Bull. Austral. Math. Soc. Vol. 53 (1996) [209-212]

A NOTE ON HALL CLOSURE OF METANILPOTENT FITTING CLASSES

MARTIN MENTH

Metanilpotent Lockett classes are Hall closed. There is an example of a supersoluble, not Hall closed Fitting class.

Let \mathfrak{F} be a Fitting class, that is a class of finite soluble groups that is closed with respect to forming normal subgroups and normal products. If π is a set of primes, \mathfrak{F} is said to be Hall- π -closed provided that whenever H is a Hall- π -subgroup of G and $G \in \mathfrak{F}$, then $H \in \mathfrak{F}$. The class \mathfrak{F} is said to be Hall-closed if it is Hall- π -closed for all sets of primes. If G is a finite soluble group, we denote by $G_{\mathfrak{F}}$ the join of all normal \mathfrak{F} -subgroups of G. A Fitting class \mathfrak{F} satisfying $(G \times H)_{\mathfrak{F}} = G_{\mathfrak{F}} \times H_{\mathfrak{F}}$ for all finite soluble groups G and H is called a Lockett class. For a Fitting class \mathfrak{F} there is a uniquely determined smallest Lockett class $\mathfrak{F}^* \supseteq \mathfrak{F}$. The intersection of all Fitting classes \mathfrak{F} with $\mathfrak{F}^* = \mathfrak{F}^*$ is denoted by \mathfrak{F}_* . A Fitting class \mathfrak{F} is said to be a Fischer class if for every normal subgroup K of $G \in \mathfrak{F}$ and nilpotent subgroup H/K of G/K we have $H \in \mathfrak{F}$.

Imposing an additional condition for nilpotent length of a Fitting class \mathfrak{F} sometimes yields further closure properties of \mathfrak{F} . For instance, every metanilpotent Fischer class is subgroup closed [5, 3.7]. By weakening the hypothesis 'Fischer class' to 'Lockett class' we cannot expect subgroup closure, but we have:

THEOREM. Every metanilpotent Lockett class is Hall-closed.

PROOF: Let \mathfrak{F} be a metanilpotent Fitting class that is not Hall-closed. There exists a set π of primes and a group $G \in \mathfrak{F}$ such that G has a Hall- π -subgroup $H \notin \mathfrak{F}$. Set F = Fit(G), and let p_1, \ldots, p_n be the prime divisors of |F|. Then F is the direct product of its Sylow- p_i -subgroups P_i , $1 \le i \le n$, and G/F is nilpotent. Having numbered the primes suitably, there is an integer k $(1 \le k < n)$ such that p_1, \ldots, p_k are the p_i in π . Then $P = P_1 \cdot \ldots \cdot P_k = H \cap F$. The quotient H/P is isomorphic to a subgroup of G/F and therefore nilpotent. So H/P is a subnormal product of cyclic groups $\langle x_i P \rangle$. At least one of the subgroups $\langle P, x_i \rangle$ of H is not an \mathfrak{F} -group, let us say $H^* = \langle P, x \rangle$. Now we may replace G by $G^* = \langle F, x \rangle$, because $G^* \in \mathfrak{F}$ and

Received 27th April, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

 H^* is a Hall- π -subgroup of G^* . Set $Q = P_{k+1} \cdot \ldots \cdot P_n$. We define a direct product $D = \langle P, x_1 \rangle \times \langle Q, x_2 \rangle$, where $\langle P, x_1 \rangle$ is a copy of H^* and $\langle Q, x_2 \rangle$ is a copy of $Q\langle x \rangle$. Then $K = PQ\langle x_1x_2 \rangle$ is a normal subgroup of D and isomorphic to G^* , so $K \leq D_{\mathfrak{F}}$. On the other hand, $x_1 \notin \langle P, x_1 \rangle_{\mathfrak{F}}$. Hence $D_{\mathfrak{F}} \neq \langle P, x_1 \rangle_{\mathfrak{F}} \times \langle Q, x_2 \rangle_{\mathfrak{F}}$, and \mathfrak{F} is not a Lockett class.

Brison [1, 6.4] proved that for an arbitrary Fitting class \mathfrak{F} , the class \mathfrak{F}_* is Hall closed if and only if \mathfrak{F}^* is Hall closed. So we get:

COROLLARY 1. \mathfrak{F}^* and \mathfrak{F}_* are Hall closed for every metanilpotent Fitting class \mathfrak{F} .

