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The Homogeneous and Isotropic Universe

Notation

In this book we denote the derivative with respect to physical time by a prime and
the derivative with respect to conformal time by a dot,

τ = physical (cosmic) time
dX

dτ
≡ X′, (1.1)

t = conformal time
dX

dt
≡ Ẋ. (1.2)

Spatial 3-vectors are denoted by a boldface symbol such as k or x whereas four-
dimensional spacetime vectors are denoted as x = (xμ).

We use the metric signature (−, + , + ,+) throughout the book.
The Fourier transform is defined by

f (k) =
∫
d3x f (x) eik·x, (1.3)

so that

f (x) = 1

(2π)3

∫
d3k f (k) e−ik·x. (1.4)

We use the same letter for f (x) and for its Fourier transform f (k). The spectrum
Pf (k) of a statistically homogeneous and isotropic random variable f is given by

〈f (k)f ∗(k′)〉 = (2π)3 δ(k− k′)Pf (k). (1.5)

Since it is isotropic, Pf (k) is a function only of the modulus k = |k|.
Throughout this book we use units where the speed of light, c; Planck’s

constant, h̄; and Boltzmann’s constant, kB , are unity: c = h̄ = kB = 1. Length and
time therefore have the same units and energy, mass, and momentum also have the
same units, which are inverse to the unit of length. Temperature has the same units
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2 The Homogeneous and Isotropic Universe

as energy. We may use cm−1 to measure energy, mass, and temperature, or eV−1 to
measure distances or times. We shall use whatever unit is convenient to discuss a
given problem. Conversion factors can be found in Appendix 1.

1.1 Homogeneity and Isotropy

Modern cosmology is based on the hypothesis that our Universe is to a good
approximation homogeneous and isotropic on sufficiently large scales. This
relatively bold assumption is often called the “cosmological principle.” It is an
extension of the Copernican principle stating that not only should our place in the
Solar System not be a special one, but also that the position of the Milky Way in the
Universe should be in no way statistically distinguishable from the position of other
galaxies. Furthermore, no direction should be distinguished. The Universe looks
statistically the same in all directions. This, together with the hypothesis that the
matter density and geometry of the Universe are smooth functions of the position,
implies homogeneity and isotropy on sufficiently large scales. Isotropy around
each point together with analyticity actually already implies homogeneity of
the Universe.1 A formal proof of this quite intuitive result can be found in
Straumann (1974).

But which scale is “sufficiently large”? Certainly not the Solar System or
our Galaxy. But also not the size of galaxy clusters. [In cosmology, distances
are usually measured in Mpc (Megaparsec). 1 Mpc = 3.2615 × 106 light years
= 3.0856 × 1024 cm is a typical distance between galaxies; the distance between
our neighbor Andromeda and the Milky Way is about 0.7 Mpc. These and other
connections between frequently used units can be found in Appendix 1.]

It turns out that the scale at which the galaxy distribution becomes homogeneous
is difficult to determine. From the analysis of the Sloan Digital Sky Survey (SDSS)
it has been concluded that the irregularities in the galaxy density are still on the
level of a few percent on scales of 100 Mpc (Hogg et al., 2005). Fortunately,
we know that the geometry of the Universe shows only small deviations from
the homogeneous and isotropic background, already on scales of a few Mpc. The
geometry of the Universe can be tested with the peculiar motion of galaxies, with
lensing, and in particular with the cosmic microwave background (CMB).

The small deviations from homogeneity and isotropy in the CMB are of utmost
importance, since, most probably, they represent the “seeds,” that, via gravitational
instability, have led to the formation of large-scale structure, galaxies, and eventu-
ally solar systems with planets that support life in the Universe.

1 If “analyticity” is not assumed, the matter distribution could also be fractal and still statistically isotropic
around each point. For a detailed elaboration of this idea and its comparison with observations see Sylos
Labini et al. (1998).

https://doi.org/10.1017/9781316471524.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316471524.002


1.2 The Background Geometry of the Universe 3

Furthermore, we suppose that the initial fluctuations needed to trigger the process
of gravitational instability stem from tiny quantum fluctuations that have been
amplified during a period of inflationary expansion of the Universe. I consider
this connection of the microscopic quantum world with the largest scales of the
Universe to be of breathtaking philosophical beauty.

In this chapter we investigate the background Universe. We shall first discuss
the geometry of a homogeneous and isotropic spacetime. Then we investigate
two important events in the thermal history of the Universe. Finally, we study the
paradigm of inflation. This chapter lays the basis for the following ones where we
shall investigate fluctuations on the background, most of which can be treated in
first-order perturbation theory.

1.2 The Background Geometry of the Universe

1.2.1 The Friedmann Equations

In this section we assume a basic knowledge of general relativity. The notation and
sign convention for the curvature tensor that we adopt are specified in Appendix 2,
Section A2.1.

Our Universe is described by a four-dimensional spacetime (M,g) given by
a pseudo-Riemannian manifold M with metric g . A homogeneous and isotropic
spacetime is one that admits a slicing into homogeneous and isotropic, that is,
maximally symmetric, 3-spaces. There is a preferred geodesic time coordinate τ ,
called “cosmic time,” such that the 3-spaces of constant time,�τ = {x|(τ,x) ∈M},
are maximally symmetric spaces, hence spaces of constant curvature. The metric g
is therefore of the form

ds2 = gμν dx
μ dxν = −dτ 2 + a2(τ )γij dx

i dxj . (1.6)

The function a(τ) is called the scale factor and γij is the metric of a 3-space of
constant curvatureK . Depending on the sign ofK this space is locally isometric to
a 3-sphere (K > 0); a three-dimensional pseudo-sphere (K< 0); or flat, Euclidean
space (K = 0). In later chapters of this book we shall mainly use “conformal time”
t defined by a dt = dτ , so that

ds2 = gμν dx
μ dxν = a2(t)

(−dt2 + γij dxi dxj ) . (1.7)

The geometry and physics of homogeneous and isotropic solutions to Einstein’s
equations were first investigated mathematically in the early 1920s by Friedmann
(1922, 1924) and physically as a description of the observed expanding Universe
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4 The Homogeneous and Isotropic Universe

in 1927 by Lemaı̂tre.2 Later, Robertson (1936), Walker (1936), and others redis-
covered the Friedmann metric and studied several additional aspects. However,
since we consider the contributions by Friedmann and Lemaı̂tre to be far more
fundamental than the subsequent work, we shall call a homogeneous and isotropic
solution to Einstein’s equations a “Friedmann–Lemaı̂tre universe” (FL universe) in
this book.

It is interesting to note that the Friedmann solution breaks Lorentz invariance.
Friedmann universes are not invariant under boosts; there is a preferred cosmic
time τ , the proper time of an observer who sees a spatially homogeneous and
isotropic universe. Like so often in physics, the Lagrangian and therefore also the
field equations of general relativity are invariant under Lorentz transformations, but
a specific solution in general is not. In that sense we are back to Newton’s vision
of an absolute time. But on small scales, for example, the scale of a laboratory, this
violation of Lorentz symmetry is, of course, negligible.

The topology is not determined by the metric and hence by Einstein’s equations.
There are many compact spaces of negative or vanishing curvature (e.g., the torus),
but there are no infinite spaces with positive curvature. A beautiful treatment of the
fascinating, but difficult, subject of the topology of spaces with constant curvature
and their classification is given in Wolf (1974). Its applications to cosmology are
found in Lachieze-Rey and Luminet (1995).

Forms of the metric γ , which we shall often use, are

γij dx
i dxj = δij dx

i dxj

(1+ 1
4Kρ

2)2
, (1.8)

γij dx
i dxj = dr2 + χ2(r)

(
dθ2 + sin2(θ) dϕ2

)
, (1.9)

γij dx
i dxj = dR2

1−KR2
+ R2

(
dθ2 + sin2(θ) dϕ2

)
, (1.10)

where in Eq. (1.8)

ρ2 =
3∑

i,j=1

δij x
ixj, and δij =

{
1 if i = j,
0 else ,

(1.11)

and in Eq. (1.9);

χ(r) =

⎧⎪⎪⎨⎪⎪⎩
r in the Euclidean case, K = 0,

1√
K

sin(
√
Kr) in the spherical case, K > 0,

1√|K| sinh(
√|K|r) in the hyperbolic case, K < 0.

(1.12)

2 In the English translation of (Lemaı̂tre, 1927) from 1931 Lemaı̂tre’s somewhat premature but pioneering
arguments that the observed Universe is actually expanding have been omitted.
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1.2 The Background Geometry of the Universe 5

Often one normalizes the scale factor such thatK = ±1 wheneverK 
= 0. One has,
however, to keep in mind that in this case r and K become dimensionless and the
scale factor a has the dimension of length. IfK = 0 we can normalize a arbitrarily.
We shall usually normalize the scale factor such that a0 = 1 and the curvature is
not dimensionless. The coordinate transformations that relate these coordinates are
determined in Exercise 1.1.

Owing to the symmetry of spacetime, the energy–momentum tensor can only be
of the form (

Tμν
) = ( −ρg00 0

0 P gij

)
. (1.13)

There is no additional assumption going into this ansatz, such as the matter content
of the Universe being an ideal fluid. It is a simple consequence of homogeneity and
isotropy and is also verified for scalar field matter, a viscous fluid, or free-streaming
particles in a FL universe. As usual, the energy density ρ and the pressure P are
defined as the time- and space-like eigenvalues of (T μν ).

The Einstein tensor can be calculated from the definition (A2.12) and
Eqs. (A2.32)–(A2.39),

G00 = 3

[(
a′

a

)2

+ K
a2

]
(cosmic time), (1.14)

Gij = −
(

2a′′a + a′2 +K
)
γij (cosmic time), (1.15)

G00 = 3

[(
ȧ

a

)2

+K
]

(conformal time), (1.16)

Gij = −
(

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K
)
γij (conformal time). (1.17)

The Einstein equations relate the Einstein tensor to the energy–momentum con-
tent of the Universe via Gμν = 8πGTμν − gμν�. Here � is the so-called cosmo-
logical constant. In an FL universe the Einstein equations become(

a′

a

)2

+ K
a2
= 8πG

3
ρ + �

3
(cosmic time), (1.18)

2
a′′

a
+ (a

′)2

a2
+ K
a2
= −8πGP +� (cosmic time), (1.19)(

ȧ

a

)2

+K = 8πG

3
a2ρ + a

2�

3
(conformal time), (1.20)

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K = −8πGa2P + a2� (conformal time). (1.21)
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6 The Homogeneous and Isotropic Universe

Energy “conservation,” T μν;μ = 0, yields

ρ̇ = −3(ρ + P)
(
ȧ

a

)
or, equivalently ρ ′ = −3(ρ + P)

(
a′

a

)
. (1.22)

This equation can also be obtained by differentiating Eq. (1.18) or (1.20) and insert-
ing (1.19) or (1.21); it is a consequence of the contracted Bianchi identities (see
Appendix 2, Section A2.1). Equations (1.18)–(1.21) are the Friedmann equations.
The quantity

H(τ) ≡ a
′

a
= ȧ

a2
≡ Ha−1, (1.23)

is called the Hubble rate or the Hubble parameter, where H is the comoving Hubble
parameter. At present, the Universe is expanding, so that H0 > 0. We parameterize
it by

H0 = 100 h km s−1 Mpc
−1 � 3.241× 10−18 h s−1 � 0.3336× 10−3 h Mpc−1.

Observations show (Freedman et al., 2001) that h � 0.72± 0.1. Equation (1.22) is
easily solved in the case w = P/ρ = constant. Then one finds

ρ = ρ0(a0/a)
3(1+w), (1.24)

where ρ0 and a0 denote the value of the energy density and the scale factor at
present time, τ0. In this book cosmological quantities indexed by a “0” are evaluated
today, X0 = X(τ0). For nonrelativistic matter, Pm = 0, we therefore have ρm ∝
a−3 while for radiation (or any kind of massless particles) Pr = ρr/3 and hence
ρr ∝ a−4. A cosmological constant corresponds to P� = −ρ� and we obtain,
as expected, ρ� = constant. If the curvature K can be neglected and the energy
density is dominated by one component with w = constant, inserting Eq. (1.24)
into the Friedmann equations yields the solutions

a ∝ τ 2/3(1+w) ∝ t2/(1+3w) w = constant 
= −1, (1.25)

a ∝ τ 2/3 ∝ t2 w = 0, (dust), (1.26)

a ∝ τ 1/2 ∝ t w = 1/3, (radiation), (1.27)

a ∝ exp(Hτ) ∝ 1/|t | w = −1, (cosmol. const.). (1.28)

It is interesting to note that if w < −1, so-called phantom matter, we have
to choose τ < 0 to obtain an expanding universe and the scale factor diverges
in finite time, at τ = 0. This is the so-called big rip. Phantom matter has many
problems but it is discussed in connection with the supernova type 1a (SN1a) data,
which are compatible with an equation of state with w < −1 or with an ordinary
cosmological constant (Caldwell et al., 2003). For w < − 1

3 the time coordinate t
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1.2 The Background Geometry of the Universe 7

has to be chosen as negative for the Universe to expand and spacetime cannot be
continued beyond t = 0. But t = 0 corresponds to a cosmic time, the proper time of
a static observer, τ = ∞; this is not a singularity. (The geodesics can be continued
until affine parameter∞.)

We also introduce the adiabatic sound speed cs determined by

c2
s =

P ′

ρ ′
= Ṗ
ρ̇

. (1.29)

From this definition and Eq. (1.22) it is easy to see that

ẇ = 3H(1+ w)(w − c2
s

)
. (1.30)

Hence w = constant if and only if w = c2
s or w = −1. Note that already in a

simple mixture of matter and radiation w 
= c2
s 
= constant (see Exercise 1.3).

