly in t.

Set u(t, x) = E[ψ(Zt,x
T )], where Zt,x

r is the solution of the SDE

dZt,x
r = β(r, Zt,x

r ) dr + γ(r, Zt,x
r ) dWr, r ∈ [t, T ],

Zt,x
t = x,

}

where (Wt)t�0 is an m-dimensional standard Brownian motion. Then u is a weak solution
of (3.14): for each η ∈ C∞

c ((0, T ) × R
m), we have∫ T

0

∫
Rm

uN∗η dxdt = 0,

where
N∗η = −∂tη + 1

2

∑
i,j

∂2
xixj

(αijη) −
∑

i

∂xi(βiη).
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Proof. If everywhere in the assumptions of the proposition we have global Lipschitz-
continuity (instead of local Lipschitz-continuity), the proposition follows from [24, The-
orem 5.13]. In the general case, we proceed by truncation. Let Ψn ∈ C∞(Rm) be such
that

Ψn(x) =

{
1, |x| � n,

0, |x| � n + 1,

and set β(n) = Ψnβ and γ(n) = Ψnγ. Fix a Brownian motion (Ω, F ,Ft, Wt,P ) and denote
by Zs,x,n

t the solutions to the corresponding SDEs. The sequence Zs,x,n
t converges to Zs,x

t

in probability uniformly on compact subsets of [0, T ] × R
m.

Suppose first that ψ is bounded. Then un(t, x) = E[ψ(Zs,x,n
t )] converges to u(t, x) and

β
(n)
xi converges to βxi

, ∂xi
α(n) to ∂xi

α and ∂xi,xj
α(n) to ∂xi,xj

α uniformly on compact
subsets of [0, T ] × R

m. Let η ∈ C∞
c , since N∗

nη is a bounded sequence (see Remark 3.3),
by the dominated convergence theorem,

∫
unN∗

nη converges to
∫

uN∗η, where N∗
n is the

operator corresponding to the approximate coefficients. Since un are weak solutions, it
follows that u is also a weak solution.

If ψ is not bounded, we take a sequence of bounded continuous functions ψn → ψ such
that |ψn(x)| � |ψ(x)|. From [24, Theorem 4.6], we have E[|Zt,x

T |k] � c(1 + |x|k), so
that un(t, x) � c(1 + |x|k) by Assumption (ii), and again we conclude by the dominated
convergence theorem. �

We are now ready to prove the main theorem.

Proof of Theorem 3.2. First we show that v is bounded and continuous. The bound-
edness comes from (3.8) and the assumptions on ϕ. In order to show the continuity,
we take a sequence (xn, tn) converging to (x, t). From [24, Lemma 2.9], the function
(t, x) → (Xt,x, U t,(x,I)) ∈ C([0, T ], Rd+l×l) (where by convention (Xt,x

s , U
t,(x,I)
s ) = (x, I)

if s < t) is continuous in probability. Hence, there is a subsequence such that convergence
is almost sure. Finally, the conclusion follows from the bound (3.8), the assumptions on
ϕ and the dominated convergence theorem.

We show then that v is a weak solution. We have the following two ingredients.

(i) The two systems of SDEs (3.4) and (3.6) can be thought of as a unique system
where the solution (Xt,x

r , U
t,(x,Y )
r ) takes values in R

d+l×l and drift and diffusion
are given by (3.12).

(ii) Since, by uniqueness for Equation (3.6), it follows that U
t,(x,Y )
T = Y U t,x

T , for the
function v defined in (3.7), we have

v̄(t, x̄) = Y v(t, x) = E[Y U t,x
T ϕ(Xt,x

T )]

= E[U t,(x,Y )
T ϕ(Xt,x

T )]

= E[ϕ̄(Xt,x
T , U

t,(x,Y )
T )].

From these two facts, by Proposition 3.5, v̄ is a weak solution to system (3.13). By
Proposition 3.4, v is a weak solution to system (3.1). �
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The regularity assumption (A4) on the term D can be relaxed with the following
condition:

(A′
4) D is bounded and uniformly continuous.

In fact, we can deduce the following corollary.

Corollary 3.6. Assume (A1)–(A3), (A′
4) and (A5). Then the function

v(t, x) = E[U t,x
T ϕ(Xt,x

T )]

is continuous and bounded and solves the Kolmogorov equation (3.1) in the sense of
distributions: ∫ T

0

∫
Rd

vM∗η dxdt = 0 for all η ∈ C∞
c ((0, T ) × R

d, Rd).

Proof. Let ρn be a sequence of mollifiers and set Dn = D ∗ ρn and vn(t, x) =
E[U t,x

T,nϕ(Xt,x
T )], where U t,x

r,n is the solution of (3.6) corresponding to Dn.
Since Dn → D uniformly in [0, T ] × R

d, we have U t,x
t,n → U t,x

t in L1(Ω), uniformly in
[0, T ] × R

d. Consequently, vn(t, x) → v(t, x) and Dnvn → Dv uniformly [0, T ] × R
d. Since

vn are weak solutions of the corresponding approximate problem, in the limit v is a weak
solution of Mv = 0. �

3.2. The inhomogeneous case

In this section, Theorem 3.2 will be extended to the inhomogeneous case. We will show
a Feynman–Kac representation formula for the complete system (3.1), i.e. with f 
≡ 0,
with the final condition. Throughout this section we will assume (A1)–(A3), (A′

4), (A5)
and the following:

(A6) f : [0, T ] × R
d → R

l is bounded and uniformly continuous.

Theorem 3.7. Assume (A1)–(A3), (A′
4), (A5), (A6). Then the function

v(t, x) = E[U t,x
T ϕ(Xt,x

T )] +
∫ T

t

E[U t,x
r f(r, Xt,x

r )] dr (3.15)

is a weak solution of (3.2), i.e.

∫ T

0

∫
Rd

(uM∗η + fη) dt dx = 0, η ∈ C∞
c ((0, T ) × R

d, Rl).

The main idea to prove the theorem is to introduce a new component (we apply again
the method of new variables of Krylov [24]) and prove that v is a solution of system (3.1)
if and only if ṽ = (v1, . . . , vl, 1) solves the system

∂tṽ + 1
2

∑
i,j

aij∂xixj ṽ +
∑

i

bi∂xi ṽ + (D̃ṽ)k = 0, (3.16)
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with final condition

ṽ(T, ·) = (ϕ1, . . . , ϕl, 1), where D̃ =

(
D f

0 0

)
.

Note that

D̃ṽ =

(
Dv + f

0

)
,

so the component ṽl+1 is obviously a solution.
The key lemma follows.

Lemma 3.8. The function ṽ = (v1, v2, . . . , vl, 1) is a weak solution of (3.16) if and
only if v = (v1, v2, . . . , vl) is a weak solution of (3.1).

Proof. A weak solution of (3.1) is a function v such that∫∫
(vM∗η + fη) = 0

for each test function η, or, equivalently,∫∫
(vL∗η + vD∗η + fη) = 0,

where the operator M∗ has been defined in (3.10) and L∗ is defined as

L∗η = −∂tη + 1
2

∑
i,j

∂2
xixj

(aijη) −
∑

i

∂xi(biη).

Let η̃ = (η, ηl+1) be an R
l+1-valued test function. Since

D̃∗ =

(
D∗ 0
f∗ 0

)
,

we have

ṽD̃∗η̃ =

(
vD∗η + fη

0

)
.

