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A Geometric Characterization of
Nonnegative Bands

Alka Marwaha

Abstract. A band is a semigroup of idempotent operators. A nonnegative band S in B(L2(X)) having

at least one element of finite rank and with rank (S) > 1 for all S in S is known to have a special kind

of common invariant subspace which is termed a standard subspace (defined below).

Such bands are called decomposable. Decomposability has helped to understand the structure of

nonnegative bands with constant finite rank. In this paper, a geometric characterization of maximal,

rank-one, indecomposable nonnegative bands is obtained which facilitates the understanding of their

geometric structure.

1 Introduction

X will denote a separable, locally compact Hausdroff space and µ a Borel measure
on X. Let us write L2(X) for the Hilbert space of (equivalence classes of) complex-

valued measurable functions on X which are square-integrable relative to µ. Let us
assume for simplicity that µ(X) < ∞. This is not a great restriction, and almost all
our considerations will be valid for the case of a σ-finite measure with obvious mod-
ifications. We shall denote by B(L2(X)) the space of all bounded linear operators on

L2(X).
It has been the endeavour of several mathematicians in the past few years to find

sufficient conditions under which a semigroup can be reduced, meaning thereby that
the members of the semigroup have a common nontrivial invariant subspace. The

next step is to see if these conditions are strong enough to give (simultaneous) tri-
angularizability of the semigroup S. This means the existence of a chain C of closed
subspaces of L2(X) such that

(a) C is maximal (as a chain of closed subspaces of L2(X)), and

(b) every member of C is invariant for S.

Semigroups of n × n matrices with nonnegative entries were studied in [5] and
conditions were obtained to give reducibility for them. Also it has been proved [5]

that submultiplicativity of spectral radius on the members of a semigroup of compact
operators represented by matrices with nonnegative entries results in the reducibility
of the semigroup, although it may not yield decomposability (see definition below).
In [1], it has been shown that under certain conditions, semigroups of nonnegative

quasinilpotent operators are not only decomposable but simultaneously triangulariz-
able with a maximal subspace chain consisting of standard subspaces. Some attempts
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have been made to study the structure of bands, e.g., in [2] and [3]. The extra condi-
tion of nonnegativity does throw a light on their structure. The author proved in [4]

that a maximal nonnegative band of constant rank r under the special condition of
fullness is the direct sum of r maximal rank-one nonnegative indecomposable bands.
In this paper, a geometric characterization of a maximal, nonnegative, indecompos-
able rank-one band is obtained. This result completely determines the geometric

structure of maximal, nonnegative, indecomposable, finite-rank bands.
But first and foremost, a brief review of the terminology and definitions.

1.1 Definition and Preliminary Results

A function f ∈ L2(X) is said to be nonnegative (resp. positive), written f ≥ 0 (resp.
f > 0) if

µ {x ∈ X : f (x) < 0} = 0
(

resp. µ {x ∈ X : f (x) ≤ 0} = 0
)

By a standard subspace of L2(X), we mean a norm-closed linear manifold in L2(X)
of the form

L2(U) =

{

f ∈ L2(X) : f = 0 a.e. on Uc
}

for some Borel subset U of X. This space is nontrivial if µ(U).µ(Uc) > 0.

An operator A ∈ B(L2(X)) is said to be decomposable if there exists a nontrivial
standard subspace of L2(X) invariant under A.

Similarly, a semigroup S in B(L2(X)) is decomposable if every member of S has a

common nontrivial standard invariant subspace; otherwise S is indecomposable.
A band in B(L2(X)) is a semigroup of idempotents, i.e., operators E on L2(X)

such that E2
= E.

An operator A in B(L2(X)) is nonnegative if A f ≥ 0 whenever f ≥ 0 in L2(X).

Similarly, A is called positive if A f > 0 whenever 0 6= f ≥ 0 in L2(X).
For any function f , we define the support of f as supp f = {x ∈ X : f (x) 6= 0} .

If f is a member of L2(X), then supp f is defined up to a null set (i.e., a set of
measure zero).

When no confusion is likely to arise, we simply write supp f for any f ∈ L2(X) to
mean supp f0, where f0 is a function representing f .

As a first step to understand the geometric characterization of maximal, nonneg-
ative, indecomposable bands of constant finite rank, their structure has to be com-

pletely analysed. In this regard, some salient results and definitions are stated in this
section, the proofs of which appear in detail in [4].

Definition 1.1 A nonnegative semigroup S in B(L2(X)) will be called a full semi-

group if neither ker S nor ker S? has a nonzero, nonnegative vector. A single nonneg-
ative operator is called full if the semigroup generated by it is full.

Lemma 1.2 A nonnegative full band of rank-one operators is indecomposable.

Theorem 1.3 Let S be a band of nonnegative operators in B(L2(X)) with constant

finite rank r.
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(i) If S is full, then there exists a decomposition

L2(X) = L2(X1) ⊕ L2(X2) ⊕ · · · ⊕ L2(Xr),

with respect to which every member S of S is of the form











S1

S2

. . .