For every supersoluble Fitting class \mathfrak{F} , the Lockett closure \mathfrak{F}^* is supersoluble [4, 1.1]. Therefore we obtain from the preceding theorem:

COROLLARY 2. Every supersoluble Fitting class is a subclass of a supersoluble Hall-closed Fitting class.

The following example shows that not all supersoluble Fitting classes are Hall closed. We need some notation.

Let p be a prime, $p \equiv 1 \mod 3$ and n a primitive third root of unity in GF(p). Set $T_p = \langle a, b \mid a^p = b^p = [a, b, a, a] = [a, b, a, b] = [a, b, b, b] = 1 \rangle$ and $U_p = \langle T, s \mid s^3 = 1, \ a^s = a^n, \ b^s = b^n \rangle$. The Fitting class \mathfrak{U}_p generated by U_p can be described in the following way: Let \mathfrak{U}_p^0 be the class of all finite groups G = XY, where $X = O_p(G)$ and $Y \in Syl_3(G)$, such that

- (i) X is a central product of copies P_i of T_p ;
- (ii) $Y/C_Y(P_i) \cong C_3$ and $P_iY/C_Y(P_i) \cong U_p$ for all indices i.

Then \mathfrak{U}_p is the class of all groups $G \in \mathfrak{S}_p \mathfrak{S}_3$ such that $O^p(G) \in \mathfrak{U}_p^0$. So \mathfrak{U}_p is a Fitting class of 'Dark type', and a supersoluble Lockett class (see [3] and [4]).

EXAMPLE 1. Set $A = T_7$ and $B = T_{13}$, and construct a semidirect product $K = (A \times B) \rtimes \langle x \rangle$ in the following way: x raises all elements of A modulo A' to the power of 2 and all elements of B modulo B' to the power of 3. That means $\langle A, x \rangle \cong U_7$ and $\langle B, x \rangle \cong U_{13}$. Then the Fitting class \mathcal{R} generated by K has the following properties:

- (a) A is a supersoluble Fitting class;
- (b) the Hall- $\{7,3\}$ -subgroups and Hall- $\{13,3\}$ -subgroups of K are not in \mathfrak{K} .

PROOF: The class \mathfrak{K} can be described in the same way as \mathfrak{U}_p , replacing T by $P=A\times B$ and U by K. Denote $X=O_{\{7,13\}}(G)$ and define \mathfrak{K}^0 in the same way as \mathfrak{U}_p^0 . Then \mathfrak{K} is the class of all groups $G\in\mathfrak{N}_{\{7,13\}}\mathfrak{S}_3$ such that $O^{\{7,13\}}(G)\in\mathfrak{K}^0$. To prove this one can use the same steps as in [3], replacing T by P. In particular \mathfrak{K} is supersoluble. If G is a $\{7,13\}$ -perfect group in \mathfrak{K} then $O_{\{7,13\}}(G)$ is a central product of m copies of A and of the same number of copies of B. The subgroup $A\langle x \rangle$ of K is

a Hall- $\{7,3\}$ -subgroup of K, and B(x) is a Hall- $\{13,3\}$ -subgroup of K. Both of them are $\{7,13\}$ -perfect, so they are not \Re -groups.

Since Fischer classes are Lockett classes, an example of Brison (proof of [1, Proposition 3.3.a]) shows that the theorem cannot be generalized by dropping the metanilpotency hypothesis. For every set π of primes, the class $\mathfrak{H}_{\pi} = (G \in \mathfrak{S} \mid O_{\pi}(G) \leq Z_{\infty}(G))$ is a Fischer class [2, IX.3.7b]. The intersection $\mathfrak{H}_{3} \cap \mathfrak{N}^{3}$ is a Fischer class of nilpotent length three that is not $\{2,3\}$ -Hall closed.