It comes out that v is a solution of the inhomogeneous equation if and only if ṽ solves∫∫
(ṽL∗η̃ + fη̃) = 0,

that is, if and only if ṽ is a weak solution of system (3.16). �

We can now prove the main theorem of this section.
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Proof of Theorem 3.7. Let ϕ̃ be the function (ϕ1, . . . , ϕl, 1) and Ũ t,x
s be the solution

of
dŨ t,x

s = Ũ t,x
s D̃(s, Xt,x

s ) ds, s ∈ [t, T ],

Ũ t,x
t = Il+1.

}
(3.17)

Since ϕ, D and f satisfy Assumptions (A′
4)–(A6), the functions ϕ̃ and D̃ satisfy Assump-

tions (A′
4) and (A5). Hence, by Corollary 3.6, the function

(x, t) → E[Ũ t,x
T ϕ̃(Xt,x

T )]

is a weak solution of system (3.16).
We write Ũ t,x

s in blocks:

Ũ t,x
s =

(
At,x

s bt,x
s

ct,x
s dt,x

s

)
,

where As is an l × l matrix, bs ∈ R
d is a column vector, cs ∈ R

d is a row vector and ds

is a scalar. With this position, the Cauchy problem (3.17) is equivalent to

dAt,x
s = At,x

s D(s, Xt,x
s ) ds, At,x

t = Il,

dbt,x
s = At,x

s f(s, Xt,x
s ) ds, bt,x

t = 0,

dct,x
s = ct,x

s D(s, Xt,x
s ) ds, ct,x

t = 0,

ddt,x
s = ct,x

s f(s, Xt,x
s ) ds, dt,x

t = 1,

and it is easy to see that

At,x
s = U t,x

s , bt,x
s =

∫ s

t

U t,x
r f(r, Xt,x

r ) dr,

ct,x
s = 0, dt,x

s = 1.

Consequently,

E[Ũ t,x
T ϕ̃(Xt,x

T )] = E

[(
U t,x

T bt,x
T

0 1

)(
ϕ(Xt,x

T )

1

)]

= E

[(
U t,x

T ϕ(Xt,x
T + bt,x

T )

1

)]

= E

⎡
⎣
⎛
⎝U t,x

T ϕ(Xt,x
T + bt,x

T ) +
∫ s

t

U t,x
r f(r, Xt,x

r ) dr

1

⎞
⎠
⎤
⎦ .

�

3.3. A uniqueness result

In the preceding sections, we were concerned with the existence of a weak solution
of the parabolic system (3.1) having a nice probabilistic representation. The aim of the
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present section is to provide sufficient conditions for the uniqueness of solutions. In Propo-
sition 3.9 we shall see that the strong solution, if it exists, is given by our probabilistic
representation and, hence, is unique. In Theorem 3.10 we will show, under some special
conditions on the coefficients, that weak solutions are also unique and are given by the
probabilistic representation. Such special conditions on the coefficients are satisfied in
the application of the probabilistic representation to the Navier–Stokes system: if the
velocity field is regular enough, the coefficients in the equations for the vorticity satisfy
the special conditions. Hence, for each fixed regular velocity, there exists a unique weak
solution of the vorticity equation given by the Feynman–Kac formula.

Let C1,2
b ([0, T ] × R

d, Rl) be the space of continuous functions having first and second
derivatives in x and first derivative in t continuous and bounded. We start by showing
that, if the solution of the parabolic system is regular, then it is given by (3.15).

Proposition 3.9. Let v ∈ C1,2
b ([0, T ] × R

d, Rl) be a strong solution of system (3.1),
with the final condition. Then v is given by (3.15).

Proof. It is sufficient to show that the process

U t,x
r v(r, Xt,x

r ) +
∫ r

t

U t,x
s f(s, Xt,x

s ) ds, r ∈ [t, T ],

is a martingale. Indeed, if h ∈ {1, . . . , l}, by the Itô formula (we omit for simplicity
(r, Xt,x

r ) from the term v(r, Xt,x
r ) and from the coefficients, and the subscript r from the

term U t,x
r ),

dr(U t,xv)h =
∑

k

d(U t,x
hk vk) =

∑
k

(U t,x
hk vk + vk dU t,x

hk )

=
∑

k

U t,x
hk

[(
∂rvk +

∑
i

bi∂xi
vk + 1

2

∑
i,j

aij∂
2
xixj

vk

)
dr +

∑
i,j

∂xi
vkσij dW j

r

]

+
∑
k,i

vkU t,x
hi Dik dr

= −
∑

k

U t,x
hk

(
fk +

∑
i

Dkivi

)
dr + (Mr)h +

∑
k,i

vkU t,x
hi Dik dr

= −dr

(∫ r

t

(U t,x
s f)h ds

)
+ (dMr)h,

since v is a solution of system (3.1); (Mr)r∈[t,T ] is the d-dimensional martingale, vanishing
at r = t, given by

(dMr)h =
∑

k

U t,x
hk

∑
i,j

∂xivkσij dW j
r .

Moreover, Mr is square-integrable, since v ∈ C1,2
b , U t,x

T is bounded by (3.8), and

sup
t�r�T

E[|Xt,x
r |2]

is bounded. �
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Theorem 3.10. Let ϕ be bounded and continuous, and let f and D be bounded
and uniformly continuous. Suppose that σ is constant and b is a function that is Borel
measurable and Lipschitz-continuous in x such that div b = 0. Then the function

v(t, x) = E[U t,x
T ϕ(Xt,x

T )] +
∫ T

t

E[U t,x
r f(r, Xt,x

r )] dr

is the unique weak solution of the parabolic system (3.1).

The proof of the theorem is based on a regularization by convolution, in order to apply
the uniqueness result of the previous proposition.

Let ρ ∈ C∞(Rd, R), 0 � ρ � 1, with support in the ball of radius 1, and set ρn(x) =
ndρ(nx). Let Jn be the convolution operator: Jn(u) = ρn ∗ u.

Lemma 3.11. Let b : R
d → R

d be a Lipschitz-continuous function, such that div b = 0
(in the sense of distributions). There is then a constant C such that, for each u ∈
Cb(Rd, Rl),

|([Jn, b · ∇]u)(x)| � C sup
y∈B1/n(x)

|u(y)| for all n, (3.18)

where [Jn, b · ∇]u = Jn((b · ∇)u) − (b · ∇)Jnu is the commutator. Moreover,

[Jn, b · ∇]u n→∞−−−−→ 0 uniformly on compact sets. (3.19)

Proof. Fix u ∈ Cb(Rd, Rl). Since div b = 0, by integration by parts we have

([Jn, b · ∇]u))(x) = (ρn ∗ (b · ∇)u − (b · ∇)(ρn ∗ u)))(x)

=
∫

Rd

ρn(x − y)(b(y) · ∇y)u(y) − (b(x) · ∇x)(ρn(x − y))u(y) dy

=
∫

Rd

u(y)(b(x) − b(y)) · ∇yρn(x − y) dy.

