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ZBYNĚK PAWLAS, Charles University in Prague
Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics,
Charles University in Prague, Sokolovská 83, Praha 8, Czech Republic.
Email address: pawlas@karlin.mff.cuni.cz

GENNADY SAMORODNITSKY, Cornell University
School of Operations Research and Information Engineering, Cornell University, 220 Rhodes Hall,
Ithaca, NY 14853, USA. Email address: gennady@orie.cornell.edu

APPLIED PROBABILITY TRUST
AUGUST 2011

https://doi.org/10.1239/jap/1318940461 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940461


A LARGE DEVIATION PRINCIPLE FOR MINKOWSKI SUMS
OF HEAVY-TAILED RANDOM COMPACT CONVEX SETS

WITH FINITE EXPECTATION
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Abstract

We prove large deviation results for Minkowski sums Sn of independent and identically
distributed random compact sets where we assume that the summands have a regularly
varying distribution and finite expectation. The main focus is on random convex compact
sets. The results confirm the heavy-tailed large deviation heuristics: ‘large’ values of the
sum are essentially due to the ‘largest’ summand. These results extend those in Mikosch,
Pawlas and Samorodnitsky (2011) for generally nonconvex sets, where we assumed that
the normalization of Sn grows faster than n.
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1. Introduction
1.1. Preliminaries on random sets and Minkowski addition

The theory of random sets is summarized in the recent monograph [9]. For all definitions
introduced below, we refer the reader to [9]. Let F be a separable Banach space with norm
‖ · ‖. For A1, A2 ⊆ F and a real number λ, the Minkowski addition and scalar multiplication
are respectively defined by

A1 + A2 = {a1 + a2 : a1 ∈ A1, a2 ∈ A2}, λA1 = {λa1 : a1 ∈ A1}.
We denote by K = K(F ) the class of all nonempty compact subsets of F . Note that this is
not a vector space. However, it is well known that K equipped with the Hausdorff distance

d(A1, A2) = max
{

sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖, sup
a2∈A2

inf
a1∈A1

‖a1 − a2‖
}
, A1, A2 ∈ K,

forms a complete separable metric space. The Hausdorff metric is subinvariant, i.e.

d(A1 + A, A2 + A) ≤ d(A1, A2) for any A1, A2, A ∈ K.

For any subset U of K , a real number λ, and a set A ∈ K, we use the notation λU =
{λC : C ∈ U} and U + A = {C + A : C ∈ U}. For subsets U1 and U2 of K, we define
d(U1, U2) = infA1∈U1, A2∈U2 d(A1, A2).

A random compact set X in F is a Borel measurable function from an abstract probability
space (�, F , P) into K . Since addition and scalar multiplication are defined for random
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134 T. MIKOSCH ET AL.

compact sets, it is natural to study the strong law of large numbers, the central limit theorem,
large deviations, etc. for sequences of such random sets; see Chapter 3 of [9] for an overview
of results obtained until 2005. A general Cramér-type large deviation result for Minkowski
sums of independent and identically distributed (i.i.d.) random compact sets was proved in [2].
Cramér-type large deviations require exponential moments of the summands. If such moments
do not exist then we are dealing with heavy-tailed random elements. Large deviation results
for sums of heavy-tailed random elements significantly differ from Cramér-type results. In this
case it is typical that only the largest summand determines the large deviation behavior; see the
classical results by Nagaev [10], [11] for sums of i.i.d. random variables (cf. [6] and [12]). It is
the aim of this paper to prove large deviation results for sums of heavy-tailed random compact
sets. In what follows, we make this notion precise by introducing regularly varying random
sets.
1.2. Regularly varying random sets

A special element of K is {0}. In what follows, we say that U ⊆ K is bounded away
from {0} if {0} �∈ clU, where clU stands for the closure of U. We consider the subspace
K0 = K \ {{0}}, which is a separable metric space in the relative topology. For any Borel set
U ⊆ K0 and ε > 0, we write

Uε = {A ∈ K0 : d(A, C) ≤ ε for some C ∈ U}.
Furthermore, we define the norm ‖A‖ = d(A, {0}) = sup{‖a‖: a ∈ A} for A ∈ K , and
define Br = {A ∈ K : ‖A‖ ≤ r}. Let M0 = M0(K0) be the collection of Borel measures
on K0 whose restriction to K \ Br is finite for each r > 0. Let C0 denote the class of real-
valued, bounded, and continuous functions f on K0 such that, for each f, there exists r > 0
and f vanishes on Br . The convergence µn→µ in M0 is defined to mean the convergence∫

f dµn→
∫

f dµ for all f ∈ C0. By the portmanteau theorem (see [5, Theorem 2.4]), µn→µ

in M0 if and only if µn(U)→µ(U) for all Borel sets U ⊆ K which are bounded away from
{0} and satisfy µ(∂U) = 0, where ∂U is the boundary of U.

