
Adv. Appl. Prob. 40, 835–855 (2008)
Printed in Northern Ireland

© Applied Probability Trust 2008

THE DISTRIBUTION OF WASTED SPACES IN
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Abstract

We consider the M/M/∞ queue with m primary servers and infinitely many secondary
servers. All the servers are numbered and ordered. An arriving customer takes the lowest
available server. We define the wasted spaces as the difference between the highest
numbered occupied server and the total number of occupied servers. Letting ρ = λ0/µ

be the ratio of arrival to service rates, we study the probability distribution of the wasted
spaces asymptotically for ρ → ∞. We also give some numerical results and the tail
behavior for ρ = O(1).
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1. Introduction

We consider the following stochastic model. Near a restaurant there are m primary parking
spaces. They are numbered and ordered; the one with rank 1 is closest to the restaurant.
Suppose that across the street there are a large number of additional spaces, which we take to be
infinite. These are also numbered and ordered. We assume the following: (i) customers arrive
according to a Poisson process with rate λ0, (ii) the amount of time that a customer occupies
a given parking space is exponentially distributed with mean 1/µ, and (iii) each arriving car
parks in the lowest-numbered available space.

This model has many applications, including dynamic storage allocation and the fragmen-
tation of computer memory. In the context of queueing theory it is referred to as an M/M/∞
queue with ranked servers. It has been studied by many authors including Kosten [8]; Coffman
et al. [5], and Newell [9]. In particular, Coffman et al. solved for the steady-state probability
distribution of the highest ranked occupied server (max S, if we define S to be the set of occupied
servers) using generating functions. However, the solution is given in the form of an alternating
sum and it is not easy to understand the solution’s qualitative behavior.

Here we are interested in the probability distribution of the wasted spaces W , which are
defined as the difference between the number of largest occupied spaces (max S) and the total
number of occupied spaces (|S|). Coffman and Leighton [2] gave an approximation for the mean
wasted space using a simple probabilistic proof, and Aldous [1] used more refined probabilistic
arguments to obtain a better approximation. In [1] the mean wasted space was shown to be
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836 E. SOHN AND C. KNESSL

E[W ] ∼ √
2ρ log log ρ, ρ → ∞, and the distribution of max S follows a double exponential

(or extreme value) distribution in this limit. More recently, Knessl obtained detailed asymptotic
results for ρ → ∞, first [6] for the distribution of max S, and later [7] for the joint distribution
of the numbers of occupied primary and secondary servers.

In [11] we showed that the solution for the joint distribution can be obtained using more
elementary methods, by solving the basic difference equation using separation of variables. In
this paper we obtain the probability distribution of the wasted spaces using the results in [7]
and evaluating asymptotically certain sums and integrals.

Related work includes Preater [10], who gave a new probabilistic derivation for the distribu-
tion of max S, by reducing the problem to the solution of a random difference equation. Similar
models with various service disciplines and storage policies have been studied in [3] and [4].
In [4] precise estimates were given for the mean wasted spaces in ranked server M/M/1 models
under the first-in–first-out (FIFO) and processor sharing (PS) service disciplines. In [3] some
alternate storage policies were considered, where an arrival does not necessarily take the lowest
ranked server. These lead to more tractable mathematical models, which provide upper and
lower bounds for the more difficult FIFO and PS M/M/1 models.

The paper is organized as follows. In Section 2 we summarize the main results. The deriva-
tions are sketched in Section 3. In Section 4 we include numerical studies and comparisons.

2. Summary of results

We let N1(t) and N2(t) respectively denote the number of primary and secondary servers
occupied at time t . The joint steady-state distribution function is

π(k, r) = π(k, r;m) = lim
t→∞ Pr[N1(t) = k, N2(t) = r], 0 ≤ k ≤ m, r ≥ 0.

Let ρ = λ0/µ be the traffic intensity. In [7] and [11] we obtained the integral representation

π(k, r) = m!
r! k!ρ

k−m 1

2π i

∫
Br
ρ−z�(z+ r)

Gk(z)

Gm(z)Gm(z− 1)
dz, (2.1)

where Gk is the polynomial

Gk(z) = Gk(z; ρ)

=
k∑

L=0

(
k

L

)
ρ−L�(L− z)

�(−z)

= k!
ρk

1

2π i

∫
C

t−k−1eρt (1 − t)z dt. (2.2)

Here �(·) is the gamma function, the contour C is a small loop about the origin in the complex
t-plane, and the contour Br is the vertical Bromwich contour in the z-plane. We can take Br to
be the imaginary axis for r ≥ 1 and, for r = 0, we replace Br by Br+, which goes along the
imaginary axis with an indentation to the right of z = 0.

The probability distribution of wasted space W can be written in terms of π as

Pr[W = 0] =
∞∑
j=0

π(j, 0; j), (2.3)
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Pr[W = L] =
∞∑
j=0

(π(j, 0;L+ j)− π(j, 0;L+ j − 1)), L ≥ 1. (2.4)

We also have the alternate forms

Pr[W ≤ L] =
∞∑
j=0

π(j, 0;L+ j) (2.5)

and

Pr[W > L] =
∞∑
j=0

(
ρj

j ! e−ρ − π(j, 0;L+ j)

)
. (2.6)

The last expression will be useful in estimating the right tail of the distribution. In some cases
π will be very close to a Poisson distribution and it will prove essential to estimate carefully
the summand in (2.6), which measures the deviation from this distribution.

Using the integral representation in (2.1) and the asymptotic results in [7], we obtain
asymptotic results for the probability distribution of wasted spaces, as summarized below.

Theorem 2.1. For ρ → ∞ and λ = √
2 log log ρ, the distribution of wasted spaces, Pr[W =

L], has the following asymptotic behaviors.

(i) For L = 0,

Pr[W = 0] ∼
√

2√
ρ log ρ

√
log log ρ

. (2.7)

(ii) For L = √
ρλ(1 − U) and −1 < U ≤ 1,

Pr[W = L] ∼ 1√
2πρ

�(U + 1)

(λA)U
exp

[
−1

2
λ2U2

]
, (2.8)

where A = 1/(2
√

2π).

(iii) For L = √
ρ(2λ+�∗) and �∗ = O(1),

Pr[W = L] ∼ log log ρ

2π
√

2ρ log ρ
exp

[
−λ�∗ − �2∗

4

] ∫ �∗/
√

2

−∞
exp

[
−ξ

2

2

]
dξ. (2.9)

(iv) For L = ρ2/3ζ and ζ = O(1),

Pr[W = L] ∼ ζ 2

8
√
πρ1/6

(
exp

[
ζ 3

8

] ∫ ∞

ζ 3/8

e−u

u
du

)
exp

[
−1

4
ρ1/3ζ 2

]
. (2.10)

(v) For L = νρ and ν = O(1),

Pr[W = L] ∼ 1

4
√
πρ

2 + ν − √
4 + ν2

√
4 + ν2 − 2

(
1 + ν2

4

)−1/4

eρφ(ν), (2.11)

φ(ν) = −2 +
√
ν2 + 4 − ν log

(√
1 + ν2

4
+ ν

2

)
.
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We can simplify (2.8) in two special cases. If L = √
ρ(λ + �1) with �1 = O(1),

corresponding to U = O(λ−1), we obtain the Gaussian limit law:

Pr[W = L] ∼ 1√
2πρ

exp

[
−�

2
1

2

]
, �1 = L√

ρ
− √

2 log log ρ.

If, on the other hand, U → 1 with 1 − U = �′/λ2 = O(λ−2), from (2.8) we obtain

Pr[W = L] ∼ 2√
ρ log ρ

√
2 log log ρ

e�
′
, �′ = L√

ρ

√
2 log log ρ. (2.12)

On this scale, the distribution grows exponentially. Note that (2.7) is a special case of (2.8)
(with U = 1) and (2.12) (with �′ = 0), but we wanted to explicitly display the probability of
having zero wasted space.

