Bull. Aust. Math. Soc. **80** (2009), 205–216 doi:10.1017/S0004972709000185

SELF-SMALL ABELIAN GROUPS

ULRICH ALBRECHT[™], SIMION BREAZ and WILLIAM WICKLESS

(Received 23 October 2008)

Abstract

This paper investigates self-small abelian groups of finite torsion-free rank. We obtain a new characterization of infinite self-small groups. In addition, self-small groups of torsion-free rank 1 and their finite direct sums are discussed.

2000 *Mathematics subject classification*: primary 20K21. *Keywords and phrases*: self-small group, projection condition, essentially *W*-reduced group.

1. Introduction

It is the goal of this paper to investigate *self-small abelian groups*. Introduced by Arnold and Murley [6], these are the abelian groups *G* such that, for every index set *I* and every $\alpha \in \text{Hom}(G, G^{(I)})$, there is a finite subset $J \subseteq I$ with $\alpha(G) \subseteq \bigoplus_J G$. Since every torsion-free abelian group of finite rank is self-small, and all self-small torsion groups are finite by [6, Proposition 3.1], our investigation focuses on mixed groups. Section 2 introduces several important classes of self-small mixed groups, and discusses their basic properties. In Section 3 we give a new characterization of infinite self-small groups of finite torsion-free rank (Theorem 3.1), while Section 4 extends the notion of completely decomposable groups from the torsion-free case to the case of mixed groups.

Although we use the standard notation from [12], some terminology shall be mentioned for the benefit of the reader. A mixed abelian group G is *honest* if tG is not a direct summand of G, where $tG = \bigoplus_p G_p$ denotes the torsion subgroup of G, and G_p is its *p*-torsion subgroup. The set $S(G) = \{p | G_p \neq 0\}$ is the support of G. The torsion-free rank of G, denoted by $r_0(G)$, is the rank of $\overline{G} = G/tG$. Furthermore, a subgroup U of G is full if G/U is torsion.

Given a class C of abelian groups, the objects of the category $\mathbb{Q}C$ are the groups in C, while its morphisms are the *quasi-homomorphisms*

 $\operatorname{Hom}_{\mathbb{O}\mathcal{C}}(A, B) = \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Hom}(A, B).$

The second author is supported by grant no. PN2CD ID-489.

^{© 2009} Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

This makes \mathbb{QC} a full subcategory of $\mathbb{Q}Ab$ where Ab is the category of all groups [14]. Groups A and B, which are isomorphic in $\mathbb{Q}Ab$, are called *quasi-isomorphic*; and we write $A \sim B$ in this case. The discussion of quasi-properties often gives rise to properties of a group which hold for all but finitely many primes in a subset S of the set P of all primes. We say that such a property holds for *almost all primes* in S.

For sets S_1 and S_2 , we write $S_1 \subseteq S_2$ if there is a finite subset T of S_1 such that $S_1 \setminus T \subseteq S_2$. The sets S_1 and S_2 are *quasi-equal* $(S_1 \doteq S_2)$ if $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$.

2. Classes of self-small mixed groups

We use the symbol S to denote the class of infinite self-small groups which have finite torsion-free rank. For $G \in S$, choose a full free subgroup F of G, and let D(G) be the quasi-equality class of the set $\{p|(G/F)_p \text{ is divisible}\}$. To see that D(G)is well defined, consider full free subgroups F_1 and F_2 of a group $G \in S$. Then $F_1 \cap F_2$ is a full free subgroup of G; and $F_i/F_1 \cap F_2$ is finite for i = 1, 2. Hence, for almost all primes p, $(G/F_1)_p$ is divisible if and only if $(G/F_2)_p$ is divisible because $G/F_i \cong [G/F_1 \cap F_2]/[F_i/F_1 \cap F_2].$

THEOREM 2.1 ([6, Proposition 3.6] and [3, Theorem 2.2]). The following are equivalent for a reduced group G with $r_0(G) < \infty$.

- (a) *G* is self-small.
- (b) Each G_p is finite, and $S(G) \subseteq D(G)$.
- (c) Each G_p is finite and Hom(G, tG) is torsion.

Moreover, groups in S satisfy a weak projection condition.

COROLLARY 2.2 [8, Lemma 2.1]. Let G be a self-small group of finite torsion-free rank, and F be a full free subgroup of G. For every prime p, consider a decomposition $G = G_p \oplus G(p)$ with corresponding canonical projection $\pi_p : G \to G_p$. Then $G_p = \pi_p(F)$ for almost all primes p.

The objects of the category *WALK* are the abelian groups. The *WALK-maps* are Hom_W(G, H) = Hom(G, H)/Hom(G, tH), and $E_W(G) = \text{Hom}_W(G, G)$ is the *WALK*-endomorphism ring of G. The *WALK*-endomorphism ring of a self-small group G of finite torsion-free rank is $\overline{E}(G) = E(G)/tE(G)$ since Hom(G, tG) = tE(G) by Theorem 2.1. Finally, the symbol $G \cong_W H$ indicates that G and H are isomorphic in *WALK*.

