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Two-dimensional horizontally periodic Rayleigh–Bénard convection between stress-free
boundaries displays two distinct types of states, depending on the initial conditions.
Roll states are composed of pairs of counter-rotating convection rolls. Windy states are
dominated by strong horizontal wind (also called zonal flow) that is vertically sheared,
precludes convection rolls and suppresses heat transport. Windy states occur only when
the Rayleigh number Ra is sufficiently above the onset of convection. At intermediate
Ra values, windy states can be induced by suitable initial conditions, but they undergo a
transition to roll states after finite lifetimes. At larger Ra values, where windy states have
been observed for the full duration of simulations, it is unknown whether they represent
chaotic attractors or only metastable states that would eventually undergo a transition to
roll states. We study this question using direct numerical simulations of a fluid with a
Prandtl number of 10 in a layer whose horizontal period is eight times its height. At each
of seven Ra values between 9 × 106 and 2.25 × 107 we have carried out 200 or more
simulations, all from initial conditions leading to windy convection with finite lifetimes.
The lifetime statistics at each Ra indicate a memoryless process with survival probability
decreasing exponentially in time. The mean lifetimes grow with Ra approximately as Ra4.
This analysis provides no Ra value at which windy convection becomes stable; it might
remain metastable at larger Ra with extremely long lifetimes.
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1. Introduction

In the Rayleigh–Bénard convection (RBC) model, buoyancy-driven flow in a fluid layer is
sustained by a destabilizing temperature drop from the bottom boundary to the top one.
This system has been studied in laboratory experiments for over a century, and in recent
decades it has also been the subject of many direct numerical simulations (DNS) in two
and three dimensions with various boundary conditions for the velocity and temperature
fields (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher
2012; Xia 2013; Shishkina 2021). In the two-dimensional (2-D) case, RBC most often
forms convection rolls of alternating rotation direction, with a hot plume rising or a cold
plume falling between adjacent rolls. A temperature snapshot for one such pair of rolls is
shown in figure 1(e). Roll states are seen in simulations with all combinations of no-slip
or stress-free velocity boundary conditions, and fixed-temperature or fixed-flux thermal
boundary conditions, although the boundary conditions affect what width-to-height ratios
the rolls can have (Wang et al. 2020a,b). Roll states are not the only type of RBC found in
2-D, however, at least with certain boundary conditions.

For 2-D RBC that is horizontally periodic and subject to stress-free velocity conditions
at the top and bottom boundaries, some simulations have displayed a flow state dominated
by a horizontal mean wind. The wind’s strong vertical shear suppresses heat transport
and precludes convection rolls. Figure 1(b) shows an example of such windy convection,
sheared so that cold plumes move rightward along the top, while hot plumes move
leftward. (The sign of the shear is an arbitrary breaking of symmetry.) The general
phenomenon of windy convection, also called zonal flow or shearing convection,
has been seen in 2-D simulations of various convection models at least as early as
Thompson (1970) – see references in Goluskin et al. (2014, p. 363). This windy convection
has features in common with strong zonal flows that arise in geophysical and astrophysical
systems (Heimpel, Aurnou & Wicht 2005; Richards et al. 2006; Miyagoshi, Kageyama
& Sato 2010; von Hardenberg et al. 2015; Kaspi et al. 2018) and in tokamak plasmas
(Diamond et al. 2005). Although such applications have additional important physics, the
2-D RBC model may provide insight as an especially simple system in which convection
drives strong zonal flow. Systematic parameter studies of windy convection in 2-D RBC
were carried out by Goluskin et al. (2014) and Wang et al. (2020a).