In (2.7)–(2.9) the probability is, up to some logarithmic factors, roughly O(ρ−1/2). Note
that exp[−λ2U2/2] = (log ρ)−U2

. We can view 0 < U < 1 in (2.8) as the left tail of the
distribution and −1 < U < 0 as the ‘near-right’ tail. In (2.10) and (2.11) the distribution is
exponentially small in ρ1/3 and ρ, respectively, and we call these the right tail and the far-
right tail. It can be easily shown that (2.8) and (2.9) match in the intermediate limit where
U ↓ −1 and �∗ = −λ− λU → −∞, that (2.9) and (2.10) match as �∗ → +∞ and ζ → 0
(ζ = ρ−1/6(2λ+�∗)), and that (2.10) matches to (2.11) as ζ → ∞ and ν → 0(ν = ρ−1/3ζ ).

We will also show that, for a fixed ρ and L → ∞, we have

Pr[W = L] ∼ Pr[W ≥ L] ∼ ρL+1

L(L!)e−2ρ. (2.13)

This gives the tail behavior for moderate traffic intensities. In Section 3 we will also establish
the asymptotic matching of (2.13) as ρ → ∞ with (2.11) as ν = L/ρ → ∞.

3. Derivations

Knessl [6], [7] gave detailed asymptotic results forGk(z) and π(k, r;m) for ρ → ∞ and all
possible ranges of k, r , andm. Here we use these results, setting r = 0, k = j , andm = L+ j ,
to asymptotically evaluate the sums in (2.3)–(2.6). We will ultimately get different expansions
for four different ranges of L, which will lead to Theorem 2.1. When using (2.3)–(2.6), we
need to determine where the summands (e.g. π(j, 0; j) in (2.3)) are maximal as functions of
j for ρ → ∞. This will also depend on the size of L with respect to ρ. We first consider the
case in which L = 0.

When L = 0, (2.1) and (2.3) combine to give the integral representation.

Pr[W = 0] =
∞∑
j=0

1

2π i

∫
Br+

�(z)ρ−z

Gj (z− 1)
dz

=
∞∑
j=0

1

2π i

∫
Br ′+

z�(z)ρ−z−1

Gj(z)
dz. (3.1)

The contour Br′+ is obtained by shifting Br+ to the left by one unit in the complex z-plane.
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Using the asymptotic results forGk in [6] and evaluating the integral(s) in (3.1) for ρ → ∞
and various ranges of j , we find that the summand is concentrated where j = ρ +O(

√
ρ).

Then approximating the sum over j by an integral over α = (j − ρ)/
√
ρ we obtain

Pr[W = 0] ∼
∫ ∞

−∞
exp

[
−α

2

4

]
ρ−z0/2 z0�(z0)√

ρ�(α)
dα. (3.2)

Here �(α) = −(d/dz)Dz(−α)|z=z0(α), where Dz is the parabolic cylinder function of index z
and z = z0(α) is the smallest positive root of Dz(−α).

The integral in (3.2) still contains the large parameter ρ and the integrand varies algebraically
with ρ (we note that, away from the range j = ρ +O(

√
ρ), the summand in (3.1) is exponen-

tially small). We can therefore further simplify (3.2). Since z0 > 0, the factor ρ−z0/2 is largest
where z0 is smallest, and this occurs for α → ∞. In this limit the maximal root of Dz(−α)
satisfies

z0(α) ∼ α√
2π

exp

[
−α

2

2

]
, α → ∞.

For α → ∞, we have the asymptotic expansion

Dz(−α) ∼ (−α)z exp

[
−α

2

4

]
+

√
2π

�(−z) exp

[
α2

4

]
α−z−1, α → ∞.

The expansion for z0(α) follows from the above, as �(−z) ∼ −1/z for z → 0. Then it follows
that �(α) ∼ (

√
2π/α) exp[α2/4] and (3.2) becomes

Pr[W = 0] ∼
∫ ∞

−∞
α√
2πρ

exp

[
−α

2

2

]
exp

[
−z0θ

2

]
dα

∼
∫ ∞

−∞
α√
2πρ

exp

[
−α

2

2

]
exp

[
−Aαθ exp

[
−α

2

2

]]
dα, θ = log ρ, (3.3)

where A = 1/(2
√

2π). Setting

α = √
2 log θ + log(

√
2 log θ)+ ω√
2 log θ

,

and using dα = dω/
√

2 log θ , (3.3) becomes

Pr[W = 0] ∼ 2

θ
√

2ρ log θ

∫ ∞

−∞
Ae−ω exp[−Ae−ω] dω. (3.4)

The integral is equal to 1 and we thus obtain (2.7), since θ = log ρ. It is interesting to note that
the integrand in (3.4) is a double exponential, which occurs as a limiting distribution of max S
(see [1] and [6]).

For L ≥ 1, we rewrite (2.4) as

Pr[W = L] =
∞∑
j=0

(π(j, 0;L+ j)− π(j + 1, 0;L+ j))− π(0, 0;L− 1). (3.5)
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It proves easier to estimate the summand in (3.5), rather than the summand in (2.4). From (2.1)
we obtain the following integral representation:

π(j, 0;L+ j)− π(j + 1, 0;L+ j)

= (L+ j)!
j !

ρ−L

2π i

∫
Br+

ρ−z�(z)(Gj (z)− (ρ/(j + 1))Gj+1(z))

GL+j (z)GL+j (z− 1)
dz. (3.6)

Now we scaleL = �
√
ρ = O(

√
ρ). By using results in [7] we conclude that the right-hand

side of (3.6) is again concentrated in the range j = ρ + O(
√
ρ) and that the integral can be

approximated by parabolic cylinder functions. But, when L = O(
√
ρ), � = L/

√
ρ appears

explicitly in the arguments of these functions and, thus, affects the location of the minimal root.
From [7] we obtain, again setting α = (j − ρ)/

√
ρ,

π(j, 0;L+ j)− π(j + 1, 0;L+ j)

∼ (L+ j)!
j !

1

ρL
√
ρ

exp

[
−�

2

2
−�α − α2

4

]

× �(z0)ρ
−z0/2((z0/

√
ρ)Dz0−1(−α)+ (1 − ρ/(j + 1))Dz0(−α))

Dz0−1(−α −�)(−(d/dz)Dz(−α −�)|z=z0(α,�))
.

Now z0 = z0(α,�) is the smallest positive root of the parabolic cylinder functionDz(−α−�).
Using Stirling’s formula in the form

(L+ j)!
j ! ∼ ρLe�α exp

[
�2

2

]
, j = ρ + α

√
ρ, L = �

√
ρ,

and also noting that 1 − ρ/(j + 1) ∼ α/
√
ρ, we obtain

Pr[W = L] ∼
∞∑
j=0

exp[−α2/4]
ρ

�(z0)ρ
−z0/2(z0Dz0−1(−α)+ αDz0(−α))

Dz0−1(−α −�)(−(d/dz)Dz(−α −�)|z=z0(α,�))
.

Here we ignored π(0, 0;L − 1) in (3.5), since it is exponentially small (in fact, it is equal to
e−ρ). Again, approximating the sum by an integral over α and using the identity

z0Dz0−1(−α)+ αDz0(−α) = −Dz0+1(−α),

we are led to

Pr[W = L] ∼
∫ ∞

−∞
exp[−α2/4]√

ρ

�(z0)ρ
−z0/2(−Dz0+1(−α))

Dz0−1(−α −�)(−(d/dz)Dz(−α −�)|z=z0(α,�))
dα.

(3.7)

Note that, when � = 0, (3.7) reduces to (3.2). Again, in view of the factor ρ−z0/2, we can
simplify the integrand further and obtain a more explicit result.
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Setting β = α +� we now have z0(β) ∼ (β/
√

2π) exp[−β2/2] and

Dz0−1(−β) ∼
√

2π

�(−z0 + 1)
exp

[
β2

4

]
β−z0 , (3.8)

Dz0+1(−β +�) ∼ (�− β)z0+1 exp

[
− (β −�)2

4

]

+
√

2π

�(−z0 − 1)
exp

[
(β −�)2

4

]
(β −�)−z0−2, (3.9)

− d

dz
Dz(−β) | z=z0(β) ∼

√
2π

β
exp

[
β2

4

]
. (3.10)

For z0 → 0, we furthermore use �(−z0 − 1) = �(−z0)/(−z0 − 1) ∼ −�(−z0) ∼ 1/z0
and �(z0) = �(z0 + 1)/z0 ∼ 1/z0, so that the first term on the right-hand side of (3.9) is
asymptotically larger than the second term. Thus, using (3.8)–(3.10), (3.7) simplifies to

Pr[W = L] ∼ 1√
2πρ

∫ ∞

−∞
ρ−z0/2(β −�) exp

[
− (β −�)2

2

]
dβ. (3.11)

Note that this approximation assumes that � = O(1) and that β is large. We now evaluate
(3.11) in various limits and show that the major contribution indeed comes from large values
of β.