Equation (1.18) implies that for a critical value of the energy density given by

ρ(τ) = ρc(τ ) = 3H 2

8πG
(1.31)

the curvature and the cosmological constant vanish. The value ρc is called the
critical density. The ratio�X = ρX/ρc is the “density parameter” of the component
X. It indicates the fraction that the component X contributes to the expansion of
the Universe. We shall make use especially of

�r ≡ �r(τ0) = ρr(τ0)

ρc(τ0)
, (1.32)

�m ≡ �m(τ0) = ρm(τ0)

ρc(τ0)
, (1.33)

�K ≡ �K(τ0) = −K
a2

0H
2
0

, (1.34)

�� ≡ ��(τ0) = �

3H 2
0

. (1.35)

1.2.2 The “Big Bang” and “Big Crunch” Singularities

We can absorb the cosmological constant into the energy density and pressure by
redefining

ρeff = ρ + �

8πG
, Peff = P − �

8πG
.
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8 The Homogeneous and Isotropic Universe

Since� is a constant and ρeff+Peff = ρ+P , the conservation equation (1.22) still
holds. A first interesting consequence of the Friedmann equations is obtained when
subtracting Eq. (1.18) from (1.19). This yields

a′′

a
= −4πG

3
(ρeff + 3Peff). (1.36)

Hence if ρeff + 3Peff > 0, the Universe is decelerating. Furthermore, Eqs. (1.22)
and (1.36) then imply that in an expanding and decelerating universe

ρ ′eff

ρeff
< −2

a′

a
,

so that ρ decays faster than 1/a2. If the curvature is positive, K > 0, this implies
that at some time in the future, τmax, the density has dropped down to the value of
the curvature term,K/a2(τmax) = 8πGρeff(τmax). Then the Universe stops expand-
ing and recollapses. Furthermore, this is independent of curvature; as a′ decreases
the curve a(τ) is concave and thus cuts the a = 0 line at some finite time in the
past. This moment of time is called the “big bang.” The spatial metric vanishes
at this value of τ , which we usually choose to be τ = 0; and spacetime cannot
be continued to earlier times. This is not a coordinate singularity. From the Ricci
tensor given in Eqs. (A2.32) and (A2.33) one obtains the Riemann scalar

R = 6

[
a′′

a
+

(
a′

a

)2

+ K
a2

]
,

which also diverges if a → 0. Also the energy density, which grows faster than
1/a2 as a→ 0, diverges at the big bang.

If the curvature K is positive, the Universe contracts after τ = τmax and, since
the graph a(τ) is convex, reaches a = 0 at some finite time τc, the time of the
“big crunch.” The big crunch is also a physical singularity beyond which spacetime
cannot be continued.

It is important to note that this behavior of the scale factor can be implied only
if the so-called strong energy condition holds, ρeff + 3Peff > 0. This is illustrated
in Fig. 1.1.

1.2.3 Cosmological Distance Measures

It is notoriously difficult to measure distances in the Universe. The position of an
object in the sky gives us its angular coordinates, but how far away is the object
from us? This problem had plagued cosmology for centuries. It took until 1915–
1920 when Hubble discovered that the “spiral nebulae” are actually not situated
inside our own galaxy but much further away. This then led to the discovery of the
expansion of the Universe.
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1.2 The Background Geometry of the Universe 9

Fig. 1.1 The kinematics of the scale factor in a Friedmann–Lemaı̂tre universe that
satisfies the strong energy condition, ρeff + 3Peff > 0.

For cosmologically distant objects, a third coordinate, which is today relatively
easy to obtain, is the redshift z experienced by the photons emitted from the object.
A given spectral line with intrinsic wavelength λ is redshifted due to the expansion
of the Universe. If it is emitted at some time τ , it reaches us today with wavelength
λ0 = λa0/a(τ) = (1+ z)λ. This leads to the definition of the cosmic redshift

z(τ )+ 1 = a0

a(τ)
. (1.37)

On the other hand, an object at physical distance d = a0r away from us, at redshift
z� 1, recedes with speed v = H0d. To the lowest order in z, we have τ0 − τ ≈ d
and a0 ≈ a(τ)+ a′(τ0 − τ), so that

1+ z ≈ 1+ a
′

a
(τ0 − τ) ≈ 1+H0d.

For objects that are sufficiently close, z � 1. We therefore have v ≈ z and hence
H0 = z/d . This is the method usually applied to measure the Hubble constant.

There are different ways to measure distances in cosmology, all of which give
the same result in a Minkowski universe but differ in an expanding universe. They
are, however, simply related, as we shall see.

One possibility is to define the distance dA to a certain object of given physical
size � seen at redshift z1 such that the angle subtended by the object is given by

ϑ = �/dA, dA = �/ϑ . (1.38)

This is the angular diameter distance; see Fig. 1.2.
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10 The Homogeneous and Isotropic Universe

Fig. 1.2 The two ends of the object emit a flash simultaneously from A and B at
z1 which reaches us today. The angular diameter distance to A (or B) is defined
by dA = �/ϑ .

We now derive the expression

dA(z) = 1√|�K |H0(1+ z)
χ

(√
|�K |H0

∫ z

0

dz′

H(z′)

)
, (1.39)

for the angular diameter distance to redshift z. In a given cosmological model, this
allows us to express the angular diameter distance for a given redshift as a function
of the cosmological parameters.

To derive Eq. (1.39) we use the coordinates introduced in Eq. (1.9). Without loss
of generality we set r = 0 at our position. We consider an object of physical size
� at redshift z1 simultaneously emitting a flash at both of its ends, A and B. Hence
r = r1 = t0−t1 at the position of the flashes,A andB at redshift z1. If� denotes the
physical arc length betweenA andB we have� = a(t1)χ(r1)ϑ = a(t1)χ(t0−t1)ϑ ,
that is,

ϑ = �

a(t1)χ(t0 − t1) . (1.40)

According to Eq. (1.38) the angular diameter distance to t1 or z1 is therefore
given by

a(t1)χ(t0 − t1) ≡ dA(z1). (1.41)

To obtain an expression for dA(z) in terms of the cosmic density parameters and
the redshift, we have to calculate (t0 − t1)(z1).

Note that in the case K = 0 we can normalize the scale factor a as we want, and
it is convenient to choose a0 = 1, so that comoving scales become physical scales
today. However, for K 
= 0, we have already normalized a such that K = ±1 and
χ(r) = sin r or sinh r . In this case, we have no normalization constant left and a0

has the dimension of a length. The present spatial curvature of the Universe then is
±1/a2

0 .
The Friedmann equation Eq. (1.20) reads

ȧ2 = 8πG

3
a4ρ + 1

3
�a4 −Ka2, (1.42)
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1.2 The Background Geometry of the Universe 11

where ȧ = da/dt . To be specific, we assume that ρ is a combination of dust, cold,
nonrelativistic “matter” of Pm = 0 and radiation of Pr = ρr/3.

Since ρr ∝ a−4 and ρm ∝ a−3, we can express the terms on the right-hand side
of Eq. (1.42) as

8πG

3
a4ρ = H 2

0

(
a4

0�r +�maa3
0

)
, (1.43)

1

3
�a4 = H 2

0��a
4, (1.44)

−Ka2 = H 2
0�Ka

2a2
0 . (1.45)

The Friedmann equation then implies

da

dt
= H0a

2
0

(
�r + a

a0
�m + a

4

a4
0

�� + a
2

a2
0

�K

)1/2

, (1.46)

so that

r(z1) = t0 − t1

= 1

H0a0

∫ z1

0

dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2

= 1

a0

∫ z1

0

dz

H(z)
. (1.47)

Here we have used z+ 1 = a0/a so that da = −dza0/(1+ z)2.
In principle, we could of course also add other matter components such as, for

example, “quintessence” (Caldwell and Steinhardt, 1998), which would lead to a
somewhat different form of the integral (1.47), but for definiteness, we remain with
matter, radiation, and a cosmological constant.

From −K/H 2
0 a

2
0 = �K we obtain H0a0 = 1/

√|�K | for �K 
= 0. The expres-
sion for the angular diameter distance thus becomes

dA(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√|�K |H0(z+1)
χ

(√|�K | ∫ z0 dz′

[�r(z′+1)4+�m(z′+1)3+��+�K(z′+1)2]1/2

)
if K 
= 0

1
H0(z+1)

∫ z
0

dz′

[�r(z′+1)4+�m(z′+1)3+��]1/2

if K = 0.
(1.48)

Using the Friedmann equation, this formula can also be written in the more general
form of Eq. (1.39).
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12 The Homogeneous and Isotropic Universe

Fig. 1.3 The function χ(t0− t1) as a function of the redshift z for different values
of the cosmological parameters �K (left, with �� = 0) and �� (right, with
�K = 0), namely −0.8 (dotted), −0.3 (short-dashed), 0 (solid), 0.3 (dot-dashed),
0.8 (long-dashed).

Fig. 1.4 ϑH (z1) (in degrees) for different values of the cosmological parameters
�K and ��. The line styles are as in Fig. 1.3.

In general, the integral in Eq. (1.48) has to be solved numerically. It determines
the angle ϑ(�,z) = �/dA(z) under which an object of size � placed at redshift z
is seen (see Figs. 1.3 and 1.4).

If we are able to measure the redshifts and the angular extensions of a certain
class of objects at different redshifts, of which we know the intrinsic size �, com-
paring with Eq. (1.48) allows us, in principle, to determine the parameters�m,��,
�K , and H0.
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1.2 The Background Geometry of the Universe 13

Observationally we know for certain that 10−5 < �r ≤ 10−4 as well as 0.1 ≤
�m<∼ 1, |��|<∼ 1, and |�K |<∼ 1.

If we are interested in small redshifts, z1<∼ 10, we may therefore safely neglect
�r . In this region, Eq. (1.48) is very sensitive to�� and provides an excellent mean
to constrain the cosmological constant.

At high redshift, z1>∼ 1000, neglecting radiation is no longer a good
approximation.

We shall later also need the opening angle of the horizon distance,

ϑH(z1) = t1

χ(t0 − t1), (1.49)

t1 = 1

H0a0

∫ ∞

z1

dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2 .

(1.50)

(Clearly this integral diverges if�r = �m = 0. This is exactly what happens during
an inflationary period and leads there to the solution of the horizon problem; see
Section 1.5.)

Neglecting �r , for �� = 0 and small curvature, 0 < |�K | < �mz1 at high
enough redshift, z1 ≥ 10, one has t0 − t1 � 2

√|�K |/�m = 2/(H0a0
√
�m).

With χ(x) � x, which is valid for small curvature, this yields ϑ(�,z1) �√
�mH0a0�/(2a1) = 1

2

√
�mH0�/(z1 + 1) (see also Exercise 1.10).

Another important distance measure in cosmology is the luminosity distance. It
is defined as follows. Let L be the luminosity (energy emitted per second) of a
source at redshift z1 and F its flux (energy received per second per square cen-
timeter) arriving at the observer position. We define the luminosity distance to the
source by

dL(z1) ≡
(
L

4πF

)1/2

. (1.51)

We now want to show that dL(z1) = (1+ z1)
2dA(z1).

In a proper time interval of the emitter, dτ1 = a(t1) dt , the source emits the
energy La(t1) dt . This energy is redshifted by a factor of (1+ z1)

−1 = a(t1)/a(t0).
It is then distributed over a sphere with radius a(t0)χ(t0 − t1). So that the flux per
proper time of the observer dτ0 = a(t0) dt becomes

F = La2(t1)

4πa4(t0)χ2(t0 − t1),
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14 The Homogeneous and Isotropic Universe

leading to

dL(z1) = a(t0)
2

a(t1)
χ(t0 − t1) = (1+ z1)

2dA(z1). (1.52)

The luminosity distance hence contains two additional factors (1+ z) compared to
the angular diameter distance. One of them is due to the “redshift” of proper time
and the other is due to the redshift of photon energy.

1.3 Recombination and Decoupling

We assume that, at sufficiently early times, reaction rates for particle interactions
are much faster than the expansion rate, so that the cosmic fluid is in thermal
equilibrium. During its expansion, the Universe then cools adiabatically. At early
times, it is dominated by a relativistic radiation background with

ρ = C/a4 = geff

2
aSBT

4. (1.53)

This behavior implies that T ∝ a−1. Here geff is the effective number of degrees
of freedom, which we define below and aSB is the Stefan–Boltzmann constant,
aSB = π2/15 in our units. For massless (or extremely relativistic) fermions and
bosons in thermal equilibrium at temperature T with Nb respectively Nf spin
degrees of freedom we have (remember that we use units such that h̄ = kB =
c = 1)

ρb = Nb4π
(2π)3

∫ ∞

0

p3 dp

exp(p/T )− 1
= NbT

4

2π2

∫ ∞

0

x3 dx

exp(x)− 1

= NbT
4

2π2
�(4)ζ(4) = NbT

4π2

30
, (1.54)

ρf = Nf 4π

(2π)3

∫ ∞

0

p3 dp

exp(p/T )+ 1
= NfT

4

2π2

∫ ∞

0

x3 dx

exp(x)+ 1

= NfT
4

2π2
�(4)ζ(4)

7

8
= 7

8

NfT
4π2

30
, (1.55)

where � denotes the Gamma-function and ζ is the Riemann zeta-function and we
make use of the integrals (Gradshteyn and Ryzhik, 2000)

Ib(α) =
∫ ∞

0

xα dx

exp(x)− 1
= �(α + 1)ζ(α + 1), (1.56)

If (α) =
∫ ∞

0

xα dx

exp(x)+ 1
=

[
1−

(
1

2

)α]
�(α + 1)ζ(α + 1). (1.57)
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1.3 Recombination and Decoupling 15

Furthermore, ζ(2) = π2/6, ζ(4) = π4/90, and �(n) = (n − 1)! for n∈N; see
Abramowitz and Stegun (1970).