THEOREM 2.3. The following are equivalent for self-small groups G and H.

- (a) $G \cong_W H$.
- (b) There exist decompositions G = G' ⊕ U and H = H' ⊕ V with U and V finite such that G' ≅ H'.

PROOF. It suffices to show (a) implies (b). If *G* and *H* are isomorphic in *WALK*, then there exist homomorphisms $\alpha : G \to H$ and $\beta : H \to G$ such that $[1_G - \beta \alpha](G)$ and $[1_H - \alpha \beta](H)$ are torsion. By the remarks preceding the theorem, there exists a finite

set *I* of primes such that $(1_G - \beta \alpha)(G) \subseteq \bigoplus_I G_p$ and $(1_H - \alpha \beta)(H) \subseteq \bigoplus_I H_p$. Since G_p and H_p are finite, $G = [\bigoplus_I G_p] \oplus G'$ and $H = [\bigoplus_I H_p] \oplus H'$. It is now easy to see that α and β induce isomorphisms between G' and H'.

In particular, the last result shows that a self-small group G is honest if and only if it is not *WALK*-isomorphic to a torsion-free group. Moreover, arguing as in the proof of Theorem 2.3, we obtain the following corollary.

COROLLARY 2.4. Let $G \in S$. If $\overline{e}_1, \ldots, \overline{e}_n$ are pairwise orthogonal idempotents in $E_W(G)$ with $\overline{e}_1 + \cdots + \overline{e}_n = 1$, then there exist pairwise orthogonal idempotents e_1, \ldots, e_n, e of E(G) such that $e_i \in \overline{e}_i$ for all $i = 1, \ldots, n$, e(G) is finite, and $e_1 + \cdots + e_n + e = 1_G$.

There are two subclasses of S which have been studied extensively over the last decade by several authors. The first of these is the class G, which consists of the self-small mixed groups G of finite torsion-free rank such that G/tG is divisible (for example, see [1–3, 10, 13, 15]). A reduced group G of finite torsion-free rank belongs to G if and only if G_p is finite for all primes p, and G can be embedded as a pure subgroup into $\prod_p G_p$ such that it satisfies the *projection condition*: for some (equivalently any) full free subgroup $F \subseteq G$, one has $\pi_p(F) = G_p$ for almost all p. Here, π_p is the natural projection of the direct product onto G_p .

Unfortunately, the direct sum of a group in \mathcal{G} and of a subgroup of \mathbb{Q} need not be in \mathcal{S} .

PROPOSITION 2.5.

- (a) There exist a group $G \in \mathcal{G}$ and a subgroup H of \mathbb{Q} such that $G \oplus H \notin S$.
- (b) If $\{G_1, \ldots, G_k\}$ are groups of finite torsion-free rank, then $\bigoplus_{i=1}^k G_i \in S$ if and only if each $(G_i)_p$ is finite for all primes p, and $\bigcup_{i=1}^k S(G_i) \subseteq \bigcap_{i=1}^k D(G_i)$.

PROOF. (a) For each prime p, let a_p be a generator of the group $\mathbb{Z}/p\mathbb{Z}$. Define G to be the pure subgroup of $\prod_p \langle a_p \rangle$ generated by $\bigoplus_p \langle a_p \rangle$ and the element $a = (a_p)_p$. Clearly, $G \in \mathcal{G}$. We consider the subgroup H of \mathbb{Q} generated by $\{1/p \mid p \text{ a prime}\}$. Since $S(G \oplus H)$ is the set of all primes, while $D(G \oplus H)$ is empty, $G \oplus H$ is not self-small.

(b) In [6], it was shown that S is closed under direct summands. Moreover, it is not hard to check that $S(\bigoplus_{i=1}^{k} G_i) = \bigcup_{i=1}^{k} S(G_i)$ and $D(\bigoplus_{i=1}^{k} G_i) = \bigcap_{i=1}^{k} D(G_i)$. \Box

The second class of mixed groups is \mathcal{D} , the class of *quotient divisible (qd-)* groups [11]. It consists of those abelian groups *G* for which *tG* is reduced, and which contain a full free subgroup *F* of finite rank such that G/F is the direct sum of a divisible and a finite group (see also [4]). The torsion-free qd-groups are precisely the classical quotient divisible groups introduced by Beaumont and Pierce [7]. It is easy to see that $\mathcal{G} \subseteq \mathcal{D}$.

Furthermore, qd-groups are also characterized by a projection condition. Let W be a set of primes. For $p \in W$, select a finitely generated $\widehat{\mathbb{Z}}_p$ -module M_p . A subgroup $G \leq \prod_p M_p$ satisfies the *p*-adic projection condition if it contains a full

free subgroup F of finite rank such that $\pi_p(F)$ generates M_p as a \mathbb{Z}_p -module for every $p \in W$. Here, $\pi_p : \prod_q M_q \to M_p$ again denotes the canonical projection.