We replace z0 in (3.11) by its asymptotic expansion z0 ∼ (β/
√

2π) exp[−β2/2], and set

β = λ+ �, � = λ(1 − U), and λ = √
2 log log ρ = √

2 log θ.

Then, in terms of � and U , (3.11) becomes

Pr[W = L] ∼ 1√
2πρ

∫ ∞

−∞
(� + λU) exp

[
− (� + λU)2

2

]
exp[−Aλe−λ�] d�. (3.12)

For λ → ∞, the maximum of the integrand occurs when −λ� = log((λU + �)/(Aλ2)). If
we scale � as � = −(1/λ) log(U/(Aλ))+ v/λ, (3.12) becomes

Pr[W = L] ∼ U√
2πρ

exp

[
−λ

2U2

2

](
U

Aλ

)U ∫ ∞

−∞
exp[−U(v + e−v)] dv. (3.13)

The integral evaluates to U−U�(U). We thus obtain (2.8) for U > 0 if we write U�(U) =
�(U + 1). We can show that this expression remains valid for −1 < U ≤ 0, using an initial
integration by parts in (3.11). However, the approximation in (2.8) leads to a singularity as
U ↓ −1, which corresponds to L increasing past 2λ

√
ρ = 2

√
ρ
√

2 log log ρ. Thus, there
is a transition in the asymptotic behavior when the wasted space is approximately twice its
(asymptotic) mean value.

To study this transition, we return to (3.11) and replace ρ−z0/2 in (3.11) by

exp

[
−Aθβ exp

[
−β

2

2

]]
,

and then integrate by parts using

d

(
exp

[
− (β −�)2

2

])
= −(β −�) exp

[
− (β −�)2

2

]
.
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Then we let � = 2λ + �∗ with �∗ = O(1), and let β = λ + x with x = O(1). Thus, we
obtain

Aθ√
2πρ

∫ ∞

−∞
((λ+ x)2 − 1) exp

[
−

(
x − �∗

2

)2

− 1

4
(2λ+�∗)2

]

× exp

[
−A(λ+ x) exp

[
−λx − x2

2

]]
dx.

As λ → ∞, the last exponential factor behaves as a step function, since

exp

[
−A(λ+ x) exp

[
−λx − x2

2

]]
→

{
1, x > 0,

0, x < 0.

Using θ exp[−λ2] = 1/ log ρ, the above integral asymptotically simplifies to

Aλ2

√
2πρ log ρ

exp

[
−λ�∗ − �2∗

4

] ∫ ∞

0
exp

[
−

(
x − �∗

2

)2]
dx.

From the above we obtain (2.9) if we change the integration variable x to 1
2 (�∗ − √

2ξ).
Next we consider the case in whichL = O(ρ). The previous results applied where (roughly)

L = O(
√
ρ), and, on these scales, Pr[W = L] is (roughly) O(1/

√
ρ). But now we are going

into the right tail of the distribution, where we can expect the probabilities to be very small. It
proves useful to use form (2.6) for Pr[W > L]. Knessl [7] estimated π(k, r;m) when r = 0,
k = ρX, and m = ρX0. For X0 > 1 and X < 1, Knessl obtained

ρj e−ρ

j ! −π(j, 0;L+ j) ∼
√
X

2πρ
√
X0

1

(1 −X)(X0 − 1)
exp[ρ�(X,X0)],

�(X,X0) = −2 +X +X0 −X logX −X0 logX0. (3.14)

Here we replace j by ρX and L+ j by ρX0. Using (3.14) in (2.6) leads to

Pr[W > L] ∼
∞∑
j=0

1

2πρ

√
j

L+ j

1

(1 − j/ρ)((L+ j)/ρ − 1)
exp

[
ρ�

(
j

ρ
,
L+ j

ρ

)]
. (3.15)

The sum in (3.15) can be estimated by the discrete Laplace method, with the main contribution
coming from where �(j/ρ, (L + j)/ρ) is maximal in j , which occurs when j (L + j) = ρ2

or

j = ρζ∗, where ζ∗ = −ν
2

+
√

1 + ν2

4
and ν = L

ρ
.

We take ν to be O(1). We can estimate (3.15) by approximating the summand for j =
ρζ∗ +O(

√
ρ) and approximating the sum by an integral. But, a quicker derivation is obtained

by using Stirling’s formula in reverse, in the form(s)

ej−ρ
(
ρ

j

)j
∼ √

2πj
ρj e−ρ

j ! ,

e−ρeL+j
(

ρ

L+ j

)L+j
∼ √

2π(L+ j)
ρL+j e−ρ

(L+ j)! .
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We use the above in (3.15) to obtain

Pr[W > L] ∼ ζ∗
(1 − ζ∗)(ν + ζ∗ − 1)

∞∑
j=0

ρL+2j e−2ρ

j ! (L+ j)! . (3.16)

Here we also froze the factor (1 − j/ρ)((L + j)/ρ − 1) at the maximum. The sum in (3.16)
can be recognized as a modified Bessel function, since

∞∑
l=0

Y 2l

l! (L+ l)! = Y−LIL(2Y ).

We thus obtain

Pr[W > L] ∼ ζ∗
(1 − ζ∗)(ν + ζ∗ − 1)

e−2ρIL(2ρ). (3.17)

For L and ρ simultaneously large, with L/ρ = ν = O(1), we have

IL(2ρ) ∼ 1

2
√
πρ

(
1 + ν2

4

)−1/4

eρψ(ν),

ψ(ν) =
√
ν2 + 4 − ν log

(√
1 + ν2

4
+ ν

2

)
. (3.18)

Using (3.18) in (3.17), defining C ≡ √
1 + 4/ν2, and noting that ζ∗ = ν(C − 1)/2, we

obtain

Pr[W > L] ∼
√

2

4
√
πρ

(C − 1)
√
ν

(νC − 2)
√
C

exp

[
ρ

(
νC − ν log

(
ν

2
(C + 1)

)
− 2

)]
, (3.19)

where C = √
1 + 4/ν2. We define φ(ν) and f (ν) by

φ(ν) = νC − ν log

(
ν(C + 1)

2

)
− 2

= −2 +
√
ν2 + 4 − ν log

(√
ν2

4
+ 1 + ν

2

)
,

f (ν) =
√

2

4
√
πρ

(C − 1)
√
ν

(νC − 2)
√
C
,

and note that φ(ν) = ψ(ν)− 2. Then we can write

Pr[W = L] = Pr[W > L− 1] − Pr[W > L]
∼ f

(
ν − 1

ρ

)
eρφ(ν−1/ρ) − f (ν)eρφ(ν)

∼ f (ν)eρφ(ν)(e−φ′(ν) − 1)

∼ Pr[W > L](e−φ′(ν) − 1).

Since φ′(ν) = − log(
√

1 + ν2/4 + ν/2), we obtain (2.11).
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Next we show that (2.9) cannot asymptotically match to (2.11). If we let ν → 0 in (2.11)
and use φ(ν) ∼ −ν2/4, we obtain

Pr[W = L] ∼ exp[−ρν2/4]
ν
√
πρ

=
√
ρ

L
√
π

exp

[
−L

2

4ρ

]
. (3.20)

However, if we let �∗ → ∞ in (2.9) and then set �∗ = L/
√
ρ − 2λ, we obtain

Pr[W = L] ∼ log ρ log log ρ

2
√
πρ

exp

[
−L

2

4ρ

]
. (3.21)

While the exponential factors in (3.20) and (3.21) agree, the algebraic factors do not. This
indicates that another scale is needed, which will correspond to L − 2λ

√
ρ � O(

√
ρ) and

L � O(ρ).
To identify the new scale and obtain the corresponding expansion of Pr[W = L], we first

re-examine some of the results in [7]. There Knessl showed that, for r = 0, m = ρ +O(
√
ρ),

and k = ρ +O(
√
ρ),

π(k, 0;m) ∼ �(z0)

�(β)

Dz0(−α)
Dz0−1(−β)

exp[−α2/4]√
ρ

ρ−z0/2, (3.22)

where

α = k − ρ√
ρ
, β = m− ρ√

ρ
,

and z0(β) is the minimum positive root of Dz(−β), as before. In [7] Knessl also showed that,
for X0 = m/ρ > 1,

ρke−ρ

k! − π(k, 0;m) ∼ 1

2π(X0 − 1)
√
ρX0

(∫ ∞

−α
exp

[
−u

2

2

]
du

)
× exp[ρ(−1 +X0 −X0 logX0)]. (3.23)

If we expand (3.22) for β → ∞, noting that z0 → 0 with

z0 ∼ β√
2π

exp

[
−β

2

2

]
, �(β) ∼

√
2π

β
exp

[
β2

4

]
,

Dz0(−α) ∼ D0(−α) = exp

[
−α

2

4

]
, Dz0−1(−β) ∼ D−1(−β) ∼ √

2π exp

[
β2

4

]
,

and ρ−z0/2 ∼ 1 − 1
2z0 log ρ, the right-hand side of (3.22) becomes

1√
2πρ

exp

[
−α

2

2

](
1 − β log ρ

2
√

2π
exp

[
−β

2

2

])
, β → ∞,

m

ρ
→ 1.