Taking the norms in R
l we get

|([Jn, b · ∇]u)(x)| �
∫

B1/n(x)
|∇ρn(x − y)| · |b(y) − b(x)| · |u(y)| dy

� cL‖∇ρ‖∞ sup
y∈B1/n(x)

|u(y)|,

where L is the Lipschitz constant of b. So far, we have proved (3.18). Concerning (3.19),
it is easy to see that the claim is true for u ∈ C∞

b (Rd, Rl). If u is only Cb, the claim
follows from approximation with C∞

b functions (in the sup-norm, on compact sets) and
from the bound (3.18). �

We apply now the previous lemma to prove the main theorem.
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Proof of Theorem 3.10. Let v be a bounded and continuous weak solution of sys-
tem (3.1). The sequence vn = ρn ∗ v belongs to C([0, T ], C∞

b (Rd, Rl)) and vn → v

uniformly on compact sets. We want to show that vn is a weak solution of

∂tvn + 1
2

∑
i,j

aij∂
2
xixj

vn +
∑

i

bi∂xi
vn + Dvn + ρn ∗ f + Rn = 0, (3.20)

with final condition vn(T ) = ρn ∗ ϕ, where Rn = [Jn, b · ∇]v + [Jn,D]v. Indeed, v is a
weak solution of (3.1), so that we can use ζn = ρ̆n ∗ η as a test function, where η is again
a test function and ρ̆n(x) = ρn(−x), to obtain, by some easy computations,

∫ T

0

∫
Rd

(vM∗ζ + fζ) =
∫∫

v

(
−∂tζn + 1

2

∑
i,j

axixj ∂
2
ijζn −

∑
i

bi∂xiζn + D∗ζn

)
+ fζn

=
∫∫ [

vn

(
−∂tη + 1

2

∑
i,j

aij∂
2
xixj

η −
∑

i

bi∂xi
η + D∗η

)]

+
∫∫

η(Jnf + [Jn, b · ∇]v + [Jn,D]v)

(note that, for each u,
∫

u(ρ̆n ∗ η) =
∫

η(ρn ∗ u)).
Since vn belongs to C([0, T ], C∞

b (Rd, Rl)) and ρn ∗ f + Rn is bounded and continuous,
we argue that the distributional derivative ∂tvn is bounded and continuous and, therefore,
a strong derivative. Hence vn ∈ C1,2

b , and it is a strong solution of (3.20). Proposition 3.9
yields

vn(t, x) = E[U t,x
T ρn ∗ ϕ(Xt,x

T )] +
∫ T

t

E[U t,x
r (ρn ∗ f + Rn)(Xt,x

r )] dr.

It is easy to check that ‖[Jn, D]v‖∞ � 2‖D‖∞‖v‖∞ and [Jn, D]v → 0, uniformly on com-
pact sets. Hence, by the previous lemma, Rn is bounded, independently of n, and Rn → 0
uniformly on compact sets. Using (3.8) and the dominated convergence theorem, we
obtain

v(t, x) = lim
n→∞

vn(t, x) = E[U t,x
T ϕ(Xt,x

T )] +
∫ T

t

E[U t,x
r f(r, Xt,x

r )] dr.

�

3.4. The formula for parabolic systems with an initial condition

In this section we describe the probabilistic representation of weak solutions to the
system (3.2), with an initial condition. Indeed, below we will use the results of this section
to give a probabilistic representation for the solutions to the Navier–Stokes equations,
which is a parabolic equation with an initial condition.

We will obtain the representation formula for the forward parabolic system using the
representation for the backward parabolic system and a time inversion of the coefficients.
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To this aim, we will consider the following SDEs

dXs,x,t
r = b(t − r, Xs,x,t

r ) dr + σ(t − r, Xs,x,t
r ) dWr, r ∈ [s, t],

Xs,x,t
s = x,

}
(3.21)

and
dUs,(x,Y ),t

r = Us,(x,Y ),t
r D(t − r, Xs,x,t

r ) dr, r ∈ [s, t],

Us,(x,Y ),t
s = Y,

}
(3.22)

where, as usual, Us,(x,Y ),t = Us,x,t when Y = I.

Theorem 3.12. Let the data b, σ, ϕ, D and f satisfy Assumptions (A1)–(A3), (A′
4),

(A5) and (A6). Then the function

v(t, x) = E[U0,x,t
t ϕ(X0,x,t

t )] +
∫ t

0
E[U0,x,t

r f(t − r, X0,x,t
r )] dr (3.23)

is a weak solution of (3.2), with an initial condition.
Moreover, if σ is constant and b is globally Lipschitz-continuous in x, then v is the

unique weak solution.

Proof. Let ṽ(t, x) = v(T − t, x). If v is a weak solution of (3.2), by easy computations
it follows that ṽ is a weak solution of

∂tṽ(t, x) + 1
2

∑
i,j

aij(T − t, x)∂2
xixj

ṽ(t, x)

+
∑

i

bi(T − t, x)∂xi
ṽ + D(T − t, x)ṽ(t, x) + f(T − t, x) = 0, (3.24)

for t ∈ [0, T ], with final condition ṽ(T, x) = ϕ(x) (and vice versa).
By Theorem 3.7, a solution ṽ of (3.24) is given by

ṽ(t, x) = E[U t,x,T
T ϕ(Xt,x,T

T )] +
∫ T

t

E[U t,x,T
r f(T − r, Xt,x,T

r )] dr,

where U t,x,T
r and Xt,x,T

r are given in (3.22) and (3.21), respectively. We can conclude
that a solution v of the forward parabolic Equation (3.2) is given by

v(t, x) = E[UT−t,x,T
T ϕ(XT−t,x,T

T )] +
∫ T

T−t

E[UT−t,x,T
r f(T − r, XT−t,x,T

r )] dr.

Finally, one can easily check that, for each r ∈ [T − t, T ], the joint law of the random
variables UT−t,x,T

r and XT−t,x,T
r is equal to the joint law of the random variables U0,x,t

r+t−T

and X0,x,t
r+t−T . In conclusion, formula (3.23) holds. �

The representation formula above appears more complicated than the formula for
parabolic systems with final condition (3.15): the stochastic processes Xr in (3.15) are the
solutions of a fixed SDE corresponding to different initial conditions, while the stochastic
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processes X0,x,t
r and U0,x,t

r in (3.23) solve, for each t, a different SDE. A different rep-
resentation can be given which is more appealing at the heuristic level, even if it is less
suitable for stochastic calculus.

Consider the backward SDE

Y t,x
r = x +

∫ t

r

b(s, Y t,x
s ) ds +

∫ t

r

σ(s, Y t,x
s ) d̂Ws, r ∈ [0, t], (3.25)

where d̂Ws denotes the backward stochastic integral with respect to the Brownian motion
Ws (see [25] for the definition of the backward integral). Note that the final condition
Y t,x

t = x has been imposed here. Let V s,t,x
r , 0 � s � r � t, be the solution of

dV s,t,x
r = D(r, Y t,x

r )V s,t,x
r dr, r ∈ [s, t],

V s,t,x
s = I.

}
(3.26)

Theorem 3.13. Under the same assumptions of the previous theorem, a weak solution
of the parabolic system (3.2), with an initial condition, is given by

v(t, x) = E[V 0,t,x
t ϕ(Y t,x

0 )] +
∫ t

0
E[V r,t,x

t f(r, Y t,x
r )] dr, (3.27)

where Y t,x and V r,t,x are given by (3.25) and (3.26), respectively.

Remark 3.14. We want to give an interpretation of the representation formula given
above. Suppose for clarity that f ≡ 0. Consider the trajectory Y t,x

r (ω) of a virtual particle
which is in x at time t, transported by a velocity field and subject to a diffusion, and
evaluate v(0, Y t,x

0 (ω)) = ϕ(Y t,x
0 (ω)). Then we take into account, through the vector field

V 0,t,x
t , the effects of the tensor D along the given trajectory in the time interval [0, t].

Finally, by taking the expectation, we consider the mean effect of all virtual particles.

Before giving the proof of the theorem, we need the following simple lemma for the
time inversion of a stochastic integral.

Lemma 3.15. Let (Ws)s�0 be a Brownian motion. Fix t > 0 and set

Bs = Wt − Wt−s, s ∈ [0, t].