For Fitting classes F and G the product

$$\mathfrak{FG} = (G \in \mathfrak{S}: \text{ there exists } N \subseteq G \text{ such that } N \in \mathfrak{F} \text{ and } G/N \in \mathfrak{G})$$

is again a Fitting class (note that this is different from the Fitting class product $\mathfrak{F} \diamond \mathfrak{G}$). If ρ is a set of primes and \mathfrak{F}_r a Fitting class for every $r \in \rho$, then the class $\bigcap_{r \in \rho} \mathfrak{F}(r) \mathfrak{S}_r \mathfrak{S}_{r'}$ is called *locally defined* by the family $\{\mathfrak{F}(r) \mid r \in \rho\}$. By [2, IX.3.7c], every locally defined Fitting class is a Fischer class. It is easy to see that for Hall closed Fitting classes \mathfrak{F} and \mathfrak{G} the product $\mathfrak{F} \mathfrak{G}$ is also Hall closed, and that a Fitting class which is locally defined by a family of Hall closed Fitting classes is again Hall closed. But in general locally defined Fitting classes are not Hall closed:

EXAMPLE 2. Let \mathfrak{K} be the supersoluble Fitting class of Example 1. Then $\mathfrak{KS}_3\mathfrak{S}_{3'}$ is Hall closed, while $\mathfrak{KS}_7\mathfrak{S}_{7'}$ and $\mathfrak{KS}_7\mathfrak{S}_{7'}\cap\mathfrak{N}^3$ are not Hall closed.

PROOF: Let G be a group in $\Re \mathfrak{S}_3 \mathfrak{S}_{3'}$. By quotient group closure of $\mathfrak{S}_3 \mathfrak{S}_{3'}$ we see $G/G_{\mathfrak{K}} \in \mathfrak{S}_3 \mathfrak{S}_{3'}$. If H is a Hall- π -subgroup of G, then $H \cap G_{\mathfrak{K}}$ is a Hall- π -subgroup of $G_{\mathfrak{K}}$, and therefore $H \cap G_{\mathfrak{K}} \in \Re \mathfrak{S}_3$. Moreover $H/(H \cap G_{\mathfrak{K}}) \cong HG_{\mathfrak{K}}/G_{\mathfrak{K}} \leqslant G/G_{\mathfrak{K}} \in \mathfrak{S}_3 \mathfrak{S}_{3'}$. This shows $H/(H \cap G_{\mathfrak{K}}) \in \mathfrak{S}_3 \mathfrak{S}_{3'}$ and finally $H \in \Re \mathfrak{S}_3 \mathfrak{S}_{3'}$. Set $G = K \wr \langle s \rangle$, where $\langle s \rangle$ is cyclic of order 7, and $N = K_1 \times \ldots \times K_7$ is the base group of G. Set $P_i = A_i \times B_i = O_{\{7,13\}}(K_i)$ and let $\langle t_i \rangle$ be a Sylow-3-subgroup of K_i . Then $U_i = \langle A_i, t_i \rangle$ is a Hall- $\{3,7\}$ -subgroup of K_i , and $U = U_1 \times \ldots \times U_7$ is a Hall- $\{3,7\}$ -subgroup of N. Now $H = \langle U, s \rangle$ is a Hall- $\{3,7\}$ -subgroup of G. Obviously $O_7(U) \leqslant H_{\mathfrak{K}}$. If $s \in H_{\mathfrak{K}}$, so $t_1t_2^{-1} \in H_{\mathfrak{K}}$, and $L = \langle A_1 \times A_2, t_1t_2^{-1} \rangle$ is a subnormal subgroup of $H_{\mathfrak{K}}$. Therefore $L \in \mathfrak{K}$. On the other hand L is $\{7,13\}$ -perfect, a contradiction. This implies $H_{\mathfrak{K}} = O_7(U)$. Finally we have $H/H_{\mathfrak{K}} \cong C_3 | C_7 \notin \mathfrak{S}_7 \mathfrak{S}_{7'}$. \square

REFERENCES

- [1] O. Brison, 'Hall operators for Fitting classes', Arch. Math. (Basel) 33 (1979), 1-9.
- [2] K. Doerk and T. Hawkes, Finite soluble groups (deGruyter, Berlin, New York, 1992).
- [3] M. Menth, 'A family of Fitting classes of supersoluble groups', Math. Proc. Cambridge Philos. Soc. 118 (1995), 49-57.

- [4] M. Menth, 'Examples of supersoluble Lockett sections', Bull. Austral. Math. Soc. 49 (1994), 325-332.
- [5] K. Müller, 'Fittingklassen mit zusätzlichen Abschlußeigenschaften,', Arch. Math. (Basel) 50 (1988), 19-24.

Mathematisches Institut Universität Würzburg Am Hubland D-97074 Würzburg Germany