Expanding the right-hand side of (3.23) for X0 → 1 and noting that X0 − 1 = β/
√
ρ yields

1

2πβ

(∫ ∞

−α
exp

[
−u

2

2

]
du

)
exp

[
−β

2

2

]
, β → ∞,

m

ρ
→ 1. (3.24)
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Now
ρke−ρ

k! ∼ exp[−α2/2]√
2πρ

,

so if (3.22) and (3.23) were to asymptotically match, (3.24) would need to agree with

β log ρ

4π
√
ρ

exp

[
−α

2

2

]
exp

[
−β

2

2

]
, β → ∞,

m

ρ
→ 1, (3.25)

which is clearly not the case. However, comparing (3.24) and (3.25), we see that the expressions
are roughly of comparable magnitude when β/

√
ρ = O(β−1) or β = O(ρ1/4). This suggests

the scale for the intermediate expansion that is needed between (3.22) (where β = O(1)) and
(3.23) (where β = O(

√
ρ)).

We start with the approximation

π(k, 0;m) ∼ 1

2π i

(∫
Br+

�(z)Dz(−α)
Dz−1(−β)Dz(−β)ρ

−z/2 dz

)
exp[−α2/4]√

ρ
, (3.26)

which can be shown to hold for large β as long as β = o(
√
ρ). Note that (3.22) is obtained

by locating the pole of the integrand in (3.26) in the right-hand half-plane that is closest to the
origin, and shifting Br+ to the right, past this pole. We can also close Br+ in the left-hand
half-plane, and write the integral as a residue series. In the left-hand half-plane there are poles
at z = 0,−1,−2, . . . , where �(z) is singular. We thus obtain the alternate form

π(k, 0;m) ∼
( ∞∑
l=0

D−l (−α)
D−l−1(−β)D−l (−β)

ρl/2(−1)l

l!
)

exp[−α2/4]√
ρ

= exp[−α2/2]√
ρ

(∫ β

−∞
exp

[
−u

2

2

]
du

)−1

+
( ∞∑
l=1

D−l (−α)
D−l−1(−β)D−l (−β)

ρl/2(−1)l

l!
)

exp[−α2/4]√
ρ

, (3.27)

where in the last expression we isolated the term with l = 0. Next we use

D−l (−β) ∼ βl−1 exp

[
β2

4

] √
2π

(l − 1)! , l ≥ 1, β → ∞,

∫ β

−∞
exp

[
−u

2

2

]
du ∼ √

2π

(
1 − exp[−β2/2]√

2πβ

)
, β → ∞,

with which we can rewrite (3.27) in the form

π(k, 0;m)− exp[−α2/2]√
2πρ

∼ exp[−β2/2]
2πβ

exp[−α2/2]√
ρ

+
( ∞∑
l=1

(
√
ρ)l

β2l−1 (−1)l(l − 1)!D−l (−α)
)

exp[−α2/4] exp[−β2/2]
2π

√
ρ

. (3.28)
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Now we let

♦ =
√
ρ

β2 = O(1),

and represent D−l (−α) as the integral

D−l (−α) = exp[α2/4]
(l − 1)!

∫ ∞

−α
(v + α)l−1 exp

[
−v

2

2

]
dv, l ≥ 1. (3.29)

Using (3.29) in (3.28) and evaluating explicitly the sum over l, we obtain

exp[−α2/2]√
2πρ

− π(k, 0;m) ∼ exp[−β2/2]
2πβ

∫ ∞

−α
exp[−v2/2]

1 + ♦(v + α)
dv. (3.30)

Note that the first term on the right-hand side of (3.28) becomes negligible compared to the sum.
This is the expression between (3.22) and (3.23) that we sought. As ♦ → 0 (corresponding to
β � ρ1/4), the right-hand side of (3.30) becomes the same as (3.24), which shows that (3.23)
and (3.30) match. For ♦ → ∞, we have

∫ ∞

−α
exp[−v2/2]

1 + ♦(v + α)
dv ∼ log ♦

♦ exp

[
−α

2

2

]
∼ log ρ

2

β2

√
ρ

exp

[
−α

2

2

]
. (3.31)

Using (3.30) and (3.31), we see that the result agrees with (3.25), which shows that (3.22) and
(3.30) match.

Now we use the new asymptotic result (3.30) to obtain (2.10) in Theorem 2.1. We replace
α by (j − ρ)/

√
ρ and β by (L+ j − ρ)/

√
ρ, and use � = L/

√
ρ, to obtain

Pr[W > L] ∼
∞∑
j=0

exp[−(L+ j − ρ)2/(2ρ)]√ρ
2π(L+ j − ρ)

×
∫ ∞

0

1

1 + ♦v exp

[
−1

2

(
v − j − ρ√

ρ

)2]
dv

∼
∫ ∞

−∞

√
ρ

2π

exp[−w2/2]
w +�

exp

[
−1

2
(w +�)2

]

×
∫ ∞

0

ewv exp[−v2/2]
1 + v

√
ρ(w +�)−2 dv dw. (3.32)

Here we set ♦ = ρ3/2(L+ j − ρ)−2 and approximated the sum over j by an integral. We
can simplify the double integral in (3.32) as follows, which will also identify the appropriate
scaling of L. We note that the various exponential factors in the integrand in (3.32) combine to
give

exp

[
−1

2

(
w + L√

ρ

)2

− w2

2
+ wv − v2

2

]

= evw exp

[
−v

2

2

]
exp

[
−L

2

4ρ

]
exp

[
−

(
w + L

2
√
ρ

)2]
.
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Scaling w = − 1
2�+ y leads to

Pr[W > L] ∼
√
ρ

2π
exp

[
−L

2

4ρ

] ∫ ∞

−∞

∫ ∞

0

exp[−y2] exp[−v2/2]evy
y +�/2

× e−v�/2

1 + v
√
ρ(y +�/2)−2 dv dy. (3.33)

Furthermore, scaling v to be small, with v = �ρ−1/6, and L large, with L = ρ2/3ζ (thus,
� = ρ1/6ζ = O(ρ1/6)), we see that

v
√
ρ

(
y + �

2

)−2

∼ 4�ζ−2 and vLρ−1/2 = v� = �ζ.

Then we can approximate y + 1
2� by 1

2ρ
1/6ζ and also have exp[−v2/2]evy ∼ 1. Thus, from

(3.33), we obtain

Pr[W > L] ∼ ρ1/6

πζ

(∫ ∞

−∞

∫ ∞

0

exp[−y2]e−�ζ/2

1 + 4�ζ−2 d� dy

)
exp

[
−1

4
ρ1/3ζ 2

]
. (3.34)

Upon evaluating the integral over y, and rewriting the integral over� by using the substitution
� = − 1

4ζ
2 + 2ζ−1u, from (3.34) we obtain

Pr[W > L] ∼ ρ1/6

4
√
π

(
ζ

∫ ∞

ζ 3/8

e−u

u
du

)
exp

[
−1

4
ρ1/3ζ 2 + 1

8
ζ 3

]
. (3.35)

To obtain Pr[W = L], we note that replacing L by L − 1 corresponds to replacing ζ by
ζ − ρ−2/3, and the dominant exponential factor in (3.35) has the asymptotic difference

exp

[
−1

4
ρ1/3(ζ − ρ−2/3)2

]
− exp

[
−1

4
ρ1/3ζ 2

]

∼ exp

[
−1

4
ρ1/3ζ 2

](
exp

[
ζ

2ρ1/3

]
− 1

)

∼ exp

[
−1

4
ρ1/3ζ 2

]
ζ

2ρ1/3 .