Following [5], for the general case of random elements with values in a separable linear
metric space, a random compact set X is regularly varying if there exist a nonnull measure
µ ∈ M0 and a sequence {an}n≥1 of positive numbers such that

nP(X ∈ an·)→µ(·) in M0. (1)

The tail measure µ necessarily has the property µ(λU) = λ−αµ(U) for some α > 0, all Borel
sets U in K0, and all λ > 0. We then also refer to regular variation of X with index α and
write X ∈ RV(α, µ) for short. From the definition of regular variation of X we obtain (see [5,
Theorem 3.1])

[P(X ∈ t (K \ B1))]−1P(X ∈ t ·)→cµ(·) in M0 as t → ∞, (2)

for some c > 0. The sequence {an}n≥1 will always be chosen such that nP(X∈ an(K\B1))→1.
With this choice of {an}n≥1, it follows that c = 1 in (2).

An important closed subset of K is the family of nonempty compact convex subsets of
F , denoted by coK . Denote the topological dual of F by F ∗ and the unit ball of F ∗ by B∗,
endowed with the weak-∗ topology w∗. The support function hA of a compact convex A ∈ coK
is defined by (see [9])

hA(u) = sup{u(x) : x ∈ A}, u ∈ B∗.
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Regularly varying random compact sets 135

Since A is compact, hA(u) < ∞ for all u ∈ B∗. The support function hA is sublinear, i.e. it is
subadditive (hA(u + v) ≤ hA(u) + hA(v) for all u, v ∈ B∗ with u + v ∈ B∗) and positively
homogeneous (hA(cu) = chA(u) for all c > 0 and u ∈ B∗ with cu ∈ B∗). Let C(B∗, w∗) be
the set of continuous functions from B∗ (endowed with the weak-∗ topology) to R and consider
the uniform norm ‖f ‖∞ = supu∈B∗ |f (u)|, f ∈ C(B∗, w∗). The map h : coK → C(B∗, w∗)
has the properties that

hA1+A2 = hA1 + hA2 , hλA1 = λhA1 , A1, A2 ∈ coK, λ ≥ 0,

which make it possible to convert the Minkowski sums and scalar multiplication of convex sets
respectively into the arithmetic sums and scalar multiplication of the corresponding support
functions. Furthermore,

d(A1, A2) = ‖hA1 − hA2‖∞. (3)

Hence, the support function provides an isometric embedding of coK into C(B∗, w∗) with
the uniform norm. If G = h(coK) then G is a closed convex cone in C(B∗, w∗), and h is an
isometry between coK and G.

A random compact convex set X is a Borel measurable function from a probability space
(�, F , P) into coK , which we endow with the relative topology inherited from K . The support
function of a random compact convex set is, clearly, a C(B∗, w∗)-valued random variable taking
values in G.

The definition of a regularly varying random compact convex set parallels that of a regularly
varying random compact set above, and we are using the same notation: a random compact
convex set X is regularly varying if there exist a nonzero measure µ ∈ M0(coK0) and a
sequence {an}n≥1 of positive numbers such that

nP(X ∈ an·)→µ(·) in M0(coK0). (4)

Once again, the tail measure µ necessarily scales, leading to the notion of the index of regular
variation.

The following lemma is elementary.

Lemma 1. (i) A random compact convex set X is regularly varying in coK if and only if its
support function hX is regularly varying in C(B∗, w∗). Specifically, if (4) holds for some
sequence {an} then, for the same sequence, we have

nP(hX ∈ an·)→ν(·) in M0(C(B∗, w∗)), (5)

where ν = µ ◦ h−1
X (the ‘special element’ of C(B∗, w∗) is, of course, the zero function).

Conversely, if (5) holds then (4) holds as well with µ = ν ◦ hX. In particular, the indices
of regular variation of X and hX are the same.

(ii) If a random compact set X is regularly varying in K then its convex hull coX is a random
compact convex set, which is regularly varying in coK . Specifically, if (1) holds then so does
(4), with the tail measure replaced by the image of the tail measure from (1) under the map
A �→ coA from K to coK . In particular, X and coX have the same indices of regular variation.