The parameters in the equations modelling RBC can be reduced to two dimensionless
numbers: the Rayleigh number Ra that is proportional to the imposed temperature drop
across the layer, and the Prandtl number Pr = ν/κ , where κ and ν are the fluid’s thermal
diffusivity and kinematic viscosity, respectively. The aspect ratio Γ of the 2-D domain
is the ratio of the horizontal period to the layer height. At Ra just above the finite value
where convection sets in, only roll states exist. For the small horizontal period Γ = 2,
roll states become unstable as Ra is raised. There is then a narrow Ra range where the
flow seems to switch indefinitely between roll states and windy states with either wind
direction (Winchester, Dallas & Howell 2021), and at larger Ra only windy states can
be found (Goluskin et al. 2014). However, the spontaneous transitions from rolls to wind
were found to be a small-domain effect by Wang et al. (2020a), who simulated flows
with horizontal periods as large as Γ = 128. When Γ ≥ 4, roll states appear stable for all
combinations of Pr ∈ [1, 100] and Ra ∈ [106, 109] at which simulations were performed,
never spontaneously undergoing a transition to windy convection. Windy states were also

976 R2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.875


Lifetimes of metastable windy convection

found in these larger domains at sufficiently large Ra; some initial conditions lead to roll
states and others to windy states. When Ra is barely large enough to find windy states,
these states are transient and eventually undergo a transition to roll states.

In this work we study the spontaneous transition from windy states to roll states. Both
states could be called 2-D turbulence, with the windy state being only metastable, whereas
roll states are apparently stable. We fix (Γ, Pr) = (8, 10) and seven different Ra values. At
each Ra we produce an ensemble of at least 200 simulations from slightly different initial
conditions. Every simulation begins with windy convection but eventually undergoes a
transition to a roll state with a single pair of rolls. Roll states with multiple pairs of rolls
do not seem to arise from windy states, although they can develop from different initial
conditions (Wang et al. 2020a).

Many other fluid systems also display metastable turbulence. Particularly well studied is
the spatially localized turbulence in parallel shear flows, which decays to the laminar state
at transitional values of the Reynolds number Re. Laboratory experiments and DNS have
shown that localized ‘puffs’ in pipe flow and ‘spots’ in planar Couette flow and channel
flow have survival probabilities that decrease exponentially in time (Bottin & Chaté 1998;
Faisst & Eckhardt 2004; Shimizu, Kanazawa & Kawahara 2019), similar to what we
report below for windy convection. The mean lifetime of a puff or spot, averaged over
a large number of instances at each Re, appears to increase double-exponentially with Re
(Hof et al. 2008; Avila, Willis & Hof 2010; Shi, Avila & Hof 2013; Gomé, Tuckerman
& Barkley 2020). This trend alone does not suggest that shear turbulence becomes truly
stable at large Re, but a puff or spot has another possible fate: it can split in half, leading
to two full-size puffs or spots. While the mean decay time increases superexponentially
as Re is raised, the mean splitting time decreases superexponentially. The Re value at
which splitting time crosses below decay time has been identified as the onset of sustained
turbulence in pipe, Couette and channel flows (Avila et al. 2011; Shi et al. 2013; Gomé
et al. 2020; Avila, Barkley & Hof 2023). In relation to the RBC model studied here, decay
of a puff or spot is akin to decay of a windy state, but splitting has no analogue. Lacking a
mechanism like splitting, if the mean lifetime of wind in RBC remains finite as Ra is raised,
then windy convection would not become truly stable, although it could be metastable with
extremely long lifetimes.

Decay of metastable turbulence has also been studied in various systems beyond
parallel shear flows. Rempel, Lesur & Proctor (2010) simulated turbulent-to-laminar
decay in magnetized Keplerian shear flow, finding that mean lifetimes increase
exponentially with the magnetic Reynolds number. Linkmann & Morozov (2015)
simulated turbulent-to-simple-flow decay in isotropic turbulence forced by negative
damping at large scales. They find that mean lifetimes increase superexponentially with
that system’s Reynolds number, as with puff or spot decay in shear flows, but there is no
analogue of the splitting mechanism.