We thus obtain (2.10).
As the final step, we verify the asymptotic matching between (2.10) and the other scales.

For ζ → ∞, we use
∫ ∞
z
u−1e−u du ∼ z−1e−z with z = ζ 3/8 in (3.35), thus obtaining

Pr[W > L] ∼ 2√
π
ρ1/6 1

ζ 2 exp

[
−1

4
ρ1/3ζ 2

]
= 2√

πρ

1

ν2 exp

[
−ρν

2

4

]
. (3.36)

Here we also used ζ = ρ1/3ν. Now consider (3.19). As ν → 0, we have

C ∼ 2

ν
, νC − 2 ∼ ν2

4
, and φ(ν) = −ν

2

4
+O(ν4).

Thus, (3.19) as ν → 0 becomes the same as (3.36), which verifies the matching between the
ranges L = O(ρ2/3) and L = O(ρ). If, on the other hand, ζ → 0 then∫ ∞

ζ 3/8

e−u

u
du ∼ − log

(
ζ 3

8

)
∼ 1

2
log ρ,
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where we used ζ = (2λ+�∗)ρ−1/6. Thus, for ζ → 0, (3.35) becomes

Pr[W > L] ∼ λ log ρ

4
√
π

exp

[
−1

4
(�∗ + 2λ)2

]
. (3.37)

Now exp[−λ2] = (log ρ)−2 and the expansion of (2.9) as �∗ → ∞ is

Pr[W = L] ∼ log log ρ

2
√
πρ log ρ

exp[−λ�∗] exp

[
−�

2∗
4

]
. (3.38)

To compute Pr[W = L] from (3.37), we note that replacingL byL−1 corresponds to replacing
�∗ by �∗ − 1/

√
ρ and, thus, backward differencing the negative of (3.37) asymptotically

corresponds to multiplying by exp[λ/√ρ] − 1 ∼ λ/
√
ρ. Also, λ2 = 2 log log ρ and, hence,

λ/
√
ρ times (3.37) is the same as the expression in (3.38), so that (2.9) and (2.10) indeed match.

We examine very large values of L, which have L � O(ρ). The argument leading to (3.19)
assumed that the summand in (3.15) had an interior maximum at j = ρζ∗, but ζ∗ → 0 (with
ζ∗ = O(1/ν)) as ν → ∞. We re-examine (3.15) with the scaling L = ρ2τ = O(ρ2).
Approximating the summand in (3.15) for L/ρ → ∞ and j/L → 0 and again using Stirling’s
formula in reverse leads to

Pr[W > L] ∼ ρL

L(L!)
( ∞∑
j=1

e−2ρ

(j − 1)!
1

τ j

)
. (3.39)

Here we also used (L + j)! ∼ L!Lj and ρ2/L = 1/τ . Note that (3.39) is similar to (3.16),
except that the factor ζ∗ in (3.16) must be replaced by j/ρ and taken inside the summation. For
ζ∗ → 0, we have (1 − ζ∗)(ν + ζ∗ − 1) ∼ ν = L/ρ. Evaluating the sum in (3.39) we conclude
that, for L = O(ρ2),

Pr[W > L] ∼ ρL

(τL)L!e−2ρe1/τ , (3.40)

where L! can be further approximated by the Stirling formula. But, for ν → ∞, we have

eρφ(ν) = exp

[
ρ

(
−ν log ν + ν − 2 + 1

ν
+O

(
1

ν2

))]

∼
(
ρ

L

)L
eLe−2ρ exp

[
ρ2

L

]
(3.41)

and C − 1 ∼ 2/ν2 with which

f (ν) ∼ 1√
2πρ

ν−5/2. (3.42)

Combining (3.41) and (3.42) in (3.19) we obtain (3.40), with L! approximated by Stirling’s
formula. This shows that (3.19), and hence (2.11), remains valid for L = O(ρ2) (i.e. ν =
O(ρ)). In fact, it remains true for arbitrarily large L, since then Pr[W > L] is asymptotically
given by the j = 1 term in the sum in (3.39).

Finally, consider ρ fixed andL → ∞. We have π(0, 0;L) = e−ρ and, for j ≥ 1, the results
in [7] show that

ρj e−ρ

j ! − π(j, 0;L+ j) ∼ 1

(j − 1)!
e−2ρ

L

ρL+2j

(L+ j)! . (3.43)
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Using (3.43) in (2.6), we see that the term with j = 1 is asymptotically dominant and we obtain

Pr[W > L] ∼ e−2ρ

L

ρL+2

(L+ 1)! , L → ∞, ρ = O(1).

But the above is equivalent to (2.13), as now

Pr[W > L] ∼ Pr[W = L+ 1].
This completes the analysis.

4. Numerical results

In this section we compare the asymptotic results from Theorem 2.1 with the exact values.
To obtain the exact value of Pr[W = L], we use the sum for Gk(z) in (2.2) to rewrite (2.1) as

π(j, 0;L+ j) = (L+ j)!
j ! ρ−L 1

2π i

×
∫
Br+

ρ−z�(z)
j∑
l=0

(
j

l

)
ρ−l �(l − z)

�(−z)

×
(L+j∑
l=0

(
L+ j

l

)
ρ−l �(l − z)

�(−z)

×
L+j∑
l=0

(
L+ j

l

)
ρ−l �(l − z+ 1)

�(−z+ 1)

)−1

dz.

We can close Br+ in the left-hand half-plane where the gamma function has singularities at
z = 0,−1,−2,−3, . . . and write the integral as a residue series:

π(j, 0;L+ j) = (L+ j)!
j ! ρ−L

×
∞∑
n=0

(−ρ)n
∑j
l=0

(
j
l

)
ρ−l (l + n− 1)!∑L+j

l=0

(
L+j
l

)
ρ−l (l + n− 1)! ∑L+j

l=0

(
L+j
l

)
ρ−l (l + n)!

.

The term with n = 0 must be interpreted as a limiting case of the terms with n > 0. Isolating
this term leads to

π(j, 0;L+ j)

= (L+ j)!
j ! ρ−L

×
((L+j∑

l=0

(
L+ j

l

)
ρ−l l!

)−1

+
∞∑
n=1

(−ρ)n
∑j
l=0

(
j
l

)
ρ−l (l + n− 1)!∑L+j

l=0

(
L+j
l

)
ρ−l (l + n− 1)! ∑L+j

l=0

(
L+j
l

)
ρ−l (l + n)!

)
. (4.1)
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We used MAPLE® to evaluate the sum in (4.1). The sum is an alternating sum and the
calculation must be done using many digits of precision, especially for larger values of ρ. We
used (4.1) in (2.5) and summed over j to obtain Pr[W ≤ L], and then computed Pr[W = L]
from Pr[W ≤ L] − Pr[W ≤ L− 1].

We denote the asymptotic results in (2.8), (2.9), (2.10), and (2.11) by

L = O(λ
√
ρ), L ∼ 2λ

√
ρ,

L = O(ρ2/3), and L = O(ρ),

respectively. Tables 1–4 display the numerical and asymptotic results for ρ = 40, 60, 80, and
100, respectively. We see that, for small L, L = O(λ

√
ρ) gives the best approximation, that

there is a middle range of L, where L = O(ρ2/3) is optimal, and that, for sufficiently large L,
L = O(ρ) gives the best approximation.

Table 1: Numerical and asymptotic results for ρ = 40.