THEOREM 2.6 [11]. An infinite, reduced group G of finite torsion-free rank is quotient divisible if and only if there exist a set W of primes and finitely generated p-adic modules $\{M_p | p \in W\}$ such that G can be embedded as a pure subgroup into $\prod_{p \in W} M_p$ satisfying the p-adic projection condition.

In particular, $\mathcal{D} \subseteq \mathcal{S}$ since G_p is finite whenever $G \in \mathcal{D}$ by Theorem 2.6.

3. A new characterization

Let *W* be a nonempty set of primes. A group *G* is *essentially W*-*reduced* if *G* does not contain an infinite subgroup which is divisible by all primes $p \in W$. The symbol $\mathcal{DR}(W)$ denotes the class of essentially *W*-reduced groups *G* of finite torsion-free rank which have a full free subgroup *F* such that $W \subseteq D(G/F)$. To see that every group *G* in $\mathcal{DR}(W)$ is self-small, observe that $S(G) \subseteq W$ since *G* is essentially *W*-reduced. In view of the fact that $W \subseteq D(G/F)$, we obtain that G_p is finite for every $p \in W$ because *G* has finite torsion-free rank. If $p \in S(G) \setminus W$, then G_p is divisible by all primes in *W*. Thus, G_p is finite in this case too. Now apply Theorem 2.1.

THEOREM 3.1.

- (a) Let G be an honest self-small mixed group of finite torsion-free rank. Then $G \cong_W H$ such that H is an extension of a finite-rank torsion-free S(G)-divisible group X by a group Y in $\mathcal{DR}(S(G))$.
- (b) Let W be a nonempty set of primes. Every extension H of a W-divisible finiterank torsion-free group by a group from DR(W) is self-small.

PROOF. (a) Let *G* be an honest mixed self-small group of finite torsion-free rank. As we have already noted, G_p is finite for each $p \in S(G)$. Since *G* is honest, S(G) must be infinite. For each $p \in S(G)$, fix a decomposition $G = G_p \oplus G(p)$. Then $K = \bigcap_{S(G)} G(p)$ is torsion-free and pure in *G*. Let $X = \bigcap_{S(G)} p^{\omega}G$. For $p \in S(G)$, there exists a positive integer k_p such that $p^{k_p}G = p^{k_p}G(p)$. Thus, $p^{\omega}G = p^{\omega}G(p) \subseteq G(p)$ for all $p \in S(G)$. Consequently, $X \subseteq K$, and X is a torsion-free group which is *p*-divisible for all $p \in S(G)$. Furthermore, since *tG* cannot be a summand of *G*, $r_0(X) < r_0(G)$.

Let $\{x_1, \ldots, x_n\} \subseteq G$ be a maximal independent subset consisting of elements of infinite order such that $\{x_1, \ldots, x_m\}$, for some m < n, is maximal independent in *X*. Write

$$S(G) \setminus D(G/\langle x_1, \ldots, x_n \rangle) = \{p_1, \ldots, p_l\}.$$

The modularity law yields

$$G = \left(\bigoplus_{i=1}^{l} G_{p_i}\right) \oplus \left(\bigcap_{i=1}^{l} G(p_i)\right).$$

If $\rho: G \to \bigcap_{i=1}^{l} G(p_i)$ is the canonical projection, then the full free subgroup

$$F = \langle x_1, \ldots, x_m, \rho(x_{m+1}), \ldots, \rho(x_n) \rangle \subseteq \bigcap_{i=1}^l G(p_i)$$

has the property that $\bigcap_{i=1}^{l} G(p_i)/F$ is *p*-divisible for all primes

$$p \in S\left(\bigcap_{i=1}^{l} G(p_i)\right) = S(G) \setminus \{p_1, \ldots, p_l\}$$

Moreover, for every $i = 1, \ldots, l$, we have

$$\left(\bigcap_{j=1}^{l} G(p_j)/F\right)_{p_i} = R_i \oplus D_i$$

with R_i finite and D_i divisible.

If $F \subseteq F' \subseteq (\bigcap_{i=1}^{l} G(p_i))$ satisfies $F'/F = \bigoplus_{i=1}^{l} R_i$, then F' is a free group such that $\bigcap_{i=1}^{l} G(p_i)/F'$ is *p*-divisible for all $p \in S(G)$. Moreover, F'/F is a direct summand of $\bigcap_{i=1}^{l} G(p_i)/F$. Hence, its nonzero elements have finite p_i heights for all $i \in \{1, \ldots, l\}$. Then, every element $y \in F' \setminus F$ has finite *p*-height for all $p \in \{p_1, \ldots, p_l\}$. We claim that F' has a basis which contains the maximal independent system $\{x_1, \ldots, x_m\}$ of *X*.