Several systems display transitions from one turbulent state to another, as in our present
study, rather than decay to a simple state. Gayout, Bourgoin & Plihon (2021) report
transitions between two turbulent states in wind-tunnel experiments where fluid interacts
with a pendulum, and de Wit, van Kan & Alexakis (2022) report transitions into and out
of a vortex condensate state in simulations of body-forced turbulence that is triply periodic
with a small period in one direction. In both studies the direction of the transition depends
on the control parameter. Gayout et al. (2021) suggest that lifetimes for each transition
direction depend double-exponentially on the control parameter. On the other hand, de
Wit et al. (2022) suggest that lifetimes diverge at a finite critical value of the control
parameter, with the critical value and the rate of divergence differing between the two
transition directions.
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Metastable turbulence can manifest as switching back and forth between turbulent states,
as opposed to permanent disappearance of one state. The present RBC configuration can
switch between windy states and roll states in small domains (Winchester et al. 2021), as
mentioned above, but lifetime statistics have not been studied. In RBC with sidewalls there
is no windy state, but switching occurs between different large-scale circulation patterns
in a 2-D or quasi-2-D square (Sugiyama et al. 2010; Chen et al. 2019) and in a 3-D cylinder
(Brown & Ahlers 2006). Chen et al. (2019) suggest that mean switching times increase as
a power of Ra.

The rest of this paper is organized as follows. Section 2 describes the governing
equations and our method for simulating an ensemble of flows with transient windy
convection. Results are presented in § 3, followed by conclusions in § 4. The Appendix
describes additional computations that verify the robustness of our results.

2. Simulation methods

Rayleigh–Bénard convection can be modelled by the Boussinesq equations (Chandrasekhar
1981), in which the fluid’s velocity is divergence-free, and buoyancy force in the vertical
z direction is created by the fluid’s linear thermal expansion coefficient α. In terms of
a dimensionless velocity field u(x, z, t), temperature field T(x, z, t) and pressure field
p(x, z, t), the equations are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + (Pr/Ra)1/2 ∇2u + Tez, (2.2)

∂T
∂t

+ u · ∇T = (PrRa)−1/2∇2T. (2.3)

The Rayleigh number is Ra = gαh3Δ/(κν), where g is gravitational acceleration in the
−z direction, h is the layer height and Δ is the imposed temperature difference between
the top and bottom boundaries. Here ez is the unit vector in the z direction. We have
scaled length by h, so the dimensionless 2-D domain is (x, z) ∈ [0, Γ ] × [0, 1], with
the horizontal x direction being periodic. The dimensionless time t has been scaled by
the free-fall time h/Uf , where Uf = (gαhΔ)1/2. For the boundary conditions, stress-free
conditions on the velocity vector u = (u, w) are imposed at both boundaries by w = 0 and
∂u/∂z = 0, and the dimensionless temperatures imposed are T|z=0 = 1 and T|z=1 = 0.
We simulated (2.1)–(2.3) with these boundary conditions using the second-order staggered
finite difference code AFiD, which has been extensively verified elsewhere; see Verzicco
& Orlandi (1996) and van der Poel et al. (2015) for details.

We fix Pr = 10 because this is the value for which Wang et al. (2020a) carried out
a parameter study of Γ and Ra. Based on this study we fix Γ = 8 to safely avoid the
spontaneous roll-to-wind transitions that occur only in small domains. Simulations are
carried out at seven different Ra values between 9 × 106 and 2.25 × 107. The minimum
Ra is large enough to induce windy convection, at least initially. The maximum Ra leads to
windy convection that can have very long lifetimes but eventually undergoes a transition
to rolls in all simulations.