L Exact value L = O(λ
√
ρ) L ∼ 2λ

√
ρ L = O(ρ2/3) L = O(ρ)

0 6.533 × 10−2 5.306 × 10−2 2.396 × 10−3 – –
1 7.124 × 10−2 5.828 × 10−2 3.176 × 10−3 2.460 × 10−3 –
2 7.522 × 10−2 6.285 × 10−2 4.112 × 10−3 7.401 × 10−3 –
3 7.723 × 10−2 6.658 × 10−2 5.200 × 10−3 1.328 × 10−2 –
4 7.732 × 10−2 6.931 × 10−2 6.422 × 10−3 1.917 × 10−2 7.870 × 10−1

5 7.566 × 10−2 7.094 × 10−2 7.748 × 10−3 2.445 × 10−2 5.914 × 10−1

6 7.249 × 10−2 7.145 × 10−2 9.131 × 10−3 2.870 × 10−2 4.571 × 10−1

7 6.809 × 10−2 7.088 × 10−2 1.051 × 10−2 3.170 × 10−2 3.590 × 10−1

8 6.279 × 10−2 6.931 × 10−2 1.183 × 10−2 3.337 × 10−2 2.842 × 10−1

9 5.689 × 10−2 6.689 × 10−2 1.301 × 10−2 3.378 × 10−2 2.257 × 10−1

10 5.070 × 10−2 6.382 × 10−2 1.398 × 10−2 3.306 × 10−2 1.793 × 10−1

11 4.445 × 10−2 6.030 × 10−2 1.469 × 10−2 3.141 × 10−2 1.420 × 10−1

12 3.838 × 10−2 5.656 × 10−2 1.508 × 10−2 2.906 × 10−2 1.121 × 10−1

13 3.265 × 10−2 5.285 × 10−2 1.515 × 10−2 2.625 × 10−2 8.795 × 10−2

15 2.262 × 10−2 4.655 × 10−2 1.430 × 10−2 2.007 × 10−2 5.310 × 10−2

20 7.120 × 10−3 – 8.471 × 10−3 7.392 × 10−3 1.301 × 10−2

25 1.624 × 10−3 – 3.003 × 10−3 1.821 × 10−3 2.510 × 10−3

30 2.720 × 10−4 – 6.642 × 10−4 3.138 × 10−4 3.743 × 10−4

35 3.379 × 10−5 – 9.635 × 10−5 3.867 × 10−5 4.286 × 10−5

40 3.142 × 10−6 – 9.611 × 10−6 3.451 × 10−6 3.763 × 10−6

45 2.207 × 10−7 – 6.825 × 10−7 2.245 × 10−7 2.539 × 10−7

50 1.182 × 10−8 – 3.515 × 10−8 1.068 × 10−8 1.321 × 10−8

51 6.376 × 10−9 – 1.870 × 10−8 5.595 × 10−9 7.096 × 10−9

52 3.404 × 10−9 – 9.824 × 10−9 2.895 × 10−9 3.772 × 10−9

60 1.557 × 10−11 – 3.634 × 10−11 9.526 × 10−12 1.679 × 10−11

70 7.661 × 10−15 – 1.076 × 10−14 2.464 × 10−15 8.092 × 10−15

80 1.495 × 10−18 – 9.124 × 10−19 1.850 × 10−19 1.559 × 10−18

90 1.223 × 10−22 – 2.217 × 10−23 4.024 × 10−24 1.264 × 10−22

100 4.414 × 10−27 – 1.544 × 10−28 2.533 × 10−29 4.537 × 10−27
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In Table 5 we show where the transitions occur for the various ρ. For each ρ, we give the value
of

λ
√
ρ = √

ρ
√

2 log log ρ

and indicate the range of L where a given asymptotic approximation is optimal. Note that the
approximation in (2.9), where L ∼ 2λ

√
ρ, is never optimal. For each ρ, the first transition

Table 2: Numerical and asymptotic results for ρ = 60.

L Exact value L = O(λ
√
ρ) L ∼ 2λ

√
ρ L = O(ρ2/3) L = O(ρ)

0 4.812 × 10−2 3.756 × 10−2 1.847 × 10−3 – –
1 5.253 × 10−2 4.125 × 10−2 2.346 × 10−3 1.464 × 10−3 –
2 5.607 × 10−2 4.473 × 10−2 2.933 × 10−3 4.545 × 10−3 –
3 5.867 × 10−2 4.791 × 10−2 3.611 × 10−3 8.421 × 10−3 –
4 6.028 × 10−2 5.070 × 10−2 4.375 × 10−3 1.260 × 10−2 –
5 6.092 × 10−2 5.300 × 10−2 5.218 × 10−3 1.671 × 10−2 7.712 × 10−1

6 6.061 × 10−2 5.477 × 10−2 6.126 × 10−3 2.048 × 10−2 6.113 × 10−1

7 5.944 × 10−2 5.596 × 10−2 7.082 × 10−3 2.371 × 10−2 4.942 × 10−1

8 5.749 × 10−2 5.656 × 10−2 8.060 × 10−3 2.628 × 10−2 4.045 × 10−1

9 5.488 × 10−2 5.828 × 10−2 9.031 × 10−3 2.810 × 10−2 3.336 × 10−1

10 5.174 × 10−2 5.600 × 10−2 9.965 × 10−3 2.918 × 10−2 2.762 × 10−1

11 4.820 × 10−2 5.493 × 10−2 1.083 × 10−2 2.954 × 10−2 2.291 × 10−1

12 4.438 × 10−2 5.341 × 10−2 1.159 × 10−2 2.923 × 10−2 1.900 × 10−1

13 4.041 × 10−2 5.152 × 10−2 1.221 × 10−2 2.834 × 10−2 1.574 × 10−1

14 3.640 × 10−2 4.935 × 10−2 1.267 × 10−2 2.699 × 10−2 1.300 × 10−1

15 3.244 × 10−2 4.700 × 10−2 1.295 × 10−2 2.526 × 10−2 1.071 × 10−1

16 2.862 × 10−2 4.459 × 10−2 1.305 × 10−2 2.328 × 10−2 8.790 × 10−2

20 1.569 × 10−2 5.828 × 10−2 1.158 × 10−2 1.458 × 10−2 3.800 × 10−2

25 5.995 × 10−3 6.994 × 10−2 7.201 × 10−3 6.170 × 10−3 1.171 × 10−2

30 1.833 × 10−3 – 3.174 × 10−3 2.000 × 10−3 3.063 × 10−3

35 4.527 × 10−4 – 1.013 × 10−3 5.087 × 10−4 6.733 × 10−4

40 9.073 × 10−5 – 2.405 × 10−4 1.029 × 10−4 1.237 × 10−4

45 1.484 × 10−5 – 4.363 × 10−5 1.670 × 10−5 1.895 × 10−5

50 1.989 × 10−6 – 6.201 × 10−6 2.186 × 10−6 2.417 × 10−6

55 2.195 × 10−7 – 7.029 × 10−7 2.315 × 10−7 2.571 × 10−7

60 2.003 × 10−8 – 6.423 × 10−8 1.989 × 10−8 2.281 × 10−8

65 1.519 × 10−9 – 4.755 × 10−9 1.388 × 10−9 1.692 × 10−9

66 8.869 × 10−10 – 2.755 × 10−9 7.946 × 10−10 9.847 × 10−10

67 5.142 × 10−10 – 1.583 × 10−9 4.513 × 10−10 5.689 × 10−10

68 2.960 × 10−10 – 9.019 × 10−10 2.542 × 10−10 3.264 × 10−10

70 9.597 × 10−11 – 2.856 × 10−10 7.868 × 10−11 1.052 × 10−10

80 2.254 × 10−13 – 5.513 × 10−13 1.360 × 10−13 2.412 × 10−13

90 2.669 × 10−16 – 4.626 × 10−16 1.029 × 10−16 2.812 × 10−16

100 1.637 × 10−19 – 1.687 × 10−19 3.411 × 10−20 1.706 × 10−19

110 5.336 × 10−23 – 2.673 × 10−23 4.947 × 10−24 5.521 × 10−23

120 9.484 × 10−27 – 1.840 × 10−27 3.138 × 10−28 9.758 × 10−27

130 9.416 × 10−31 – 5.508 × 10−32 8.698 × 10−33 9.647 × 10−31

140 5.346 × 10−35 – 7.165 × 10−37 1.053 × 10−37 5.459 × 10−35

150 2.000 × 10−39 – 4.050 × 10−42 5.567 × 10−43 1.808 × 10−39
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Table 3: Numerical and asymptotic results for ρ = 80.

