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Abstract

Effect algebras, which generalize the lattice of projections in a von Neumann algebra, serve as a basis for
the study of unsharp observables in quantum mechanics. The direct decomposition of a von Neumann
algebra into types I, II, and III is reflected by a corresponding decomposition of its lattice of projections,
and vice versa. More generally, in a centrally orthocomplete effect algebra, the so-called type-determining
sets induce direct decompositions into various types. In this paper, we extend the theory of type
decomposition to a (possibly) noncommutative version of an effect algebra called a pseudoeffect algebra.
It has been argued that pseudoeffect algebras constitute a natural structure for the study of noncommuting
unsharp or fuzzy observables. We develop the basic theory of centrally orthocomplete pseudoeffect
algebras, generalize the notion of a type-determining set to pseudoeffect algebras, and show how type-
determining sets induce direct decompositions of centrally orthocomplete pseudoeffect algebras.
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1. Introduction

The classic theorem that a von Neumann algebra decomposes uniquely as a direct sum
of subalgebras of types I, II, and III, [4, I, Section 8], [23] has played a prominent role
both in the development of the theory of von Neumann algebras and in the applications
of this theory in mathematical physics. Analogous type-decomposition theorems were
featured in subsequent work on various generalizations of von Neumann algebras,
including studies of AW* algebras [19], Baer *-rings [20], and JW algebras [27]. For
a von Neumann algebra A, and for the aforementioned generalizations, the subset P of
all projections (self-adjoint idempotents) in A forms an orthomodular lattice [1, 17],
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and the decomposition of A into types induces a corresponding direct decomposition
of the orthomodular lattice P . Conversely, a direct decomposition of P yields a direct-
sum decomposition of the enveloping algebra A. These connections between direct-
sum decompositions of A and direct decompositions of P have motivated a number of
studies of direct decompositions of more general orthomodular lattices.

The type-decomposition theorem for a von Neumann algebra is dependent on von
Neumann–Murray dimension theory; likewise, the early type-decomposition theorems
for orthomodular lattices were corollaries of the lattice-based dimension theories of
Loomis [21] and Maeda [22]. The work of Loomis and Maeda was further developed
by Ramsay [25]who proved that an arbitrary complete orthomodular lattice is uniquely
decomposed into four special direct summands, one of which can be organized into a
Loomis dimension lattice. More recent and considerably more general results on type
decomposition based on dimension theory can be found in the monograph of Goodearl
and Wehrung [15].

In [18, Section 7] Kalmbach obtained decompositions of an arbitrary complete
orthomodular lattice into direct summands with various special properties, without
employing lattice dimension theory per se. Moreover, Ramsay’s fourfold decomposi-
tion is a special case of Kalmbach’s theory. In [2], Carrega et al. obtained the direct
decompositions of Kalmbach and Ramsay by methods more in the spirit of universal
algebra.

In [13], the decomposition theory of Kalmbach, Carrega, and others was extended to
the class of centrally orthocomplete effect algebras by employing the notion of a type-
determining set. Effect algebras [6, 10] are very general partially ordered algebraic
structures, originally formulated as an algebraic base for the theory of measurement in
quantum mechanics. Special cases of lattice-ordered effect algebras are orthomodular
lattices and the MV algebras of Chang [3].

The notion of a (possibly) noncommutative effect algebra, called a pseudoeffect
algebra, was introduced and studied in a series of papers by Dvurečenskij and
Vetterlein [5, 7, 8]. See [9] for an indication of the utility of pseudoeffect algebras,
not only in quantum measurement theory, but also in the study of the human brain, big
computer networks, economic systems, and even in situations met in everyday life.

Whereas a prototypical example of an effect algebra is the order interval from 0
to a positive element in a partially ordered abelian group, the analogous interval in a
partially ordered noncommutative group forms a pseudoeffect algebra (Example 2.1
below).

We review the definition and some of the notation for a pseudoeffect algebra E in
Section 2, and we study the center 0(E) of E in Section 3. In Section 4, we focus
attention on centrally orthocomplete pseudoeffect algebras and define the central cover
of an element in a centrally orthocomplete pseudoeffect algebra. For the rest of the
paper, we assume that E is a centrally orthocomplete pseudoeffect algebra. The notion
of a type-determining subset of E is introduced in Section 5, where it is shown that
type-determining subsets induce decompositions of E into direct summands of various
types. The paper ends with Section 6 where the important idea of a type-class of
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pseudoeffect algebras is introduced and a number of pertinent examples of type-classes
and corresponding type-determining subsets of E are presented.

2. Pseudoeffect algebras

To model algebraically the system of Hilbert-space effect operators, the notion of an
effect algebra was introduced in [10]. By dropping the requirement of commutativity
of the partially defined addition on an effect algebra, one arrives at the following
definition [7, Definition 1.1].

A partial algebra (E; +, 0, 1), where+ is a partial binary operation and 0 and 1 are
constants, is called a pseudoeffect algebra if and only if the following conditions hold
for all a, b, c ∈ E .

(i) a + b and (a + b)+ c exist if and only if b + c and a + (b + c) exist, and in this
case (a + b)+ c = a + (b + c).

(ii) There is exactly one d ∈ E and exactly one e ∈ E such that a + d = e + a = 1.
(iii) If a + b exists, there are elements d, e ∈ E such that a + b = d + a = b + e.
(iv) If 1+ a or a + 1 exists, then a = 0.

Suppose that E is a pseudoeffect algebra. If a, b ∈ E , define a ≤ b if and only if
there exists an element c ∈ E such that a + c = b; then ≤ is a partial ordering on E
such that 0≤ a ≤ 1 for all a ∈ E . It is possible to show that a ≤ b if and only if
b = a + c = d + a for uniquely determined elements c, d ∈ E , and we write c =: a�b
and d =: b�a. Then (b�a)+ a = a + (a�b)= b, and a = (b�a)�b = b�(a�b).
If a ≤ b ≤ c, then

(c�a)�(b�a)= c�b; (a�b)�(a�c)= b�c;

(c�b)�(c�a)= b�a; (a�c)�(b�c)= a�b.

We define x− := 1�x and x∼ := x�1 for all x ∈ E . For a given element e ∈ E , we
denote the order interval from 0 to e by E[0, e] := {x ∈ E : 0≤ x ≤ e} and we define
the partial binary operation+e on E[0, e] as follows: for f, g ∈ E[0, e], f +e g exists
if and only if f + g exists in E and f + g ∈ E[0, e], in which case f +e g = f + g.
Then (E[0, e]; +e, 0, e) is a pseudoeffect algebra. Moreover, for all x ∈ E[0, e], we
have x−e := e�x , x∼e := x�e, and e = x−e + x = x + x∼e .

For all a, b ∈ E , we write an existing least upper bound or greatest lower bound
of a and b in the partially ordered set E as a ∨ b or a ∧ b, respectively. Similarly,∨

i∈I ei and
∧

i∈I ei denote the least upper bound in E and the greatest lower bound
in E of a family (ei )i∈I ⊆ E if they exist. Elements a, b ∈ E are disjoint if and only
if a ∧ b = 0. We say that E is lattice-ordered if and only if a ∨ b and a ∧ b exist in E
for all a, b ∈ E .

The following prototypical example will help to fix ideas.

EXAMPLE 2.1. Let G be a partially ordered (not necessarily abelian) group, written
additively, choose any element 0≤ u ∈ G, and let G[0, u] = {g ∈ G : 0≤ g ≤ u}.
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Then (G[0, u]; +, 0, u) is a pseudoeffect algebra under the restriction of the group
operation + to G[0, u]. Clearly, the pseudoeffect algebra partial order on G[0, u] is
the restriction to G[0, u] of the partial order on G. Moreover, for all a, b ∈ G[0, u]
such that a ≤ b, we have a�b =−a + b and b�a = b − a.

Given elements x1, x2, . . . , xn of a pseudoeffect algebra E , we define their
orthosum x1 + x2 + · · · + xn by recurrence: x1 + · · · + xn exists if and only if both
x1 + · · · + xn−1 and (x1 + · · · + xn−1)+ xn exist, in which case we put

x1 + · · · + xn := (x1 + · · · + xn−1)+ xn.

By associativity, we may omit parentheses, but the order of elements is important.
Let E and F be pseudoeffect algebras. A mapping φ : E→ F is a morphism of

pseudoeffect algebras (pseudoeffect algebra morphism) if and only if φ(1E )= 1F ,
where 1E and 1F are the unit elements in E and F , and φ(a)+ φ(b) exists whenever
a + b exists, with φ(a + b)= φ(a)+ φ(b). A morphism is an isomorphism of
pseudoeffect algebras (pseudoeffect algebra isomorphism) if and only if it is a bijection
and φ−1 is also a morphism.

For more about the basic properties of pseudoeffect algebras see [7, 8].

3. Central elements of pseudoeffect algebras

For the rest of this paper, (E; 0, 1,+) is a pseudoeffect algebra. Direct
decompositions of E are induced by the central elements of E , which are defined
as follows.