We use the following procedure to create an ensemble of initial conditions that all lead
at first to windy convection. At each Ra we start a simulation with temperature that is
a random perturbation of the conductive profile T = 1 − z and with horizontal velocity
that is sheared as u = 2(z − 1

2 ), where we anticipate that developed flows will have
order-unity velocities in our free-fall units. After windy convection develops but before
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Figure 1. (a) Time series (in free-fall time units) of the Reynolds number ratio Rez/Rex for one simulation
with (Γ, Pr, Ra) = (8, 10, 107). A transition from the windy state to the roll state occurs around time τ ≈ 286.
(b–e) Temperature fields at the four instants t = 263.1, 286.2, 315, 376.5 indicated in (a). The supplementary
material available at https://doi.org/10.1017/jfm.2023.875 includes a movie of the temperature field.

it undergoes a transition to a roll state, we arbitrarily choose one snapshot of the flow.
Results are not sensitive to the choice of snapshot (cf. the Appendix). For the snapshot
chosen at each Ra, every initial condition in the ensemble is generated by perturbing
the temperature at all interior grid points with pseudorandom numbers drawn uniformly
from the interval [−A, A]. Our main results all use perturbation amplitude A = 10−4. The
Appendix reports additional tests confirming that our results are not sensitive to increasing
the grid resolution or decreasing the perturbation amplitude.

3. Results

Transitions from the windy state to the roll state occurred in all of our simulations. Each
transition was detected as in Wang et al. (2020a) by using the vertical-to-horizontal ratio
of Reynolds numbers, Rez/Rex =

√
〈w2〉V/〈u2〉V , where 〈·〉V denotes a volume average.

Figure 1 shows one such time series from a simulation where the transition occurred
relatively quickly (panel a), along with temperature fields before, during and after the
transition (panels b–e). To precisely define the time τ of a transition, at each Ra we
time-averaged Rez/Rex in the windy state and in the roll state to find the mean value of
each state, then we used the average of these two values as the transition threshold. The
first time Rez/Rex crosses this threshold defines the lifetime τ of the simulation. Results
are insensitive to the exact threshold; if we instead use the roll-state mean value of Rez/Rex
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Figure 2. (a) Symbols show, for each lifetime τ of a windy state measured in free-fall times, the fraction of
simulations at the same Ra with longer lifetimes. (Some τ are beyond the plotted timespan.) For the mean
lifetime τm at each Ra, a solid line shows the survival probability S(t) = e−t/τm . (b) Mean lifetimes τm of
windy convection (� ) for each Ra. Error bars show 95 % confidence intervals (see text). The best-fit power-law
scaling (solid line) is τm ≈ c Ra4.05 with c = 1.26 × 10−25. Also shown is the exponential relation obtained by
linearly fitting log τ to Ra (blue dashed line), which does not fit the data. The inset shows the same plot with
the vertical axis compensated by Ra4.05; the range of this axis is 10−23 to 2 × 10−23.

as the threshold, the ensemble-averaged lifetime increases by less than 2 % at the smallest
Ra (when lifetimes are shortest), and this percentage of increase is smaller at larger Ra.

To examine lifetime statistics of windy convection within each ensemble, for every time
τ at which a simulation undergoes a transition, we calculate the fraction of simulations
that survive longer than τ . Figure 2(a) shows these fractions plotted vs τ , with a different
data series for each Ra. Each plotted series is close to a straight line, and the vertical
axis scale is logarithmic, so this indicates that the fractions decrease exponentially in
time. Such exponential decrease suggests that the wind-to-roll transitions behave as a
memoryless random process, as in most other studies of metastable turbulence recalled in
the introduction. For a memoryless random process with mean lifetime τm, the probability
of a chosen ensemble member surviving past time t is exactly S(t) = e−t/τm . The straight
lines in figure 2(a) show this S(t) for the τm values estimated at the various Ra, meaning the
lines have slopes of −1/τm. Each τm is estimated simply as the average over all lifetimes τ

in an ensemble, which is possible because we have run every simulation until it undergoes
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a transition. Estimating τm instead from the slope of the data in figure 2(a) gives similar
values, as reported in the Appendix.