L Exact value L = O(λ
√
ρ) L ∼ 2λ

√
ρ L = O(ρ2/3) L = O(ρ)

0 3.887 × 10−2 2.968 × 10−2 1.537 × 10−3 – –
1 4.232 × 10−2 3.249 × 10−2 1.901 × 10−3 1.009 × 10−3 –
2 4.530 × 10−2 3.521 × 10−2 2.322 × 10−3 3.188 × 10−3 –
3 4.773 × 10−2 3.780 × 10−2 2.804 × 10−3 6.015 × 10−3 –
4 4.958 × 10−2 4.021 × 10−2 3.345 × 10−3 9.175 × 10−3 –
5 5.083 × 10−2 4.237 × 10−2 3.945 × 10−3 1.243 × 10−2 9.188 × 10−1

6 5.148 × 10−2 4.425 × 10−2 4.597 × 10−3 1.559 × 10−2 7.375 × 10−1

7 5.152 × 10−2 4.580 × 10−2 5.294 × 10−3 1.850 × 10−2 6.050 × 10−1

8 5.101 × 10−2 4.699 × 10−2 6.025 × 10−3 2.106 × 10−2 5.036 × 10−1

9 4.996 × 10−2 4.781 × 10−2 6.779 × 10−3 2.319 × 10−2 4.231 × 10−1

10 4.845 × 10−2 4.824 × 10−2 7.537 × 10−3 2.484 × 10−2 3.577 × 10−1

11 4.654 × 10−2 4.829 × 10−2 8.284 × 10−3 2.598 × 10−2 3.036 × 10−1

12 4.428 × 10−2 4.798 × 10−2 9.000 × 10−3 2.663 × 10−2 2.582 × 10−1

13 4.175 × 10−2 4.732 × 10−2 9.665 × 10−3 2.680 × 10−2 2.197 × 10−1

14 3.903 × 10−2 4.636 × 10−2 1.026 × 10−2 2.653 × 10−2 1.869 × 10−1

15 3.617 × 10−2 4.513 × 10−2 1.077 × 10−2 2.588 × 10−2 1.588 × 10−1

16 3.324 × 10−2 4.367 × 10−2 1.117 × 10−2 2.489 × 10−2 1.347 × 10−1

17 3.030 × 10−2 4.205 × 10−2 1.146 × 10−2 2.364 × 10−2 1.140 × 10−1

18 2.740 × 10−2 4.032 × 10−2 1.163 × 10−2 2.218 × 10−2 9.624 × 10−2

20 2.189 × 10−2 3.675 × 10−2 1.157 × 10−2 1.888 × 10−2 6.790 × 10−2

25 1.097 × 10−2 3.041 × 10−2 9.403 × 10−3 1.059 × 10−2 2.651 × 10−2

30 4.602 × 10−3 8.445 × 10−2 5.841 × 10−3 4.765 × 10−3 9.238 × 10−3

35 1.630 × 10−3 – 2.805 × 10−3 1.762 × 10−3 2.840 × 10−3

40 4.902 × 10−4 – 1.056 × 10−3 5.430 × 10−4 7.648 × 10−4

45 1.256 × 10−4 – 3.172 × 10−4 1.407 × 10−4 1.798 × 10−4

50 2.752 × 10−5 – 7.734 × 10−5 3.084 × 10−5 3.682 × 10−5

55 5.170 × 10−6 – 1.558 × 10−5 5.741 × 10−6 6.562 × 10−6

60 8.352 × 10−7 – 2.629 × 10−6 9.102 × 10−7 1.017 × 10−6

65 1.163 × 10−7 – 3.754 × 10−7 1.232 × 10−7 1.371 × 10−7

70 1.401 × 10−8 – 4.566 × 10−8 1.424 × 10−8 1.609 × 10−8

75 1.462 × 10−9 – 4.741 × 10−9 1.407 × 10−9 1.646 × 10−9

80 1.325 × 10−10 – 4.209 × 10−10 1.190 × 10−10 1.467 × 10−10

81 8.063 × 10−11 – 2.545 × 10−10 7.130 × 10−11 8.900 × 10−11

82 4.879 × 10−11 – 1.529 × 10−10 4.243 × 10−11 5.370 × 10−11

83 2.936 × 10−11 – 9.131 × 10−11 2.510 × 10−11 3.222 × 10−11

90 7.193 × 10−13 – 2.075 × 10−12 5.344 × 10−13 7.770 × 10−13

100 2.276 × 10−15 – 5.475 × 10−15 1.290 × 10−15 2.418 × 10−15

110 4.264 × 10−18 – 7.732 × 10−18 1.675 × 10−18 4.476 × 10−18

120 4.800 × 10−21 – 5.845 × 10−21 1.170 × 10−21 4.995 × 10−21

130 3.295 × 10−24 – 2.365 × 10−24 4.396 × 10−25 3.407 × 10−24

140 1.400 × 10−27 – 5.123 × 10−28 8.880 × 10−29 1.440 × 10−27

150 3.734 × 10−31 – 5.939 × 10−32 9.641 × 10−33 3.827 × 10−31

160 6.340 × 10−35 – 3.686 × 10−36 5.623 × 10−37 6.478 × 10−35

170 6.949 × 10−39 – 1.224 × 10−40 1.761 × 10−41 7.082 × 10−39

180 4.981 × 10−43 – 2.176 × 10−45 2.962 × 10−46 5.066 × 10−43
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Table 4: Numerical and asymptotic results for ρ = 100.

L Exact value L = O(λ
√
ρ) L ∼ 2λ

√
ρ L = O(ρ2/3) L = O(ρ)

0 3.299 × 10−2 2.485 × 10−2 1.334 × 10−3 – –
1 3.582 × 10−2 2.709 × 10−2 1.618 × 10−3 7.536 × 10−4 –
2 3.834 × 10−2 2.930 × 10−2 1.944 × 10−3 2.411 × 10−3 –
3 4.052 × 10−2 3.145 × 10−2 2.314 × 10−3 4.605 × 10−3 –
4 4.232 × 10−2 3.351 × 10−2 2.727 × 10−3 7.112 × 10−3 –
5 4.371 × 10−2 3.542 × 10−2 3.184 × 10−3 9.764 × 10−3 –
6 4.469 × 10−2 3.717 × 10−2 3.683 × 10−3 1.242 × 10−2 8.465 × 10−1