Proof. Since isometry implies continuity, and the support function is homogeneous of order
1 and assigns to the ‘special set’ {0} the ‘special element’, the zero function, the statement of
part (i) of the lemma follows from the mapping theorem (see Theorem 2.5 of [5]). For part (ii),
note that the map A �→ coA from K to coK is a contraction in the Hausdorff distance, and,
hence, is continuous. It is also homogeneous of order 1. Since the ‘special set’ {0} is already
convex, the statement follows once again from the mapping theorem.
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136 T. MIKOSCH ET AL.

1.3. Organization of the paper

In Section 2 we consider various examples of regularly varying compact random sets. In
Section 3 we prove large deviation results for Minkowski sums Sn of i.i.d. regularly varying
random compact sets. To the best of the authors’ knowledge, such results are not available in
the literature; they parallel those proved by A. and S. Nagaev [10], [11], [12] for sums of i.i.d.
random variables. The case of general random compact sets is treated in [8]. The price one
has to pay for this generality is that the normalizations λn of the sums Sn have to exceed the
level n. The situation with milder normalizations considered in the present paper is much more
delicate. Our main result here assumes that the random sums are convex, but we include partial
results in the nonconvex case as well. Large deviation results for Minkowski sums of random
sets have their own interest; in [8] we considered first applications to intrinsic volumes.

2. Examples of regularly varying random sets

Simple examples of regularly varying random sets can be constructed from i.i.d. F -valued
random elements ξ1, . . . , ξk, k ≥ 2, which are regularly varying with index α > 0 and tail
measure ν. The following three examples are distinct but their tail measures turn out to be the
same; see [8] for proofs.

Example 1. The convex hull X = co{ξ1, . . . , ξk} ∈ RV(α, kν ◦ T −1), where T : F → coK
is defined by the relation T (x) = [0, x], and, for x, y ∈ F , [x, y] is the random segment with
endpoints x and y. The random zonotope X′ = ∑k

i=1[0, ξi] ∈ RV(α, kν ◦ T −1). The random
set X = ⋃

1≤i<j≤k[ξi, ξj ] is a compact, but generally nonconvex, subset of F . The map

g : (z1, . . . , zk) �→ ⋃
1≤i<j≤k[zi, zj ] from Fk to K is continuous, homogeneous of order 1,

and maps the zero point in Fk to {0}, which is now viewed as the ‘special element’ of K . The
continuous mapping argument used in the examples of [8] shows that X ∈ RV(α, kν ◦ T −1),
where now we view T (x) = [0, x] as a map from F to K . Note that the tail measure is
supported by convex sets as in Theorem 2 below.

Next we consider an example of a nonconvex regularly varying random set whose tail
measure is supported by convex sets.

Example 2. (Sojourn set.) For k ≥ 3, let {Wt = (W
(i)
t )i=1,...,k, t ∈ R

+} be a standard Brown-
ian motion, i.e. the Wis are independent standard Brownian motions in R. Then {‖Wt‖, t ∈ R

+}
is a Bessel process of order k.

Consider the random set X = {t ∈ R
+ : ‖Wt‖ ≤ 1}. We claim that this set is regularly

varying with index α = (k − 2)/2. To see this, let us define

M = sup{t : t ∈ X} = sup{t ∈ R
+ : ‖Wt‖ ≤ 1}.

It follows from the last part of Exercise 1.18 of [13, p. 450] that M−1 is χ2
k−2-distributed.

Therefore,

P(M > t) ∼ 1

2(k−2)/2	(k/2)
t−(k−2)/2 =: ν(t, ∞), t → ∞.

The map T : R
+ → K(R) given by T (x) = {0, x} is continuous and homogeneous of order 1

(and, hence, maps the zero point into {0}). Then the set Y = {0, M} ⊆ X is regularly varying
with index α = (k − 2)/2 and, with the measure ν on R

+ defined above,

nP(Y ∈ n2/(k−2)·)→ν ◦ T −1(·) in M0(K0(R)).
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Regularly varying random compact sets 137

This relation remains valid with Y replaced by X, once we can show that, for any ε > 0,

nP(d(X, Y ) > n2/(k−2)ε)→0. (6)

Since Y ⊆ X, we have, with T = inf{t > n2/(k−2)ε : ‖Wt‖ ≤ 1} ∈ [n2/(k−2)ε, ∞],
P(d(X, Y ) > n2/(k−2)ε)

= P(X contains a point separated by more that n2/(k−2)ε from both 0 and M)

≤ P(M − T > n2/(k−2)ε).