Hence ρ = ρb + ρf = geff
2 aSBT

4 for aSB = π2k4
B/(15 h̄3c2) = π2/15 and

geff = Nb+7/8Nf , if all the particles are at the same temperature T . If the temper-
atures are different, such as, for example, the neutrino temperature after electron–
positron annihilation, this has to be taken into account with a factor (Tν/Tγ )4

multiplying Nν in geff.
At temperatures below the electron mass, at T <me � 0.511 MeV, only neutri-

nos and photons are still relativistic. Very recently, T <∼ 0.06 eV at least some of
the neutrinos also become nonrelativistic so that the density parameter of relativistic
particles today is probably given only by the photon density,3

�rel = �γ = 8πG

3H 2
0

aSBT
4

0 = 2.49× 10−5h−2. (1.58)

Here we have set T0 = 2.725 K. The present CMB temperature is the most precisely
measured number in cosmology. Its value is (Fixsen, 2009)

T0 = 2.72548± 0.00057K. (1.59)

The pressure of relativistic particles is given by P = T ii /3 = ρ/3. The thermo-
dynamic relation dE = T dS − P dV therefore gives for the entropy density
s = dS/dV

s = dS

dV
= 1

T

(
dE

dV
+ P

)
= ρ + P

T
= 4ρ

3T
. (1.60)

Using the expression for the energy density (1.54) and (1.55) this gives for each
particle species X

sX =
⎧⎨⎩

2π2

45 NXT
3 for bosons,

7π2

180NXT
3 for fermions.

(1.61)

The particle density for relativistic particles is given by

nX = NX

2π2

∫
p2

exp(p/T )± 1
dp =

{
T 3NX

π2 ζ(3) for bosons,

T 3NX
π2 ζ(3)

3
4 for fermions.

(1.62)

3 At present only neutrino mass differences are known from oscillation experiments. The lowest neutrino mass
could still be zero, or at least lower than T0. From oscillation experiments, however, we know that the heaviest
neutrino mass is at least 0.05eV (see Olive et al., 2014).
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16 The Homogeneous and Isotropic Universe

The particle and entropy densities both scale like T 3. Using ζ(3) � 1.202 057 we
obtain

sX �
{

3.6 · nX for bosons,
4.2 · nX for fermions.

(1.63)

The photons obey a Planck distribution (ε = ap = the photon energy),

f (ε) = 1

eε/T − 1
. (1.64)

At a temperature of about T ∼ 4000 K∼ 0.4 eV, the number density of photons
with energies above the hydrogen ionization energy (=�= 1 Ry= 13.6 eV) drops
below the baryon density of the Universe, and the protons begin to (re)combine to
neutral hydrogen. Even though electrons and protons were not combined to neutral
hydrogen before, this process is called “recombination” rather than “combination.”

Helium has already recombined earlier. The binding energy of the first electron
to the He nucleus is 4� = 54.4eV. Using the Saha equation derived in the next
section for the transition He+2 → He+, one finds that the recombination of the
first electron transition takes place at T2→1 � 1.4 × 104K. The binding energy of
the second electron to the He nucleus is 24.6 eV and, again using the Saha equation,
one finds that the transition He+ → He takes place at T1→0 � 0.5 × 104K (see
Exercise 1.5).

Before (re)combination photons and baryons are tightly coupled by Thomson
scattering of electrons. During recombination the free electron density drops
sharply and the mean free path of the photons grows larger than the Hubble scale.
At the temperature Tdec ∼ 3000 K (corresponding to the redshift zdec � 1100 and
the physical time τdec � adectdec � 105 yr) photons decouple from the electrons and
the Universe becomes transparent. We now want to study this process in somewhat
more detail.

1.3.1 The Physics of Recombination

From Eq. (1.63) with Nγ = 2 we obtain that the photon entropy is given by

sγ = 4π2

45
T 3 � 3.6nγ .

The conserved baryon number nB satisfies a3nB = constant; hence nB ∝ a−3 ∝ T 3.
The entropy per baryon is therefore a constant,

σ = sγ /nB =
4π2

45 T
3

0

�Bρc(τ0)/mp
= 1.4× 108 T

3
2.7

�Bh2
. (1.65)
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1.3 Recombination and Decoupling 17

Here we have used (see Appendix 1)

ρc(τ0) = 1.88h2 × 10−29 g cm−3 = 8.1h2 × 10−11 (eV)4,

mp = 9.38× 108 eV, (proton mass),

T (τ0) = 2.3T2.7 × 10−4 eV, T2.7 = T (τ0)/2.7 K.

As we shall see in the next section, the baryon density is approximately �Bh2 �
2.2 × 10−2 so that σ � 1010. Correspondingly the ratio between the baryon and
photon density is

ηB = nB/nγ = 2.7× 10−8

(
�Bh

2

T 3
2.7

)
� 6× 10−10. (1.66)

As long as hydrogen is ionized, the timescale of interaction between photons
and electrons (Thomson scattering) and between electrons and protons (Rutherford
scattering) is much faster than expansion and we may therefore consider the latter
as adiabatic. At every moment, the electron, proton, and photon plasma is in thermal
equilibrium. As long as the temperature is above the ionization energy of neutral
hydrogen, T > 1 Ry = � = α2me/2 = 13.6 eV, all hydrogen atoms that form are
rapidly dissociated. Most electrons and protons are free and the neutral hydrogen
density is very low. At some sufficiently low temperature, however, there will no
longer be sufficiently many energetic photons around to disrupt neutral hydrogen
and the latter becomes more and more abundant. To determine the temperature at
which this transition, called “recombination,”4 happens, we apply the standard rules
of equilibrium statistical mechanics to the reaction

e− + p←→ H+ γ (13.6 eV). (1.67)

Supposing that pressure and temperature are fixed and only the number of free
electrons,Ne; free protons,Np; hydrogen atoms,NH ; and photons,Nγ , can change,
the second law of thermodynamics implies that the Gibbs potential G is constant,

0 = dG = μp dNp + μe dNe + μH dNH + μγ dNγ,
Here μX denotes the chemical potential of species X. The different dNX are not
independent. Particle number conservation implies

dNp + dNH = dNe + dNH = 0. (1.68)

As there is no conservation of photons, the chemical potential of photons vanishes,
μγ = 0. With this and Eq. (1.68) the Gibbs equation, dG = 0, implies

μe + μp − μH = 0. (1.69)

4 The expression “combination” would be more adequate, since this is the first time that neutral hydrogen forms,
but it is difficult to change historical misnamings. . . .
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18 The Homogeneous and Isotropic Universe

In principle, this result is valid only in full thermal equilibrium. But Thomson
scattering between electrons and photons does not change the photon energy and
the Rydberg photons are not readily thermalized. They actually have time to ionize
another hydrogen atom before they lose energy. Therefore, neglecting recombina-
tion into excited states of the hydrogen atom is a bad approximation, but it leads
roughly to the right recombination temperature.

In this discussion, where we are more interested in the basic concepts
than in accuracy, we also neglect helium that has recombined earlier. We set
np + nH = nB , which induces an error of about 25%. For an accurate calculation
of the final ionization fraction, one would have to take into account both the
recombination of helium and the recombination into excited states of hydrogen.
We briefly discuss this in Section 1.3.3. Despite these complications, a discussion
of recombination into the ground state gives the correct orders of magnitude for the
recombination and decoupling redshifts which we now derive.

In thermal equilibrium, electrons, protons and hydrogen atoms obey a Maxwell–
Boltzmann distribution. Their number densities are given by (see Exercise 1.7)

ne = 2

(2π)3
(2πmeT )

3/2 exp

(
− me − μe

T

)
, (1.70)

np = 2

(2π)3
(2πmpT )

3/2 exp

(
− mp − μp

T

)
, (1.71)

nH = 4

(2π)3
(2πmHT )

3/2 exp

(
− mH − μH

T

)
. (1.72)

We now make use of the fact that the Universe is globally neutral, ne = np.
Furthermore, the binding energy of hydrogen � = α2me/2 (here α � 1/137 is the
fine structure constant) is given by � = me +mp −mH . With this we obtain

n2
e

nH
= nenp
nH

=
(
meT

2π

)3/2

e−�/T . (1.73)

Here we have neglected the small difference between the hydrogen and proton
mass in the second factor of Eqs. (1.71) and (1.72) but not in the exponen-
tial. This is the Saha equation. The corresponding equation for helium, setting
nHe+ = nHe2+ , yields the He2+ →He+ transition temperature and accordingly the
He+→He transition temperature (see Exercice 1.5).

We now define the ionization fraction xe by xe ≡ ne/(ne + nH). In Section 1.4,
we shall find that about 25% of all baryons in the Universe are bound in the form
of He4 so that np + nH = ne + nH = 0.75nB . Equation (1.73) then leads to
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1.3 Recombination and Decoupling 19

x2
e

1− xe =
n2
e

nH (np + nH) =
1

0.75nB

(
meT

2π

)3/2

e−�/T . (1.74)

Inserting the entropy per baryon, σ = (4π2/45)T 3/nB, in this equation yields

x2
e

1− xe =
45σ

0.75× 4π2

( me
2πT

)3/2
e−�/T . (1.75)

At very high temperatures, T � �, the ionization fraction xe is close to 1. Recom-
bination happens roughly when σ exp(−�/T ) is of the order of unity. If σ ∼ 1
this corresponds to T ∼ �. The fact that the entropy per baryon is very large,
σ = 1.4 × 108(�Bh

2)−1 ∼ 1010, delays recombination significantly. Since there
are so many more photons than baryons in the Universe, even at a temperature
much below � = 13.6 eV there are still enough photons in the high-energy tail of
the Planck distribution to keep the Universe ionized.

To be more specific, we define the recombination temperature Trec as the tem-
perature when xe = 0.5 (as we shall see, the precise value is of little importance).
Equation (1.75) then leads to(

Trec

1 eV

)−3/2

e−�/Trec = 0.97× 10−16 �Bh
2. (1.76)

For �Bh2 � 0.022 we obtain

Trec = 3722 K = 0.321 eV, zrec = 1353.

The function xe(T ) is shown in Fig. 1.5. Clearly, this function grows very steeply
from xe ∼ 0 to xe ∼ 1 at T ∼ 3700 K and Trec depends only weakly on the value
chosen for xe(Trec).

Interestingly, at temperature Trec the baryon and photon densities are of the
same order, ργ (Trec) � ρB(Trec). This seems to be a complete coincidence. More
precisely, the ratio of these two densities is given by

ργ

ρB
= (π

2/15)T 4

nBmp
= π2T 4

0

15nB(t0)mp
(z+ 1)

� 2× 10−5
(
�Bh

2
)−1
(z+ 1). (1.77)

This ratio is equal to 1 at redshift zγb given by

(1+ zγb) = 103

(
�Bh

2

2× 10−2

)
� 103 ∼ 1+ zrec. (1.78)
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20 The Homogeneous and Isotropic Universe
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Fig. 1.5 The ionization fraction xe as a function of the temperature is obtained
via the Saha equation for �Bh2 = 0.022 (solid curve), for �Bh2 = 0.01 (dashed
curve), and for �Bh2 = 0.04 (dotted curve). Our definition of recombination,
xrec = 0.5, is indicated. Note that x decays from xe � 1 to � 0 between
T = 4000 and 3400 K. Below about xe ∼ 0.9 the shape of the true ionization
fraction significantly differs from this Saha-equation result and levels off at the
final ionization fraction computed in the text that follows.

1.3.2 Final Ionization and Photon Decoupling

We have determined the temperature at which electrons and protons recombine
to neutral hydrogen. The Saha equation predicts an exponentially falling fraction
of free electrons. But this is correct only as long as thermal equilibrium is estab-
lished. As the free electron fraction drops, the interaction rate between electrons
and protons decreases, and at some point the remaining free electrons and protons
are too sparse to find each other, thermal equilibrium is lost, and the number of free
electrons remains constant. But also the photon–electron interaction rate decreases.
Whenever an interaction rate � drops below the expansion rate of the Universe,

� < H,

one considers the corresponding reaction as “frozen.” It becomes negligible. The
temperature at which � = H is called the “freeze out” temperature of the reaction
with rate �.

When the recombination rate drops below the expansion rate, recombination
freezes out and the ionization fraction remains constant. When the scattering rate
of photons on electrons falls below the expansion rate of the Universe, photons
become free to propagate without further scattering. We want to calculate both the
final ionization fraction, xR, and the redshift, zdec, of the decoupling of photons.
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1.3 Recombination and Decoupling 21

Let us first determine the temperature Tg at which the process of recombination
freezes out. The cross section of the reaction p+ + e− → H + γ is (see,
e.g., Rybicki and Lightman, 1979)

〈σRv〉 � 4.7× 10−24

(
T

1 eV

)−1/2

cm2. (1.79)

Here v is the thermal electron velocity and we have used the fact that 3T = mev2.
The reaction rate is therefore

�R = np〈σRv〉 = xe
(

0.75nB
nγ

)
nγ 〈σRv〉

� 2.1× 10−10 cm−1

(
T

1 eV

)7/4

exp(−�/2T )(�Bh2)1/2,

where we have inserted the Saha equation, assuming that the ionization fraction is
much smaller than 1, that is,

xe � (
√

45σ/0.75/2π)(me/2πT )
3/4 exp(−�/2T )� 1.

We have also used Eq. (1.66).
To determine the expansion rate H(T ), we neglect curvature or a possible

cosmological constant, which is certainly a good approximation for all redshifts
larger than, say, 5. We also assume that the Universe is matter dominated at freeze-
out, which induces an error of about 15% in H . The Friedmann equation (1.18)
then gives

H 2 � 8πG

3
ρ � 8πG

3
ρ0(a0/a)

3

= 8πG

3
�mρc(t0)(T /T0)

3,

so that

H � 3× 10−23 cm−1(�mh
2)1/2

(
T

1 eV

)3/2

. (1.80)

Equation (1.80) is a very useful formula, valid whenever the Universe is dominated
by nonrelativistic matter or dust, P � ρ, and curvature or a cosmological constant
are negligible.

The temperature Tg is defined by �R(Tg) = H(Tg), which finally leads to(
Tg

1 eV

)1/4

e−�/2Tg = 1.4× 10−13

(
�m

�B

)1/2

. (1.81)
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22 The Homogeneous and Isotropic Universe

Fig. 1.6 The freeze-out temperatures of recombination, Tg (solid curve), and of
Thomson scattering, Tdec (dashed curve), as functions of �B/�m.

This result is independent of h. For �m � 6.4�B (the value inferred from observa-
tions; see Planck Coll. XIII, 2016), we obtain Tg � 0.24 eV and zg � 1010 (see
Fig. 1.6). Tg depends only weakly on the ratio �B/�m.