Let
FW

s = σ(Wr | r ∈ [0, s]) and FB
s,t = σ(Bu − Bv | s � v � u � t)

and let g(s) be a continuous and bounded process adapted to the filtration FW
s . Then the

process f(s) = g(t−s), s ∈ [0, t], is FB
s,t-adapted and, for all a, b such that 0 � a � b � t,

∫ b

a

g(s) dWs =
∫ t−a

t−b

f(s) d̂Bs.

Proof. Since Bu − Bv = Wt−v − Wt−u, we have FW
t−s = FB

s,t, and this gives the first
statement.
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Take now a sequence of partitions of the interval [a, b]:

πn : {a = sn
0 � sn

1 � · · · � sn
kn

= b}

such that |πn| → 0. We have

∫ b

a

g(s) dWs = lim
n→∞

∑
g(sn

i )(Wsn
i+1

− Wsn
i
)

= lim
n→∞

∑
g(t − rn

i )(Wt−rn
i+1

− Wt−rn
i
)

= lim
n→∞

∑
f(rn

i )(Brn
i

− Brn
i+1

)

=
∫ t−a

t−b

f(s) d̂Bs,

where rn
i = t − sn

i , i = 1, . . . , kn. �

Proof of Theorem 3.13. We need only to show that

X0,x,t
t−r = Y t,x

r and U0,x,t
t−r = V r,x,t

t , P -almost surely,

since such formulae, formula (3.23) and a change of variables give us (3.27).
We prove the first equality. Fix a Brownian motion (Wr)r�0 and consider the solution

X0,x,t
r of Equation (3.21). By Lemma (3.15) above, it follows that X0,x,t

t−r satisfies the
backward SDE (3.25) with respect to the Brownian motion Bs defined in Lemma 3.15.
Since Equation (3.25) has a unique strong solution, we have the first equality.

We proceed to prove the second equality. Fix ω so that r → Y t,x
r (ω) is continuous. The

key observation is that

V s,t,x
r (ω) = V 0,t,x

r (ω)(V 0,t,x
s (ω))−1, 0 � s � r � t,

and it is true since

d(V 0,t,x
r (ω))−1 = −(V 0,t,x

r (ω))−1D(r, Y t,x
r (ω)),

with initial condition (V 0,t,x
0 (ω))−1 = I, so that it easy to check that

V 0,t,x
r (ω)(V 0,t,x

s (ω))−1

satisfies Equation (3.26). Finally, by evaluating

drV
r,t,x
t (ω) = dr[V

0,t,x
t (ω)(V 0,t,x

r (ω))−1],

we see that both V r,t,x
t (ω) and r → U0,x,t

t−r (ω) solve the ordinary differential equation

dUr = −UrD(r, Y t,x
r (ω)) dr, r ∈ [0, t],

with final condition Ut = I. �
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4. A probabilistic representation for the Newtonian potential and
the Biot–Savart law

In the present section we aim to give a probabilistic representation for the velocity field
of an incompressible fluid in terms of the vorticity field ξ = curlu.

Under suitable assumptions on ξ, the Poisson equation −∆ψ = ξ has a solution, given
by

ψ(x) =
1
4π

∫
R3

ξ(y)
|x − y| dy

(ψ is a vector field and the equation is interpreted componentwise). Let u(x) be defined
as u(x) = curlψ(x), i.e.

u(x) =
1
4π

∫
R3

ξ(y) × (x − y)
|x − y|3 dy. (4.1)

If div ξ = 0, then also div ψ = 0 and div u = 0, and this also implies curl curlψ = −∆ψ.
Therefore, curlu = ξ, i.e. u is the divergence-free velocity field associated to ξ. The
equality (4.1) is the Biot–Savart law.

In order to give a probabilistic representation of this formula, it is necessary to give a
representation of the solution of the Poisson equation and of its derivatives.

4.1. A probabilistic representation for the Newtonian potential

In this section we study a probabilistic representation of the solution of the Poisson
equation. The deterministic regularity results are classical (see, for example, [20,33]), so
we will focus on the probabilistic formula.

Let f : R
3 → R be an integrable function. We define the Newtonian potential with

density f as

Nf(x) =
1
4π

∫
R3

1
|x − y|f(y) dy.

If f is regular and with compact support, Nf is a solution of the Poisson equation.
Let A = 1

2∆. It is well known that A generates, on the space C0(R3) of all continuous
functions vanishing at infinity, the strongly continuous semigroup

Ptf(x) = E[f(x + Wt)], x ∈ R
3, t � 0, f ∈ C0(R3),

where (Wt)t�0 is a 3D standard Brownian motion. The resolvent of A can be written as

((A − λI)−1f)(x) =
∫ ∞

0
e−λtE[f(x + Wt)] dt, f ∈ C0(R3),

so we can argue that the integral∫ ∞

0
E[f(x + Wt)] dt. (4.2)

converges to A−1f(x) = 2Nf(x) (indeed, at this stage, we do not know if A is invertible).
As a first step, we find some conditions on f in such a way that (4.2) produces a

solution of the Poisson equation.
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Proposition 4.1. Let f ∈ Lp(R3) ∩ Lq(R3), with 1 � p < 3
2 < q < ∞. Then the inte-

gral in (4.2) is convergent for all x ∈ R
3 and is equal to 2Nf(x). Moreover, Nf ∈ C0(R3)

and
‖Nf‖∞ � Cp,q(‖f‖p + ‖f‖q).

Proof. For every r > 1, by the Hölder inequality,

E|f(x + Wt)| =
1

(2πt)3/2

∫
R3

|f(x + y)| exp
{

− 1
2t

|y|2
}

dy � Crt
−3/2r‖f‖r, (4.3)

so, by using the above inequality with r = p and r = q and by integrating by time,∫ ∞

0
E|f(x + Wt)| dt �

∫ 1

0
E|f(x + Wt)| dt +

∫ ∞

1
E|f(x + Wt)| dt � C(‖f‖p + ‖f‖q).

This will also prove the final inequality, once the other properties are verified. The integral
in (4.2) is equal to 2Nf(x) since (we can use the Fubini theorem because of the previous
inequality)∫ ∞

0
E[f(x + Wt)] dt =

∫
R3

f(x + y)
∫ ∞

0

1
(2πt)3/2 exp

{
− 1

2t
|y|2
}

dt dy

=
∫

R3

1
2π|y|f(x + y) dy

= 2Nf(x).

We know from [20] that, by Sobolev embeddings, f ∈ Lq(R3) implies Nf ∈ C(R3). The
behaviour at infinity is less standard, so we give a probabilistic proof of it. Thus, let us
show that Nf ∈ C0(R3). Indeed, for each R > 0,∫ ∞

0
E[f(x + Wt)] dt =

∫ ∞

0
Ef(x + Wt)I{|Wt|>R} dt +

∫ ∞

0
Ef(x + Wt)I{|Wt|�R} dt

and, in order to show that Nf(x) converges to 0 as |x| → ∞, we will prove that the first
term converges to 0, uniformly in x, as R → ∞, and the second term converges to 0 as
|x| → ∞ for each R > 0.

For the first term the claim is true since, as in (4.3),

sup
x∈R3

E|f(x + Wt)|I{|Wt|>R} � C(‖f‖p + ‖f‖q)(t−3/(2p)I[1,∞)(t) + t−3/(2q)I[0,1)(t))

and

sup
x∈R3

E|f(x + Wt)|I{|Wt|>R} � Ct−3/2‖f‖p

(∫
|y|>R

exp
{

− 1
2t

|y|2
})1/p′

→ 0

as R → ∞. As regards the second term, we can proceed as in (4.3) and bound the term
E|f(x + Wt)|I{|Wt|�R} with

C(t−3/(2p)‖f(y)I{|y−x|�R}‖pI[1,∞)(t) + t−3/(2q)‖f(y)I{|y−x|�R}‖qI[0,1)(t)),

so that, after the integration in time, the above term converges to 0, since f ∈ Lp(R3) ∩
Lq(R3). �
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In the second step, we study the derivatives of Nf . Note that, for a regular f , the
Bismut–Elworthy–Li formula (see [5,11]) gives

Dxi
E[f(x + Wt)] =

1
t
E[f(x + Wt)(Wt)i].