Note that T is a stopping time and that the process {‖Wt‖, t ∈ R
+} is a Feller process and,

hence, is strongly Markov; see [13, p. 446]. Therefore,

P(M − T > n2/(k−2)ε) = E(1{T <∞} P‖WT ‖(M > n2/(k−2)ε)).

At time T < ∞, the Brownian motion is inside the closed unit ball, hence returning to that
closed unit ball at a later point means being within a distance of at most 2 of the initial point.
Therefore, on the event {T < ∞}, with probability 1,

P‖WT ‖(M > n2/(k−2)ε) ≤ P(sup{t ∈ R
+ : ‖Wt‖ ≤ 2} > n2/(k−2)ε)

= P
(
M > 1

4n2/(k−2)ε
)

≤ cn−1

for large enough n and some c > 0. We conclude that, for large n,

P(d(X, Y ) > n2/(k−2)ε) ≤ cn−1P(T < ∞) ≤ cn−1P(M ≥ n2/(k−2)ε) = O(n−2)

as n → ∞, thus proving (6).
The random set of this example can be naturally embedded into the space R

k by defining

X1 = {tWt , t ∈ R
+ : ‖Wt‖ ≤ 1} ⊆ R

k.

It follows from what we already know about the set X that X1 is regularly varying, with tail
measure µ1 = (ν × H) ◦ T −1

1 , where H is the normalized Haar measure (see, e.g. [7, p. 365])
on the unit sphere S

k−1, and T1 : R
+ × S

k−1 → K(Rk) given by T1(x, s) = [0, sx].
3. Large deviations in the presence of expectation

In [8] we considered large deviations for the sums Sn = X1 + · · · + Xn of i.i.d. regularly
varying random compact sets Xi, i = 1, 2, . . ., which were not necessarily convex. However,
we had to assume that the scaling sequence {λn} of {Sn} had to grow faster than n. This is not
a very natural condition if the index of regular variation α > 1. In Theorem 1 below we will
relax the conditions on {λn} by assuming that we can define the expectation of a random set,
but we will restrict ourselves to compact convex sets.

Let X be a random compact set in F . Following [9, p. 151], a random element ξ ∈ F is
a selection of X if ξ ∈ X almost surely (a.s.), and if E‖ξ‖ < ∞, ξ is an integrable selection.
The selection expectation of X is defined as EX = cl{Eξ : ξ is an integrable selection of X}.
The selection expectation of a random compact convex set is defined in the same way. The
selection expectation is necessarily a convex set (assuming sufficient richness of the underlying
probability space), even if X itself is not convex. If X is a random compact convex set and
E‖X‖ < ∞, then the selection expectation of X is the unique convex compact set EX satisfying
EhX(u) = hEX(u) for all u ∈ B∗; see [9, Theorem 2.1.22].
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Theorem 1. Let {Xn}n≥1 be an i.i.d. sequence of random compact convex sets, regularly
varying with index α ≥ 1 and tail measure µ ∈ M0(coK0). Assume that E‖X1‖ < ∞.
Consider a sequence {λn}n≥1 such that λn ↗ ∞,

λ−1
n d(Sn, nEX1)

P−→ 0, (7)

λ−1
n Ed(Sn, nEX1)→0, (8)

and, for some η > 0,

(i) λn/n1/2+η→∞ if α ≥ 2, and

(ii) λn/n1/α+η→∞ if 1 ≤ α < 2.

Then, with γn = [nP(‖X1‖ > λn)]−1,

γnP(Sn ∈ λn · +nEX1)→µ(·) in M0(coK0).

Remark 1. Note that the assumptions of Theorem 1 imply that λn/an→∞. Regarding the
assumptions on the random set, we start by observing that the condition E‖X1‖ < ∞ is
automatic if α > 1. Furthermore, condition (7) can be easily verified if the random sets satisfy
the central limit theorem. For example, if d(Sn, nEX1)/

√
n converges in distribution (as it

does when a Gaussian central limit theorem holds) and λn/
√

n→∞, then (7), obviously, holds.
This Gaussian central limit theorem requires α > 2, and assumption (i) of Theorem 1 already
implies that λn/

√
n→∞. Alternatively, if d(Sn, nEX1)/an converges in distribution in the

context of an α-stable central limit theorem, 1 < α < 2, then (7) also holds since λn/an→∞.
Sufficient conditions for the central limit theorem can be found in [4] and [9]. If the Gaussian
central limit theorem is satisfied then condition (8) follows by the isometric embedding (3) and
Corollary 10.2 of [7].