DEFINITION 3.1 [5, Definition 2.1]. An element c of E is said to be central if there
exists an isomorphism1

fc : E→ E[0, c] × E[0, c∼]

such that fc(c)= (c, 0) and, for all x ∈ E , if fc(x)= (x1, x2), then x = x1 + x2.

We denote by 0(E) the set of all central elements of E , and we refer to 0(E) as the
center of E . Clearly, 0, 1 ∈ 0(E). In the next proposition, we gather together some
properties of central elements (see [5, Propositions 2.2, 2.4, and 2.5] and [16]).

PROPOSITION 3.2. Let c be a central element of E, and let fc be the corresponding
mapping from Definition 3.1. Then the following properties hold for all x, y, x1,

x2 ∈ E.

(i) fc(c∼)= (0, c∼).
(ii) If x ≤ c, then fc(x)= (x, 0).
(iii) c ∧ c∼ = 0.
(iv) If y ≤ c∼ then fc(y)= (0, y).

1 With coordinatewise operations, the cartesian product of pseudoeffect algebras is again a pseudoeffect
algebra.
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(v) c∼ = c−.
(vi) x ∧ c ∈ E, x ∧ c∼ ∈ E, and

fc(x)= (x ∧ c, x ∧ c∼).

(vii) If fc(x)= (x1, x2), then x = x1 ∨ x2, x1 ∧ x2 = 0, and x1 + x2 = x.
(viii) The following are equivalent: x ∧ c = 0, x ≤ c−, x ≤ c∼, c ≤ x−, and c ≤ x∼.
(ix) c + c ∈ E implies c = 0.
(x) Let c1, c2, . . . , cn ∈ 0(E), ci ∧ c j = 0 for i 6= j , and c1 + c2 + · · · + cn = 1.

Then
x = x ∧ c1 + x ∧ c2 + · · · + x ∧ cn.

In view of Proposition 3.2(v), if c ∈ 0(E), then we shall write c′ := c− = c∼. Also,
we say that elements c, d ∈ 0(E) are orthogonal if and only if c ∧ d = 0.

THEOREM 3.3 [5, Theorem 2.3]. If c, d ∈ 0(E), then c ∧ d exists in E and belongs
to 0(E), and 0(E)= (0(E); ∧, ∨, ′, 0, 1) is a Boolean algebra.

If c ∈ 0(E), then the mapping pc : E→ E[0, c] defined by

pc(x) := x ∧ c ∀x ∈ E

is a morphism from E onto E[0, c] whose kernel is E[0, c′].

PROPOSITION 3.4 [5, Proposition 2.6]. Let x ∈ E and c, d ∈ 0(E). Then the
following properties hold.

(i) pc∧d = pc pd = pd pc.
(ii) c + d = c ∨ d = d + c and pc∨d(x)= pc(x)+ pd(x)= pd(x)+ pc(x) if

c ∧ d = 0.
(iii) c�d = c ∧ d ′ = d�c and pc∧d ′(x)= pc(x)�pd(x)= pd(x)�pc(x) if d ≤ c.

THEOREM 3.5 [5, Proposition 2.7]. Let c1, c2, . . . , cn ∈ 0(E) with ci ∧ c j = 0 for
i 6= j . Then the following properties hold.

(i) c :=
∨n

i=1 ci = c1 + c2 + · · · + cn ∈ 0(E) and, for all x ∈ E,

x ∧ c =
n∨

i=1

(x ∧ ci )= x ∧ c1 + · · · + x ∧ cn.

(ii) If xi ≤ ci for i = 1, 2, . . . , n, then

x1 + x2 + · · · + xn = x1 ∨ x2 ∨ · · · ∨ xn = xi1 + xi2 + · · · + xin ,

where (i1, i2, . . . , in) is any permutation of (1, 2, . . . , n).
(iii) If a1, a2, . . . , an ∈ 0(E) then, for all x ∈ E,

x ∧

( n∨
i=1

ai

)
=

n∨
i=1

(x ∧ ai ).
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THEOREM 3.6. Let c1, c2, . . . , cn be pairwise orthogonal elements of 0(E) such that
c1 + c2 + · · · + cn = 1, let X := E[0, c1] × E[0, c2] × · · · × E[0, cn], and define
8 : X→ E by 8(e1, e2, . . . , en) := e1 + e2 + · · · + en = e1 ∨ e2 ∨ · · · ∨ en for all
(e1, e2, . . . , en) ∈ X. Then:

(i) 8 : X→ E is a pseudoeffect algebra isomorphism;
(ii) if e ∈ E, then 8−1(e)= (e ∧ c1, e ∧ c2, . . . , e ∧ cn).

PROOF. If (e1, e2, . . . , en) ∈ X , then e1 + e2 + · · · + en = e1 ∨ e2 ∨ · · · ∨ en by
Theorem 3.5(ii). Clearly,

8(1)=8(c1, c2, . . . , cn)= c1 + c2 + · · · + cn = 1.

Assume that (e1, e2, . . . , en), ( f1, f2, . . . , fn) ∈ X are such that

(e1, e2, . . . , en)+ ( f1, f2, . . . , fn)= (e1 + f1, e2 + f2, . . . , en + fn)

exists in X . Then

8(e1, e2, . . . , en)= e1 + e2 + · · · + en = e1 ∨ · · · ∨ en,

8( f1, f2, . . . , fn)= f1 + f2 + · · · + fn = f1 ∨ · · · ∨ fn.

Now ei + fi exists when i = 1, 2, . . . , n, so ei ≤ f −i for i = 1, 2, . . . , n, and when
i 6= j , we have ei ≤ ci , f j ≤ c j , whence ei ≤ ci ≤ c−j ≤ f −j . Then

8(e1, . . . , en)= e1 ∨ e2 ∨ · · · ∨ en ≤ f −1 ∧ f −2 ∧ · · · ∧ f −n =8( f )−,

so that 8((e1, . . . , en))+8(( f1, . . . , fn)) exists. Moreover, by associativity and
Theorem 3.5(ii),

8((e1, . . . , en))+8(( f1, . . . , fn)) = (e1 + e2 + · · · + en)+ ( f1 + f2 + · · · + fn)

= (e1 + f1)+ (e2 + f2)+ · · · + (en + fn)

= 8((e1, e2, . . . , en)+ ( f1, f2, . . . , fn)).

This shows that 8 is additive. For each e ∈ E , define 9 : E→ X by

9(e) := (e ∧ c1, e ∧ c2, . . . , e ∧ cn)= (pc1(e), . . . , pcn (e)).

Clearly, 9(1)= 1 in X , and if e + f exists, then 9(e + f )=9(e)+9( f ), since
pci are morphisms for all i . Then 8 ◦9(e)= e ∧ c1 + e ∧ c2 + · · · + e ∧ cn = e by
Proposition 3.2(x). If (ei )

n
i=1 ⊆ X , then

9 ◦8((ei )
n
i=1)=9(e1 + e2 + · · · + en)= (pci (e1 + · · · + en))

n
i=1 = (ei )

n
i=1,

since pci , i = 1, 2, . . . , n is a morphism, and ei ≤ c j for i = j , while ei ≤ c′j if i 6= j .

It follows that 8−1
=9, and 9 is a morphism, hence 8 is an isomorphism. 2

THEOREM 3.7 [5, Proposition 2.8]. For all c ∈ 0(E), 0(E[0, c])= 0(E)[0, c].
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LEMMA 3.8. Suppose that e ∈ E, ( fi )i∈I ⊆ E, e + fi or fi + e exists for all i ∈ I ,
and

∨
i∈I fi exists in E. Then

∨
i∈I (e + fi ) or

∨
i∈I ( fi + e) respectively exists in E

and e +
∨

i∈I fi =
∨

i∈I (e + fi ) or
∨

i∈I fi + e =
∨

i∈I ( fi + e).

PROOF. Let f :=
∨

i∈I fi . Assume that e + fi exists for all i ∈ I . Then fi ≤ e∼ for
all i ∈ I , so that f ≤ e∼. Also e + fi ≤ e + f for all i ∈ I . Suppose that r ∈ E and
e + fi ≤ r for all i ∈ I . It suffices to prove that e + f ≤ r . We have e ≤ e + fi ≤

r = e + (e�r), whence fi ≤ e�r for all i ∈ I , and it follows that f ≤ e�r , hence
e + f ≤ r .

Now assume that fi + e exists for all i ∈ I . Then fi ≤ e−, whence f ≤ e−. Then
fi + e ≤ f + e, and let r ∈ E be such that fi + e ≤ r for all i ∈ I . Then fi ≤ r�e for
all i ∈ I , whence f ≤ r�e, and this implies f + e ≤ r . 2

LEMMA 3.9. Suppose that φ : E→ E satisfies the conditions that φ(e)+ f exists
only if e + φ( f ) exists, and f + φ(e) exists only if φ( f )+ e exists for all e, f ∈ E.
Then:

(i) φ is order-preserving;
(ii) if (ei )i∈I ⊆ E and e =

∨
ei exists in E, then

∨
φ(ei ) exists in E and φ(e)=∨

i∈I φ(ei ).