Figure 2(b) shows how the mean lifetimes τm vary with Ra. Both axes are logarithmic,
so a linear trend corresponds to a power-law scaling of τm with Ra. The best-fit line gives
the scaling τm ≈ c Ra4.05. Error bars plotted for each τm estimate are ±1.96τm/

√
N, which

is the 95 % confidence interval for an N-member ensemble from an exponential random
process (cf. Avila et al. 2010). The best-fit scaling exponent of 4.05 is indistinguishable
from 4, according to the 95 % confidence interval ±0.14 that the MATLAB function
confint estimates from our τm values. Figure 2(b) shows the line of this best-fit scaling
law, along with the curve of an exponential fit. The exponential curve clearly does not fit
the data well, and any fits with double-exponential or divergent dependence on Ra would
be even worse.

4. Discussion and conclusions

This first investigation of the lifetime statistics of windy convection in 2-D stress-free
RBC has been specific to flow with Pr = 10 and a horizontal period eight times the layer
height. Over the studied range of 9 × 106 ≤ Ra ≤ 2.25 × 107, the wind-to-roll transition
behaves as a memoryless random process, and the ratio of mean wind lifetime to free-fall
time scales approximately like Ra4. The corresponding ratio of mean lifetime to diffusive
time scales like Ra3.5. While Ra varies only by a factor of 2.5 over the range of our
simulations, the mean lifetimes vary by a factor of almost 40. This range is large enough
to see clearly that the mean lifetimes are better described by power-law scaling with Ra
than by exponential or superexponential dependence on Ra. Whether this scaling differs at
other Prandtl numbers and horizontal periods remains to be studied; both parameters are
known to affect the Ra values at which windy states occur in RBC (Wang et al. 2020a)
as well as in penetrative convection (Fuentes & Cumming 2021). Power-law dependence
on Ra has been suggested also for mean switching times between different large-scale
circulation patterns in RBC (Wang et al. 2018; Chen et al. 2019).

If power-law scaling of mean lifetimes continues as Ra → ∞, this would mean that
windy convection is never truly stable but is metastable with such long lifetimes at large Ra
as to be effectively stable. However, the history of transitional shear flow studies suggests
caution when extrapolating our findings to asymptotically long lifetimes; for turbulent
puffs and slugs, the double-exponential dependence of lifetimes on Re is technically hard
to determine, and earlier studies with less data and smaller domains suggested other
dependence on Re – see discussion in Avila et al. (2010). Extending our DNS approach to
larger Ra would be very expensive; nearly 0.47 million CPU hours were needed to observe
transitions in all 200 of our highest-Ra simulations. Somewhat larger Ra could be reached
if simulations are truncated at a maximum timespan rather than waiting for every one to
undergo a transition; mean lifetime estimates can account for such truncation, as described
in Avila et al. (2010). At even larger Ra where mean lifetimes are extremely long, one might
employ a rare-event algorithm where DNS is performed selectively for cases leading to a
transition while pruning others, as has been done for shear flows (e.g. Gomé, Tuckerman
& Barkley 2022). Another possibility is a laboratory experiment, which is well suited to
long time spans, but 2-D convection with stress-free top and bottom would be hard to
approximate. For this reason and others, it is of great interest to find a laboratory model
that displays windy convection.

Regarding a theoretical explanation of how mean lifetimes of windy convection depend
on Ra, further data may allow an argument that invokes extreme value statistics. For pipe
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flow, Goldenfeld, Guttenberg & Gioia (2010) suggested that puff decay is triggered when
the maximum-over-space turbulent intensity drops below some threshold. They note that
if this maximum intensity follows a Gumbel distribution, and if the threshold decreases
linearly in Re as Re is raised, then the mean time before falling below the threshold would
increase double-exponentially with Re. For RBC, the wind-to-roll transition mechanism
seems the opposite: rolls might be triggered when the maximum-over-space deviation
from the mean wind rises above some threshold. If this threshold increases linearly in
Ra, then arguments analogous to Goldenfeld et al. (2010) imply that the mean lifetime
would increase exponentially with Ra, not double-exponentially. However, if the threshold
increases only logarithmically with Ra, then the mean lifetime would increase as a power
of Ra, as we observe in our data. Further DNS is needed to determine whether such
extreme value arguments apply to the present model, as has been largely confirmed for pipe
flow by Nemoto & Alexakis (2021). In particular, are wind-to-roll transitions triggered
when maximum turbulent intensity rises above a threshold? If so, which extreme value
distribution governs this maximum, and how does the threshold vary with Ra?