The usual choice of the scaling sequence is, of course, λn = n. Then condition (7) follows
from the strong law of large numbers which is satisfied for any sequence {Xn} of i.i.d. random
compact convex sets in F by virtue of [4, Theorem 3.1] (the law of large numbers for random
compact sets in R

d was established even earlier in [1]). Since the law of large numbers in a
separable Banach space implies the L1 convergence, the isometric embedding (3) implies (8)
as well. Conditions of the type (7), (8) and growth conditions on {λn} similar to those used
in Theorem 1 have been widely used in simple nonset-valued large deviation contexts; see,
e.g. [3], [6], and [12].

Proof of Theorem 1. Let U ⊆ coK0 be a µ-continuity set, bounded away from {0}. We
will show that γnP(Sn ∈ λnU + nEX1)→µ(U). We start with an upper bound:

P(Sn ∈ λnU + nEX1) = P

(
Sn ∈ λnU + nEX1,

n⋃
i=1

{Xi ∈ λnU
ε}

)

+ P

(
Sn ∈ λnU + nEX1,

n⋂
i=1

{Xi �∈ λnU
ε}

)

≤ nP(X1 ∈ λnU
ε) + P

(
Sn ∈ λnU + nEX1,

n⋂
i=1

{Xi �∈ λnU
ε}

)

:= I1 + I2.
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It follows from (2) and the µ-continuity of U that

µ(U) = lim
ε↘0

lim inf
n→∞ γnI1 ≤ lim

ε↘0
lim sup
n→∞

γnI1 = µ(U).

In order to show that γnI2→0, we use the isometric embedding h : coK → C(B∗, w∗) given
by the support function. In the new language we have

γnI2 = γnP

( n∑
i=1

(hXi
− EhXi

) ∈ λnV,

n⋂
i=1

{hXi
�∈ λnV

ε}
)

,

where V = h(U) is bounded away from the zero function. Note also that γn = [nP(‖hX1‖∞ >

λn)]−1. Let Yi = hXi
− EhXi

and S̃n = ∑n
i=1 Yi . Then

I2 ≤ P

( n⋂
i=1

{‖S̃n − hXi
‖∞ > ελn}

)
.

For 0 < δ ≤ ε/3, consider the following disjoint partition of �: B1 = ⋃n
i=1{‖hXi

‖∞ > δλn}
and B2 = {maxi=1,...,n ‖hXi

‖∞ ≤ δλn}. Then

P

( n⋂
i=1

{‖S̃n − hXi
‖∞ > ελn} ∩ B1

)

≤
n∑

k=1

P(‖S̃n − hXk
‖∞ > ελn, ‖hXk

‖∞ > δλn)

≤ P(‖S̃n−1 − EhX1‖∞ > ελn)[nP(‖hX1‖∞ > δλn)]
≤ P(‖S̃n−1‖∞ > ελn − ‖EhX1‖∞)[nP(‖hX1‖∞ > δλn)].

By (7), the first term on the right-hand side above vanishes as n → ∞, while, by Lemma 1(i),
the second term, when multiplied by γn, converges to a finite limit. As regards B2, we define
Y δ

i = Yi 1{‖Yi‖∞≤2δλn} and S̃δ
n = ∑n

i=1 Y δ
i . As δ ≤ ε/3, we have, for sufficiently large n,

P

( n⋂
i=1

{‖S̃n − hXi
‖∞ > ελn} ∩ B2

)
≤ P

(
‖S̃n−1‖∞ >

ελn

2
, max

i=1,...,n−1
‖Yi‖∞ ≤ 2δλn

)
.

The required upper bound in the theorem will follow once we can show that, for small enough
δ > 0, γnP(‖S̃δ

n‖∞ > ελn)→0. Observe that

P(‖S̃δ
n‖∞ > ελn) ≤ P

(
‖S̃δ

n‖∞ − E‖S̃δ
n‖∞ >

ελn

2

)
+ 1{E‖S̃δ

n‖∞>ελn/2} . (9)

Applying inequality (6.13) of [7], we see that, for any b ≥ nE‖Y δ
1 ‖2∞,

P

(
‖S̃δ

n‖∞ − E‖S̃δ
n‖∞ >

ελn

2

)
≤ 2 exp

[
ε

8δ
−

(
ε

8δ
+ b

16δ2λ2
n

)
log

(
1 + 2εδλ2

n

b

)]
.