PROOF. (i) Suppose that e ≤ f . Then f ∼ ≤ e∼, and as φ( f )+ φ( f )∼ exists,
f + φ(φ( f )∼) exists, whence φ(φ( f )∼)≤ f ∼ ≤ e∼, so e + φ(φ( f )∼) exists and
thus φ(e)+ φ( f )∼ exists and finally φ(e)≤ φ( f ).

(ii) Assume the hypothesis of (ii). As ei ≤ e, it follows from (i) that φ(ei )≤ φ(e)
for all i ∈ I . Suppose that f ∈ E and φ(ei )≤ f for all i ∈ I . Then φ(ei )+ f ∼

exists, which implies that ei + φ( f ∼) exists and so ei ≤ (φ( f ∼))−. It follows that
e ≤ (φ( f ∼))− whence e + φ( f ∼) exists, so φ(e)+ f ∼ exists and finally φ(e)≤ f ,
proving (ii). 2

THEOREM 3.10. Let c ∈ 0(E) and let (ei )i∈I be a family of elements of E. Then the
following properties hold.

(i) If
∨

i∈I ei exists in E, then c ∧
∨

i∈I ei =
∨

i∈I (c ∧ ei ).
(ii) For every e ∈ E, c = c ∧ e + c ∧ e∼.

PROOF. (i) Define φ : E→E by φ(e) := c ∧ e for all e∈E . Suppose e, f ∈E and
φ(e)+ f exists. Then c ∧ e ≤ f − ≤ (c ∧ f )− and c− ∧ e ≤ c− ∨ f − = (c ∧ f )−.
By Proposition 3.2(vi) and (vii), e = (c ∧ e) ∨ (c′ ∧ e)≤ (c ∧ f )−, and consequently,
e + φ( f ) exists. Now assume that f + φ(e) exists, then c ∧ e ≤ f ∼ ≤ (c ∧ f )∼, and
c∼ ∧ e ≤ c∼ ∨ f ∼ = (c ∧ f )∼, and consequently e = (c ∧ e) ∨ (c′ ∧ e)≤ (c ∧ f )∼,
and so φ( f )+ e exists. Therefore (i) follows from Lemma 3.9.

(ii) Put e1 = e, e2 = e∼. Then e1 + e2 = 1 and

c = pc(e1 + e2)= pc(e1)+ pc(e2)= c ∧ e + c ∧ e∼,

as required. 2
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In the next theorem, we give an intrinsic characterization of central elements. (For
a similar result, see [28].)

THEOREM 3.11. An element c in a pseudoeffect algebra E is central if and only if the
following properties are satisfied.

(i) For all a ∈ E, there are a1, a2 ∈ E, a1 ≤ c, a2 ≤ c∼ and a = a1 + a2.
(ii) If a + b is defined and either a, b ≤ c or a, b ≤ c∼, then a + b ≤ c or a + b ≤

c∼ respectively.
(iii) If x, y ∈ E, x ≤ c, y ≤ c∼, then x + y = y + x.

PROOF. Observe first that properties (i)–(iii) above imply that c∼= c− and c ∧ c∼= 0.
Indeed, by (iii), 1= c + c∼ = c∼ + c, whence c∼ = c−. If x ≤ c, x ≤ c∼, then by (ii),
c + x ≤ c, whence x = 0.

If c is central, then property (i) follows by the definition of central elements.
To prove (ii), suppose that a, b, c, a + b exist and a, b ≤ c. Then fc(a)= (a, 0),

fc(b)= (b, 0) and fc(a + b)= (a, 0)+ (b, 0)= (a + b, 0), hence a + b ≤ c. Part
(iii) follows by Theorem 3.5(ii).

To prove the converse, assume that (i), (ii) and (iii) hold. By (i), we may define
fc : E→ E[0, c] × E[0, c∼] by fc(a)= (a1, a2)when a = a1 + a2 where a1 ≤ c and
a2 ≤ c∼. We shall prove that fc satisfies Definition 3.1 in the following steps.

Step 1. Assume that a = a1 + a2 = b1 + b2 where a1, b1 ≤ c and a2, b2 ≤ c∼ are two
decompositions of a ∈ E by (i), and let a∼ = d1 + d2, where d1 ≤ c and d2 ≤ c∼, be
any decomposition of a∼. Then

1= a + a∼ = (a1 + a2)+ (d1 + d2)= a1 + (a2 + d1)+ d2

by associativity. Since a2≤c∼ and d1≤c, we obtain by (iii) that a2+d1=d1+a2.
Again by associativity, 1= (a1 + d1)+ (a2 + d2)= c + c∼, where a1 + d1 ≤ c,
a2 + d2 ≤ c∼ by (ii). It follows that a1 + d1 = c, a2 + d2 = c∼, so a1 = c�d1,
a2 = c∼�d2. Repeating this reasoning with a1, a2 replaced by b1, b2, we deduce that
a1 = b1 and a2 = b2. This proves that fc is well defined.

Clearly, fc(c)= (c, 0) and if x ∈ E with fc(x)= (x1, x2), then x = x1 + x2.
If fc(a)= fc(b), then (a1, a2)= (b1, b2), which implies that a1 = b1 and a2 = b2,

whence a = b. This shows that fc is injective.

Step 2. Let a, b ∈ E be such that a + b exists. Let fc(a)= (a1, a2), fc(b)= (b1, b2),
and fc(a + b)= (d1, d2). Then a = a1 + a2, b = b1 + b2, a + b = d1 + d2. It follows
that (a1 + a2)+ (b1 + b2)= a1 + b1 + a2 + b2 = d1 + d2, from (iii). By Step 1, we
see that d1 = a1 + b1, d2 = a2 + b2. Therefore

fc(a + b)= (d1, d2)= (a1 + b1, a2 + b2)= (a1, a2)+ (b1, b2)= fc(a)+ fc(b).

This proves that fc is additive.

Step 3. Assume that fc(a)+ fc(b) exists in E[0, c] × E[0, c∼]. Then

(a1, a2)+ (b1, b2)= (a1 + b1, a2 + b2),
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whence a1 + b1, a2 + b2 exist in E , and hence

(a1 + b1)+ (a2 + b2)= a1 + a2 + b1 + b2 = a + b.

It follows that a + b exists if and only if fc(a)+ fc(b) exists.
To prove surjectivity, take (x, y) ∈ E[0, c] × E[0, c∼] and define z = x + y. Then

fc(z)= (x, y).
Steps 1–3 imply that fc is a bijection such that fc(a)+ fc(b) exists if and only if

a + b exists, and fc(a + b)= fc(a)+ fc(b), hence it is an isomorphism. 2

LEMMA 3.12. If p ∈ E, then the following properties hold.

(i) c ∈ 0(E) implies that p ∧ c ∈ 0(E[0, p]).
(ii) The mapping c 7→ p ∧ c for c ∈ 0(E) is a boolean homomorphism of 0(E) into

the center 0(E[0, p]) of E[0, p]).

PROOF. To prove (i), let e ∈ E[0, p]. Then

e = e ∧ c + e ∧ c′ = e ∧ p ∧ c + e ∧ p ∧ c′.

Now p ∧ c ≤ p and p = p ∧ c + (p ∧ c)�p = p�(p ∧ c)+ p ∧ c. Comparing
these expressions with p = p ∧ c + p ∧ c′ = p ∧ c′ + p ∧ c, we find that

p ∧ c′ = (p ∧ c)�p = p�(p ∧ c).

This implies that (p ∧ c)∼p = (p ∧ c)−p = p ∧ c′. Moreover, every e ∈ E[0, p] has a
decomposition e = e1 + e2, where e1 ≤ p ∧ c and e2 ≤ p ∧ c′ =: (p ∧ c)′p . Suppose
that e, f ≤ p ∧ c and e + f exists in E[0, p]. Then e + f ≤ p, and e, f ≤ c implies
that e + f ≤ c, so e + f ≤ p ∧ c. The same argument holds if e, f ≤ (p ∧ c)′p :=
p ∧ c′. If x ≤ p ∧ c and y ≤ p ∧ c′, then x ≤ c and y ≤ c′ imply that x + y = y + x .
This proves that p ∧ c ∈ 0(E[0, p]).

Part (ii) follows from Proposition 3.4. 2

4. Centrally orthocomplete pseudoeffect algebras

The centrally orthocomplete, pseudoeffect algebras, introduced and studied in this
section, admit a very tractable theory of direct decomposition that is amenable to our
subsequent work with type decompositions.

DEFINITION 4.1. Two elements p, q ∈ E are said to be 0-orthogonal if and only if
there are orthogonal central elements c, d ∈ 0(E) such that p ≤ c and q ≤ d . A family
(ei )i∈I is 0-orthogonal if and only if there is a pairwise orthogonal family of elements
(ci )i∈I ⊆ 0(E) of central elements in E such that ei ≤ ci for all i ∈ I .