The final ionization fraction is given by

xR � xe(Tg) � 7.3× 10−6

(
Tg

1 eV

)−1

�1/2
m /(�Bh) � 3× 10−5�1/2

m /(�Bh).

(1.82)

A more detailed numerical analysis, taking into account the contribution of radia-
tion to the expansion rate and, especially, the recombination into excited states of
the hydrogen atoms and the presence of helium, gives xR ∼ 1.2×10−5�

1/2
m /(�Bh)

(Peebles, 1993; Mukhanov, 2005; Weinberg, 2008). We use this result to calculate
the optical depth τ to Thomson scattering of photons by free electrons up to a red-
shift z < zg in a recombined universe. The optical depth to z is the scattering prob-
ability of a photon integrated from z until today. With the Thomson cross section

σT = 8π

3
α2m−2

e � 6.65× 10−25 cm2, (1.83)
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one finds

τ(z) ≡
∫ t0

t (z)

σT neadt � 0.046xR(1+ z)3/2�B�−1/2
m h. (1.84)

With the residual ionization computed in Eq. (1.82) we obtain τ(z = 800) � 0.01.
As we shall see in Section 9.3, the Universe is reionized at low redshift z ∼ 7.5,
which increases the optical depth by about a factor of 6. This rescattering of
CMB photons is relevant for the evolution of fluctuations, as we shall discuss in
Section 9.3.

As long as the temperature is larger than Tg , the reaction p + e ←→ H + γ is
in thermal equilibrium. When the temperature drops below Tg , the recombination
process freezes out and the degree of ionization remains nearly constant.

Let us also note that in deriving the Saha equation (1.73), we used the fact that
the process of recombination is in thermal equilibrium, which we have verified only
now since freeze-out happens after recombination, Tg < Trec.

We finally calculate the redshift of the decoupling of photons. The process that
remains effective longest is elastic Thomson scattering. Its rate is given by

�T = σT ne = σT xe
(

0.75nB
nγ

)
nγ

� 2.6× 10−11 cm−1(�Bh
2)1/2

(
T

1 eV

)9/4

exp(−�/2T ). (1.85)

Comparing it to the expansion rate, we find Tdec, which is defined by H(Tdec) =
�T (Tdec). A rough estimate gives Tdec ∼ 0.26 eV (see Fig. 1.6), which corresponds
to zdec ∼ 1100. Again we have assumed xe � 1 in Eq. (1.85), which is justified
since Tdec ∼ 3000 K (see Fig. 1.5).

Even though after zdec photons decouple from electrons, the latter are still cou-
pled to photons. The scattering rate of electrons, given by �e = σT xenγ = σT xRnγ
at low redshifts, is sufficient to keep the remaining electrons and with them baryonic
matter in thermal equilibrium with the photons until about z ∼ 100. Therefore, even
after recombination the matter temperature is equal to the temperature of the CMB
and does not decay like 1/a2, as would be expected from a pure thermal gas of
massive particles (see Section 1.3.4). This is an example of two species, electrons
and photons, where the former is in thermal equilibrium with the latter but not
vice versa.

1.3.3 An Accurate Treatment of Recombination

So far, we have given an approximate treatment of the process of recombination and
photon decoupling. This yields the correct orders of magnitude, but to determine
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especially the anisotropies of the CMB and the polarization, in Chapters 4 and 5,
with good precision, this is not sufficient. For precise results it is necessary to
treat recombination of hydrogen into higher levels, especially 2S, but also Raman
scattering by which the electrons of a hydrogen atoms are scattered into a higher
energy level and then decay into a lower level by the emission of a photon of
different energy.

It is actually interesting to note that recombination into the ground state (1S) is
not efficient at all because the ionization cross section is very high for the resonant
Rydberg photons so that most of these just ionize another hydrogen atom before
being redshifted out of the resonance, leading to no net recombination. The same is
true for recombination into the 2P excited state. The Lyα photons from the 2P→1S
transition are quickly absorbed and excite another hydrogen atom, which is then
reionized via a 2P-ionization photon. The single most efficient channel is the cap-
ture of electrons into the 2S level, from which they can decay into the ground
state via the emission of two photons. By angular momentum conservation, the
emission of a single photon is not possible. The inverse process, excitation from 1S
to 2S, is a three-body process and therefore highly unlikely. Even though the rate
of the transition (e,p) → H(2S) → H(1S) is relatively low, it wins against direct
recombination into the ground state and subsequent cosmological redshifting of the
photon before the next ionization can take place. Since the binding energy of the
2S state is lower, this delays recombination somewhat. A semianalytic, dynamical
treatment including recombination into the 2S and 2P states can be found in Peebles
(1993), Mukhanov (2005), and Weinberg (2008).

For accurate results of helium and hydrogen recombination, as they are required
to accurately study the CMB anisotropies discussed in the next chapters, a
numerical computation is needed that takes into account many (up to 300)
excited states and their decay. The most popular publicly available code for this
is “RECFAST” (Seager et al., 1999). The latest work (Shaw and Chluba, 2011),
including even more details, has still found changes by up to 3% in the free
electron fraction throughout the recombination process from z ∼ 2200 (helium
recombination) to z � 800.

Interestingly, recombination also leads to lines and other distortions in the CMB
frequency spectrum that might be observable with a future satellite mission mea-
suring the CMB spectrum with high accuracy; see Rubino-Martin et al. (2006) and
Wong et al. (2006).

1.3.4 Propagation of Free Photons and the CMB

After tdec, photons cease any interaction with the cosmic fluid and propagate freely.
It is straightforward to estimate that the cross section for Rayleigh scattering with
hydrogen atoms is much too weak to be relevant (see Exercise 1.6).
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1.3 Recombination and Decoupling 25

The free propagation of photons after decoupling is described with the Liouville
equation for the photon distribution function, which we now develop. Since photons
do not interact anymore, they simply move along geodesics. The Liouville equation
translates this to a differential equation for the 1-particle distribution function f of
the photons. The function f describes the particle density in the phase space P0,
the photon mass-shell, given by

P0 = {(x,p) ∈ TM | gμν(x)pμpν = 0}, f : P0 → R.

The distribution function f gives the number of particles per phase space volume
|g | d3x d3p at fixed time t . In some general geometry a specific space-like hyper-
surface� has to be chosen and one then has to show that f does not depend on this
choice [more details are found in Ehlers (1971) and Stewart (1971)]. In cosmology,
due to the symmetries present, we simply use the hypersurfaces of constant time,
� = �t .

We choose the coordinates (xμ,pi) on the seven-dimensional mass-shell
(0 ≤ μ ≤ 3 and 1 ≤ i ≤ 3). The energy p0 is then determined by the mass-
shell condition gμν(x)p

μpν = 0. Liouville’s equation now says that the 1-particle
distribution remains unchanged if we follow the geodesic motion of the particles,
that is,

0 = df
dt
= ẋμ∂μf + ṗi ∂f

∂pi
,

0 = pμ∂μf − �iμνpμpν
∂f

∂pi
≡ LXgf . (1.86)

A particle distribution obeying this equation is often also called a geodesic spray
(see Abraham and Marsden, 1982). If the particles are not free, but collisions are
so rare that an equilibrium description is not adequate, one uses the Boltzmann
equation,

LXgf = C[f ], (1.87)

where C[f ] is the so-called collision integral, which depends on the details of the
interactions.

It may be disturbing to some readers that we take over these concepts from
non-relativistic physics so smoothly to the relativistic case. In cosmology, this does
not cause any problems. But in general, it is true that the collision integral is
not always well defined and certain conditions have to be posed to the nature
of the spacetime and of the interaction. This problem has been studied in detail
by Ehlers (1971).

Since the photons are massless, |p|2= γijpipi = (p0)2. Here p0 is the
0-component of the momentum 4-vector in conformal time so that ε = ap0 is
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the physical photon energy. Isotropy of the distribution implies that f depends on
pi only via p ≡ |p| = p0, and so

∂f

∂pi
= ∂p

∂pi

∂f

∂p
= pi
p

∂f

∂p
. (1.88)

Furthermore, f depends on xi only through p = √
γijpipi . Spatial derivatives are

therefore given by

pi∂if = 1

2
piγlm,i

plpm

p

∂f

∂p
= 1

2
pjγ

ijγlm,i
plpm

p

∂f

∂p

= 1

2
γ ij

(
γli,m + γmi,l − γlm,i

) pjplpm
p

∂f

∂p

= �jlm
plpmpj

p

∂f

∂p
.

This leads to

pi∂if − �iμν
pμpνpi

p

∂f

∂p
= −(

�ij0 + �i0j
)pjppi
p

∂f

∂p
= −2p2 ȧ

a

∂f

∂p
,

where we have used the expressions in Appendix 2, Section A2.3 for �iμν and p =
p0. Inserting this result into (1.86) we obtain, with Eq. (1.88),

∂tf − 2p
ȧ

a

∂f

∂p
= 0, (1.89)

which is satisfied by an arbitrary function f = f (pa2) = f (aε). Hence the
distribution of free-streaming photons changes only by redshifting the physical
energy ε = ap0 or the physical momentum a|p| = ε. Therefore, setting T ∝ a−1

even after recombination, the blackbody shape of the photon distribution remains
unchanged. This radiation of free photons with a perfect blackbody spectrum is the
CMB. Its physics, especially its fluctuation and polarization, are the main topic of
this book.

The same result is also obtained for massive particles,

∂tf − 2p
ȧ

a

∂f

∂p
= 0, (1.90)

where p = |p|; hence the momentum is simply redshifted. Therefore, massive
particles that decouple when they are still relativistic keep their extremely rela-
tivistic Fermi–Dirac (or Bose–Einstein) distribution, f = (exp(ap/T )± 1)−1,
with a temperature that simply scales as T ∝ 1/a. This is especially impor-
tant for the cosmic neutrinos, which probably have masses in the range of a
0.1eV > mν >∼0.01 eV. But, as we shall see in the next section, they decouple at
T ∼ 1.4 MeV. We therefore expect them to be distributed according to an extremely
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relativistic Fermi–Dirac distribution, which is not a thermal distribution for non-
relativistic neutrinos. By the same argument, particles that decouple once they are
nonrelativistic keep their Maxwell Boltzmann distribution, f ∝ exp

[
(ap)2/(mT )

]
,

if we assume the temperature to scale as T ∝ a−2, which is also the scaling in
thermal equilibrium for massive particles [see discussion after Eq. (1.93)].

Note, however, that after decoupling the particles are no longer in thermal equi-
librium and the T in their distribution function is not a temperature in the ther-
modynamical sense but merely a parameter, representing a measure of the mean
kinetic energy.

The situation is different for the electron–proton–hydrogen plasma. As we have
seen, the free electrons still scatter with photons and keep the same temperature as
the latter. In other words: even though most photons are no longer interacting with
the electrons, the latter are still interacting with the photons. (To have one collision
with all the remaining electrons, only a fraction of about 10−14 of the photons have
to be involved!)

Soon after recombination, the baryon energy density exceeds the photon energy
density and one might expect that this would change the evolution of the temper-
ature. To investigate this we use the energy conservation equation of the baryon–
photon system. We neglect the tiny number of free electrons. The energy density
and pressure are then given by

ρ = nBmB + (3/2)nBT + π
2

15
T 4, (1.91)

p = nBT + π
2

45
T 4. (1.92)

The energy conservation equation, dρ/da = −3(ρ + p)/a, now gives

a

T

dT

da
= − 3nB + 4π2

15 T
3

(3/2)nB + 4π2

15 T
3
= − σ + 1

σ + 1/2
. (1.93)

Since σ � 1, the photons are so much more numerous than the baryons that the
latter have no influence on the temperature, which keeps evolving as 1/a. Note,
however, that in the absence of photons, the temperature of a monoatomic gas
would decrease like 1/a2 as mentioned earlier (just consider the limit σ → 0).

The blackbody spectrum of the CMB photons is extremely well verified
observationally (see Fig. 1.7 and Chapter 10). The limits on deviations are often
parameterized in terms of three parameters: the chemical potential μ, the Compton-
y parameter (which quantifies a well-defined change in the spectrum arising from
interactions with a nonrelativistic electron gas at a different temperature; we
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28 The Homogeneous and Isotropic Universe

Fig. 1.7 The spectrum of the cosmic background radiation. Iν is the energy
flux per frequency. The data are from many different measurements that are all
compiled in Kogut et al. (2007). The points around the top are the measurements
from the FIRAS experiment on COBE (Fixsen et al., 1996). The line traces a
blackbody spectrum at a temperature of 2.728 K (the data are courtesy of Susan
Staggs).

shall discuss this in detail in Chapter 10), and Yff (describing a contamination by
free–free emission).

The present 95% confidence limits on these parameters are (Particle Data Group,
2006)

|μ| < 9× 10−5, |y| < 1.2× 10−5, |Yff| < 1.9× 10−5. (1.94)

These limits are mainly derived from the COBE satellite data, which had been taken
more than 25 years ago. It would be very interesting to have newer data and better
limits on these spectral distortions, as we will discuss in Chapter 10.

The CMB photons not only have a very thermal spectrum, but they are also
distributed very isotropically, apart from a dipole that is (most probably) mainly
due to our motion relative to the surface of last scattering.

Indeed, an observer moving with velocity v relative to a source in direction n
emitting a photon with proper momentum p = −εn sees this photon redshifted
with frequency

ε ′ = γ ε (1− nv) , (1.95)
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where γ = 1/
√

1− v2 is the relativistic γ -factor. For an isotropic emission of
photons coming from all directions n this leads to a dipole anisotropy to first order
in v. This dipole anisotropy, which is of the order of(

�T

T

)
dipole

� 1.2× 10−3,

had already been discovered in the 1970s (Conklin, 1969; Henry, 1971). Interpret-
ing it as due to our motion with respect to the last scattering surface implies a
velocity for the Solar System barycenter of v = 371 ± 0.5 km s−1 at 68% CL
(Particle Data Group, 2006).

In addition to the dipole, the COBE5 DMR experiment (differential microwave
radiometer) has found fluctuations of order√√√√〈(

�T

T

)2
〉
∼ (a few)× 10−5, (1.96)

on all angular scales θ ≥ 7◦ (Smoot et al., 1992). On smaller angular scales many
experiments found fluctuations (we shall describe the experimental results in more
detail later) all of which satisfy |�T /T | <∼ 10−4.