If α ≥ 2 and E‖hX1‖2∞ < ∞, we take b = nE‖Y1‖2∞. If α ≤ 2 and E‖hX1‖2∞ = ∞, then,
for large n, we take b = 2n(‖EhX1‖2∞ + E‖hX1‖2∞ 1{‖hX1‖∞≤3δλn}). If α = 2, by Karamata’s
theorem, we have b = nl(n) for a slowly varying (at infinity) function l. If 1 ≤ α < 2 then, by
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140 T. MIKOSCH ET AL.

Karamata’s theorem, our choice results in b ∼ cnλ2
nP(‖hX1‖∞ > 3δλn) as n → ∞ for some

c > 0. In all three cases, for all small enough δ > 0,

γnP

(
‖S̃δ

n‖∞ − E‖S̃δ
n‖∞ >

ελn

2

)
→0.

The second term of (9) is 0 for sufficiently large n. Indeed, if α = 1 and E‖hX1‖∞ < ∞, then
the choice of λn trivially shows that E‖S̃δ

n‖∞/λn→0. For α > 1, we write

E‖S̃δ
n‖∞

λn

≤ E‖S̃n‖∞
λn

+ E‖S̃n − S̃δ
n‖∞

λn

,

and observe that E‖S̃n‖∞/λn→0 by assumption (8). To see that E‖S̃n − S̃δ
n‖∞/λn→0, note

that, by Karamata’s theorem and the choice of λn,

λ−1
n nE‖Y1‖∞ 1{‖Y1‖∞>2δλn} ∼ cnP(‖hX1‖∞ > 2δλn)→0.

We conclude that, for any µ-continuity set U bounded away from {0},
lim sup
n→∞

γnP(Sn ∈ λnU + nEX1) ≤ µ(Uε) → µ(U) as ε ↘ 0,

where the limit is taken along such ε > 0 that Uε is a continuity set.
To prove the corresponding lower bound, write, for U, as above

P(Sn ∈ λnU + nEX1) ≥ P

(
Sn ∈ λnU + nEX1,

n⋃
i=1

{Xi ∈ λnU
−ε}

)

≥ P

( n⋃
i=1

{Xi ∈ λnU
−ε}

)

− P

(
Sn /∈ λnU + nEX1,

n⋃
i=1

{Xi ∈ λnU
−ε}

)

:= I1 − I2.

The same argument as in the proof of the upper bound shows that γnI2→0 as n → ∞.
Furthermore, a Bonferroni argument shows that

γnI1 ≥ nγnP(X1 ∈ λnU
−ε) − γn0.5n(n − 1)[P(X1 ∈ λnU

−ε)]2.

By the choice ofλn, for ε > 0 so small thatU−ε is bounded away from {0} and aµ-continuity set,
lim infn→∞ γnI1 ≥ µ(U−ε). Letting ε → 0 establishes the required lower bound, completing
the proof.

The statement of Theorem 1 is a bit unusual in the context of large deviation results: while
P(Sn ∈ λnU + nEX1), U, a measurable subset of coK0, is, in fact, a probability measure
on coK0, and the sets λnU + nEX1 do not cover all measurable subsets of coK0, except in
the trivial case X1 = {0} a.s. This is especially inconvenient in the case of linear scaling,
λn = an for some a > 0, when the statement of Theorem 1 can be written in the form
γnP((an)−1Sn ∈ · + a−1EX1)→µ(·) in M0(coK0), which leaves unanswered the obvious
question of how the law of (an)−1Sn behaves on sets that are not in coK0 + a−1EX1. The
following proposition yields the expected answer: at the usual large deviation scaling the mass
outside of coK0 + a−1EX1 asymptotically vanishes.
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Proposition 1. Under the assumptions of Theorem 1, γnP((an)−1Sn ∈ U)→0 as n → ∞ for
every a > 0 and measurable subset U with τ := d(U, coK0 + a−1EX1) > 0.

Proof. We again switch to the isometric embedding h : coK → C(B∗, w∗) given by the
support function. Let V = h(U) and W = h(coK0 + a−1EX1). By isometry,

inf
f ∈V, g∈W

‖f − g‖∞ = τ. (10)

For δ > 0, we write, in the notation of the proof of Theorem 1,

P((an)−1Sn ∈ U)

= P((an)−1S̃n + a−1EhX1 ∈ V)

≤ P(‖hXj
‖∞ > δn for at least two different j = 1, . . . , n)

+
n∑

j=1

P((an)−1S̃n + a−1EhX1 ∈ V, ‖hXi
‖∞ ≤ δn, i �= j, i = 1, . . . , n)

:= I1 + I2.