Observe that, owing to Theorem 3.5(ii), if e1, e2, . . . , en are pairwise 0-orthogonal
elements, then their orthosum exists and does not depend on the order of its summands;
moreover, ∑

i=1,2,...,n

ei = e1 + e2 + · · · + en = e1 ∨ e2 ∨ · · · ∨ en.
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DEFINITION 4.2. Let (ei )i∈I be a 0-orthogonal family in E and let F be the
collection of all finite subsets of the indexing set I . Then (ei )i∈I is orthosummable
if and only if ∑

i∈I

ei :=
∨
F∈F

∑
i∈F

ei

exists in E , in which case we refer to
∑

i∈I ei as the orthosum of the family. By
definition, E is a centrally orthocomplete pseudoeffect algebra if and only if every
0-orthogonal family in E is orthosummable.

LEMMA 4.3. The following properties hold.

(i) If e and f are 0-orthogonal elements of E, then e ≤ f implies that e = 0.
(ii) A family of central elements is 0-orthogonal if and only if it is pairwise

orthogonal, and this occurs if and only if it is pairwise disjoint.
(iii) Every finite 0-orthogonal family in E is orthosummable and its orthosum is its

supremum in E.
(iv) An arbitrary 0-orthogonal family in E is orthosummable if and only if it has

an orthosum, which occurs if and only if it has a supremum in E, and if it is
orthosummable, then its orthosum coincides with its supremum.

(v) E is a centrally orthocomplete pseudoeffect algebra if and only if every
0-orthogonal family in E has a supremum in E.

PROOF. We prove (i). If e, f ∈ E and c, d ∈ 0(E) such that e ≤ c and f ≤ d ≤ c′,
then e ≤ f implies that e ≤ c ∧ c′ = 0 by Proposition 3.2(iii) and (v).

Part (ii) follows directly from the definitions of 0-orthogonality and orthogonality
of central elements.

Part (iii) follows from Theorem 3.5(ii).
Part (iv) follows from (iii) and the definition of the orthosum.
Part (v) follows from (iv). 2

In the rest of this section, we assume that E is a centrally orthocomplete
pseudoeffect algebra.

THEOREM 4.4. Let (ci )i∈I be a pairwise orthogonal family of elements in 0(E), and
let (ei )i∈I and ( fi )i∈I be families in E such that ei , fi ≤ ci and ei + fi exists for all
i ∈ I . Then the following properties hold.

(i) c :=
∑

i∈I ci =
∨

i∈I ci , e :=
∑

i∈I ei =
∨

i∈I ei ≤ c and f :=
∑

i∈I fi =∨
i∈I fi ≤ c; furthermore, e + f exists.

(ii) e + f =
∑

i∈I (ei + fi )=
∨

i∈I (ei + fi )≤ c.

PROOF. Part (i) follows from parts (ii) and (iv) of Lemma 4.3. For instance, the
existence of e + f is proved as follows. As ei + fi exists for all i ∈ I , we have ei ≤

f −i . If i 6= j , then ei ≤ ci , f j ≤ c j , and ci ∧ c j = 0, so ei + f j exists and ei ≤ f −j .

Then e =
∨

i∈I ei ≤ f −j for all j ∈ I , whence e ≤
∧

j∈I f −j = (
∨

j∈I f j )
−
= f −, so

e + f exists.
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To prove (ii), observe that if i ∈ I , then ei , fi ≤ ci implies that ei + fi ≤ ci
by Theorem 3.11(ii). Hence the family (ei + fi )i∈I is 0-orthogonal in E , so by
Lemma 4.3(iv) and (v),∑

i∈I

(ei + fi )=
∨
i∈I

(ei + fi )≤
∨
i∈I

ci = c.

By Lemma 3.8,

e + f =

(∨
s∈I

es

)
+ f =

∨
s∈I

(es + f ),

and for each s ∈ I , we observe that es + f = es +
∨

t∈I ft =
∨

t∈I (es + ft ), and so∨
i∈I

(ei + fi )≤
∨

s,t∈I

(es + ft )= e + f.

Suppose that s, t ∈ I . If s = t , then es + ft = es + fs ≤
∨

i∈I (ei + fi ). If s 6= t , then
we see that

es + ft ≤ (es + fs)+ (et + ft )= (es + fs) ∨ (et + ft ).

Consequently,
e + f =

∨
s,t∈I

(es + ft )≤
∨
i∈I

(ei + fi ).

Combining the results obtained above, we get (ii). 2

COROLLARY 4.5. Let (ci )i∈I be a pairwise orthogonal family of elements in 0(E)
and let d ∈ E. Put c :=

∨
i∈I ci , e :=

∨
i∈I (d ∧ ci ), and f :=

∨
i∈I (d

∼
∧ ci ). Then

the following properties hold.

(i) e ≤ d, f ≤ d∼, and c = e + f .
(ii) If d ∈ E[0, c], then d =

∑
i∈I (d ∧ ci )=

∨
i∈I (d ∧ ci ).

PROOF. In Theorem 4.4, let ei := d ∧ ci and fi := d∼ ∧ ci .
(i) As ei ≤d and fi ≤d∼ for all i ∈ I , we get e=

∨
i∈I ei ≤ d and

f =
∨

i∈I fi≤d∼. By Theorem 3.10(iii), ei + fi = ci for all i ∈ I , whence by
Theorem 4.4(ii), e + f =

∨
i∈I (ei + fi )=

∨
i∈I ci = c.

(ii) Assume that d ∈ E[0, c]. Then e ≤ d ≤ c by (i). Thus e ≤ (d∼)−, hence e + d∼

exists, and e + d∼ =
∨

i∈I (ei + d∼) by Lemma 3.8. As ci ∈ 0(E),

ei + d∼ = (d ∧ ci )+ d∼ = (d ∧ ci )+ (d
∼
∧ ci )+ (d

∼
∧ c∼i )= ci + (d

∼
∧ c∼i )

= ci ∨ (d
∼
∧ c∼i )= ci ∨ (d

∼
∧ ci ) ∨ (d

∼
∧ c∼i )= ci ∨ d∼,

so
e + d∼ =

∨
i∈I

(d∼ ∨ ci )≥
∨
i∈I

(c∼ ∨ ci )= c∼ ∨ c = 1= e + e∼.

By cancellation, d∼ ≥ e∼, whence d ≤ e, and we have e = d . 2
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THEOREM 4.6. Let (ci )i∈I be a pairwise orthogonal family of central elements,
and let c :=

∨
i∈I ci . Then c ∈ 0(E), and 0(E) is a complete boolean algebra.

Furthermore, for each e ∈ E there is a smallest element d ∈ 0(E) such that e ≤ d.

PROOF. First, we have to prove properties (i)–(iii) of Theorem 3.11 for c.
To prove (i), let d ∈ E . By Corollary 4.5, c = e + f , e ≤ d , f ≤ d∼. Consequently,

d = e + e�d , and e�d =
∨

i∈I (d ∧ ci )�d ≤ d ∧ ci �d for all i ∈ I . Let x ∈ E be
such that x ≤ d ∧ ci �d for all i ∈ I . Then d ∧ ci + x ≤ d, hence d ∧ ci ≤ d�x . It
follows that

∨
i∈I (d ∧ ci )≤ d�x , and therefore x ≤

∨
i∈I (d ∧ ci )�d . This proves

that ∨
i∈I

(d ∧ ci )�d =
∧
i∈I

(d ∧ ci �d)=
∧
i∈I

d ∧ c∼i ≤
∧
i∈I

c∼i =

(∨
i∈I

ci

)∼
= c∼.

Finally, d = e + e�d , e ≤ c, e�d ≤ c∼.
Next, let e, f ≤ c and suppose that e + f exists. Then ei := e ∧ ci ≤ ci , fi :=

f ∧ ci ≤ ci , (ei )i∈I and ( fi )i∈I are 0-orthogonal, and ei + fi exists for all i ∈ I .
By Theorem 4.4, e =

∨
i∈I ei , f =

∨
i∈I fi , and e + f =

∨
i∈I (ei + fi )≤ c. Let

e, f ≤ c∼ and suppose that e + f exists. From c∼ = (
∨

i∈I ci )
∼
=
∧

i∈I c∼i we
obtain that e, f ≤ c∼i for all i ∈ I , and since ci is central, e + f ≤ c∼i for all i ∈ I .
It follows that e + f ≤

∧
i∈I c∼i = c∼, and (ii) holds.

Third, let x, y ∈ E , x ≤ c, y ≤ c∼. Then x ∧ ci ≤ ci , y ≤ c∼ ≤ c∼i for all i ∈ I , and
x =

∨
i∈I x ∧ ci by Theorem 3.10. Since ci is central, x ∧ ci + y = y + x ∧ ci , and

by Lemma 3.8,

x + y =
∨
i∈I

(x ∧ ci + y)=
∨
i∈I

(y + x ∧ ci )= y + x .