As we shall see in Chapter 2, the CMB fluctuations on large scales provide a
measure for the deviation of the geometry from the Friedmann–Lemaı̂tre one. The
geometry perturbations are thus small, and we may calculate their effects by linear
perturbation theory. On smaller scales,�T/T reflects the fluctuations in the energy
density in the baryon/radiation plasma prior to recombination. Their amplitude is
just about right to allow the formation of the presently observed nonlinear structures
(such as galaxies, clusters, etc.) by gravitational instability.

These findings strongly support our hypothesis that the large-scale structure
(i.e., the galaxy distribution) observed in the Universe has been formed by grav-
itational instability from small (∼ 10−4) initial fluctuations. As we shall see in
Chapters 2, 4, and 5, such initial fluctuations leave an interesting “fingerprint” on
the cosmic microwave background.

1.4 Nucleosynthesis

1.4.1 Expansion Dynamics at T ∼ a Few MeV

At high temperatures, T > 30 MeV, none of the light nuclei (deuterium, 2H,
helium-4, 4He, helium-3, 3He or lithium, 7Li) are stable. At these temperatures,
we expect the baryons to form a simple mixture of protons and neutrons in thermal

5 Cosmic Background Explorer, NASA satellite launched 1990.
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30 The Homogeneous and Isotropic Universe

equilibrium with each other and with electrons, photons, and neutrinos. The highest
binding energy is the one of 4He, which is about 28 MeV. Nevertheless, 4He cannot
form at this temperature because the baryon density of the Universe is not high
enough for three- or even four-body interactions to occur in thermal equilibrium.
Therefore, before any nucleosynthesis can occur, the temperature has to drop below
the binding energy of deuterium, which is about 2.2 MeV. But even at this temper-
ature there are still far too many high-energy photons around for deuterium to be
stable. This is due to the very low baryon to photon ratio, ηB � 10−10. Just as
recombination is delayed from the naively expected temperature T = 13.7 eV to
about Trec ∼ 0.3 eV, nucleosynthesis does not happen at T ∼ 2.2 MeV but around
Tnuc ∼ 0.1 MeV. Most of the neutrons present at that temperature are converted
into 4He. Only small traces remain as deuterium or are burned into 3He and 7Li.

Let us study this in some more detail. At the time of recombination, the rela-
tivistic particle species are the photon and, probably, three types of neutrinos. As
we shall see in the next paragraph, the neutrino temperature is actually a factor of
(4/11)1/3 lower than the temperature of the photons. With Eqs. (1.54) and (1.55),
the energy density of these particles while they are relativistic is given by

ρrel(t) =
[
ργ (t)+ ρν(t)

] = [
1+ 3

7

8
(4/11)4/3

]
π2

15
T 4, (1.97)

� 10−33 g cm−3

(
T

T0

)4

, (1.98)

� ρc(t0)�relh
2(1+ z)4, where

�relh
2 � 4.4× 10−5 . (1.99)

Note that at temperatures below the highest neutrino mass, this is no longer the
energy density of relativistic particles; therefore �rel is not the density parameter
of relativistic particles today. Above the neutrino mass threshold and below the
electron mass threshold we have

ρrel

ρm
= �rel

�m
(1+ z) � 4.4× 10−5

(
1

�mh2

)
(1+ z), (1.100)

Since �mh2 � 0.14, the redshift zeq above which the Universe is dominated by
relativistic particles is about

zeq � 3.2× 103, Teq � 1 eV. (1.101)

At temperatures significantly above Teq, we can also neglect a possible contribution
from curvature or a cosmological constant to the expansion of the Universe, so
that for

z� zeq P = 1

3
ρ, a ∝ τ 1/2 ∝ t . (1.102)
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At these high temperatures the energy density of the Universe is given by

ρ = geff
π2

30
T 4 where geff = NB(T )+ 7

8
NF(T ). (1.103)

Here, NB and NF denote the number of bosonic and fermionic degrees of free-
dom of relativistic particles (i.e., particles with mass m < T ) that are in thermal
equilibrium at temperature T .

To discuss the physical processes at work at some temperature T , we need to
know the spectrum of relativistic particles and their interactions at this temperature.
Here, we shall study the Universe at 10 keV < T < 100 MeV, where the physics
is well known. The only relativistic particles present at these temperatures are
electrons, positrons, photons, and three types of neutrinos. (The muons have a
mass of mμ � 105.66 MeV.) Even if the individual neutrino masses are not very
well constrained, the oscillation experiments (Particle Data Group, 2004) imply
that their masses are below 1 eV if there is no degeneracy. As we shall see later,
also CMB data estimate masses below this value. Therefore, we may neglect the
neutrino masses in our treatment. The baryon number is well conserved at these
temperatures, so that we may set ηB equal to its present value, ηB = nB/nγ �
2.7 × 10−8�Bh

2 = constant. We neglect the small contribution from muon/anti-
muon pairs that decay exponentially ∝ exp(−mμ/T ) via the reaction

μ+ ν̄μ→ e + ν̄e.

Thermal equilibrium between photons and electron/positrons is maintained mainly
via the process e− + e+ ←→ 2γ (or 3γ . . . ). The conservation of the chemical
potential during this reaction implies

μe + μ̄e = 2μγ = 0. (1.104)

The last equals sign comes from the fact that photons can be generated and
destroyed, their number is not conserved, and hence their chemical potential
vanishes in thermal equilibrium. Here we use the notation e+ = ē and μē = μ̄e.
The difference in the density of electrons and positrons is therefore

ne − n̄e = 1

π2

∫
p2 dp

[
1

exp
(
E−μe
T

)+ 1
− 1

exp
(
E+μe
T

)+ 1

]
. (1.105)

At low temperatures this number is dictated by the neutrality of the Universe, and
ne− n̄e ∼ nB is much smaller than ne+ n̄e ∼ nγ . Therefore, the chemical potential
is much smaller than the electron mass, μe � me. At high temperatures, T � me,
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we may therefore expand the electron number density in the small parameter μe/T .
At first order this yields

ne − n̄e � 2μe
π2T

∫
p2 dp

exp (p/T )[
exp (p/T )+ 1

]2 =
2μeT 2

π2
ζ(2). (1.106)

With nγ = 2T 3ζ(3)/π2 this yields

ne − n̄e
nγ

� 1.4
μe

T
∼ nB
nγ
� 2.7× 10−8�Bh

2. (1.107)

We can therefore neglect the small chemical potential of the electrons and positrons.
The interaction e+ ē←→ ν+ ν̄ also implies that μν = −μ̄ν . But unfortunately, the
number nν − n̄ν that determines, together with ne − n̄e, the lepton number of the
Universe, is not known from observations. We suppose that the lepton number,
like the baryon number, is small and that we may also neglect the chemical poten-
tial of the neutrinos. Comparing our results with observations, we can check this
hypothesis later.

At T <∼ 100 MeV photons, electron/positrons, and neutrinos are still relativistic,
so that NB = 2 and NF = 4+ 6; hence

geff(T ∼ 100 MeV) = 43

4
= 10.75. (1.108)

The Hubble parameter is given by(
a′

a

)2

= H 2 = 1

4τ 2
= 8πG

3
ρ = 8π3G

90
geffT

4.

With the Planck mass, mP , defined by G = 1/m2
P = 1/(1.22 × 1019 GeV)2, we

find

H 2(T ) � 2.76geff(T )

(
T 2

mP

)2

, (1.109)

H � 0.21
√
geff

(
T

1 MeV

)2

s−1, (1.110)

τ = 1

2H
� 0.3geff(T )

−1/2
(mP
T 2

)
� 2.4 s

(
1 MeV

T

)2

g
−1/2
eff . (1.111)

Here we have used the formulas in Appendix 1 to convert MeV’s to seconds,
1 MeV = 1.5192 × 1021s−1. The temperature of T ∼ 100 MeV corresponds thus
to an age of τ ∼ 7 × 10−5 s, and T = 1 MeV corresponds to τ ∼ 0.7 s. The
relations (1.110) and (1.111) can be applied as long as the Universe is dominated
by relativistic particles.
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1.4.2 Neutrino Decoupling

Neutrinos are kept in thermal equilibrium via the exchange of a W -boson,
e + ν̄ ←→ e + ν̄ and ν + ē ←→ ν + ē, or a Z-boson, e + ē ←→ ν + ν̄.
At low energies, E � mZ,W ∼ 100 GeV, we can determine the cross sections
within the 4-fermion theory of weak interaction. Within this approximation, the
effective interaction Langrangian is given by

Lint = GF√
2
J †
μJ

μ + hermitean conjugate

= GF√
2

(
u∗eγμ

1

2
(1− γ 5)uν

) (
u∗νγ

μ 1

2
(1− γ 5)ue

)
+ h.c., (1.112)

where the coupling parameter, GF , is the Fermi constant, and γ μ are Dirac’s
gamma-matrices, γ5 = iγ 0γ 1γ 2γ 3.

GF = 1.166× 10−5 GeV−2 = (293 GeV)−2. (1.113)

The fermion V − A current Jμ is expressed in terms of the electron and neutrino
spinors ue,ν and the Dirac γ -matrices.

The cross section of theW - andZ-boson exchange processes are identical within
this approximation and they are given by

σF � G2
FE

2 ∼ G2
FT

2,

The involved particle density is nF (T ) = gF (T )ζ(3)T 3/π2 ∼ 1.3T 3, where we
have set gF (T ) = 3/4NF(T ) = 30/4 for the three types of left-handed neutrinos
and the e± s. Since the particles are relativistic, we can set v ∼ 1 so that we obtain
an interaction rate of

�F = 〈σFv〉nF � 1.3G2
FT

5.

Comparing this with the expansion rate H obtained in (1.109), we find

�F

H
� 0.24T 3mPG

2
F �

(
T

1.4 MeV

)3

. (1.114)

At temperatures below TF ∼ 1.4 MeV the mean number of interactions of a
neutrino within one Hubble time, H−1, becomes less than unity and the neutrinos
effectively decouple. The plasma becomes transparent to neutrinos that are no
longer in thermal equilibrium with electrons and positrons and hence photons and
baryons.
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As we have discussed in the previous section, even at temperatures far below
their massmν >∼ 0.05 eV, their particle distribution remains an extremely relativistic
Fermi–Dirac distribution with temperature

Tν = TF aF
a
,

since they are no longer in thermal equilibrium and their distribution is affected
solely by redshifting of the momenta.

As long as the photon/electron/baryon temperature also scales like 1/a, the neu-
trinos conserve the same temperature as the thermal plasma, but when the number
of degrees of freedom, geff, changes, the plasma temperature decays for a brief
period of time less rapidly than 1/a and therefore remains higher than the neutrino
temperature. This is exactly what happens at the electron–positron mass threshold,
T = me � 0.5 MeV. Below that temperature, only the process e+ ē→ 2γ remains
in equilibrium while 2γ → e + ē is exponentially suppressed. We calculate the
reheating of the photons gas by electron–positron annihilation, assuming that the
process takes place in thermal equilibrium and that the entropy remains unchanged.
This is well justified because the cross section of this process is very high. Denoting
the entropy inside a volume of size V a3 before and after electron–positron annihi-
lation by Si and Sf , we therefore have Si = Sf . With Eq. (1.60) this yields

Si = 2

3
aSBgeff,i(T a)

3
i V , Sf =

2

3
aSBgeff,f (T a)

3
f V .

The electron–positron degrees of freedom disappear in this process so that
geff,f = 2 while geff,i = 2+ 4( 7

8) = 11/2. From Si = Sf we therefore conclude

(T a)f = (T a)i
(

11

4

)1/3

.

The neutrino temperature is not affected by e± annihilation, so that (Tνa)f =
(Tνa)i = (T a)i . For the last equals sign we have used that the neutrino and pho-
ton temperatures are equal before e± annihilation. At temperatures T � me we
therefore have

T =
(

11

4

)1/3

Tν . (1.115)

Since there are no further annihilation processes, this relation remains valid until
today and the present Universe not only contains a thermal distribution of pho-
tons, but also a background of cosmic neutrinos that have an extremely relativistic
Fermi–Dirac distribution with temperature

Tν(τ0) = (4/11)1/3T0 = 1.95 K. (1.116)
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We set

g0 = 2+ 7

8
6

(
4

11

)4/3

� 3.36, and (1.117)

g0S = 2+ 7

8
6

(
4

11

)
� 3.91. (1.118)

These are respectively the effective degrees of freedom of the energy and entropy
densities as long as all the neutrinos are relativistic. Until then we therefore have

ρrel(T ) = π
2

30
g0T

4 � 8.1× 10−34 g cm−3

(
T

T0

)4

, (1.119)

s(T ) = 2π2

45
g0ST

3 � 3× 103 cm−3

(
T

T0

)3

. (1.120)

The neutrino cross section at low energies is extremely weak, and so far the neutrino
background has not been observed directly (see Exercise 1.9).

1.4.3 The Helium Abundance

The observed abundance of helium is universally about

nHe mHe

nH mH
≡ Y � 0.24. (1.121)

It is well known that this amount of helium cannot have been produced in stars. We
now want to investigate how much helium is produced in the primordial Universe.
At temperatures of a few MeV nuclei and baryons are non-relativistic and the
equilibrium distribution for a nucleus with atomic mass (i.e., number of protons
and neutrons) A and proton number Z is given by

nA = NA
(
mAT

2π

)3/2

exp

(
−mA − μA

T

)
. (1.122)

The proton density is given in Eq. (1.71). The neutron density is correspondingly

nn = 2

(
mBT

2π

)3/2

exp

(
−mn − μn

T

)
. (1.123)

Here, we neglect the small differenceQ = mn−mp = 1.293 MeV in the prefactor,
setting mn ∼ mp ∼ mB . The conservation of the chemical potentials in nuclear
reactions implies

μA = Zμp + (A− Z)μn,
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so that

exp

(
−mA − μA

T

)
= (
eμp/T

)Z (
eμn/T

)(A−Z)
e−mA/T ,

= 1

2A

(
2π

mBT

)3A/2

exp(BA/T )n
Z
pn
A−Z
n .