We already know that γnI1→0. Furthermore,

I2 = nP((an)−1S̃n + a−1EhX1 ∈ V, ‖hXi
‖∞ ≤ δn for i = 1, . . . , n − 1)

≤ nP
(
(an)−1S̃n + a−1EhX1 ∈ V, ‖S̃n−1‖∞ ≤ 1

2τan
)

+ nP
(‖S̃n−1‖∞ > 1

2τan, ‖hXi
‖∞ ≤ δn for i = 1, . . . , n − 1

)
:= I21 + I22.

Note that

(an)−1S̃n + a−1EhX1 = (an)−1hXn + a−1EhX1 + (an)−1S̃n−1 − (an)−1EhX1 .

Clearly, hXn/(an) + EhX1/a ∈ W , while on the event described in I21,

‖(an)−1S̃n−1 − (an)−1EhX1‖∞ ≤ 0.5τ + (an)−1‖EhX1‖∞ < τ

for large n. Therefore, (10) says that I21 = 0 for large n. Furthermore, we have already
established in the proof of Theorem 1 that γnI22→0 as n → ∞ if δ is small enough, relative
to τ . The statement of the proposition follows.

An interesting question is whether Theorem 1 extends to generally nonconvex random
compact sets. A first observation is the following: while the set function P(Sn ∈ λnU+nEX1)

is a measure on measurable subsets U of coK0, it is generally not a measure on all measurable
subsets U of K0. For example, for disjoint collections of compact sets, U1 and U2, the
collections U1 + nEX1 and U2 + nEX1 may not be disjoint. Therefore, we cannot hope for
a result stated as the convergence of measures, but we can hope for a convergence result of
set functions evaluated on certain sets; see below. We consider only regularly varying random
compact sets in R

d for some d ≥ 1 for which the tail measure is supported by coK(Rd).
Informally, those are random compact sets whose tails are the heaviest ‘in the convex directions’.
A good comparison is with real-valued regularly varying random variables whose tail measures
are supported by the positive half-line, e.g. α-stable variables with 1 ≤ α < 2 and β = 1; see
[14, Chapter 1]. We consider only linear scaling sequences {λn}.
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Theorem 2. For d ≥ 1, let {Xn}n≥1 be an i.i.d. sequence of random compact sets in R
d and

let X1 ∈ RV(α, µ) with α ≥ 1, E‖X1‖ < ∞, and µ ∈ M0(K0(R
d)) supported by coK(Rd).

For a > 0 and U ⊆ K(Rd), let

V∗ = {V ∈ coK(Rd) : V + a−1EX1 ∈ cl(U + a−1EX1)},
V∗ = {V ∈ coK(Rd) : V + a−1EX1 ∈ int(U + a−1EX1)}.

Then, for U bounded away from the ‘special element’ {0}, with γn = (nP(‖X1‖ > an))−1,

µ(V∗) ≤ lim inf
n→∞ γnP(Sn ∈ anU + nEX1) ≤ lim sup

n→∞
γnP(Sn ∈ anU + nEX1) ≤ µ(V∗).

Consider the complete separable metric space K × coK equipped with the topology of
coordinate convergence. With ‘special element’ ({0}, {0}), we define M0(K × coK) as the
space of Borel measures on the metric space that are finite outside of a neighborhood of the
‘special element’. Regular variation of a random pair (X, Y ) ∈ K × coK can be defined
straightforwardly.

The proof of the following lemma is the same as that of the second part of Lemma 1.

Lemma 2. If a random compact set X is regularly varying in K then the pair (X, coX) is
regularly varying in K × coK . Specifically, if (1) holds then nP((X, coX) ∈ an·)→ν(·) in
M0(K × coK), where ν = µ ◦ (I, c)−1, with I the identity map, and c : K → coK is the
continuous map assigning to a compact set its convex hull.