In this simple case, with the Brownian motion, such a formula can be easily checked by
means of the Gaussian density.

As in the previous proposition, one could expect that, under suitable conditions, it is
possible to write the derivatives of Nf with the probabilistic representation suggested
by the formula above. Indeed, this is the case, as the following proposition shows.

Proposition 4.2. Let f ∈ Lp(R3)∩Lq(R3) for some 1 � p < 3
2 < 3 < q < +∞. Then

∇Nf ∈ C0(R3) and, for each x ∈ R
3,

2Dxi
Nf(x) =

∫ ∞

0

1
t
E[f(x + Wt)(Wt)i] dt, i = 1, 2, 3. (4.4)

Moreover,
‖∇Nf‖∞ � Cp,q(‖f‖p + ‖f‖q). (4.5)

Proof. By the Hölder inequality,

1
t
E|f(x + Wt)(Wt)i| =

C

t5/2

∫
R3

f(x + y)yi exp
{

− 1
2t

|y|2
}

dy

� C

t5/2 ‖f‖p

√
tt3/(2p′)

� C‖f‖pt
−(1/2)−3/(2p) (4.6)

and, as in the proof of the previous proposition, the time integral is finite and bounded
with respect to x, by the assumptions on p and q. Moreover, it can be easily seen, by
the same arguments as used in the previous proposition, that the formula (4.4) and
inequality (4.5) hold and that ∇Nf ∈ C0(R3). �

In the last step, we study the second derivatives of the Newtonian potential. The
regularity of the following theorem is based on the classical Schauder estimates.

Proposition 4.3. Let f ∈ Lp(R3) ∩ Cα
b (R3), with 1 � p < 3

2 . Then Nf ∈ C2,α
b (R3) ∩

C0(R3),
‖Nf‖C2,α

b (R3) � C̃(‖f‖Lp(R3) + ‖f‖Cα
b (R3))

and Nf is the unique solution of the Poisson equation in C0(R3) ∩ C2(R3).

Proof. From the previous proposition, we know that Nf ∈ C1
b (R3). The Bismut–

Elworthy–Li formula gives us

Dxixj Ef(x + Wt) =
2
t
E[(Dxiψ)(x + Wt/2)(Wt/2)j ], (4.7)
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where ψ(x) = Ef(x + Wt/2). Hence, in order to show that

Dxixj
Nf(x) =

∫ ∞

0

1
t
E[(Dxiψ)(x + Wt/2)(Wt/2)j ] dt

holds, it is sufficient to show that (4.7) is integrable in time in the interval [0,∞).
First, by the Bismut–Elworthy–Li formula, we see that

Dxiψ(x) =
2
t
E[f(x + Wt/2)(Wt/2)i]

and, by (4.6), that

‖Dxiψ‖∞ � Ct−(1/2)−3/(2p)‖f‖p. (4.8)

Moreover, since f ∈ Cα
b (R3),

|Dxiψ(y) − Dxiψ(x)| =
2
t
E|f(y + Wt/2) − f(x + Wt/2)| |(Wt/2)i|

� Ct−1/2[f ]α|x − y|α. (4.9)

Now we show that (4.7) is integrable in time. By (4.8)

2
t
E|(Dxiψ)(x + Wt/2)(Wt/2)j | � Ct−(3/2)−3/(2p)‖f‖pE|(Wt/2)j | � Ct−1−(3/(2p))‖f‖p

and (4.7) is integrable in [1,∞). By (4.9) it follows that

2
t
|E(Dxiψ)(x + Wt/2)(Wt/2)j | =

2
t
|E[(Dxiψ)(x + Wt/2) − (Dxiψ)(x)](Wt/2)j |

� 2
t
E|[(Dxi

ψ)(x + Wt/2) − (Dxi
ψ)(x)](Wt/2)j |

� Ct−3/2E|Wt/2|α|(Wt/2)i|
� Ct−1+α/2[f ]α

and (4.7) is integrable in [0, 1).
In conclusion, the probabilistic representation formula for the second derivatives holds

and

‖Dxixj
Nf‖∞ � C(‖f‖p + [f ]α).

By Schauder’s theory, since Nf ∈ C2
b (R3) and f ∈ Cα

b (R3), it follows that Nf ∈ C2,α
b (R3)

and

‖Nf‖C2,α
b (R3) � C(‖f‖p + ‖f‖Cα

b
)

(see, for example, [27]). Moreover, Nf solves the Poisson equation [20, Lemma 4.2], and
the solution is unique by the maximum principle. �
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4.2. A probabilistic representation for the Biot–Savart law

We now apply the theory developed in the previous section. The following theorem,
which is actually a mere corollary of the above results, is the well-known Biot–Savart
law.

Theorem 4.4. Let ξ ∈ Lp(R3, R3) ∩ Cα
b (R3, R3), with 1 � p < 3

2 and 0 < α < 1.
There is a unique u ∈ C1,α

b (R3, R3) ∩ C0(R3, R3) such that

curlu = ξ, div u = 0,

and such a solution is given by

u(x) = 1
2

∫ ∞

0

1
t
E[ξ(x + Wt) × Wt] dt, x ∈ R

3,

where (Wt)t�0 is a standard 3D Brownian motion.

Proof. The probabilistic formula derives from Proposition 4.2 and the regularity of
u from Propositions 4.2 and 4.3. We prove the uniqueness of the representation: since
div u = 0, we have u = curlψ, where ψ is the stream function. Now, by the maximum
principle, the unique solution of the problem

∆u = 0, u → 0 as |x| → ∞,

is u ≡ 0. �

Since we are interested in the time evolution of the vector fields, it is appropriate to
give a time-dependent version of the previous theorem. We recall that the spaces Uα(T )
and Uα

M (T ) have been defined in (2.1) and (2.3), and the spaces Vα,p(T ) and Vα,p
L (T )

have been defined in (2.2) and (2.4).

Corollary 4.5. Let α ∈ (0, 1) and 1 � p < 3
2 . The map BS : Vα,p(T ) → Uα(T ),

defined as

BS(ξ)(t, x) = 1
2

∫ ∞

0

1
s
E[ξ(t, x + Ws) × Ws] ds,

is linear bounded and ‖BS‖ � C̃, where C̃ is the constant, independent of T , appearing
in Proposition 4.3.

Moreover, if L, M > 0 are constant such that M � C̃L, then the map BS : Vα,p
L (T ) →

Uα
M (T ) is linear bounded.

5. The representation map

The section is devoted to the study of the properties of the representation map NS,
defined as

NS(u)(t, x) = E[Ux,t
t ψ(Xx,t

t )] +
∫ t

0
E[Ux,t

t g(t − s, Xx,t
s )] ds,
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where ψ = ψ(x), g = g(t, x) and Xx,t
s are the Lagrangian paths, defined in (5.5), and

Ux,t
s are the deformation matrices, defined in (5.6).
In the first part, some regularity properties of the Lagrangian paths and of the defor-

mation matrices are obtained. In the second part we show that NS maps the space Uα(T )
in Vα,p(T ) (for the definition of the spaces, see (2.1) and (2.2)). Finally, in the third part,
we prove that NS is Lipschitz-continuous from Uα(T ) to Vα,p(T ).