Here, BA = Zmp + (A− Z)mn −mA is the binding energy of the nucleus (A,Z).
In thermal equilibrium, the density of this ion is then given by

nA = NA
2A
A3/2

(
2π

mBT

)3(A−1)/2

nZpn
A−Z
n exp(BA/T ). (1.124)

Here we have again neglected the nucleon mass difference Q and the binding
energy BA in the prefactor by setting mA ∼ AmB , but not in the exponential.

We define the various mass abundances by

YA ≡ AnA
nB

= AnA

ηB nγ
,

Yp ≡ np
nB
= np

ηB nγ
,

Yn ≡ nn

nB
= nn

ηB nγ
.

Hence the thermal abundance of the nucleus (A,Z) is given by

YA = F(A)
(
T

mB

)3(A−1)/2

ηA−1
B YZp Y

A−Z
n eBA/T , (1.125)

where F(A) = NAA5/2ζ(3)A−1π−(A−1)/22(3A−5)/2. (1.126)

This equation shows nicely the influence of the radiation entropy on nucleosyn-
thesis. If we had ηB ∼ 1, the nucleus (A,Z) would become stable and relatively
abundant at T ∼ BA. At this temperature the formation of (A,Z) [controlled by the
factor exp(BA/T )] is sufficiently important to counterbalance photodissociation
(controlled by the factor ηA−1

B ). In equilibrium, the exponential exp(BA/T ) is then
of the order of η1−A

B ∼ 1 and the ratio YA then approaches the value YA ∼ YZp YA−Zn .
However, if ηB is very small, the equilibrium between production of (A,Z) and
photodissociation is delayed until exp(−BA/T ) ∼ ηA−1

B � 1, that is, to much
lower temperatures. Neglecting the numerical factor F(A), the temperature TA,
defined by YA(TA) ∼ Yp(TA)ZYn(TA)A−Z, is

TA ∼ BA

(A− 1)
[
ln(η−1

B )+ 3/2 ln(mB/TA)
] .
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1.4 Nucleosynthesis 37

For the deuteron with binding energy B2 = 2.22 MeV we find

T2 ∼ 0.085 MeV. (1.127)

The reaction rate �np of the process n+ p←→ 2H+ γ is given by

�np = 〈σnpv〉np � 1.8× 10−17(T /T0)
3ηB s−1 � 1012ηB

(
T

MeV

)3

s−1,

where we have used 〈σnpv〉 = constant = 4.55 × 10−20 cm3 s−1 at temperatures
1 keV ≤ T ≤ 10 MeV, and np = ηBnγ � 420ηB(T /T0)

3 cm−3. Using H � 0.4
(T /MeV)2 s−1, we conclude that this interaction remains in thermal equilibrium as
long as T >∼ 0.004 MeV. So the assumption of a thermal deuterium abundance is
justified. As already mentioned, three-body interactions are not in thermal equilib-
rium; their reaction rate contains an additional factor nB/nγ = ηB � 1.

Therefore, at temperature T2 only deuterium can form and subsequently virtually
all the neutrons present are burned into 4He. To determine the helium abundance,
we have to determine the neutron density at this temperature. Let us first determine
the temperature at which β and inverse β processes drop out of equilibrium,

ν + n←→ p + e, ē + n←→ p + ν̄, n→ p + e + ν̄.

On one hand, particle conservation imposes

μn − μp = μe − μν .
On the other hand, the neutrality of the Universe requires np= ne. Since me�mp,
Eqs. (1.70) and (1.71) imply μe�μp. Finally, setting μν ∼ 0, the chemical poten-
tials of the neutron and the proton are approximately equal, that is,
μn � μp. The ratio of their densities is thus simply given by the mass difference
Q = mn −mp,

nn

np
= Yn
Yp
= exp(−Q/T ).

This ratio remains constant as long as the reactions n←→ p are sufficiently rapid.
At the decoupling temperature of these reactions,

�(TD) = H(TD) � 3
T 2
D

mP
,

the ratio (nn/np) is hence given by(
nn

np

)
(TD) = exp(−Q/TD).
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Afterwards, the neutron density decays exponentially by β-decay, n→ p + e+ ν̄,

nn(τ ) = nn(τD) exp

(
−τ − τD

τn

)
for τ > τD, (1.128)

where τn � 886 s is the neutron lifetime.
We now want to determine the temperature TD. We can again use Fermi theory

to determine the different cross sections. For nucleons, the pure V − A current,
ψ∗γμ(1 − γ5)ψ , is replaced by ψ∗γμ(gV + gAγ5)ψ , which takes into account the
internal structure of the nucleons. In the Born approximation the cross section
becomes (see, e.g., Maggiore, 2005)

σ(ν + n→ p + e) = G
2
F

π
(g2
V + 3g2

A)veE
2
e .

The constants gV and gA are determined experimentally (e.g., by measuring the
neutron lifetime), gV � 1.00 and gA � 1.25. The interaction rate per neutron is
obtained by multiplying the preceding result with vνnν ,

�(ν + n→ p + e) = 〈σvν〉nν = 1

2π2

∫
p2
ν dpν

epν/Tν + 1
vνσ

(
1− 1

eEe/T + 1

)
.

The factor 1 − 1/[exp(Ee/T )+ 1] is the probability that the electron state with
energy Ee is free (it implements the Pauli principle). To simplify the integral we
first use energy conservation, Eν + En = Ep + Ee. Since all the energies involved
are of the order of MeV, we can set En − Ep ∼ mn − mp = Q = 1.293 MeV
and Ee = pν +Q. Furthermore, Ee = meγ = me/

√
1− v2

e , which implies ve =√
(pν +Q)2 −m2

e/Ee. Inserting these simplifications, we obtain finally

�(ν + n→ p + e) = G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ ∞

0

eα(x+q)x2(x + q)
√
(x + q)2 − 1

(1+ eα(x+q))(1+ eβx) dx, (1.129)

where we have set x = pν/me, α = me/Tγ , β = me/Tν , and q = Q/me � 2.5. To
compute the other processes we note that the matrix element M(pν,pn,pp,pe) that
appears in the amplitude for ν+n←→ p+e is invariant under the transformations
(pν,pn,pp,pe) → (−pν,pn,pp, − pe), and (pν,pn,pp,pe) → (−pν,pn,pp,pe),
where pν , pn, pp and pe are the momenta of the neutrino, neutron, proton and
electron respectively,

M(pν,pn,pp,pe) =M(−pν,pn,pp,−pe),
M(pν,pn,pp,pe) =M(−pν,pn,pp,pe).
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This observation allows us immediately to determine the reaction rates of the other
processes. We simply have to take into account the different phase space con-
straints. With x = Ee/me (the other parameters as earlier), we obtain

�(e + p→ n+ ν) = G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ ∞

q

eβ(x−q)x(x − q)2√x2 − 1 dx

(1+ eβ(x−q))(1+ eαx) , (1.130)

and

�(n→ p + e + ν̄) � G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ q

1

eαxeβ(q−x)(x − q)2x√x2 − 1 dx

(1+ eβ(q−x))(1+ eαx) , (1.131)

�(n→ p + e + ν̄)|T�me � 1.6
G2
F

2π3
(g2
V + 3g2

A)m
5
e = τ−1

n (1.132)

τ−1
n = 1

886 s

for the β-decay of the neutron at low temperature.
The products τn� are functions of the temperature T . When T � Q, the kinetic

energy in the system e+ ν̄ is much higher than the electron mass. Hence x±q � x
at the positions that contribute most to the foregoing integrals and the reaction rates
go like

τn�(n→ p)

τn�(p→ n)

}
∝ T 5, for T � Q.

In the regime 0.1 MeV ≤ T ≤ 1 MeV, the product τn�(n→ p) is roughly propor-
tional to T 4.4. The same is true for τn�(p→ n). But the phase space for β-decay is
larger than for the reaction p→ n, so that τn�(n→ p) > τn�(p→ n). Once the
temperature drops below about 0.1 MeV, τn�(p → n) decays exponentially while
τn�(n → p) converges to 1 [see Fig. 1.8, where τn�(n → p), τn�(p → n), and
the expansion rate τnH are shown as functions of the temperature].

According to Fig. 1.8, the line τnH intersects the lines τn�(n→p) and
τn�(p → n) around T = 0.8 MeV. A more detailed analysis gives a decoupling
temperature of TD � 0.7 MeV, below which the three reactions are no longer in
thermal equilibrium.
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Fig. 1.8 The weak interaction rates, τn�(p→ n) and τn�(n→ p), are shown as
functions of the temperature. The expansion rate, τnH , is also indicated.

Another way to see this dropping out of the thermal equilibrium of weak interac-
tion is to compare the true neutron abundance, Yn, with the one obtained in thermal
equilibrium. A semianalytical calculation gives (see Bernstein et al., 1989) the
behavior plotted in Fig. 1.9.

At decoupling, the ratio of the neutron to proton density is(
nn

np

)
(TD) = exp(−Q/TD) � 1/6, (1.133)

so that

Yn = 1/7 and Yp = 6/7. (1.134)

Since T2, the temperature of deuterium formation, is lower than TD, in the inter-
val TD >T >T2, neutrons simply β-decay. At τ2 given by T2= T (τ2)= 0.085 MeV
their density is(

nn

np

)
(T2) = e−Q/TD exp(−τ2/τn) � 0.8/6 � 1/7, (1.135)

and therefore

Yn = 1/8 and Yp = 7/8. (1.136)
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Fig. 1.9 The true neutron abundance as a function of �m/T (solid line) is
compared with the equilibrium abundance (dotted line). Clearly, weak interaction
freezes out around T ∼ 0.6×�m ∼ 0.7 MeV.

For this we have used τ2 � 1.3 s (1/0.085)2 � 180 s. Once deuterium is formed,
helium-4 is very rapidly synthesized via the reactions

2H + 2H −→ n + 3He
3He + 2H −→ p + 4He

2H + 2H −→ p + 3H
3H + 2H −→ n + 4He

2H + 2H −→ γ + 4He

and essentially all deuterium is transformed in 4He. The helium abundance is
thus in good approximation, given by half the neutron abundance at temperature
T2 � 0.085 MeV. With this approximation we obtain a helium-4 abundance of

Y4He =
4(nn/2)

nn + np =
2(nn/np)

nn/np + 1
� 1

4
. (1.137)
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In this expression we have used the neutron abundance from Eq. (1.136). Consider-
ing that τ2 scales like

√
log ηB while TD depends strongly on the expansion rate H ,

which is proportional to
√
geff ∝

√
Nν(4/11)4/3 + 1, we conclude that the helium-4

abundance is very sensitive on the number of neutrino families, but does not change
very rapidly with ηB . Historically, the cosmological helium-4 abundance has been
the first experimental data to determine the number of (light) neutrino families
in the range Nν = 3.24 ± 1.2, when allowing for very generous error bars in the
measurements (Fields and Sarkar, 2006). Presently, the Z-boson decay width,
which has been measured very accurately with the LEP accelerator at CERN,
gives the tightest value (see Particle Data Group, 2006), Nν = 3.07 ± 0.12 at 95%
confidence.

1.4.4 Deuterium, Helium-3 and Lithium-7

Nucleosynthesis starts at T ∼ 0.1 MeV, corresponding to τ ∼ 130 s and terminates
after a few minutes. Apart from 4He very small amounts of all other elements up to
lithium-7 are formed (some deuterium, tritium, and helium-3 remain unprocessed).
All these elements except deuterium, helium-3, and lithium-7 decay radioactively
and their primordial abundance can no longer be observed today.

The amount of deuterium and helium-3 that is not burned into helium-4 is a
steep function of the baryon abundance in the Universe. The higher the baryon
density, the more efficient is the conversion of deuterium and helium-3 into helium-
4 (see Fig. 1.10). This can be used to determine the baryon density in the Universe
very accurately. Measuring the primordial deuterium abundance is an art by itself
on which we shall not dwell here. Most recent results are obtained by measuring
it from the absorption lines in hydrogen (Ly-α) clouds intervening in the line of
sight between us and quasars. Within generous error bars one obtains 2 × 10−5 <

Y2H/Yp < 2× 10−4. This gives 4.7× 10−10 < ηB < 6.5× 10−10 [for more details
see Olive et al. (2000), Burles et al. (2001), and Particle Data Group (2006)].

As one sees in Fig. 1.10, the lithium abundance is not a monotone function of
ηB . This is so since, depending on the value of ηB , two different processes lead
to lithium formation. If the baryon density is small, ηB < 3 × 10−10, lithium
abundance is determined by the competition between the production process 4He+
3H → 7Li+ γ and the destruction process 7Li+ p → 4He+ 4He. In this regime,
the abundance decays with growing ηB . For ηB > 3× 10−10, the dominant channel
goes over beryllium production 4He+3He → 7Be+γ , which is then converted into
lithium-7 via the reaction 7Be+ e→ 7Li+ γ . The destruction process is the same
as at low density. Since the conversion of beryllium into lithium increases with
increasing baryon density, lithium abundance grows with ηB , for ηB > 3 × 10−10.
The lithium abundance has a minimum around ηB � 3 × 10−10. Inference of the
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Fig. 1.10 The primordial element abundance as a function of the parameter
ηB = nB/nγ . The bands compatible with the observations of the different nuclei
are indicated. The horizontal band shows the range of ηB (or equivalently �Bh2)
compatible with the nucleosynthesis data while the narrow vertical range is
compatible with CMB anisotropies (see Chapter 9). It agrees very well with
deuterium and helium abundances from nucleosynthesis but not so well with the
lithium abundance. Figure from Tanabashi et al. (2019)

primordial lithium abundance is still a matter of considerable debate. It nevertheless
allows us to constrain 10−10 < ηB < 10−9.