This proves (iii).
Therefore c ∈ 0(E), and by [26, Section 20.1], 0(E) is a complete boolean algebra.
To prove the second part of the theorem, we put f = e∼. Using Zorn’s lemma

we choose a maximal pairwise orthogonal family (ci )i∈I in 0(E) ∩ E[0, f ]. As
ci ≤ f for all i ∈ I , we have c :=

∨
i∈I ci ≤ f , and c ∈ 0(E) by part (i) of this

proof. Then d := c− =
∧

i∈I c−i and e = f − ≤ c− = d ∈ 0(E). To show that d is
the smallest element in 0(E) such that e ≤ d , let e ≤ k ∈ 0(E). Then k∼ ≤ e∼ = f ,
so k∼ ∧ d ∈ 0(E) ∩ E[0, f ]. Then k∼ ∧ d ≤ d = c− ≤ c−i = c′i for all i ∈ I , hence
k∼ ∧ d is orthogonal to all ci , and so k∼ ∧ d = k′ ∧ d = 0 by maximality of (ci )i∈I .
Since k, d ∈ 0(E), d ≤ k, as required. 2

DEFINITION 4.7. If e ∈ E , then the smallest element d ∈ 0(E) such that e ≤ d (as in
Theorem 4.6) is called the central cover of e, and we shall denote it by γ e := d . The
mapping e 7→ γ e is said to be the central cover mapping.

The hull mappings featured in the original work of Loomis on dimension
lattices [21] were generalized to effect algebras in [11, 12]. In the following definition,
we further extend the notion of a hull mapping to pseudoeffect algebras.
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DEFINITION 4.8. A mapping η : E→ 0(E) such that η0= 0, e ≤ ηe and
η(e ∧ η f )= ηe ∧ η f for all e, f ∈ E is called a hull mapping on E .

THEOREM 4.9. The central cover mapping γ : E→ 0(E) is a surjective hull
mapping1 on E.

PROOF. Obviously, γ 0= 0 and e ≤ γ e for all e ∈ E . Let e, f ∈ E and put c := γ f .
We have to prove that γ (e ∧ c)= γ e ∧ c. Since e ≤ γ e, we have e ∧ c ≤ γ e ∧ c,
and so γ (e ∧ c)≤ γ e ∧ c. Since c ∈ 0(E), we have e = (e ∧ c) ∨ (e ∧ c′)≤ γ (e ∧ c)
∨ c′ ∈ 0(E), whence γ e ≤ γ (e ∧ c) ∨ c′. It follows that γ e ∧ c ≤ γ (e ∧ c) ∧ c ≤
γ (e ∧ c), as desired. Since γ (γ e)= γ (1 ∧ γ e)= γ 1 ∧ γ e = γ e, we obtain that
γ E := {γ e : e ∈ E} = 0(E). 2

LEMMA 4.10. Suppose that (pi )i∈I ⊆ E is a 0-orthogonal family in E. Let p :=∨
i∈I pi , and let ci := γ pi for all i ∈ I with c =

∨
i∈I ci . Then the following

properties hold.

(i) p ≤ γ p = c ∈ 0(E).
(ii) p ∧ ci = pi for all i ∈ I .
(iii) If e ∈ E[0, p], then e ∧ ci = e ∧ pi for all i ∈ I and e =

∨
i∈I (e ∧ pi ).

PROOF. Since (pi )i∈I is a 0-orthogonal family, (ci )i∈I is an orthogonal family in
0(E), so p and c are well defined. Since pi ≤ p for all i ∈ I , we have

∨
i∈I γ pi =

c ≤ γ p. On the other hand, pi ≤ γ pi ≤ c implies γ p ≤ c. This proves (i).
Suppose that i, j ∈ I . If i = j , then pi ∧ ci = pi ∧ γ pi = pi ; and if i 6= j , then

ci ∧ c j = 0, so ci ∧ p j = 0. Therefore

p ∧ ci =

(∨
j∈I

p j

)
∧ ci =

∨
j∈I

(p j ∧ ci )= pi

by Theorem 3.10(i), which proves (ii).
To prove (iii), suppose e ∈ E[0, p]. Then for each i ∈ I , e ∧ ci = e ∧ p ∧ ci =

e ∧ pi by (ii). Thus by Corollary 4.5(ii), e = e ∧ c =
∨

i∈I (e ∧ ci )=
∨

i∈I (e ∧ pi ). 2

The following theorem extends Theorem 3.6 in the setting of centrally ortho-
complete pseudoeffect algebras. Since the proof is analogous to [11, Theorem 6.14],
we omit it.

THEOREM 4.11. Let (pi )i∈I ⊆ E be a 0-orthogonal family in E, let p :=
∑

i∈I pi =∨
i∈I pi , and let X :=

∏
i∈ E[0, pi ]. Define the mapping 8 : X→ E[0, p] by

8((ei )i∈I ) :=
∑
i∈I

ei =
∨
i∈I

ei for every (ei )i∈I ∈ X.

Then 8 is a pseudoeffect algebra isomorphism of X onto E[0, p] and

8−1(e) := (e ∧ γ pi )i∈I for all e ∈ E[0, p].
1 In [11], a surjective hull mapping from an effect algebra E onto 0(E) (which is unique if it exists) is
called a discrete hull mapping.
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5. Type-determining sets

The assumption that E is a centrally orthocomplete pseudoeffect algebra remains
in force.

Our definition of a type-determining subset of E will depend on certain closure
operators on subsets of E . As usual, a closure operator on the set of all subsets Q
of E is a mapping Q 7→ Qc such that Q ⊆ Qc, (Qc)c = Qc and Qc

⊆ Rc if Q ⊆ R
for all Q, R ⊆ E . A subset Q is said to be closed (with respect to c) if and only if
Qc
= Q. The intersection of closed subsets is necessarily closed. Generalizing the

analogous notions for effect algebras in [13], we introduce the four closure operators
Q 7→ [Q], Q 7→ Qγ , Q 7→ Q↓, and Q 7→ Q′′, where:

(i) [Q] is the set of all suprema of 0-orthogonal families of elements of Q, and we
define [∅] = {0};

(ii) Qγ
:= {q ∧ c : q ∈ Q, c ∈ 0(E)};

(iii) Q↓ :=
⋃

q∈Q E[0, q];
(iv) Q′ := {e ∈ E : q ∧ e = 0 ∀q ∈ Q};
(v) Q′′ := (Q′)′.

DEFINITION 5.1. We say that a subset K ⊆ E is type-determining if and only if
K = [K ] = K γ , and that K is strongly type-determining if and only if K = [K ] = K↓.

Clearly, the intersection of type-determining or strongly type-determining subsets
of E is again type-determining or strongly type-determining.

THEOREM 5.2. Let Q ⊆ E. Then the following properties hold.

(i) [Qγ
] is the smallest type-determining subset of E containing Q.

(ii) [Q↓] is the smallest strongly type-determining subset of E containing Q.
(iii) Q′ and Q′′ are strongly type-determining subsets of E.
(iv) Q′ = [Qγ

]
′
= [Q↓]′.

PROOF. Obviously, Q⊆[Qγ
] and if K is type-determining and Q⊆ K , then

[Qγ
]⊆ K . Also, [[Qγ

]] ⊆ [Qγ
], so to prove (i) it suffices to show that [Qγ

]
γ
⊆ [Qγ

].
Let e ∈ [Qγ

]
γ , then there exist d ∈ 0(E) and p ∈ [Qγ

] such that e = p ∧ d . As
p ∈ [Qγ

], there is a 0-orthogonal family (pi )i∈I ⊆ Qγ with p =
∨

i∈I pi , and for
each i ∈ I , we can write pi = qi ∧ di with qi ∈ Q and di ∈ 0(E). Since e ≤ p,
by Lemma 4.10(iii), e ∧ pi exists for all i ∈ I ; moreover, e ∧ pi = p ∧ d ∧ pi =

pi ∧ d = qi ∧ di ∧ d . As di ∧ d ∈ 0(E), it follows that e ∧ pi ∈ Qγ for all i ∈ I ,
and the family (e ∧ pi )i∈I is γ -orthogonal. Consequently, by Lemma 4.10(iii),
e =

∨
i∈I (e ∧ pi ) ∈ [Qγ

]. This proves (i).
The proof of (ii) is quite similar to the proof of (i), and we omit it.
To prove (iii), let e ∈ Q′ and f ≤ e. Then e ∧ q = 0 for all q ∈ Q, whence

f ∧ q = 0 for all q ∈ Q, hence f ∈ Q′, so that Q = Q↓. Let (pi )i∈I ⊆ Q′ be a 0-
orthogonal family, and p =

∨
i∈ pi . Then q ∧ pi = 0 for all q ∈ Q and all i ∈ I , and

since q ∧ p ≤ p, by Lemma 4.10(iii), p ∧ q =
∨

i∈I p ∧ q ∧ pi = 0, hence p ∈ Q′. It
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follows that Q′ = [Q′], and Q′ is strongly type-determining. As Q′′ = (Q′)′, it follows
that Q′′ is strongly type-determining.