5.1. Regularity of the Lagrangian paths

In this section we study some regularity properties of the Lagrangian paths

dXx
s = u(s, Xx

s ) ds +
√

2ν dWs, s ∈ [0, T ],

Xx
0 = x,

}

and of the deformation matrices

dUx
s = Ux

s D(s, Xx
s ) ds, s ∈ [0, T ],

Ux
0 = I,

}

where u ∈ C([0, T ];C1
b (R3, R3)) and D ∈ C([0, T ];Cα

b (R3, R3×3)) are given. Note that
both equations have unique strong solutions. Hence, for a fixed 3D Brownian motion
((Ws)s�0, (Fs)s�0) on the probability space (Ω, F ,P ), for each x ∈ R

3 there is a process
(Xx

s , Ux
s )s�0 that solves the corresponding equations, and the solution is unique up to

indistinguishability. The equations can be solved pathwise, by choosing the ω ∈ Ω for
which s → Ws(ω) is a continuous function. Hence, the statements of this section are true
for all such ω, independently of x and s. First define

‖v‖∞,s =
∫ s

0
‖v(r)‖∞ dr;

note that ‖v‖∞,s � s sup0�r�s ‖v‖∞.

Lemma 5.1. Assume u ∈ C([0, T ];C1
b (R3, R3)). Then

|Xx
s − Xy

s | � |x − y|e‖∇u‖∞,s , s � 0, x, y ∈ R
3. (5.1)

Moreover, if div u = 0, then, for all s � 0 and ω ∈ Ω, the map

x ∈ R
3 �→ Xx

s (ω) ∈ R
3

is a diffeomorphism, the determinant of its Jacobian is everywhere equal to 1 and∫
R3

ϕ(Xx
s (ω)) dx =

∫
R3

ϕ(x) dx, ϕ ∈ L1(R3). (5.2)

Proof. First we prove (5.1). By easy computations,

|Xx
s − Xy

s | � |x − y| +
∫ s

0
‖∇u(r)‖∞|Xx

r − Xy
r | dr,

and by applying Gronwall’s lemma, we can complete the proof of (5.1).
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Using [25, Theorem 4.6.5] (actually the assumption of the Hölder continuity on u is
useless for our aim, since we deal with an additive noise; see also [7, Theorem 4.1.1]),
one can deduce that x �→ Xx

t is a diffeomorphism. Moreover, the determinant J(t, x) of
the Jacobian matrix of x �→ Xx

t solves the following problem with random coefficients:

J̇(t, x) = div(u)(Xx
t )J(t, x),

J(0, x) = 1.

}

Since div u = 0 by the assumptions of the lemma, the determinant J is equal to 1 for
all times. Hence, by a change of variables and a density argument, (5.2) can also be
deduced. �

Lemma 5.2. Assume

u ∈ C([0, T ];C1
b (R3, R3)) and D ∈ C([0, T ];Cα

b (R3, R3×3)).

Then
|Ux

s | � e‖D‖∞,s , x ∈ R
3, s ∈ [0, T ], (5.3)

and, for x, y ∈ R
3 and s ∈ [0, T ],

|Ux
s − Uy

s | � |x − y|αe‖D‖∞,s+α‖∇u‖∞,s

∫ s

0
[D(r)]α dr. (5.4)

Proof. Property (5.3) follows from Gronwall’s lemma, since

|Ux
s | =

∣∣∣∣I +
∫ s

0
Ux

r D(r, Xx
r )
∣∣∣∣ � 1 +

∫ s

0
|Ux

r | ‖D(r)‖L∞ dr,

while property (5.4) follows from (5.1), (5.3) and

|Ux
s − Uy

s | �
∫ s

0
(‖D(r)‖L∞ |Ux

r − Uy
r | + e‖D‖∞,r [D(r)]α|Xx

r − Xy
r |α) dr,

and again from Gronwall’s lemma. �

Let Bb(R3, R3) be the space of all bounded Borel-measurable functions and define the
operator

Qsϕ(x) = E[Ux
s ϕ(Xx

s )], x ∈ R
3.

Lemma 5.3. Let s � 0, then

(1) Qs ∈ L(Bb(R3, R3)) and ‖Qs‖L(Bb) � e‖D‖∞,s ;

(2) Qs ∈ L(Cα
b (R3, R3)) and ‖Qs‖L(Cα

b ) � e‖D‖∞,s+α‖∇u‖∞,s(1 +
∫ s

0 [D(r)]α dr).

Moreover, if div u = 0, then

(3) Qs ∈ L(Lp(R3, R3)) and ‖Qs‖L(Lp) � e‖D‖∞,s .
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Proof. The first property is an obvious consequence of the previous lemma. As to the
second property, using the two lemmas above,

|E[Ux
s ϕ(Xx

s ) − Uy
s ϕ(Xy

s )]| � E|Ux
s − Uy

s | · |ϕ(Xx
s )| + E|Uy

s | · |ϕ(Xx
s ) − ϕ(Xy

s )|

�
(

1 +
∫ s

0
[D(r)]α dr

)
e‖D‖∞,s+α‖∇u‖∞,s‖ϕ‖Cα

b
|x − y|α.

Finally, assume div u = 0. Using (5.2), the Hölder inequality and the previous lemma,
we get ∫

R3
|Qsϕ(x)|p � ep‖D‖∞,sE

∫
R3

|ϕ(Xx
s )|p � ep‖D‖∞,s‖ϕ‖p

p.

�

5.2. Definition of the representation map

Here we prove that NS maps Uα(T ) in Vα,p(T ). Before proving such a claim, we need
some preliminary definitions and results. For each u ∈ Uα(T ), consider for all x ∈ R

3 and
t ∈ [0, T ] the Lagrangian paths

dXx,t
s = −u(t − s, Xx,t

s ) ds +
√

2ν dWs, s ∈ [0, t],

Xx,t
0 = x,

}
(5.5)

and the deformation matrices

dUx,t
s = Ux,t

s Du(t − s, Xx,t
s ) ds, s ∈ [0, T ],

Ux,t
0 = I,

}
(5.6)

where Du = ∇u or Du = 1
2 (∇u + ∇uT).

Lemma 5.4. Let u ∈ Uα(T ) and ψ ∈ Cb(R3, R3) ∩ Lp(R3, R3). The function

(s, t) ∈ {0 � s � t � T} �→ E[U ·,t
s ψ(X ·,t

s )] ∈ Lp(R3, R3) ∩ Cb(R3, R3)

is continuous with respect to both variables.

Proof. First we show the continuity in Cb. If 0 � s � t � T and 0 � r � v � T , with
t � v, then, for each x ∈ R

3,

|E[Ux,t
s ψ(Xx,t

s )] − E[Ux,v
r ψ(Xx,v

r )]|
� E|Ux,t

s − Ux,v
s | |ψ(Xx,t

s )| + E|Ux,v
s | |ψ(Xx,t

s ) − ψ(Xx,v
s )|

+ E|Ux,v
s − Ux,v

r | |ψ(Xx,v
s )| + E|Ux,v

r | |ψ(Xx,v
s ) − ψ(Xx,v

r )|. (5.7)

In order to estimate the different terms of the above inequality, we see that, from equa-
tions (5.5) and (5.6),

|Ux,v
s − Ux,v

r | =
∣∣∣∣
∫ r

s

Ux,v
σ Du(v − σ, Xx,v

σ ) dσ

∣∣∣∣ � e‖Du‖∞,v |r − s| sup
(0,v)

‖Du‖∞
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and
|Xx,v

r − Xx,v
s | � ‖u‖∞|s − r| +

√
2ν|Wr − Ws|. (5.8)

Moreover,

|Xx,t
s − Xx,v

s | �
∫ s

0
|u(t − σ, Xx,t

σ ) − u(v − σ, Xx,v
σ )| dσ

�
∫ s

0
‖u(t − σ) − u(v − σ)‖∞ +

∫ s

0
‖∇u(v − σ)‖∞|Xx,t

σ − Xx,v
σ |

and, by Gronwall’s lemma,

|Xx,t
s − Xx,v

s | � e‖∇u‖∞,v

∫ s

0
‖u(t − σ) − u(v − σ)‖∞ dσ.