To see this, it is enough to prove that $\langle x_1, \ldots, x_m \rangle$ is a pure subgroup of F'. Suppose that $y \in F'$ such that $py \in \langle x_1, \ldots, x_m \rangle$. If $y \in F$, then obviously $y \in \langle x_1, \ldots, x_m \rangle$. If $y \notin F$, then $p \in \{p_1, \ldots, p_l\}$. Hence, the *p*-height of *y* in $(\bigcap_{i=1}^l G(p_i))$ is finite. But, since *X* is *p*-divisible (it is *q*-divisible for all $q \in S(G)$), the *p*-height of *py* is infinite, and this is not possible since

$$G_p \cap \left(\bigcap_{i=1}^l G(p_i)\right) = 0.$$

If

$$Y = \left(\bigcap_{i=1}^{l} G(p_i)\right) \middle/ X,$$

then

$$F = (F' + X)/X \cong F'/(F' \cap X)$$

is a free subgroup of Y, and Y/\overline{F} is p-divisible for all $p \in S(G)$. Since Y is also essentially S(G)-reduced, $Y \in D\mathcal{R}(S(G))$.

(b) If $0 \to X \to H \to Y \to 0$ is an exact sequence such that X is a torsionfree group which is *p*-divisible for all $p \in W$ and $Y \in \mathcal{DR}(W)$, then $S(H) \subseteq$ $S(Y) \subseteq W$. Let $\{x_1, \ldots, x_m\}$ be a maximal independent subset of X; and choose $y_{m+1}, \ldots, y_n \in H$ such that $\{y_{m+1} + X, \ldots, y_n + X\}$ is a maximal independent subset of Y such that $Y/\langle y_{m+1} + X, \ldots, y_n + X \rangle$ is p-divisible for all $p \in W$. Then $F = \langle x_1, \ldots, x_m, y_{m+1}, \ldots, y_n \rangle$ is a full free subgroup of H; and it is easy to see that H/F is p-divisible for all $p \in W$. By Theorem 2.1, H is self-small. \Box

The next result shows that the groups in $\mathcal{DR}(W)$ satisfy a projection condition similar to the one for qd-groups (see Theorem 2.6). We remind the reader that, for a set *W* of primes, a subgroup *U* of an abelian group *G* is *W*-pure if $p^n U = U \cap p^n G$ for all $p \in W$ and $n < \omega$.

THEOREM 3.2. Let G be a group of finite torsion-free rank. If W is a nonempty set of primes, then $G \in D\mathcal{R}(W)$ if and only if G is isomorphic to a W-pure subgroup of a direct product of (finitely generated) p-adic modules $\prod_W M_p$ satisfying the p-adic projection condition.

PROOF. Suppose that $G \in \mathcal{DR}(W)$. For each $p \in W$, write $G = G_p \oplus G(p)$ with G_p finite, and let $X = \bigcap_W p^{\omega}G$. As in the proof of Theorem 3.1, X = 0 since X is torsion-free and W-divisible, and G is essentially W-reduced. As in Theorem 2.6, there is a W-pure embedding $G \subseteq M = \prod_W M_p$, where each M_p is the p-adic completion of $G/p^{\omega}G$.

For each $p \in W$, let π_p be the natural projection of M onto M_p . Since G/F is p-divisible, $\widehat{\mathbb{Z}}_p \pi_p(F) = M_p$ for each p. Thus, we have shown that G satisfies the p-adic projection condition and that each M_p is finitely generated of rank no greater than $r_0(G)$.

Conversely, suppose that G is a W-pure subgroup of $M = \prod_W M_p$ which satisfies the p-adic projection condition. Then, $(G/F)_p$ is divisible for some full free $F \leq G$ and all $p \in W$. In addition, any subgroup G of M is essentially W-reduced since each M_p is a reduced p-adic module.

We remind the reader that \overline{G} denotes the group G/tG where tG is the torsion subgroup of G.

COROLLARY 3.3. Let G be a self-small group of finite torsion-free rank n. If G_p is of rank n for almost all $p \in S(G)$, then \overline{G} is p-divisible for almost all $p \in S(G)$, and $X = \bigcap_{p \in S(G)} p^{\omega}G = 0$.

PROOF. As a consequence of Theorem 3.1, we obtain an exact sequence $0 \rightarrow Y \rightarrow G \rightarrow H \rightarrow 0$ in which $H \in D\mathcal{R}(W)$, where *W* is quasi-equal to S(G), and $Y = B \oplus X$ for a finite direct summand *B* of *G* such that $X = \bigcap_{p \in S(G)} p^{\omega}G$ is torsion-free and *p*-divisible for almost all $p \in S(G)$. We view *H* as a *W*-pure subgroup of $\prod_{p \in W} M_p$ as in Theorem 3.2. Since almost all *p*-components G_p are direct summands in the corresponding *p*-adic modules M_p , we observe that almost all of the *p*-adic modules M_p are generated by at least *n* elements. Therefore, the torsion-free rank of *H* is *n*, hence X = 0. Moreover, if $M_p = G_p \oplus N_p$, then the minimal number of generators for M_p is n + m, where *m* is the minimal number of generators of the free *p*-adic module N_p . From all these observations, we obtain $N_p = 0$ for almost

all p, and modulo a finite direct summand, G is a W-pure subgroup of $\prod_{p \in W} G_p$. Hence, \overline{G} is p-divisible for all $p \in W$.

COROLLARY 3.4. The following are equivalent for an essentially S(G)-reduced group G.