Proof of Theorem 2. Let us start with the following consequence of the regular variation
assumptions imposed in the theorem: for every ε > 0,

P(t−1d(X, coX) > δ | ‖X‖ > εt)→0 as t → ∞ for every δ > 0. (11)

To prove (11), we may and will assume that ε = 1. Note that, by Lemma 2,

P(t−1(X, coX) ∈ · | ‖X‖ > t)→ν({(A, B) ∈ ·, ‖B‖ > 1})
ν({(A, B) : ‖B‖ > 1}) (12)

weakly in K(Rd)× coK(Rd), and the limit measure is concentrated on pairs (B, B), where B

is convex. Since the map (A, B) �→ d(A, B), K(Rd) × coK(Rd) → [0, ∞), is continuous,
we conclude that the conditional law of d(X, coX)/t given ‖X‖ > t converges weakly to the
law of d(A, B), where the pair (A, B) is distributed according to the law on the right-hand side
of (12). However, d(A, B) = 0 a.s. according to the latter law, and so (11) follows.

Define S0
n = coX1 + · · · + coXn, n ≥ 1. Let U ⊆ K0 be bounded away from {0}. For

ε > 0, we write, with λn = an,

γnP(Sn ∈ λnU + nEX1) = γnP(Sn ∈ λnU + nEX1, d(Sn, S
0
n) > ελn)

+ γnP(Sn ∈ λnU + nEX1, d(Sn, S
0
n) ≤ ελn)

:= I1 + I2. (13)

To estimate I1, we will use the following estimate on the Hausdorff distance between sums
of compact sets and their respective convex hulls (see, e.g. [1, p. 881] or [9, p. 195]): for any
n ≥ 1 and compact subsets A1, . . . , An of R

d ,

d(A1 + · · · + An, coA1 + · · · + coAn) ≤ d1/2 max
j=1,...,n

‖Aj‖. (14)
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Then

I1 ≤ γnP(d(Sn, S
0
n) > ελn)

= γnP

(
d(Sn, S

0
n) > ελn, ‖Xj‖ ≤ ε

2d1/2 λn for each j = 1, . . . , n

)

+ γnP

(
d(Sn, S

0
n) > ελn, ‖Xj‖ >

ε

2d1/2 λn for exactly one j = 1, . . . , n

)

+ γnP

(
d(Sn, S

0
n) > ελn, ‖Xj‖ >

ε

2d1/2 λn for at least two different j = 1, . . . , n

)

:= I11 + I12 + I13.

It follows from (14) that if ‖Xj‖ ≤ [ε/(2d1/2)]λn for j = 1, . . . , n then d(Sn, S
0
n) ≤ ελn/2,

so that I11 = 0. Furthermore,

I13 ≤ γnP

(
‖Xj‖ >

ε

2d1/2 λn for at least two different j = 1, . . . , n

)
→0

by the choice of the sequence {λn}. Finally, we use (14) once again to see that

I12 = γn

n∑
j=1

P

(
d(Sn, S

0
n) > ελn, ‖Xj‖ >

ε

2d1/2 λn,

‖Xi‖ ≤ ε

2d1/2 λn for i = 1, . . . , n, i �= j

)

≤ γn

n∑
j=1

P

(
d

(∑
i �=j

Xi,
∑
i �=j

coXi

)
+ d(Xj , coXj) > ελn,

‖Xj‖ >
ε

2d1/2 λn, ‖Xi‖ ≤ ε

2d1/2 λn for i = 1, . . . , n, i �= j

)

≤ γn

n∑
j=1

P

(
ελn

2
+ d(Xj , coXj) > ελn, ‖Xj‖ >

ε

2d1/2 λn

)

= [P(‖X1‖ > λn)]−1P

(
d(X1, coX1) >

ελn

2
, ‖X1‖ >

ε

2d1/2 λn

)

→ 0

by (11) and regular variation. Therefore, I1→0 on the right-hand side of (13).
For the second term on the right-hand side of (13), we have, since λn = an,

I2 ≤ γnP((an)−1S0
n ∈ (U + a−1EX1)

ε).

Define V∗ε = {V ∈ coK(Rd) : V + a−1EX1 ∈ (U + a−1EX1)
ε}, so that

I2 ≤ γnP((an)−1S0
n ∈ V∗2ε + a−1EX1) + γnP(d((an)−1S0

n, coK(Rd) + a−1EX1) > ε)

:= I21 + I22.

By Proposition 1, I22→0. Furthermore, the set V∗2ε is a closed subset of coK(Rd) that
is bounded away from {0}. Therefore, by Theorem 1, lim supn→∞ I21 ≤ µ(V∗2ε). Since
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V∗2ε ↓ V∗ as ε → 0, we conclude that

lim sup
n→∞

γnP(Sn ∈ anU + nEX1) ≤ µ(V∗),

and the proof of the corresponding lower bound of I2 on the right-hand side of (13) is similar.
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