Finally,

|Ux,t
s − Ux,v

s | �
∫ s

0
|Ux,t

σ | |Du(t − σ, Xx,t
σ ) − Du(t − σ, Xx,v

σ )| dσ

+
∫ s

0
|Ux,t

σ | |Du(t − σ, Xx,v
σ ) − Du(v − σ, Xx,v

σ )| dσ

+
∫ s

0
|Du(v − σ, Xx,v

σ )| |Ux,t
σ − Ux,v

σ | dσ

� e‖∇u‖∞,v

(
sup
(0,v)

‖Du‖∞

)
sup
[0,v]

|Xx,t
σ − Xx,v

σ |

+ e‖∇u‖∞,v sup
[0,v]

‖Du(t − σ) − Du(v − σ)‖∞

+ sup
(0,v)

‖∇u‖∞

∫ s

0
|Ux,t

σ − Ux,v
σ | dσ

� A(t, v) + C

∫ s

0
|Ux,t

σ − Ux,v
σ | dσ,

where EA(t, v) → 0 as |t − v| → 0 and, by Gronwall’s lemma,

|Ux,t
s − Ux,v

s | � A(t, v)eCv.

Using the above estimates in (5.7), it is easy to show continuity with values in Cb. In
order to show continuity in Lp, we remark that the above estimates ensure convergence
for all x ∈ R

3, so that we need only to show uniform integrability. To this end, note that,
by Lemma 5.2 and by the change of variables x → y = Xx,t

s ,∫
|x|�K

|E[Ux,t
s ψ(Xx,t

s )]|p

� CE

∫
X·,t

s (BK
c)

|ψ(y)|p dy

� CE

∫
X·,t

s (BK
c)

|ψ(y)|p(1{|Xx,t
s −x|�K/2} + 1{|Xx,t

s −x|�K/2}) dy,
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and, since the set of y = Xx,t
s such that |y − x| � K/2 and |x| � K, is contained in the

set of y such that |y| � K/2,∫
|x|�K

|E[Ux,t
s ψ(Xx,t

s )]|p � C

∫
|y|�K/2

|ψ(y)|pP [|Xx,t
s − x| � K/2] dy

+ C‖ψ‖p
pP [|Xx,t

s − x| � K/2],

� C

∫
|y|�K/2

|ψ(y)|p dy + C‖ψ‖p
pP [|Xx,t

s − x| � K/2],

where C = T e‖∇u‖∞,T and, because of (5.8), for K → ∞, the above quantity converges
to 0 independently of s, t. �

Now it is possible to prove the above-mentioned result on the map NS.

Proposition 5.5. Given 1 � p < 3
2 and 0 < α < 1, let ψ ∈ Cα

b (R3, R3) ∩ Lp(R3, R3)
and g ∈ Vα,p(T ). Then NS maps Uα(T ) in Vα,p(T ) and

‖NS(u)(t)‖Cα
b ∩Lp

� exp
{

3t sup
(0,t)

‖∇u‖∞

}
(1 + t‖∇u‖Cα

b
)
(

‖ψ‖Cα
b ∩Lp +

∫ t

0
‖g(s)‖Cα

b ∩Lp ds

)
. (5.9)

Proof. First, NS(u) ∈ Cα
b ∩ Lp follows by Lemma 5.3. Moreover, estimate (5.9) can

also be easily deduced. Finally, from the previous lemma it follows that

t �→ NS(u)(t) ∈ Cα
b ∩ Lp

is continuous. �

5.3. Lipschitz-continuity of the representation map

Let g ∈ Vα,p(T ) and ψ ∈ Cα
b (R3, R3) ∩ Lp(R3, R3), and consider the map

NS : Uα(T ) → Vα,p(T )

defined in the previous section. The aim of the present section is to show that such a
map is locally Lipschitz-continuous. In order to do this, we will use the Girsanov formula.
First we rewrite NS in a more appropriate form, namely

NS(u)(t, x) = E[Ft,u(Xx,t,u)],

where, for each trajectory w ∈ C([0, T ]; R3),

Ft,u(w) = V t,u
t (w)ψ(wt) +

∫ t

0
V t,u

s (w)g(t − s, ws) ds

and V t,u(w) is the solution of the following differential equation:

V̇ t,u
s = V t,u

s Du(t − s, ws), s � t,

V t,u
0 (w) = I.
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Note that Ux,t,u
s (ω) = V t,u

s (Xx,t,u(ω)), for each ω ∈ Ω, and we have made an explicit
reference to the dependence on u in the Lagrangian paths Xx,t,u and in the deformation
matrices Ux,t,u.

By the Girsanov formula, we have

E[Ft,u(Xx,t,u)] = E[Zx,t,u
t Ft,u(x +

√
2νW )],

where

Zx,t,u
s = exp

[
1√
2ν

∫ s

0
〈u(t − r, x +

√
2νWr), dWr〉 − 1

4ν

∫ s

0
|u(t − r, x +

√
2νWr)|2 dr

]
,

with s � t, so that, for each u,

NS(u)(t, x) = E[Zx,t,u
t V t,u

t (x +
√

2νW )ψ(x +
√

2νWt)]

+
∫ t

0
E[Zx,t,u

t V t,u
s (x +

√
2νW )g(t − s, x +

√
2νWt)] ds.

Using this representation, we will prove the following proposition.

Proposition 5.6. Given 1 � p < 3
2 and 0 < α < 1, let ψ ∈ Cα

b (R3, R3) ∩ Lp(R3, R3)
and g ∈ Vα,p(T ), and set

ε0 = ‖ψ‖Cα
b ∩Lp +

∫ T

0
‖g(s)‖Cα

b ∩Lp ds.

For each u, v ∈ Uα
M (T ),

sup
0�t�T

‖NS(u)(t, ·) − NS(v)(t, ·)‖Cα
b ∩Lp � C(ν, p)CM (T )ε0 sup

0�t�T
‖u(t, ·) − v(t, ·)‖C1,α

b
,

where C(ν, p) is a constant depending only on p and ν and CM (T ) → 0 as T → 0.

The proof of the above proposition will be carried on using the subsequent lemmas.
In order to make the explanations easier, we introduce the following notation. We define
∆xyf = f(x) − f(y) for any function f . Note that

∆xy(fg) = (∆xyf)g(x) + f(y)(∆xyg). (5.10)

If the functions depend on two variables, we define ∆uvxy as ∆uv∆xy and, by applying
the above formula twice,

∆uvxy(fg) = ∆uv[(∆xyf)g(·, x) + f(·, y)(∆xyg)]

= (∆uvxyf)g(u, x) + [∆xyf(v)][∆uvg(x)]

+ [∆uvf(y)][∆xyg(u)] + f(v, y)(∆uvxyg). (5.11)

https://doi.org/10.1017/S0013091503000506 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000506


332 B. Busnello, F. Flandoli and M. Romito

Lemma 5.7. Let u, v ∈ Uα
M (T ). Then, for each w, w′ ∈ C([0, T ]; R3) and for all

s � t � T ,

|V t,u
s (w)| � etM ,

|∆uvV t,·
s (w)| � te2tM‖u − v‖C1

b
,

|∆ww′V t,u
s (·)| � 2Mte2tM‖w − w′‖α

∞,

|∆uvww′V t,·
s (·)| � (1 + 3tM)te3tM‖w − w′‖α

∞‖u − v‖C1,α
b

.