- (a) *G* is self-small.
- (b) $G \in \mathcal{DR}(S(G)).$
- (c) *G* can be embedded as an S(G)-pure subgroup into a direct product of (finitely generated) p-adic modules $\prod_{p \in S(G)} M_p$ such that *G* satisfies the p-adic projection condition.

Observe that *W*-purity and the projection condition are independent.

EXAMPLE 3.5. Let *S* be an infinite set of primes. For each prime $p \in S$, let a_p be a generator of $\mathbb{Z}/p\mathbb{Z}$ and b_p be a generator of $\mathbb{Z}/p^2\mathbb{Z}$.

(a) Consider the subgroup G of $\prod_{S} \langle a_p \rangle$ which is generated by $\bigoplus_{S} \langle a_p \rangle$ and the additional element $a = (a_p)_S$. The group G satisfies both the ordinary and the *p*-adic projection condition and $r_0(G) = 1$. But $G/\mathbb{Z}a \cong \bigoplus_{S} \mathbb{Z}/p\mathbb{Z}$. Thus, D(G) is empty, while S(G) = S. By Theorem 2.1, G is not self-small.

(b) Consider the pure subgroup H of $\prod_{p \in S} \langle b_p \rangle$ generated by $\bigoplus_{p \in S} \langle b_p \rangle$ and the additional element $b = (pb_p)_S$. Then H is not self-small since D(H) is empty. Observe that H does not satisfy the (*p*-adic) projection condition.

4. Direct sums of self-small groups of torsion-free rank 1

A self-small group of finite torsion-free rank is *completely decomposable* if it is isomorphic to a direct sum of groups whose torsion-free rank is 1. By Theorem 2.3, *WALK*-isomorphic self-small groups are quasi-isomorphic. On the other hand, two quasi-isomorphic self-small groups, whose torsion-free rank is 1, are *WALK*-isomorphic by [9, Lemma 3.1]. Hence, we obtain the following result.

THEOREM 4.1. The following are equivalent for completely decomposable, self-small groups $A = \bigoplus_{i=1}^{m} A_i$ and $B = \bigoplus_{j=1}^{k} B_j$ where the A_i and B_j have torsion-free rank 1.

- (a) $A \sim B$.
- (b) m = k; and, after some re-indexing, $A_i \cong_W B_i$ for all i = 1, ..., m.
- (c) $A \cong_W B$.

If *G* is a self-small group of torsion-free rank 1, then G_p is cyclic for almost all primes *p* by Corollary 2.2. Conversely, let *S* be an infinite set of primes, and consider the torsion group $T = \bigoplus_{S} \langle a_p \rangle$, where a_p is a generator of $\mathbb{Z}/p^{k_p}\mathbb{Z}$ with $0 < k_p < \infty$ for each $p \in S$. Define $\tau = \text{type}(T)$ to be the type with characteristic (χ_p) defined by $\chi_p = k_p$ for $p \in S$ and $\chi_p = 0$ otherwise.

Note that τ is *locally free* in the sense that all of its entries are finite. The set *S* is a representative of the *support* of τ where the support of a locally free type $\tau = [(\chi_p)]$

is the set of primes $S(\tau) = \{p \mid \chi_p > 0\}$. The set $S(\tau)$ is defined only up to quasiequality.

For *T* as above, regard *T* as a pure subgroup of $\widehat{T} = \prod_{S} \langle a_{p} \rangle$. Consider $a = (a_{p}) \in \widehat{T}$, and choose a subgroup *X* of \mathbb{Q} containing $\mathbb{Z}_{S^{-1}}$ where $\mathbb{Z}_{S^{-1}}$ is the subring of \mathbb{Q} generated by \mathbb{Z} and $\{1/p \mid p \in S\}$. Define A(T, X) to be the inverse image of $X(a + T) \subseteq \widehat{T}/T$ under the natural factor map $\widehat{T} \to \widehat{T}/T$. Because $A/\mathbb{Z}a$ is *p*-divisible for all $p \in S$, Theorem 2.1 yields that A(T, X) is a self-small group such that tA = T and $A/T(A) \cong X$.

THEOREM 4.2. Let A be a self-small group of torsion-free rank 1.

- (a) $A \cong_W A'$ where A' is a rank-one torsion-free group, or $A' \cong A(T, X)$ for some appropriately chosen T and X.
- (b) A/tA is divisible for almost all primes in S(A).

PROOF. (a) Since A is self-small, each A_p must be finite. If S(A) is also finite, then $A \cong_W A'$ where A' is a torsion-free group of rank 1. Therefore, we may assume that S = S(A) is infinite. Choose an element $a \in A$ of infinite order, and let a_p be the projection $\pi_p(a)$ of a into A_p associated with any direct sum decomposition $A = A_p \oplus B(p)$. By Theorem 2.1, we can modify A by a WALK-isomorphism in such a way that $A/\mathbb{Z}a$ is divisible for all $p \in S$. Following Corollary 2.2, each A_p is cyclic of order p^{k_p} with generator a_p . Hence, $T = tA = \bigoplus_{p \in S} \langle a_p \rangle$.