Sr











,

where each Si =

{

Si ∈ L2(Xi) : S ∈ S
}

is an indecomposable band of rank-one
operators.

(ii) In general, there exists a decomposition

L2(X) = L2(X ′

1) ⊕ L2(X ′

2) ⊕ L2(X ′

3)

with respect to which every member S of S is of the form





O XE XEY

O E EY

O O O



 ,

where X,Y are nonnegative operators on suitable spaces. Furthermore, the diag-
onal blocks in S0 = {E : S ∈ S} constitute a band of the form described in Case
(i).

Remark 1.4 In Theorem 1.6, the converse of part (i) of the preceding theorem is

proved to obtain a characterization of maximal, nonnegative, constant-rank bands
which are full.

Lemma 1.5 Suppose S is a direct sum of r nonnegative indecomposable semigroups

S1, S2, . . . , Sr such that each member of S has a block diagonal representation











S1

S2

. . .

Sr











,

where Si ∈ Si , i = 1, . . . , r, with respect to some decomposition of L2(X), say

L2(X) = L2(X1) ⊕ . . . ⊕ L2(Xr).

Then every M ∈ Lat ′S is of the form M = ⊕r
i=1 ∈i L2(Xi) where each ∈i is either 0

or 1.
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Theorem 1.6 A direct sum of r maximal, indecomposable, nonnegative rank-one bands

is a maximal band of constant rank r.

Theorem 1.3 and Remark 1.4 can be combined to give the following characteriza-
tion of maximal nonnegative bands of constant finite rank.

Theorem 1.7 Let S be a nonnegative band in B(L2(X)) of constant finite rank r.

(i) If S is full, then S is maximal if and only if

S =





























S1

S2

. . .

Sr











: Si ∈ Si , i = 1, 2, . . . , r



















,

where Si is a maximal rank-one indecomposable band for each i.

(ii) In general, if S is maximal, then

S =











O XE XEY

O E EY

O O O



 : E ∈ S0, X ∈ X,Y ∈ Y







,

where S0 is a direct sum as in part (i) and X, Y are the entire sets of nonnegative
operators on appropriate spaces.

1.2 A Geometric Characterization

In Theorem 1.7, it is proved that every maximal, indecomposable, nonnegative band
with constant finite rank r, say, which is full is the direct sum of maximal, indecom-

posable, nonnegative rank-one bands. Thus the structure of such bands is completely
determined if the structure of maximal, constant rank-one bands is known.

We know that a nonzero, nonnegative rank-one operator in B(L2(X)) is of the

form u ⊗ v, where u, v are nonzero, nonnegative functions in L2(X) and (u ⊗ v) f =

〈 f , v〉u for all f ∈ L2(X). Further, for u ⊗ v to be an idempotent, u, v must satisfy
the equation 〈u, v〉 = 1.

Thus, if S is a nonnegative band of rank-one operators in B(L2(X)), then we can

find sets U, V in the nonnegative cone of L2(X), viz. K such that S ⊇ U ⊗ V, where

U ⊗ V = {u ⊗ v : u ∈ U, v ∈ V}

and

〈u, v〉 = 1 for all u ∈ U and for all v ∈ V.

(By the nonnegative cone of L2(X), we mean the set K =

{

f ∈ L2(X) : f ≥ 0
}

).
Further, if S is maximal, then we must have S = U ⊗ V for some pair U, V of the

kind mentioned above. We wish to find the general form of U and V for a maximal,
nonnegative, indecomposable band S of rank-one operators in B(L2(X)).
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We observe that if u1, u2 ∈ U, then 〈tu1 + (1 − t)u2, v〉 = 1 for 0 ≤ t ≤ 1 and for
all v ∈ V. Thus for a maximal U⊗V, U must contain all the convex combinations of

its members too. Furthermore, it is clear that U is closed (in norm). Also, we cannot
have every member of U equal to zero a.e. on any Borel subset of X with positive
measure, for if, there were such a set, say W ⊆ X such that u = 0 a.e. in W for every
u ∈ U, then for any u ∈ U and v ∈ V

〈(u ⊗ v) f , χW〉 =

∫

W

(u ⊗ v) f (x)µ(dx)

=

∫

W

〈 f , v〉u(x)µ(dx)

= 〈 f , v〉

∫

W

u(x)µ(dx)

= 0 for all f ∈ L2(X)

which by Lemma 2.5 [4] gives that U ⊗ V is decomposable. This together with the
fact that U is closed and convex allows us to assume with no loss of generality that U

has a positive element. Let us pick one such element in U, say, u0, i.e., u0 > 0 a.e. on

X.

Now, any u ∈ U satisfies 〈u, v〉 = 1 for all v ∈ V. In particular, 〈u0, v〉 = 1 for all
v ∈ V. Thus, for any u ∈ U,

〈u, v〉 = 〈u0, v〉 for all v ∈ V ⇒ 〈u − u0, v〉 = 0 for all v ∈ V

⇒ u − u0 ∈ V⊥

⇒ u ∈ u0 + V⊥ for all u ∈ U

⇒ U ⊆ u0 + V⊥
.