Proof. The proofs of these properties are similar, we just give the proof of the last
one. Indeed, using formula (5.11),

d
ds

(∆uvww′V t,·
s (·)) = ∆uvww′

(
d
ds

V t,·
s (·)

)
= ∆uvww′(V t,·

s (·)D(t − s, ·))
= [∆uvww′V t,·

s (·)]Du(t − s, ws) + V t,v
s (w′)[∆ww′Du−v(t − s, ·)]

+ [∆ww′V t,v
s (·)]Du−v(t − s, ws) + [∆uvV t,·

s (w′)][∆ww′Du(t − s, ·)],

so that, by using the other inequalities of this lemma,

|∆uvww′V t,·
s (·)|

� M

∫ s

0
|∆uvww′V t,·

r (·)| dr + ‖w − w′‖α
∞‖u − v‖C1,α

b

∫ s

0
|V t,v

r (w′)| dr

+ ‖u − v‖C1,α
b

∫ s

0
|∆ww′V t,v

r (·)| dr + M‖w − w′‖α
∞

∫ s

0
|∆uvV t,·

r (w′)| dr

� M

∫ s

0
|∆uvww′V t,·

r (·)| dr + (1 + 3tM)se2tM‖w − w′‖α
∞‖u − v‖C1,α

b

and, by Gronwall’s lemma, the inequality follows. �

Using the previous lemma and (5.10) and (5.11), we can easily deduce similar properties
for the functional F .

Lemma 5.8. Let u, v ∈ Uα
M (T ). Then for each w, w′ ∈ C([0, T ]; R3) and, for all

t ∈ [0, T ],

|Ft,u(w)| � etM

[
|ψ(wt)| +

∫ t

0
|g(t − s, ws)| ds

]
,

|∆uvFt,·(w)| � te2tM‖u − v‖C1
b

[
|ψ(wt)| +

∫ t

0
|g(t − s, ws)| ds

]
,

|∆ww′Ft,u(·)| � (1 + 2tM)e2tMε0‖w − w′‖α
∞,

|∆uvww′Ft,·(·)| � (2 + 3tM)te3tMε0‖w − w′‖∞‖u − v‖C1,α
b

,

where

ε0 = ‖ψ‖Cα
b

+
∫ t

0
‖g(s)‖Cα

b
ds.

Finally, we estimate the same quantities on the process Z.
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Lemma 5.9. Let u, v ∈ Uα
M (T ) and q � 2. Then, for all s � t,

E|Zx,t,u
s |q � CeCtq/2Mq

,

E|∆uvZx,t,·
s |q � Ctq/2eCMqtq/2‖u − v‖q

Cb
,

E|∆xyZ·,t,u
s |q � Ctq/2MqeCMqtq/2 |x − y|αq,

E|∆uvxyZ·,t,·
s |q � Ct3q/2M2qeCMqtq/2 |x − y|αq‖u − v‖q

C1,α
b

,

where C = C(q, ν) is a constant depending only on q and ν.

Proof. From the definition, we see that Zx,t,u
s solves

dZx,t,u
s =

1√
2ν

Zx,t,u
s u(t − s, x +

√
2νWs) dWs, s � t,

Zx,t,u
0 = 1.

⎫⎬
⎭

Again, the proofs of the four inequalities are similar and we prove only the last one. By
applying (5.11), we get

ds(∆uvxyZ·,t,·
s )

= ∆uvxy(dsZ
·,t,·
s )

=
1√
2ν

[(∆uvxyZ·,t,·
s )u(t − s, Y x

s ) dWs + Zy,t,v
s ∆xy[u(t − s, Y ·

s ) − v(t − s, Y ·
s )] dWs

+ (∆xyZ·,t,v
s )[u(t − s, Y x

s ) − v(t − s, Y x
s )] dWs + (∆uvZy,t,·

s )[∆xyu(t − s, Y ·
s )] dWs],

where, for the sake of brevity, we have set Y x
s = x +

√
2νWs. By the Burkholder–Davis–

Gundy inequality,

E|∆uvxyZ·,t,·
s |q � C

[
MqE

[∫ s

0
|∆uvxyZ·,t,·

r |2 dr

]q/2

+ ‖u − v‖q
Cα

b
|x − y|αqE

[∫ s

0
|Zy,t,v

r |2 dr

]q/2

+ ‖u − v‖q
Cb

E

[∫ s

0
|∆xyZ·,t,v

r |2 dr

]q/2

+ Mq|x − y|αqE

[∫ s

0
|∆uvZy,t·

r |2 dr

]q/2 ]
,

so that, by using the Hölder inequality and the other inequalities of this lemma, we get

E|∆uvxyZ·,t,·
s |q � CMqsq/2−1

∫ s

0
E|∆uvxyZ·,t,·

r |q dr

+ CM2qtqsq/2 exp{CMqtq/2}|x − y|αq‖u − v‖q

C1,α
b

.

Finally, using Gronwall’s lemma, we obtain the required inequality. �
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We are now able to prove the main result of this section.

Proof of Proposition 5.6. Let u, v ∈ Uα
M (T ). We start with the estimates in Cb and

Lp. Using (5.10) and the Hölder inequality, we get, for each x ∈ R
3 and t > 0,

|[∆uvNS(·)](t, x)| = |E[∆uv(Zx,t,·
t Ft,·(Y x))]|

� C(q)[(E|∆uvZx,t,·
t |q′

)1/q′
(E|Ft,u(Y x)|q)1/q

+ (E|Zx,t,v
t |q′

)1/q′
(E|∆uvFt,·(Y x)|q)1/q], (5.12)

where q � 1, q′ is the Hölder conjugate exponent of q, and we have set Y x
s = x +

√
2νWs.

Using the estimates in Lemmas 5.8 and 5.9, and the inequality above with q = 2, we
obtain the estimate in the Cb norm,

sup
t�T

‖∆uvNS(·)‖Cb
� Cε0(T +

√
T )e(CM2+2M)T ‖u − v‖C1,α

b
.

Using again Lemmas 5.8 and 5.9 and the inequality (5.12) above, with q = p, we can
obtain the estimate in the Lp norm,

sup
t�T

‖∆uvNS(·)‖p
Lp � Cεp

0(T
p + T p/2) exp{2TM + CMp′

tp
′/2}‖u − v‖C1,α

b
.

To conclude the proof, we need the estimate in the Cα
b norm. For all x, y ∈ R

3 and
t > 0, by applying formula (5.11) we get

|∆uvxyNS(·)(t, ·)| � E[∆uvxy(Z·,t,·Ft,·(Y ·))]

� E[(∆uvxyZ·,t,·
t )Ft,u(Y x) + Zy,t,v

t [∆uvxyFt,·(Y ·)]

+ (∆uvZy,t,·
t )[∆xyFt,u(Y ·)] + (∆xyZ·,t,v

t )[∆uvFt,·(Y x)]]

Using the inequalities in Lemmas 5.8 and 5.9, it follows that

|∆uvxyNS(·)(t, ·)| � Cε0(
√

T + T + MT 3/2 + MT 2)e3TM+CTM2 |x − y|α‖u − v‖C1,α
b

.

�
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