There is a natural map $\lambda : A \to \widehat{T} = \prod_{S} A_p$ extending the inclusion $T \to \widehat{T}$. Note that $\lambda(a) = (a_p) \in \widehat{T}$. It is now easy to check that λ is an embedding of A into \widehat{T} and that $\lambda(A)$ satisfies the projection condition.

Let X be the rank-one torsion-free group defined by $\lambda(A)/T = X(a + T)$. Since $\lambda(A)$ satisfies the projection condition, $\lambda(A)/T$ is p-divisible for all $p \in S$. Equivalently, pX = X for $p \in S$. Since the modified group A is isomorphic to A(T, X), our original A is WALK-isomorphic to A(T, X).

(b) Observe $S(A) \subseteq D(A)$ by Theorem 2.1. Since A has torsion-free rank 1, we obtain D(A) = D[A/tA] using (a).

In particular, $\overline{A} = A/tA$ is divisible by almost all primes in S(A) whenever A is a completely decomposable self-small group.

Let S_1 denote the set of \cong_W equivalence classes of torsion-free rank-one self-small groups. The symbol \mathcal{T} indicates the set of ordered pairs (τ, σ) where τ is a locally free type and σ is a type such that $\sigma(p) = \infty$ for almost all $p \in S(\tau)$.

For $[A] \in S_1$, write $\tau_A = type(tA)$ and $\sigma_A = type(A/tA)$. The proof of Corollary 4.2 shows that A is determined up to WALK-isomorphism by the pair of types (τ_A, σ_A) , which we call *the pair of types of A*. In particular, we obtain that the map $[A] \rightarrow (\tau_A, \sigma_A)$ is a bijection between the set S_1 and the set \mathcal{T} .

For a self-small group A of torsion-free rank 1, we may assume that $S(A) \subset D(A)$ since there exists a group which is *WALK*-isomorphic to A and has this property. Furthermore, we may assume that there is an element $a \in A$ with $\langle \pi_p(a) \rangle = A_p$ for all $p \in S$. Recall that the sequence $u_p(a) = (h_p(a), h_p(pa), \ldots)$ is the *p*-indicator of $a \in A$. Suppose that $\sigma_A = [(m_p)]$. The height matrix of A is the $\omega \times \omega$ matrix whose rows are indexed by the primes such that the *p*th row is $u_p(a)$.

It is easy to see the following.

- (Ia) If $p \notin S$ and $0 \le m_p < \infty$, then $u_p(a)$ has no gaps; in this case $u_p(a) =$ $(m_p, m_p + 1, \ldots).$
- (Ib) If $p \notin S$ and $m_p = \infty$, then A is p-divisible, that is, $u_p(a) = (\infty, \infty, ...)$.
- (II) If $p \in S$ and $T_p(A) \cong Z(p^{k_p})$ with $0 < k_p < \infty$, then $u_p(a) = (0, 1, \dots, k_p 1, \dots, k_p 1)$ ∞ , . . .).

Consequently, every self-small group of torsion-free rank 1 is determined up to WALK-isomorphism by its height matrix.

THEOREM 4.3. Let A and C be rank-one self-small groups with corresponding pairs of types (τ_A, σ_A) and (τ_C, σ_C) , respectively. Choose characteristics $(k_p^A) \in \tau_A, (k_p^C) \in$ τ_C and $(m_n^A) \in \sigma_A$. The following are equivalent.

- $\operatorname{Hom}_W(A, C) \neq 0.$ (a)
 - (i) $\sigma_A \leq \sigma_C$; (i) $m_p^A = 0$ for almost all $p \in S(C) \setminus S(A)$; and (iii) $k_p^A \ge k_p^C$ for almost all $p \in S(A) \cap S(C)$.

PROOF. To prove that (a) implies (b), let $f: A \to C$ be a homomorphism and $a \in A$ an element of infinite order such that c = f(a) also has infinite order. Then the induced homomorphism $\overline{f}: \overline{A} \to \overline{C}$ is nonzero, hence $\sigma_A \leq \sigma_C$. Moreover, $u_p(a) \leq u_p(c)$ for all primes p. Since these p-indicators satisfy conditions (Ia), (Ib), and (II) for almost all p, (ii) and (iii) also hold.

For the reverse implication, we may assume without loss the generality that A =A(S, X) with $S = \bigoplus_{p \in \mathbb{Z}} / p^{k_p^A} \mathbb{Z}$ and that X is a subgroup of \mathbb{Q} of type σ_A . Similarly, we need to consider only the case C = A(T, Y) where $T = \bigoplus_p \mathbb{Z}/p^{k_p^C} \mathbb{Z}$ and $Y \subseteq \mathbb{Q}$ of type σ_C . Hence,

$$A \subseteq \widehat{S} = \prod_p \mathbb{Z}/p^{k_p^A} \mathbb{Z}a_p$$

where $a = (a_p) \in A$ satisfies A/S = X(a + S). Similarly,

$$C \le \widehat{T} = \prod_p \mathbb{Z}/p^{k_p^C} \mathbb{Z}c_p$$

where $c = (c_p) \in C$ with C/T = Y(c + T). By (i), no generality is lost if we only consider the case $1 \in X \subseteq Y$. Moreover, as a consequence of Theorem 2.3, we may assume that (ii) and (iii) are valid for all $p \in S(C) \setminus S(A)$ and for all $p \in S(A) \cap S(C)$, respectively.