Finally, in the regime 10−10<ηB < 10−9 the helium-4 abundance is well approx-
imated by the formula

Y4He = 0.23+ 0.011 ln(η10)+ 0.013(Nν − 3), (1.138)

where we have introduced η10 = ηB/10−10. All the present observations of light
elements taken together limit 4.7<η10 < 6.5, leading to 0.017 < �Bh2 < 0.024
[a constantly updated review can be found in Tanabashi et al. (2019)]. It is
remarkable that this value is in very good agreement with the result obtained from
measurements of the fluctuations in the CMB, which are based on completely
different physics (see Chapter 9).
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This value is much larger than the density of luminous baryons that make up
the stars and gas in the galaxies, and that lead only to �Lh2 � 0.004. Hence most
baryons in the Universe are not luminous. On the other hand, dynamical measure-
ments and, more accurately, the anisotropies in the CMB, require an energy density
of nonrelativistic matter today of about �mh2 � 0.13. We discuss constraints on
cosmological parameters from CMB data in detail in Chapter 9. To satisfy both
constraints, the matter density of the Universe has to be dominated to about 80%
by nonbaryonic, so-called dark matter (dark in this context means that this matter
does not interact with photons). So far, this dark matter has not been observed
directly, but many experiments are underway and are starting to reach promising
sensitivities. There are several candidates for dark matter particles. Most notably,
the lightest supersymmetric particle, but also the gravitino, axion, or primordial
black holes are viable candidates.

The good agreement of Nν and �Bh2 obtained from the study of primordial
nucleosynthesis with other experiments, confirms that the Universe has been
in a thermal state expanding adiabatically back to temperatures of the order of
T ∼ 1 MeV. For earlier times we have no experimental evidence. However, if the
Universe has been in a thermal state at a temperature of T ∼ 200 MeV, τ ∼ 0.1
s, it has then undergone a confinement transition leading from a quark gluon
plasma at higher temperatures to baryons (such as the proton and neutron) and
mesons (such as pions). If it has also been in thermal equilibrium at temperatures
of up to T ∼ 200 GeV, τ ∼ 0.001 s, it has then undergone the electroweak
transition giving masses to theW± and Z bosons. At even higher temperatures we
have no experimentally confirmed theory of fundamental interactions. Maybe, at
T ∼ a few TeV the Universe becomes supersymmetric. Maybe, at T ∼ 1016 GeV a
phase transition from a previous grand unified symmetry to the (supersymmetric)
standard model symmetries took place. At this or higher energies the Universe
may also have gone through (or emerged from) a superstring phase. To date such
questions remain entirely speculative. Their quantitative investigation, especially
possible observable signatures of a superstring phase, is an active field of research.

1.5 Inflation

1.5.1 Cosmological Problems

We first discuss the motivation for, and some consequences of a so-called inflation-
ary phase. We then exemplify the idea with a cosmology dominated by a scalar
field. It is, however, clear that this realization has to be regarded as a toy model
because the actual physical degrees of freedom relevant in the very early Universe,
where such a period has most probably to be situated (see Chapter 3), are not
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known. In that sense this section is on a different level from the previous ones.
We do not have any direct evidence that an inflationary phase has taken place in
our Universe. Such a period just addresses several otherwise mysterious initial
conditions of the observed Universe. The most significant observed “prediction”
of inflation is a nearly scale-invariant spectrum of initial fluctuations that we shall
discuss in Chapter 3. What is more serious is that we have no “direct” experimental
evidence of the existence of an “inflaton field.”

We include a possible cosmological constant into the energy density and the
pressure, so that Eqs. (1.20) and (1.21) reduce to

H2 = 8πG

3
a2ρ −K, (1.139)

Ḣ = −4πG

3
a2 (ρ + 3P) =

(
ä

a

)
−H2. (1.140)

If ρ + 3P > 0 at all times, the homogeneous and isotropic cosmological model
has several important problems.

First, as we have discussed in Section 1.2.2, there is the big bang singularity in
the finite past, t = 0. At this time a = 0 and the curvature diverges.

Furthermore, the causal horizon at (conformal) time t , that is, the distance a pho-
ton has traveled from t = τ = 0 until time t , is given by a(t)t = a(t) ∫ τ(t)0 a−1 dτ .
Since for ρ + 3P > 0, a grows slower than linear in τ , this integral converges, is

finite. As we have seen (in Eq. (1.25)), a(τ) ∝ τ 2
3(1+w) if w = P/ρ is constant.

For example, the size of the causal horizon at recombination is seen today under
the angle of about 1◦, if the Universe was radiation (w = 1/3) and matter (w = 0)
dominated up to recombination see Exercise 1.10. It is therefore very mysterious
that we see the same microwave background temperature on patches separated by
much more than 1◦, which had never been in causal contact before the microwave
photons had been emitted. This is the “horizon problem.”

Another problem is the following: the Friedmann equations, (1.139) and (1.140),
allow us to derive an evolution equation for �(t) ≡ 8πGρa4/3ȧ2 ≡ 1+K/H2,

d

dt
(�(t)− 1) = (�(t)− 1)

8πGa2

3

(
ρ + 3P

H

)
. (1.141)

This shows that, in an expanding universe with ρ + 3P > 0, � = 1 is an unstable
fixed point of evolution: if �(t) > 1, the derivative is positive and �(t) increases
while for �(t) < 1, the derivative is negative and �(t) decreases. For a present
value of 0.1 < �0 < 2 we need |�(ηnuc) − 1| ∼ (zeq/z

2
nuc)|�0 − 1| ≤ 10−15

at nucleosynthesis, or |�(tP ) − 1| ≤ 10−60 at the Planck time, τP =
√
h̄G/c5 �

5.4 × 10−44 s. Why is �(t) still of order unity so long after the only timescale in
the problem that is τP ?
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This “flatness problem” can also be formulated as an “entropy problem.” The
entropy inside the curvature radius is already of the order of SK ≥ 1088 at the
Planck time.

Another problem is the “monopole problem” or more generically the problem
of unwanted “relics.” Most particle physics models produce some stable “relics”
at very high temperatures, which are not observed in the present Universe. A very
rapid phase of expansion can help to dilute such relics.

To resolve these problems one introduces an “inflationary phase.” Inflation is
a phase during which the strong energy condition, ρ + 3P > 0, is violated and
expansion can therefore be much more rapid than linear in τ .

1.5.2 Scalar Field Inflation

We now study the most common solution of the aforementioned problems, namely
the introduction of a period in which the dynamics of the Universe is dominated by
a scalar field, φ which is usually called the “inflaton.” The scalar field Lagrangian
is given by

Lφ = −1

2
∂μφ ∂

μφ −W(φ). (1.142)

The sign of the kinetic term in the foregoing Lagrangian may differ from what you
are used to from quantum field theory. This comes from the fact that we use the
metric signature (−, + , + ,+) .

The field φ can, in principle, interact with other fields such as fermions, gauge
bosons, and so forth, but we assume that this interaction can be neglected during
inflation, and that energy and pressure are dominated by the contribution from the
inflaton. The energy–momentum tensor of φ is given by

Tμν = −2√−g
∂

∂gμν
(
√−gLφ),

where g = det(gμν). This yields

Tμν = ∂μφ ∂νφ + gμνLφ

= ∂μφ ∂νφ − 1

2
gμν ∂λφ ∂

λφ − gμνW(φ).

Here we have used that the derivatives of the determinant A of an arbitrary matrix
Aab with respect to the elements of its inverse,Aab, are given by ∂A/∂Aab = AAab.

For the energy density and pressure we thus obtain

ρφ = −T 0
0 =

1

2a2
φ̇2 + 1

2a2
(∇φ)2 +W(φ), (1.143)
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and

Pφ = 1

3
T ii =

1

2a2
φ̇2 − 1

6a2
(∇φ)2 −W(φ). (1.144)

We now assume that there exists some region of space within which we may
neglect the spatial derivatives of φ, at some initial time τi , and the temporal deriva-
tive is much smaller than the potential,

∇φ(x,τi)� φ̇(x,τi)� W(φ). (1.145)

Furthermore, we assume that the potential is positive,

W(φ(x,τi)) > 0. (1.146)

We then have

3H 2

8πG
= ρ = ρφ = 1

2a2
φ̇2 +W(φ) � W(φ), (1.147)

P = Pφ = 1

2a2
φ̇2 −W(φ) � −W(φ), (1.148)

so that Pφ � −ρφ and ρφ + 3Pφ � −2W(φ) < 0. (We have neglected a pos-
sible curvature term. Qualitatively nothing changes if we include it, since it soon
becomes subdominant.)

This is the basic idea of inflation: at some early time, in some sufficiently large
patch, the Universe is dominated by the potential of a slowly varying (slow rolling)
scalar field, and hence it is in an inflationary phase. During inflation this patch
expands rapidly and the causal horizon becomes very large and �(t) tends to 1, so
that the curvature term is soon negligible. As time goes on, the scalar field starts
evolving faster and inflation eventually comes to an end when the time derivative
φ′2 grows to the order of W . The scalar field then soon reaches the minimum of
the potential and starts to oscillate. We suppose that at large values of a−1φ̇, the
coupling of the inflaton to other fields becomes significant so that it decays into
a thermal mix of elementary particles, leading to a radiation-dominated universe.
There are many detailed realizations of this basic picture that can be found in the
literature; see, for example, Liddle and Lyth (2000). It is, however very difficult to
deduce them from a serious high-energy physics theory such as string theory.

Let us study slow roll inflation in somewhat more detail. When neglecting spatial
derivatives, the equation of motion of the scalar field becomes (W,φ ≡ dW/dφ)

φ̈ + 2

(
ȧ

a

)
φ̇ + a2W,φ = 0, (1.149)

φ′′ + 3

(
a′

a

)
φ′ +W,φ = 0, (1.150)
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in conformal time, Eq. (1.149), and in cosmic time, Eq. (1.150). During slow
rolling, the first term of this equation is negligible with respect to the two others,
so that

3

(
a′

a

)
φ′ � −W,φ . (1.151)

The slow roll conditions are therefore

1

2
φ′2 � W and |φ′′| � 3H |φ′|. (1.152)

WithH = a′/a, slow rolling also implies thatH ′ � H 2. Taking the time derivative
of Eq. (1.147) and replacing φ′ by (1.151) yields the slow roll conditions

ε1 ≡ −H
′

H 2
= H2 − Ḣ

H2
≈ m2

P

16π

(
W,φ

W

)2

� 3

2

φ′2

W
� 1. (1.153)

The second condition of Eq. (1.152) gives∣∣∣∣ φ′′3Hφ′

∣∣∣∣ � 1.

We now set

ε2 ≡ − m
2
P

24π

(
W,φφ

W

)
and require |ε2| � 1. (1.154)

Note that ε1 is always positive while ε2 can have either sign. With H 2 � 8πW/
(3m2

P ), and the derivative of φ′ = −W,φ/(3H), one finds that the inequalities
(1.153) and (1.154) are equivalent to the slow roll conditions (1.152). The parame-
ters ε1 and ε2 are the slow roll parameters. Inflation terminates when ε1 approaches
unity. In the literature one often uses the notation ε ≡ ε1 and δ ≡ −ε2/3.

Taking the derivative (w.r.t. t) of Eq. (1.153) in the last equals sign, one obtains

ε̇1 = 2ε1 (3ε2 + 2ε1)H,
ε̇1

Hε1
= 6ε2 + 4ε1 ≡ η. (1.155)

The last equation can also be used as a definition of ε2 (or, more consistently, η).
The advantage of this definition is its independence of the realization of slow roll
inflation by means of a scalar field. A more systematic procedure along these lines
is to define ε̃1 ≡ ε1 and ε̃2 = ( ˙̃ε1/ε̃1)H−1 = η, ε̃3 = ( ˙̃ε2/ε̃2)H−1, and so forth. Our
parameter ε2 is related to ε̃2 ≡ η via

ε2 = −2

3
ε1 + 1

6
η. (1.156)

While ε2 is usually of the same order of magnitude as ε1, we expect η to be
significantly smaller.

https://doi.org/10.1017/9781316471524.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316471524.002


1.5 Inflation 49

As an example we consider power law expansion, a ∝ tq . In this case we have

H = q
t
, ε1 = 1+ 1

q
, ε2 = −2

3
ε1, ε̃2 = ε̃n = 0. (1.157)

During slow roll inflation, q ∼ −1, the parameters ε1 and ε2 are small. Also note
that ε2 = −(2/3)ε1 during power law expansion. The parameters ε̃i , i > 1 describe
the deviation from power law expansion. They have been used in the literature to
derive a systematic slow roll expansion to higher orders (Schwarz et al., 2001). In
this book we shall not go beyond the first order and we use the standard parameters
ε1 and ε2 to make contact with the standard literature.

There are two principally different possibilities for slow roll inflation.

(1) We first consider a potential that is simply ∝ φn, so that W,φφ/W ∼
(W,φ/W)

2 ∼ φ−2. The slow roll conditions then require φ � mP and inflation
stops when the inflaton becomes of order the Planck mass. These models
are termed large-field inflation. Setting W = (λ/n)m4

P (φ/mP )
n, during the

inflationary phase, Eq. (1.151) together with Eq. (1.147) implies√
24πλ

n
mP (φ/mP )

n/2 φ′ = −λm3
P

(
φ

mP

)n−1

. (1.158)

Dividing by φn−1, if n 
= 4 the left-hand side becomes the derivative of
(φ/mP )

2−n/2, which hence is a constant. If n = 4, the left-hand side is ∝ 1/φ,
that is, the derivative of log(φ/mP ). The general solution is therefore given by

φ(τ)(4−n)/2 = φ(4−n)/2i − 4− n
2

√
nλ/24πmP (τ − τi) if n 
= 4, (1.159)

φ(τ) = φi exp

(
−

√
λ

6π
mP (τ − τi)

)
if n = 4. (1.160)

Inserting now φ′ = −√λn/24πm2
P (φ/mP )

n/2−1 in the Friedmann equation,

(log(a))′ =
√

8πλ

3n
mP (φ/mP )

n/2,

we obtain

d log(a)

dφ
= −8π

n

φ

m2
P

,

with solution

a(τ) = ai exp

(
4π

nm2
P

(φ2
i − φ2)

)
. (1.161)

This case is illustrated in Fig. 1.11.
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50 The Homogeneous and Isotropic Universe

Fig. 1.11 Large-field inflation for W = λm2
P φ

2/2. The bottom panel shows the
inflaton φ in units of mP rolling linearly in time. In the upper panel the evolution
of the slow roll parameter, ε1(t), is indicated. As long as φ > mP , ε1 = −2ε2
stays small. At φ ∼ mP , ε1 starts to grow and inflation stops.