To prove (iv), observe that Q ⊆ [Qγ
] ⊆ [Q↓] implies [Q↓]′ ⊆ [Qγ

]
′
⊆ Q′. Let

e ∈ Q′, and let (pi )i∈I be a 0-orthogonal family of elements in Q↓ with p =∨
i∈I pi . Then each pi ≤ qi for some qi ∈ Q, and e ∧ pi ≤ e ∧ qi = 0 for all i ∈ I .

By Lemma 4.10(iii), e ∧ p =
∨

i∈I e ∧ p ∧ pi = 0, which shows that e ∈ [Q↓]′,
proving (iv). 2

THEOREM 5.3. Let K ⊆ E be a type-determining set. Then the following properties
hold.

(i) K ∩ γ K = K ∩ 0(E)⊆ γ K ⊆ 0(E).
(ii) There exists c ∈ 0(E) such that γ K ⊆ 0(E)[0, c].
(iii) There exists d ∈ 0(E) such that K ∩ γ K = 0(E)[0, d].

PROOF. We omit the proof since it is analogous to that of [13, Theorem 4.5]. 2

Obviously, for every c ∈ 0(E), the central interval 0(E)[0, c] = 0(E) ∩ E[0, c] is
a type-determining subset of E .

COROLLARY 5.4. If K is a type-determining subset of E, then so are γ K and
K ∩ γ K .

DEFINITION 5.5. Let K be a type-determining subset of E . The (unique) element
c ∈ γ K such that γ K = 0(E)[0, c] (Theorem 5.3(ii)) is denoted by cK and is called
the type-cover of K . The type-cover cK∩γ K of the type-determining set K ∩ γ K is
called the restricted type-cover of K .

The following definition is analogous to [13, Definition 5.1]. The terminology is
borrowed from [27, pp. 28–29].

DEFINITION 5.6. Let K be a type-determining subset of the centrally orthocomplete
pseudoeffect algebra E and let c ∈ 0(E).

(i) c is type-K if and only if c ∈ K .
(ii) c is locally type-K if and only if c ∈ γ K .
(iii) c is purely non-K if and only if no nonzero subelement of c belongs to K .
(iv) c is properly non-K if and only if no nonzero central subelement of c belongs

to K .

If c ∈ 0(E) and c is type-K or locally type-K , and so on, we shall also say that the
direct summand E[0, c] of E is type-K or locally type-K , and so on.

The proof of the next theorem is omitted since it is the same as the proof of [13,
Theorem 5.2].

THEOREM 5.7. Let K be a type-determining subset of E and let c ∈ 0(E). Then the
following properties hold.

(i) c is type-K if and only if 0(E)[0, c] ⊆ K ∩ γ K , or equivalently, c ≤ cK∩γ K .
(ii) If K is strongly type-determining, then c is type-K if and only if E[0, c] ⊆ K .
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(iii) c is locally type-K if and only if 0(E)[0, c] ⊆ γ K , or equivalently, c ≤ cK .
(iv) c is purely non-K if and only if K ∩ E[0, c] = {0}, or equivalently, c ≤ (cK )

′.
(v) c is properly non-K if and only if K ∩ 0(E)[0, c] = {0}, or equivalently, c ≤

(cK∩γ K )
′.

(vi) c is both locally type-K and properly non-K if and only if c ≤ cK ∧ (cK∩γ K )
′.

LEMMA 5.8. If K is a type-determining subset of E, then cK ′∩γ (K ′) = (cK )
′.

PROOF. We must prove that K ′ ∩ γ (K ′)= 0(E)[0, (cK )
′
]. As K ′ ∩ γ (K ′)=

K ′ ∩ 0(E), it suffices to prove that, for any c ∈ 0(E), we have c ∈ K ′ if and only
if c ≤ (cK )

′, the latter inequality being equivalent to c ∧ cK = 0.
Let c ∈ 0(E). Suppose that c ∈ K ′ and let k∗ ∈ K be such that cK = γ k∗. Then

c ∧ k∗ = 0, whence c ∧ cK = γ (c ∧ k∗)= 0. Conversely, suppose that c ∧ cK = 0
and let k ∈ K . Then, as γ k ≤ cK , it follows that γ (c ∧ k)= c ∧ γ k = 0, whence
c ∧ k = 0, so c ∈ K ′. 2

THEOREM 5.9. Let K be a type-determining subset of E. Then there exist unique
pairwise orthogonal c1, c2, c3 ∈ 0(E) such that c1 + c2 + c3 = 1;

E = E[0, c1] ⊕ E[0, c2] ⊕ E[0, c3];

c1 is type-K ; c2 is locally type-K , but properly non-K ; and c3 is purely non-K .
Moreover, c1 = cK∩γ K , c2 = cK ∧ (cK∩γ k)

′, c3 = (cK )
′,

K ∩ γ K = 0(E)[0, c1], K ⊆ E[0, c1 + c2], 0(E)[0, c2 + c3] ∩ K = {0}.

PROOF. Put c1 := cK∩γ K , c2 := cK ∧ (cK∩γ K )
′, and c3 := (cK )

′. As cK∩γ K ≤ cK ,
we have c1 + c2 + c3 = 1, c1 + c2 = cK , and c2 + c3 = (cK∩γ K )

′. Thus, by part (i) of
Theorem 5.7(i), c1 is of type-K ; by part (v) of Theorem 5.7, c2 is locally type-K and
properly non-K ; and by part (iv) of Theorem 5.7, c3 is purely non-K .

To prove uniqueness, suppose that c1, c2 and c3 satisfy the conditions in the first
part of the theorem. Then c1 + c2 is locally type-K , hence c1 + c2 ≤ cK , and c3
is purely non-K , hence c3 ≤ (cK )

′ by Theorem 5.7(iii) and (iv). Now c1 + c2 = cK
and c3 = (cK )

′, since c1 + c2 + c3 = 1= cK + (cK )
′. Moreover, c1 is type-K , hence

c1 ≤ cK∩γ K , and c2 is locally type-K but properly non-K , hence c2 ≤ cK ∧ (cK∩γ K )
′.

Since c1 + c2 = cK = cK∩γ K + cK ∧ (cK∩γ K )
′, we obtain c1 = cK∩γ K , c2 =

cK ∧ (cK∩γ K )
′. 2

6. Examples of type-determining sets

The assumption that E is a centrally orthocomplete pseudoeffect algebra remains
in force.

Recall that an atom in a pseudoeffect algebra E is a nonzero element a ∈ E such
that if x ≤ a then either x = 0 or x = a. A pseudoeffect algebra E is atomic if and
only if for every e ∈ E there is an atom a ≤ e. Let A (which may be empty) denote the
set of all atoms of E .
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LEMMA 6.1. If a ∈ A is an atom in E, then γ a is an atom in 0(E). Consequently,
if E is atomic, then 0(E) is atomic.

PROOF. Let a ∈ A and c ∈ 0(E), c ≤ γ a. Then c = γ (c ∧ a), so that c = 0 if c ∧ a =
0, or c = γ a if c ∧ a = a. If E is atomic, then for every c ∈ 0(E)⊆ E there is a ∈ A
with a ≤ c, which yields γ a ≤ c. 2

We say that an element p ∈ E , or equivalently, that E[0, p] is atom-free if and only
if A ∩ E[0, p] = ∅.

LEMMA 6.2. [A] is the strongly type-determining subset of E generated by A.

PROOF. If A = ∅, then A↓ = ∅, otherwise A↓ = A ∪ {0}. In both cases, [A↓] = [A],
and the result follows from Theorem 5.2(ii). 2

An element of the strongly type-determining set [A] is called a polyatom. The
following theorem for centrally orthocomplete pseudoeffect algebras is analogous
to [13, Theorem 4.7] for centrally orthocomplete effect algebras, and it enables us
to decompose E into atomic and atom-free parts.

THEOREM 6.3. The following properties hold.

(i) The set A′ = [A]′ is strongly type-determining and consists of all atom-free
elements of E.

(ii) The set A′′ = [A]′′ is strongly type-determining and its nonzero part consists of
elements p ∈ E such that E[0, p] is atomic.

(iii) cA′∩γ (A′) = c′
[A] is atom-free.

(iv) A ⊆ [A] ⊆ E[0, c[A]].
(v) If p ∈ E, then p is atom-free if and only if [A] ∩ E[0, p] = {0}.
(vi) [A ∩ 0(E)] = [A] ∩ 0(E).

PROOF. By Theorem 5.2(iii), A′ and A′′ are strongly type-determining subsets of E .
Since p ∈ A′ if and only if p ∧ a = 0 for all atoms a ∈ A, A′ is the set of all atom-
free elements. Let p ∈ A′′, then q ∧ a = 0 for all a ∈ A implies q ∧ p = 0, hence if
p ∧ a = 0 for all a ∈ A, then p = 0. Therefore if 0 6= p ∈ A′′ then there is an atom
a ∈ A with a ≤ p. This proves (i) and (ii). Part (iii) follows from (i) and Lemma 5.8.