Using either condition (ii) for $p \in S(C) \setminus S(A)$, or the remarks preceding the theorem for $p \in S(A) \cap S(C)$, we obtain $h_p(a) = 0$ for all $p \in S(C)$. By [5, Section 1] for $p \in S(C) \setminus S(A)$, and by condition (iii) for $p \in S(A) \cap S(C)$, we

(b)

have $A/p^{k_p^C}(A) \cong \mathbb{Z}/p^{k_p^C}\mathbb{Z}$ for all $p \in S(C)$. There exists a unique homomorphism $\varphi_p : A \to C_p$ with $\varphi_p(a) = c_p$ for all $p \in S(C)$. Let $\varphi : A \to \prod_{S(C)} C_p$ be the homomorphism induced by the maps $\{\varphi_p\}_{p \in S(C)}$. Then $\varphi(a) = c$ and $\varphi(tA) \subseteq tC$.

If x is an element of infinite order in A, then there exists a nonzero integer k such that $1/k \in X$ and $kx \in \langle a \rangle + tA$. Hence, $k\varphi(x) \in \langle c \rangle + tC$. Since $1/k \in X \subseteq Y$, we have $\varphi(x) \in C$. Thus, $\varphi(A) \subseteq C$; and φ induces a homomorphism from A into C whose image is not a torsion group.

A group $A \in S$ is WALK-homogeneous completely decomposable provided $A = (\bigoplus_{i=1}^{n} C_i) \oplus B$ such that B is finite, $r_0(C_i) = 1$, and $C_i \cong C_j$ for all i, j = 1, ..., n. By [5, Theorem 2.3], a homogeneous almost completely decomposable group is completely decomposable. We now show that this also holds for self-small mixed groups.

THEOREM 4.4. A self-small group A of finite torsion-free rank such that $A \doteq \bigoplus_{i=1}^{n} C_i$ with $r_0(C_i) = 1$ and $C_i \cong C_j$ for all i, j = 1, ..., n is WALK-homogeneous completely decomposable.

PROOF. Let m > 0 be an integer such that $mA \subseteq C = \bigoplus_{i=1}^{n} C_i \subseteq A$. Since *C* is self-small by [9, Lemma 2.5], the projection condition implies that the *p*-components of the groups C_i are cyclic for almost all primes *p*. Hence, we can assume that, modulo a *WALK*-isomorphism, the following conditions hold:

- (i) for every prime p, the p-component of C_i is a cyclic group;
- (ii) for every prime divisor p|m, the *p*-component of A is zero;

(iii) \overline{A} is *p*-divisible for all $p \in S(A)$.

These conditions guarantee that, for every prime p, either $A_p = 0$ or $A_p \cong (\mathbb{Z}/p^{k_p}\mathbb{Z})^n$ for some integer $k_p > 0$. Note that A has a unique decomposition $A = A_p \oplus A(p)$ for every $p \in S(A)$ since \overline{A} is p-divisible. Let $\pi_p : A \to A_p$ be the canonical projection.

Since $m\overline{A} \subseteq \bigoplus_{i=1}^{n} \overline{C}_i \subseteq \overline{A}$, [5, Theorem 2.3] yields that \overline{A} is homogeneous completely decomposable. Let R be a subgroup of \mathbb{Q} which has the same type as \overline{A} . Write $\overline{A} = \bigoplus_{i=1}^{n} R\overline{a}_i$. We can assume that, for every prime p, $A_p =$ $\langle \pi_p(a_1), \ldots, \pi_p(a_n) \rangle$. Because of $A_p \cong (\mathbb{Z}/p^{k_p}\mathbb{Z})^n$, we obtain $A_p = \bigoplus_{i=1}^{n} \langle \pi_p(a_i) \rangle$. Observe that the subgroup $\langle \pi_p(a_1), \ldots, \pi_p(a_n) \rangle$ does not have p^{nk_p} elements if the elements $\pi_p(a_1), \ldots, \pi_p(a_n)$ are not independent. For every prime p, let $\pi_{pi} : A \to \langle \pi_p(a_i) \rangle$ be the canonical projection induced by the decomposition A = $(\bigoplus_{i=1}^{n} \langle \pi_p(a_i) \rangle) \oplus A(p)$.