7 4.525 × 10−2 3.872 × 10−2 4.220 × 10−3 1.498 × 10−2 7.006 × 10−1

8 4.540 × 10−2 4.005 × 10−2 4.790 × 10−3 1.734 × 10−2 5.890 × 10−1

9 4.514 × 10−2 4.113 × 10−2 5.386 × 10−3 1.944 × 10−2 5.005 × 10−1

10 4.451 × 10−2 4.196 × 10−2 5.999 × 10−3 2.123 × 10−2 4.284 × 10−1

11 4.353 × 10−2 4.251 × 10−2 6.620 × 10−3 2.267 × 10−2 3.686 × 10−1

12 4.224 × 10−2 4.278 × 10−2 7.238 × 10−3 2.374 × 10−2 3.182 × 10−1

13 4.067 × 10−2 4.279 × 10−2 7.839 × 10−3 2.445 × 10−2 2.752 × 10−1

14 3.887 × 10−2 4.254 × 10−2 8.413 × 10−3 2.480 × 10−2 2.383 × 10−1

15 3.689 × 10−2 4.204 × 10−2 8.945 × 10−3 2.480 × 10−2 2.063 × 10−1

16 3.476 × 10−2 4.132 × 10−2 9.424 × 10−3 2.450 × 10−2 1.786 × 10−1

17 3.253 × 10−2 4.039 × 10−2 9.838 × 10−3 2.392 × 10−2 1.544 × 10−1

18 3.024 × 10−2 3.930 × 10−2 1.018 × 10−2 2.310 × 10−2 1.332 × 10−1

19 2.792 × 10−2 3.808 × 10−2 1.043 × 10−2 2.208 × 10−2 1.148 × 10−1

20 2.562 × 10−2 3.675 × 10−2 1.060 × 10−2 2.091 × 10−2 9.868 × 10−2

21 2.335 × 10−2 3.535 × 10−2 1.067 × 10−2 1.961 × 10−2 8.462 × 10−2

22 2.116 × 10−2 3.392 × 10−2 1.064 × 10−2 1.823 × 10−2 7.237 × 10−2

23 1.905 × 10−2 3.251 × 10−2 1.052 × 10−2 1.681 × 10−2 6.171 × 10−2

24 1.705 × 10−2 3.114 × 10−2 1.031 × 10−2 1.538 × 10−2 5.246 × 10−2

25 1.517 × 10−2 2.986 × 10−2 1.001 × 10−2 1.395 × 10−2 4.445 × 10−2

30 7.738 × 10−3 2.718 × 10−2 7.592 × 10−3 7.688 × 10−3 1.842 × 10−2

35 3.428 × 10−3 – 4.652 × 10−3 3.580 × 10−3 6.938 × 10−3

40 1.325 × 10−3 – 2.323 × 10−3 1.429 × 10−3 2.359 × 10−3

45 4.485 × 10−4 – 9.560 × 10−4 4.930 × 10−4 7.205 × 10−4

50 1.328 × 10−4 – 3.280 × 10−4 1.481 × 10−4 1.972 × 10−4

55 3.485 × 10−5 – 9.502 × 10−5 3.886 × 10−5 4.831 × 10−5

60 8.058 × 10−6 – 2.355 × 10−5 8.943 × 10−6 1.058 × 10−5

65 1.646 × 10−6 – 5.046 × 10−6 1.808 × 10−6 2.069 × 10−6

70 2.979 × 10−7 – 9.431 × 10−7 3.217 × 10−7 3.613 × 10−7

75 4.782 × 10−8 – 1.546 × 10−7 5.042 × 10−8 5.639 × 10−8

80 6.822 × 10−9 – 2.231 × 10−8 6.968 × 10−9 7.862 × 10−9

85 8.665 × 10−10 – 2.838 × 10−9 8.497 × 10−10 9.799 × 10−10

90 9.812 × 10−11 – 3.185 × 10−10 9.144 × 10−11 1.092 × 10−10

93 2.515 × 10−11 – 8.072 × 10−11 2.261 × 10−11 2.777 × 10−11

94 1.583 × 10−11 – 5.058 × 10−11 1.405 × 10−11 1.744 × 10−11

95 9.919 × 10−12 – 3.153 × 10−11 8.689 × 10−12 1.090 × 10−11

96 6.188 × 10−12 – 1.956 × 10−11 5.346 × 10−12 6.784 × 10−12

100 8.962 × 10−13 – 2.755 × 10−12 7.290 × 10−13 9.743 × 10−13

110 5.252 × 10−15 – 1.446 × 10−14 3.536 × 10−15 5.614 × 10−15

120 1.994 × 10−17 – 4.602 × 10−17 1.044 × 10−17 2.105 × 10−17

130 4.952 × 10−20 – 8.884 × 10−20 1.877 × 10−20 5.180 × 10−20

140 8.119 × 10−23 – 1.040 × 10−22 2.055 × 10−23 8.433 × 10−23

150 8.874 × 10−26 – 7.387 × 10−26 1.369 × 10−26 9.166 × 10−26

160 6.525 × 10−29 – 3.182 × 10−29 5.549 × 10−30 6.711 × 10−29

170 3.259 × 10−32 – 8.313 × 10−33 1.369 × 10−33 3.340 × 10−32

180 1.116 × 10−35 – 1.317 × 10−36 2.053 × 10−37 1.140 × 10−35

190 2.642 × 10−39 – 1.266 × 10−40 1.873 × 10−41 2.693 × 10−39

200 4.366 × 10−43 – 7.380 × 10−45 1.039 × 10−45 4.442 × 10−43

210 5.080 × 10−47 – 2.610 × 10−49 3.504 × 10−50 5.161 × 10−47

220 4.198 × 10−51 – 5.596 × 10−54 7.180 × 10−55 4.259 × 10−51

230 2.484 × 10−55 – 7.279 × 10−59 8.942 × 10−60 2.517 × 10−55
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Table 5.

ρ λ
√
ρ L = O(λ

√
ρ) L = O(ρ2/3) L = O(ρ)

40 10.22 0 ≤ L ≤ 10 11 ≤ L ≤ 50 51 ≤ L

60 13.01 0 ≤ L ≤ 13 14 ≤ L ≤ 66 67 ≤ L

80 15.38 0 ≤ L ≤ 15 16 ≤ L ≤ 80 81 ≤ L

100 17.48 0 ≤ L ≤ 18 19 ≤ L ≤ 93 94 ≤ L

Table 6.

ρ
√
ρ L where Pr[W = L] is maximal

40 6.32 4
60 7.75 5
80 8.94 7

100 10 8

occurs roughly at λ
√
ρ. The second transition (from L = O(ρ2/3) to L = O(ρ)) occurs

roughly atL = ρ, but the ratio of this transition point to ρ decreases slowly, which is consistent
with the fractional power law L = O(ρ2/3).

The reason that L ∼ 2λ
√
ρ is never optimal is as follows. We have 2λ

√
ρ = ρ2/3 when

ρ ≈ 5038 andρ2/3 exceeds 2λ
√
ρ only forρ > 5038. Thus, we would not expect to numerically

resolve these two scales for the moderate values ofρ considered here. For very largeρ, however,
it becomes problematic to evaluate the sum in (4.1).

In Table 6 we indicate the value of L where Pr[W = L] is maximal. We note that this value
of L is numerically slightly less than

√
ρ, while the asymptotic results predict that Pr[W = L]

should be largest at or near
√
ρ
√

2 log log ρ. Apparently, ρ = 100 is not large enough to see
the effects of the factor

√
2 log log ρ.

Tables 1–4 show that the asymptotic results for the scales L = O(ρ2/3) and L = O(ρ) are
reasonably accurate, but those forL = O(λ

√
ρ) andL ∼ 2λ

√
ρ lead to much larger errors. For

example, Table 4 shows that, for 0 ≤ L ≤ 18, the approximation for L = O(λ
√
ρ) is in error

by about 30% in the worst case. In contrast, when L ≥ 94, the approximation for L = O(ρ)

has errors of at most 10%, which decreases to about 2% when L = 200 = 2ρ.
These error trends are consistent with the asymptotic analysis, which showed that, when

L = O(ρ), the next order term is smaller than the leading term by a factor of ρ−1. However,
the expansions on the scales L = O(λ

√
ρ) and L ∼ 2λ

√
ρ have error terms that are either

O(1/λ) orO(1/λ2), and are thus smaller than the leading term only by a factor of 1/ log log ρ.
We revisit the calculations by noting that (3.2) has the error term

Pr[W = 0] = 1√
ρ

(∫ ∞

−∞
exp

[
−α

2

4

]
ρ−z0/2�(z0 + 1)

�(α)
dα

)(
1 +OR

(
1√
ρ

))
. (4.2)

Here OR means that the error is ‘roughly’O(1/
√
ρ), possibly with some logarithmic factors.

It is only upon expanding (4.2) further that we obtain the much larger (O(1/ log log ρ)) error
terms. Similar comments apply to Pr[W = L] in (3.11). Thus, we would expect that a more
accurate approximation to Pr[W = 0] would result by using (4.2) rather than (2.7), but this is
of course at the expense of having a much more complicated approximation.
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We can recast the integral in (4.2) as follows. We recall that z0(α) satisfies Dz(−α) = 0,
and differentiating this with respect to α yields(

∂Dz(−α)
∂z

∣∣∣∣
z=z0(α)

)
z′0(α)−D′

z0(α)
(−α) = 0. (4.3)

Here D′ is the derivative of the parabolic cylinder function with respect to its argument.
We change variables from α to ω = z0(α) in (4.2). In view of (4.3) we have

−Dz0(α)(−α) = z′0(α)�(α),

and then (4.2) becomes

Pr[W = 0] ∼ 1√
ρ

∫ ∞

0

�(ω + 1)

D′
ω(−α(ω))

e−θω/2 exp

[
−α

2(ω)

4

]
dω. (4.4)

Here α(ω) is the inverse function of ω = z0(α), so that Dω(−α(ω)) = 0 and α satisfies:
α → ∞ as ω → 0; α → −∞ as ω → ∞; and α = 0 if ω = 1. However, the numerical
evaluation of (4.4) is not trivial, as we must first compute α(ω) numerically and then employ
an accurate quadrature scheme that accounts for the concentration of the integrand near ω = 0,
which occurs since θ = log ρ is large.
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