(iv) If a is an atom, then a = (a ∧ c[A])+ (a ∧ c′
[A]), where a ∧ c′

[A] = 0 by part
(iii). It follows that a ≤ c[A]. Therefore, A ⊆ E[0, c[A]], and since E[0, c[A]] is
strongly type-determining, [A] ⊆ E[0, c[A]].

(v) Every atom is a nonzero polyatom, and a polyatom is nonzero if and only if it
dominates an atom, hence A ∩ E[0, p] = ∅ if and only if [A] ∩ E[0, p] = {0}.

(vi) Since [A] is a type-determining subset of E , so is [A] ∩ γ [A] =
[A] ∩ 0(E). Thus, as A ∩ 0(E)⊆ [A] ∩ 0(E), we have [A ∩ 0(E)] ⊆ [A] ∩ 0(E).
Let h ∈ [A] ∩ 0(E). There is a 0-orthogonal sequence (ai )i∈I of atoms with
h =

∑
i∈I ai =

∨
i∈I ai , since h ∈ [A]. Then the γ ai , where i ∈ I , are pairwise

orthogonal elements in 0(E), and since h ∈ 0(E), h = γ h =
∨

i∈I γ ai =
∑

i∈I γ ai .
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It follows that
∑

i∈I ai =
∑

i∈I γ ai , and from ai ≤ γ ai , for all i ∈ I , we deduce that
ai = γ ai ∈ 0(E), and therefore h ∈ [A ∩ 0(E)]. 2

The notions of boolean and subcentral elements and monads were introduced
in [11], and they also make sense in the setting of pseudoeffect algebras.

DEFINITION 6.4. An element b ∈ E is boolean if and only if E[0, b] is a boolean
algebra, that is, E[0, b] = 0(E[0, b]).

By Lemma 3.12, for every p ∈ E and c ∈ 0(E), the element p ∧ c is central in
E[0, p]. The next definition concerns those elements for which the converse also
holds.

DEFINITION 6.5. An element p ∈E is subcentral if and only if, for all d ∈ 0(E[0, p]),
d = p ∧ c for some c ∈ 0(E).

Clearly, every central element is subcentral, and every atom is subcentral.

DEFINITION 6.6. An element h ∈ E is a monad if and only if, for every e ∈ E[0, h],
e = h ∧ γ e.

Notice that every atom is a monad. Similarly as in [13, Theorem 3.9], we obtain the
following characterization of monads.

THEOREM 6.7. Let h ∈ E. Then the following properties are equivalent.

(i) h is a monad.
(ii) h is both subcentral and boolean.
(iii) For all e ∈ E[0, h], γ e = γ h only if e = h.
(iv) For all e ∈ E[0, h], e∼h , e−h ≤ (γ e)′.
(v) For all e, f ∈ E[0, h], e +h f exists⇔ γ e ∧ γ f = 0.

PROOF. We show first that (i) implies (ii). Let h be a monad. Since 0(E[0, h])⊆
E[0, h], if d ∈ 0(E[0, h]), then d = h ∧ γ d , which shows that h is subcentral. Since
e ∈ E[0, h] implies e = h ∧ γ e, and γ e ∈ 0(E), by Lemma 3.12, e is central in
E[0, h], hence e[0, h] = 0(E[0, h]), so h is boolean.

Next, we show that (ii) implies (i). Since h is subcentral, every d ∈ 0(E[0, h]
is of the form d = h ∧ c for some c ∈ 0(E). Then d ≤ c implies γ d ≤ c, and
consequently we see that d = d ∧ γ d = h ∧ c ∧ γ d = h ∧ γ d . As h is also boolean,
0(e[0, h])= E[0, h], whence d = h ∧ γ d holds for all d ∈ E[0, h].

To show that (i) implies (iii), assume that γ e = γ h, e ≤ h. Then e = h ∧ γ e =
h ∧ γ h = h.

Our fourth step is to show that (iii) implies (iv). Assume (iv), let e ∈ E[0, h] and
put f := e + (h ∧ (γ e)′). As e ≤ γ e, h ∧ (γ e)′ ≤ (γ e)′, and γ e ∈ 0(E), it follows
that f = e ∨ (h ∧ (γ e)′) ∈ E[0, h]. Since γ e ≤ γ h,

γ f = γ e ∨ γ (h ∧ (γ e)′)= γ e ∨ (γ h ∧ (γ e)′)= (γ h ∧ γ e) ∨ (γ h ∧ (γ e)′)= γ h,
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so by (iii), e + (h ∧ (γ e)′)= f = h = e + e�h so h ∧ (γ e)′ = e�h = e∼h ≤ (γ e)′.
We can also write f = (h ∧ (γ e)′)+ e = h = h�e + e, which yields the desired
result: h ∧ (γ e)′ = h�e = e−h ≤ (γ e)′.

Now, we show that (iv) implies (v). Let e, f ∈ E[0, h], and assume that e +h f
exists. Then f ≤ e−h ≤ (γ e)′, the last inequality following from (iv). Now f ≤ (γ e)′

implies γ f ≤ (γ e)′, which entails (v).
Finally, we show that (v) implies (i). Let e ∈ E[0, h], then h = e + e∼h = e +

(e�h), and by (v), γ (e�h)≤ (γ e)′. We also have h = h ∧ γ e + h ∧ (γ e)′, and from
e ≤ h ∧ γ e and e�h ≤ h ∧ (γ e)′ we deduce that e = h ∧ γ e, whence h is a monad. 2

Let S denote the set of all subcentral elements of E , B the set of all boolean
elements of E , and H the set of all monads in E . As in [11], it can be shown that
S is a type-determining set with [A] ⊆ S, B is a strongly type-determining set with
[A] ⊆ B, and H = S ∩ B is a strongly type-determining set with [A] ⊆ H .

The following definition is an analogue of [13, Definition 4.2].

DEFINITION 6.8. A nonempty class K of pseudoeffect algebras is called a type-class
if and only if the following conditions are satisfied.

(i) K is closed under passage to direct summands, that is, if H ∈K and h ∈ 0(H),
then H [0, h] ∈K.

(ii) K is closed under the formation of arbitrary direct products.
(iii) If E1 and E2 are isomorphic pseudoeffect algebras and E1 ∈K, then E2 ∈K.

If K satisfies (ii), (iii); and

(i)′ H ∈K, h ∈ H implies that H [0, h] ∈K,

then K is called a strong type-class.

We omit the proof of the next theorem as it is analogous to that of [13, Theorem 4.4].

THEOREM 6.9. Let K be a type-class and define K := {k ∈ E : E[0, k] ∈K}. Then
K is a type-determining subset of E. If K is a strong type-class, the K is strongly
type-determining.

EXAMPLE 6.10. The class of effect algebras and the following subclasses of effect
algebras are strong type-classes: all boolean effect algebras, all orthomodular lattices,
all complete orthomodular lattices, all orthoalgebras, all lattice effect algebras, and
all atomic effect algebras. Similarly, all lattice-ordered pseudoeffect algebras and all
atomic pseudoeffect algebras are strong type-classes.

According to [5], the pseudoeffect algebra E is monotone σ -complete if and only
if any ascending sequence x1 ≤ x2 ≤ · · · in E has a supremum

∨
∞

i=1 xi in E ; further,
E is σ -complete if and only if it is a σ -complete lattice; moreover, E satisfies the
countable Riesz interpolation property (σ -RIP) if and only if, for countable sequences
{x1, x2, . . . , } and {y1, y2, . . . , } of elements of E such that xi ≤ y j for all i, j , there
exists an element z ∈ E such that xi ≤ z ≤ y j for all i, j ; and finally, E is archimedean
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if and only if the only x ∈ E such that nx := x + · · · + x is defined in E for any integer
n ≥ 1 is x = 0.

One can easily deduce that monotone σ -complete pseudoeffect algebras,
σ -complete pseudoeffect algebras, pseudoeffect algebras with the countable Riesz
interpolation property, and archimedean pseudoeffect algebras are all strong type-
classes.

In [7], the following properties of pseudoeffect algebras were introduced.

DEFINITION 6.11. Let (E; +, 0, 1) be a pseudoeffect algebra.

(i) E has the Riesz interpolation property (RIP) if and only if, for any
a1, a2, b1, b2 ∈ E such that a1, a2 ≤ b1, b2, there is c ∈ E such that a1, a2 ≤

c ≤ b1, b2.
(ii) E has the weak Riesz decomposition property (RDP0) if and only if, for any

a, b1, b2 ∈ E such that a ≤ b1 + b2, there are d1, d2 ∈ E such that d1 ≤ b1, d2 ≤

b2 and a = d1 + d2.
(iii) E has the Riesz decomposition property (RDP) if and only if, for any

a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2, there are d1, d2, d3, d4 ∈ E such
that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, and d2 + d4 = b2.

(iv) E has the commutational Riesz decomposition property (RDP1) if and only if,
for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2, there are d1, d2, d3, d4 ∈

E such that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2 and x ≤
d2, y ≤ d3 imply x + y = y + x .