Another direction for simplified modelling of windy convection is as a stochastic
predator–prey system. A model of this type has been proposed for pipe flow (Shih, Hsieh
& Goldenfeld 2016), where it captures double-exponentially varying mean lifetimes of
not only puff decay but also splitting. This model consists of stochastic predator–prey
dynamics in a spatially extended domain, with the predator representing azimuthal zonal
flow in the pipe and the prey representing turbulent fluctuations. A similar predator–prey
analogy has been described for windy convection (Goluskin et al. 2014), again with the
zonal flow as the predator, but there is no clear analogue to the spatial localization and
splitting of puffs in pipe flow. As with the extreme value arguments, closer analysis of
various quantities in windy convection may be needed to formulate an insightful stochastic
model.

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2023.875.
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Appendix

Table 1 summarizes the main ensembles of simulations on which we have reported above.
The full lifetime data sets for these ensembles are given in the supplementary material. In
addition to the τm values estimated by averaging all lifetimes in each ensemble, the table
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Ra resolution N τm mean τm fit max τ

9 × 106 1536 × 192 300 1854 1842 9687
107 1536 × 192 600 2887 2910 16 850

1.25 × 107 2048 × 256 300 6980 7404 52 985
1.5 × 107 2048 × 256 200 15 476 16 479 117 797

1.75 × 107 2048 × 256 200 29 855 30 142 185 809
2 × 107 2048 × 256 200 44 853 47 813 373 524

2.25 × 107 2048 × 256 200 76 213 80 827 470 944

Table 1. For each of the main simulation ensembles, columns from left to right give the Rayleigh number, the
horizontal and vertical grid resolution, the number of simulations (N), the mean lifetime τm estimated by the
mean of τ in the ensemble, τm estimated by fitting a line to data in figure 2(a), and the maximum lifetime in
each ensemble. Times are in free-fall units. In all cases, Pr = 10, the horizontal period is eight times the layer
height, and random perturbations of the initial temperature have amplitude A = 10−4.

reports alternative estimates where −1/τm is the slope of lines fit to the data in figure 2(a).
The latter τm values have a best-fit scaling of Ra4.11 instead of Ra4.05.

In the Ra = 107 case, where our main ensemble size of N = 600 is the largest, we
have verified that our grid resolution is adequate, and that results are insensitive to how
initial conditions are generated. As reported in table 1, this main ensemble was simulated
with a resolution of 1536 × 192 using initial conditions generated from a single snapshot
by random temperature perturbations of amplitude A = 10−4. We performed N = 500
additional simulations on the finer grid 2048 × 256. The average over these lifetimes gives
τm ≈ 2806, which agrees with the main ensemble’s value τm ≈ 2886 to within the ±8 %
margin of the 95 % confidence interval. This indicates that the resolution 1536 × 192 is
adequate. We performed N = 800 additional simulations on the coarser grid 1024 × 128.
The average over these lifetimes gives τm ≈ 2332. This is 19 % shorter than τm from
the main ensemble, which indicates that 1024 × 128 is under-resolved and produces
bias towards shorter lifetimes. Finally, at the same resolution as the main ensemble, we
performed N = 300 simulations whose initial temperature perturbations had the smaller
amplitude of A = 10−5. The resulting lifetimes are exponentially distributed, as in all other
cases, and their average gives the very similar estimate of τm ≈ 2864.

The same simulations used to confirm that τm is robust to increased resolution and
to decreased perturbation amplitude also confirm that τm is robust to the flow snapshot
from which initial conditions are generated by random perturbations. This is because the
ensembles with medium and high resolutions with A = 10−4 used different snapshots, and
so did the ensemble with medium resolution and A = 10−5. As reported above, all three
snapshots led to similar τm estimates.
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