For every index *i*, consider the subgroups

$$\langle a_i \rangle_{\star} = \{ a \in A \mid sa \in \langle a_i \rangle, 0 \neq s \in \mathbb{Z}, \text{ and } \forall p \in \mathbb{P}, \pi_p(a) \in \langle \pi_p(a_i) \rangle \}$$

= $\{ a \in A \mid sa \in \langle a_i \rangle, 0 \neq s \in \mathbb{Z}, \text{ and } \forall p \in \mathbb{P}, j \neq i \Rightarrow \pi_{pj}(a) = 0 \}$

where \mathbb{P} denotes the set of all primes. It is easy to see that $\sum_{i=1}^{n} \langle a_i \rangle_{\star} = \bigoplus_{i=1}^{n} \langle a_i \rangle_{\star}$ and that it contains *tA*. If $\overline{x} = x + tA \in R\overline{a}_i$, then there exist coprime integers *u*, *s*, with $u \neq 0$ and $s/u \in R$, and $t \in tA$ such that $ux = sa_i + t$. Let *S* be the set of primes dividing *u*, *s*, and the order of *t*. It is not hard to see that $\pi_p(x) \in \pi_p(a_i)$ for all $p \in \mathbb{P} \setminus S$. Therefore, $x' = x - \sum_{p \in S} \pi_p(x)$ satisfies $\pi_p(x') \in \pi_p(a_i)$ for all $p \in P$. Observe that $p \in S$ yields $\pi_p(x') = 0$, from which we obtain $\overline{x} = \overline{x'} \in (\langle a_i \rangle_{\star} + T(A))$. Thus,

$$R\overline{a}_i \subseteq (\langle a_i \rangle_{\star} + tA)/tA.$$

Since the converse inclusion is obvious,

$$\left(\langle a_i \rangle_{\star} + T(A)\right) / T(A) = R\bar{a}_i$$

for every index *i*; and

$$A = \sum_{i=1}^{n} \langle a_i \rangle_{\star} = \bigoplus_{i=1}^{n} \langle a_i \rangle_{\star}$$

where the groups $\langle a_i \rangle_{\star}$ are isomorphic mixed groups of torsion-free rank 1.

Arguing as in the last proof, we obtain the following result.

COROLLARY 4.5. Let A be a self-small group of torsion-free rank 1. If C is a selfsmall group of torsion-free rank n such that $tC \cong tA^n$ and $\overline{C} \cong \overline{A}^n$, then $C \cong A^n$. \Box

References

- U. Albrecht, 'Mixed Abelian groups with Artinian quasi-endomorphism ring', *Comm. Algebra* 25(11) (1997), 3497–3511.
- [2] _____, 'A-projective resolutions and an Azumaya theorem for a class of mixed abelian groups', *Czechoslovak Math. J.* 51(126)(1) (2001), 73–93.
- [3] U. Albrecht, P. Goeters and W. Wickless, 'The flat dimension of Abelian groups as *E*-modules', *Rocky Mountain J. Math.* 25(2) (1995), 569–590.
- [4] U. Albrecht and W. Wickless, *Finitely Generated and Cogenerated QD-groups, Rings, Modules, Algebras, and Abelian Groups*, Lecture Notes in Pure and Appl. Math, 236 (Dekker, New York, 2004), pp. 13–26.
- [5] D. M. Arnold, *Finite Rank Torsion Free Abelian Groups and Rings*, Lecture Notes in Mathematics, 931 (Springer-Verlag, Berlin, 1982).
- [6] D. M. Arnold and C. E. Murley, 'Abelian groups, A, such that Hom(A, —) preserves direct sums of copies of A', Pacific J. Math. 56 (1975), 7–21.
- [7] R. A. Beaumont and R. S. Pierce, 'Torsion-free rings', Illinois J. Math. 5 (1961), 61–98.
- [8] S. Breaz, 'Self-small Abelian groups as modules over their endomorphism rings', *Comm. Algebra* 31 (2003), 4911–4924.
- [9] _____, 'Quasi-decompositions for self-small abelian groups', *Comm. Algebra* **32** (2004), 1373–1384.
- [10] A. Fomin and W. Wickless, 'Self-small mixed abelian groups G with G/t(G) finite rank divisible', *Comm. Algebra* **26** (1998), 3563–3580.
- [11] _____, 'Quotient divisible abelian groups', Proc. Amer. Math. Soc. 126 (1998), 45–52.
- [12] L. Fuchs, Infinite Abelian Groups Vols. I and II (Academic Press, New York, 1970/1973).
- [13] S. Glaz and W. Wickless, 'Regular and principal projective endomorphism rings of mixed abelian groups', *Comm. Algebra* 22 (1994), 1161–1176.
- [14] E. Walker, 'Quotient categories and quasi-isomorphisms of abelian groups', in: Proc. Colloq. Abelian Groups (Akademiai Kiado, Budapest, 1963), pp. 147–162.
- [15] W. Wickless, 'A funtor from mixed groups to torsion free groups', *Contemp. Math.* 171 (1995), 407–419.

[11]

215

ULRICH ALBRECHT, Department of Mathematics, Auburn University, Auburn, AL 36849, USA e-mail: albreuf@mail.auburn.edu

SIMION BREAZ, 'Babeş-Bolyai' University, Faculty of Mathematics and Computer Science, Str. Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania e-mail: bodo@math.ubbcluj.ro

WILLIAM WICKLESS, Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA e-mail: wickless@math.uconn.edu