(v) E has the strong Riesz decomposition property (RDP2) if and only if, for any
a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2, there are d1, d2, d3, d4 ∈ E such
that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2 and d2 ∧ d3 = 0.

In [7, Proposition 3.3], the following implications were proved:

(RDP2)⇒ (RDP1)⇒ (RDP)⇒ (RDP0)⇒ (RIP).

In general, the converse of each of these implications fails. If E is commutative (that
is, an effect algebra), then (RDP1), (RDP) and (RDP0) are equivalent.

Since for any k ∈ E , if a + b exists in E[0, k] then a + b exists in E , and
the operations in direct products are defined pointwise, it is easy to deduce that
pseudoeffect algebras with any of the properties from Definition 6.11 are strong type-
classes.

In [28], the following class of pseudoeffect algebras was introduced. An effect
algebra E is weak-commutative if, for any a, b ∈ E , a + b exists if and only if b + a
exists. It was proved in [28] that in a weak-commutative pseudoeffect algebra, a∼ =
a− for every a ∈ E . On the other hand, if a∼ = a−, then b ≤ a∼ if and only if b ≤ a−,
whence a + b exists if and only if b + a exists for all a, b ∈ E . A weak-commutative
pseudoeffect algebra becomes an effect algebra if and only if a + b = b + a whenever
one side of the equality exists. It was shown in [28] that effect algebras are a proper
subclass of weak-commutative pseudoeffect algebras.
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THEOREM 6.12. The class of weak-commutative pseudoeffect algebras is a type-class
which is not a strong type-class.

PROOF. Let c ∈ 0(E), a, b ∈ E[0, c]. Then a + b exists in E[0, c] if and only if
a + b exists in E , so b + a exists in E , whence b + a exists in E[0, c]. Verification of
the remaining properties of a type-class is straightforward.

Suppose that the class in question is a strong type-class. Then for every d ∈ E ,
E[0, d] would be weak-commutative; hence if a, b ≤ d and a + b ≤ d , then
b + a ≤ d . Putting d = a + b yields b + a ≤ a + b, and putting d = b + a yields
a + b ≤ b + a. 2

In what follows we assume that K and F are type-determining subsets of the
centrally orthocomplete pseudoeffect algebra E and that K ⊆ F . As in Theorem 5.9,
we decompose E as

E = E[0, c1] × E[0, c2] × E[0, c3]

and also as
E = E[0, d1] × E[0, d2] × E[0, d3]

where c1 = cK∩γ K and d1 = cF∩γ F are of types K and F ; c2 = cK ∧ c′K∩γ K and
d2 = cF ∧ c′F∩γ F are locally types K and F , but properly non-K and properly non-F ;
and c3 = c′K and d3 = c′F are purely non-K and purely non-F , respectively.

As K ⊆ F , it is clear that, type-K implies type-F ; locally type-K implies locally
type-F ; purely non-F implies purely non-K ; and properly non-F implies properly
non-K .

The following theorem is an analogue of [13, Theorem 6.6] proved for effect
algebras; since its proof in the pseudoeffect algebra setting follows the same ideas,
we omit it.

THEOREM 6.13. There exists a direct sum decomposition

E = E[0, c11] × E[0, c21] × E[0, c22] × E[0, c31] × E[0, c32] × E[0, c33]

where c11 is type-K (hence type-F); c21 is type-F, locally type-K , but properly non-K ;
c22 is locally type-K (hence, locally type-F), but properly non-F (hence, properly
non-K ); c31 is type-F and purely non-K ; c32 is locally type-F but properly non-F,
and purely non-K ; and c33 is purely non-F (hence, purely non-K ). Moreover, such a
decomposition is unique, with ci j = ci ∧ d j for i, j = 1, 2, 3, where c11 = c1, c33 = d3
and c12 = c13 = c23 = 0.

In analogy with the classical decomposition of von Neumann algebras into types I,
II, and III, we introduce the following definition (see also [13, Definition 6.3]).

DEFINITION 6.14. For the type-determining sets K and F with K ⊆ F , the centrally
orthocomplete pseudoeffect algebra E is type I if and only if it is locally type-K ;
type II if and only if it is locally type-F , but purely non-K ; and type III if and only if
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it is purely non-F . It is type IF or type IIF if and only if it is type I or type II and also
type-F . It is type IF̄ or type IIF̄ if and only if it is of type I or type II and also properly
non-F .

The following theorem is the I/II/III-decomposition theorem for centrally
orthocomplete pseudoeffect algebras.

THEOREM 6.15. E decomposes as E = E[0, cI ] × E[0, cII] × E[0, cIII], where cI ,
cII and cIII are central elements of types I, II, and III; such a decomposition is unique,
and cI = cK , cII = cF ∧ c′K , cIII = c′F .

Moreover, there are further decompositions E[0, cI ] = E[0, cIF ] × E[0, cIF̄ ] and
E[0, cII] = E[0, cIIF ] × E[0, cIIF̄ ], where cIF , cIF̄ , cIIF , cIIF̄ are central elements of
types IF , IF̄ , IIF , II F̄ ; these decompositions are also unique.

We obtain these decompositions if in Theorem 6.13 we put cI := c11 + c21 + c22,
cII := c31 + c32 and cIII = c33; then cIF := c11 + c21, cIF̄ := c22, cIIF := c31,
cIIF̄ := c32. Notice that, beyond the traditional I/II/III decomposition, the type IF
summand decomposes as E[0, cIF ] = E[0, c11] × E[0, c21], where c11 is type-K
(hence type-F) and c21 is type-F and locally type-K , but properly non-K .

EXAMPLE 6.16. Taking K := [A], the set of all polyatoms, and F := H , the set of
all monads of E , in Theorem 6.15, we deduce that [A] ⊆ H , and E decomposes as
E = E[0, r1] × E[0, r2] × E[0, r3] where every nonzero direct summand of E[0, r1]

contains an atom; E[0, r2] is atom-free, but every nonzero direct summand of
E[0, r2] contains a nonzero monad; and E[0, r3] contains no nonzero monad. This
decomposition is unique. Indeed, r1 = c[A] is locally type-[A], r2 = cH ∧ c′

[A] is
locally type-H and purely non-[A], and r3 = c′H is purely non-H (see Theorem 6.15).

EXAMPLE 6.17. Take K =: E A, the subset of all elements e ∈ E such that E[0, e]
is a commutative pseudoeffect algebra (that is, an effect algebra), and F =:W , the
set of all elements d ∈ E such that E[0, d] is weak-commutative. Then E A ⊆W ,
and we obtain the decomposition E = E[0, v1] × E[0, v2] × E[0, v3]. The summand
E[0, v1] is locally commutative in the sense that v1 = γ e = cE A; the summand
E[0, v2] is locally weak-commutative, but purely noncommutative, that is, v2 =

cW ∧ c′E A; and E[0, v3] is purely nonweak-commutative, that is, v3 = c′W . We recall
that then every direct subsummand of E[0, v1] contains an element e ∈ E A; every
direct subsummand of E[0, v2] contains an element d ∈W , but E[0, v2] ∩ E A = {0};
and E[0, v3] contains no element of W .

The summands E[0, v1] and E[0, v2] decompose further into weak-commutative
and properly nonweak-commutative parts; and the weak-commutative part of E[0, v1]

admits a further decomposition into a commutative part and a locally commutative but
properly noncommutative part.

Let R2 denote the strongly type-determining set of all elements e ∈ E such that
E[0, e] satisfies (RDP2) and L denote the set of all elements e ∈ E such that E[0, e]
is a lattice.
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EXAMPLE 6.18. There exists a decomposition

E = E[0, c11] × E[0, c21] × E[0, c22] × E[0, c31] × E[0, c32] × E[0, c33],

where E[0, c11] satisfies (RDP2), hence is a lattice; E[0, c21] is a lattice, and
every direct subsummand contains an element from R2, but no direct subsummand
satisfies (RDP2); E[0, c22] contains no lattice ordered direct subsummand (hence no
subsummand satisfying (RDP2)), but every direct subsummand contains an element
from R2 (hence from L); E[0, c31] is a lattice and contains no element from R2;
E[0, c32] contains no lattice ordered direct subsummand, and no element from R2,
but every direct subsummand contains an element from L; and E[0, c33] contains no
element from L (hence no element from R2). Moreover, such a decomposition is
unique.

Indeed, such a decomposition is obtained from decompositions corresponding to
strongly type-determining sets R2 and L as in Theorem 6.15, taking into account that
R2⊆ L by [7, Proposition 3.3(ii)].

Notice that by [8], a pseudoeffect algebra that satisfies (RDP2) is a pseudo-MV
algebra (a noncommutative analogue of an MV algebra; see [14, 24]).
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[8] A. Dvurečenskij and T. Vetterlein, ‘Pseudoeffect algebras. II. Group representations’, Internat. J.

Theoret. Phys. 40 (2001), 703–726.
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