Also, if v ′ ∈ V⊥, then for any v ∈ V,

〈u0 + v ′
, v〉 = 〈u0, v〉 = 1.

Thus, by the maximality of S, we obtain

(1) U =

{

u0 + V⊥
}

∩ K.

By the same reasoning, we can find a positive vector v0 in V and obtain

(2) V =

{

v0 + U⊥
}

∩ K.

Next, we show that if U and V are given as in (1) and (2) respectively, for some

positive u0, v0 and subspaces W, Z i.e.,

U = {u0 + W} ∩ K(3)

V = {v0 + Z} ∩ K(4)
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where 〈u0, v0〉 = 1, W = {v0 + Z}⊥ and Z = {u0 + W}⊥ , then S = U ⊗ V is a
maximal band of nonnegative rank-one operators in B(L2(X)). It is easy to see that

S forms a nonnegative band of rank-one operators. Suppose S is contained in a band
S0 of rank-one operators, where

S0 ⊂ U ′ ⊗ V ′
= {u ′ ⊗ v ′ : u ′ ∈ U ′

, v ′ ∈ V ′} ,

for some sets U ′, V ′ ⊆ K and 〈u ′, v ′〉 = 1 for all u ′ ∈ U ′ and v ′ ∈ V ′.

Let S = p⊗q ∈ S0. Since S0 is a semigroup, (u⊗v) ·(p⊗q) ∈ S0 for all u⊗v ∈ S.

Therefore, for any f ∈ L2(X),

(u ⊗ v)(p ⊗ q) f = (u ⊗ v)〈 f , q〉p

= 〈 f , q〉
(

(u ⊗ v)p
)

= 〈 f , q〉〈p, v〉u

= 〈p, v〉
(

〈 f , q〉u
)

= 〈p, v〉(u ⊗ q) f

=

(

〈p, v〉u ⊗ q
)

f ,

i.e., (u ⊗ v)(p ⊗ q) = 〈p, v〉u ⊗ q. Thus (u ⊗ v)(p ⊗ q) is an idempotent if and only

if 〈〈p, v, 〉u, q〉 = 1, i.e., if and only if 〈p, v〉〈u, q〉 = 1. With no loss of generality, we
can assume that 〈p, v〉 = 1 and 〈u, q〉 = 1 (for if, 〈p, v〉 = α(6= 1)), then 〈u, q〉 =

1
α
,

so that we can write s =
1
α

p⊗αq = p ′⊗q ′ where p ′
=

1
α

p, q ′
= αq and 〈p ′, v〉 = 1,

〈u, q ′〉 = 1). Now

〈u, q〉 = 1 for all u ∈ U ⇒ 〈u0, q〉 = 1 and 〈u0 + w, q〉 = 1 ∀ w ∈ W

⇒ 〈u0, q〉 = 1 and 〈w, q〉 = 0 ∀ w ∈ W

⇒ 〈u0 + w, q − v0〉 = 0 ∀ w ∈ W

⇒ q − v0 ∈ {u0 + W}
⊥

= Z

⇒ q ∈ v0 + Z = V.

Similarly, we can show that p ∈ U. Thus p ⊗ q ∈ U ⊗ V = S which implies that
S0 ⊆ S. Hence S is maximal.

Next, we would like to see which subspaces W and Z give rise to maximal inde-
composable bands as in (3) and (4). Suppose there is some w ∈ W such that w ≥ 0
or w ≤ 0. Consider the case when w ≥ 0 and the support of w is a Borel subset of

positive measure. Then

〈w, v〉 = 0 ∀ v ∈ V ⇒

∫

X

w(x)v(x)µ(dx) = 0 ∀ v ∈ V

⇒ w(x)v(x) = 0 a.e. on X ∀ v ∈ V (as w, v ≥ 0)
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Let N = supp w; then v = 0 a.e. on N ∀ v ∈ V. By the same argument given
once before, this will yield decomposability of S, which is not true. Similarly, if w ≤ 0

with positive-measured support, we shall find S to be decomposable. This shows that
every vector of W must necessarily be a “mixed” vector, i.e., a vector having positive
and negative parts with supports of positive measure. In other words, the space W

intersects K trivially. Following the same argument, we conclude that Z∩K = {0} ,

(We shall call such a space a mixed space).
We summarize the discussion above in the following theorem.

Theorem 2.1 Let S be a maximal, nonnegative, indecomposable band of rank-one op-

erators in B(L2(X)). Denote the positive cone of L2(X) by K. Then there exist positive

vectors u0, v0 in K with 〈u0, v0〉 = 1 and there exist mixed subspaces W, Z of L2(X)

with W = {v0 + Z}
⊥

, Z = {u0 + W}
⊥

such that S = U ⊗ V, where

U = {u0 + W} ∩ K,

V = {u0 + Z} ∩ K.
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