(2) If the potential is more complicated and has a very flat regime in the vicinity
of its maximum φ = σ � mP , like, for example, the Coleman–Weinberg
potential (Kolb and Turner, 1990),

W(φ) = 1

2
σ 4 + φ4

[
ln

(
φ2

σ 2

)
− 1

2

]
,

we speak of small-field inflation. This potential passes through 0 at φ = σ . In
this case, the slow roll conditions are satisfied for field values |φ|<∼ σ , which
are much smaller than the Planck mass.

During a potential dominated phase where ρ ∼ −P ∼ W ∼ constant, the
solutions of the Friedmann equations are

a = a0 exp(τH) = 1

H |t | (−∞ < t < 0, −∞ < τ <∞), (1.162)

H 2 = 8πG

3
W = constant, (1.163)

H = aH = 1

|t | . (1.164)
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1.5 Inflation 51

The limit τ →∞ corresponds to t → 0. The foregoing solution is a portion of de
Sitter spacetime.6

Denoting by indices i and f the beginning and the end of inflation, the number
of e-foldings of expansion during inflation is given by

N(φf,φi) = ln

(
a(τf )

a(τi)

)
.

Using

N(φf,φi) = ln af − ln ai =
∫ af

ai

da

a
,

we obtain

N(φf,φi) =
∫ af

ai

1

a
da =

∫ τf

τi

a′

a
dτ =

∫ τf

τi

H dτ . (1.165)

With Eq. (1.151) we can write

H dτ = H dτ
dφ
dφ = H dφ

φ′
= −3H 2 dφ

W,φ
.

The number of e-foldings is hence given by

N(φf,φi) = −3
∫ φf

φi

H 2

W,φ
dφ � − 8π

m2
P

∫ φf

φi

W

W,φ
dφ = −2

√
π

∫ φf

φi

1√
ε1

dφ

mP

∼ 8π

n

φ2
i

m2
P

. (1.166)

The last∼ sign is valid only for large-field inflation, whereW ∝ φn and we suppose

φf ∼ mP � φi .

The slow roll conditions imply

Ntot = N(φf,φi)� 1. (1.167)

For w = P/ρ = constant we have

|�(τ)− 1| = 3|K|
8πGa2ρ

∝ a1+3w.

During an inflationary phase, w = −1, |�(τ)−1| decreases like 1/a2. To reduce it
from a value of order unity down to ∼ 10−60 we therefore need about 30 ln(10) ∼
70 e-foldings of inflation.

6 de Sitter spacetime is the solution to the Einstein equationGμν = �gμν with � > 0. The solution with � < 0
is called anti-de Sitter; see Hawking and Ellis (1973).
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1.5.3 Preheating and Reheating

When inflation ends, φ decays rapidly and starts oscillating about its minimum.
The details of this process depend on the couplings of the inflaton to other degrees
of freedom, which eventually decay into the degrees of freedom of the standard
model. For this discussion we consider a simple toy model with Lφ = − 1

2∂μφ∂
μφ−

1
2m

2
φφ

2. At the end of inflation the inflaton oscillates as

φ = φ0(τ ) cos(mφτ)

with a slowly varying amplitude φ0(τ )�mP . The inflatons have vanishing momen-
tum and their number density is

nφ = ρφ

mφ
= 1

2mφ
((φ′)2 +m2

φφ
2) � 1

2
mφm

2
P . (1.168)

For example, for mφ = 1015 GeV this amounts to the huge number density of
nφ ∼ 1095 cm−3.

Independent of the detailed form of the potential, to lowest order, φ is a harmonic
oscillator with frequency m2

φ � W,φφ(φ0) (as long as the quadratic term in the
potential does not vanish). For a harmonic oscillator, when averaging over one
period we have

〈W 〉 = 1

2a2
〈φ̇2〉,

so that

〈pφ〉 =
〈

1

2a2
φ̇2 −W

〉
= 0, and hence 〈ρφ〉 ∝ a−3.

We assume that during these oscillations, the coupling of φ to other degrees of
freedom becomes relevant and the inflaton finally decays into a mix of elementary
particles. In a first approximation we can describe the coupling with the other
degrees of freedom by means of a term of dissipation of the form �φ̇ in the equation
of motion for φ,

φ′′ + 3Hφ′ + �φ′ = −W,φ(φ). (1.169)

As long as H � � (during inflation), particle production is negligible. When
H � �, reheating takes place and the inflaton energy is rapidly dissipated into
other particles that couple to the inflaton.

In order to discuss the decay of the inflaton in somewhat more detail, we consider
a toy model in which the interaction is dominated by the coupling of φ to a scalar
field χ with Lagrangian

Lχ = −1

2
∂μχ ∂

μχ − 1

2
m2
χχ

2. (1.170)
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1.5 Inflation 53

The interaction between the inflaton φ and the matter field χ is supposed to be of
the form

Lint = −1

2
gφχ2, (1.171)

where g is a coupling constant with the dimension of mass. The full Lagrangian is
then given by

L = Lφ + Lint + Lχ . (1.172)

The decay rate of the φ particles in Born approximation is

�φ ∼ g2

mφ
.

However, inserting this into Eq. (1.169) is a good approximation only as long as the
mean number of χ particles already present in a given momentum mode k is small
so that we may neglect stimulated emission. The effective mass of χ -particles is

meff =
√
m2
χ + gφ(t) so that their momentum is

k =
(
m2
φ

4
−m2

eff

)1/2

.

Here we have taken into account that each inflaton decays into two χ -particles.
Now, φ(t) ∈ [−mP,mP ]. Hence, if m2

φ � m2
χ + gmP , the band of possible

momenta is given by k ∈ [k0 −�k,k0 +�k] with

k0 =
√
m2
φ

4
−m2

χ �
mφ

2
and �k � gmP

mφ
� k0.

Because �k � k0 this situation is called “narrow band preheating.” As we shall
see in the text that follows, this process leads to resonant amplification.

The number of χ -particles with momentum k is roughly given by the total num-
ber of χ -particles divided by the number of “elementary phase space volumes,”
(2π)3, in the allowed volume of phase space, 4πk2

0(2�k). This yields

Nk � 4π2nχ

gmφmP
� 2π2mPnχ

gnφ
.

For the second� sign we made use of Eq. (1.168). This occupation number exceeds
unity as soon as a fraction g/mP of φ-particles is converted into χ -particles. After
that moment, stimulated emission can no longer be neglected and Eq. (1.169)
becomes a bad approximation. Since g/mP typically is very small, this is usually
the case very soon. As we shall now see, when this happens, stimulated emission
leads to resonant production of χ -particles in certain k-bands.
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54 The Homogeneous and Isotropic Universe

To calculate the generation of χ -particles in more detail we vary the Lagrangian
with respect to χ to obtain the χ -equation of motion,

χ ′′ + 3Hχ ′ − a−2∇2χ + (m2
χ + gφ0 cos(mφτ))χ = 0.

To study qualitatively the decay of the φ-particles into χ , we neglect expansion
by setting H = 0, a = 1 and φ0 = constant. Fourier transforming the above
equation, we then obtain for the mode χk

χ ′′k +
[
ω2
k + 2μ cos(mφτ)

]
χk = 0, μ = gφ0

2
, ω2

k = k2 +m2
χ .

This equation is known as the Mathieu equation. Its solutions are characterized by
resonance bands of widths �ω(n)k centered at the frequencies

ω
(n)
k = n

2
mφ .

The widths are of the order of

�ω
(n)
k

ω
(n)
k

�
(

2μ

ω
(n)2
k

)n
= �k

(n)

k(n)
�

(
4gmP
n2m2

φ

)n
∝

( g

n2

)n
.

For frequencies within these bands, χk is amplified exponentially fast (for more
details on the Mathieu equation and resonant amplification, see Arnold, 1978).
Since the width of the nth resonance is proportional to gn, it appears only at
nth order in perturbation theory. For small couplings only the first resonance
ω
(1)
k = mφ/2 with �ω(1)k = �k is relevant.
When we take into account the expansion of the Universe, the frequency ωk

becomes time dependent. A given frequency therefore spends only a finite time
in the resonance band and the energy transfer from φ into χ remains perfectly
finite. Nevertheless, this parametric resonance is much more efficient than the decay
obtained by some effective damping rate �.

After parametric resonance, χ is not yet in a thermal state. This period is there-
fore called “preheating.” After preheating, the coupling of χ to other degrees of
freedom leads to thermalization; this process is called reheating. The importance of
preheating lies in its efficiency in transferring energy. If the χ -field couples strongly
to the standard-model particles, reheating and thermalization can proceed much
faster over resonant decay than over the necessarily weak average coupling of the
inflaton to other particles.

If the condition m2
φ > m

2
χ + gφ(t) is not satisfied, �ω(1)k = �k is not small and

we have “broad-band” resonance. In this case, the effective mass of the χ -particles
can be larger than the mass of the φ-particles and only the coherent decay of several
inflatons can lead to χ -production. For a discussion of the main physical processes
in this case see Mukhanov (2005). One of the most interesting consequences of
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broad-band resonance is that it can lead to the production of particles that are
heavier than the inflaton.

Changing the coupling to Lint = − 1
2 g̃φ

2χ2 does not affect the generic behavior
of preheating. We can again obtain a Mathieu equation but with resonant frequency
ω(n) = nmφ and width �ω(n)/ω(n) = (2g̃φ2

0/ω
(n)2)n; see Exercise 1.11. Due to the

Pauli exclusion principle, couplings of the inflaton to fermions cannot give raise
to parametric resonance. The details of the reheating process and the temperature
at the end of reheating depend on the particle physics model describing the cou-
pling of φ and χ to other particles, especially to the standard model particles. The
reheating temperature can go from 1 TeV < T < 1013 GeV.

1.5.4 Resolution of the “Cosmological Problems”

At the end of the reheating process, τ = τrh, all the energy is supposed to be ther-
malized and the Universe is dominated by relativistic particles, satisfying P = ρ/3
such that

ρ ∝ a−4.

To determine the duration of inflation necessary in order to solve the horizon prob-
lem, we consider the entropy, SH , contained in a volume that corresponds to one
Hubble scale, H−1

i , at the beginning of inflation. Since expansion is adiabatic
after inflation, the entropy inside a given physical volume remains constant. The
requirement that the present Hubble scale, H−1

0 , be smaller than the size of the
causal horizon is therefore equivalent to SH > SH0 , where SH0 denotes the entropy
inside the volume H−3

0 . The entropy inside a causal volume, H−3
i (a/ai)

3, is given
by its value

SH � H−3
i

(
arh

ai

)3

T 3
rh,

after reheating. The Hubble parameter at the beginning of inflation is

H 2
i �

8π

3m2
P

W(φi),

so that

SH � H−3
i

(
af

ai

)3 (
arh

af

)3

T 3
rh �

m3
P

W
3/2
i

e3Ntot
ρf

Trh
.

For the last � sign we have assumed that the Universe was roughly matter domi-
nated from the end of inflation until the end of reheating, ρ ∝ a−3 and ρrh ∼ T 4

rh.
With ρf ∼ Wf , this yields
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SH � m3
PWf

TrhW
3/2
i

e3Ntot .

In order to solve the entropy problem, we require that this entropy is at least as
large at the entropy in the present Hubble horizon, SH > SH0 � T 3

0 H
−3
0 � 1088.

This now results in

Ntot ≥ Nmin = 88

3
ln(10)+ ln

(
T

1/3
rh W

1/2
i

mPW
1/3
f

)
. (1.173)

For example, in a model withW = 1
2m

2
φφ

2, we have large-field inflation that stops
roughly when φ = φf � mP so thatWf = 1

2(mφmP )
2 andWi = 1

2(mφφi)
2. Hence

Nmin = 88

3
ln(10)+ 1

3
ln

(
Trhmφ

m2
P

)
+ ln

(
φi

mP

)
.

If Ntot ≥ Nmin the horizon problem is also solved. Indeed, since the entropy inside
a comoving volume is conserved after inflation, the present volume of radius H−1

0

has grown out of a radius that was smaller than H−1
i at the beginning of inflation,

and therefore was already in causal contact before the beginning of inflation.
To solve the flatness problem we must enlarge the curvature scale to RK(τ0) ≥

H−1
0 . This is equivalent to SK(τ0) ≥ SH(τ0) � 1088. With

R3
K(τrh) = R3

K(τi)

(
af

ai

)3

= H−3
i

|�i − 1|3/2
(
af

ai

)3

,

this leads to

Ntot ≥ Nmin + 1

2
log |�i − 1|. (1.174)

Comparing Nmin with Eq. (1.166), we find that successful inflation with a simple
1
2m

2
φφ

2 potential requires φi >∼ a few times mP . After an inflationary period that is
sufficiently long, so that the conditions (1.173) and (1.174) are satisfied, both the
horizon and flatness problems are resolved. During such an inflationary phase also
all unwanted relics are diluted by a factor of exp(3Ntot).

Finally, it is important to note that we do not require a perfectly homogeneous
and isotropic universe, or even thermal equilibrium prior to inflation. We just need a
small “patch” in an otherwise arbitrary, chaotic, universe, within which the gradient
and kinetic energy are much smaller than the potential energy, so that the slow roll
conditions are satisfied. This patch then inflates to encompass the entire present
Hubble volume. This idea of “chaotic inflation” goes back to Linde (1989) and it is
of course much more satisfactory than a model in which the Universe has to start
out with homogeneous and isotropic spatial sections before inflation.
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When discussing inflation, one of the most mysterious problems of gravity
becomes apparent: while adding a constant to the potential W of the scalar field
does not affect any of the other interactions, it severely alters gravity. It modifies
cosmic expansion in the same way as adding a cosmological constant. What
determines the correct level of a potential? This question is equivalent to the
problem of the cosmological constant. Why is the present cosmological constant
so small, �/(8πG) � (2× 10−3 eV)4, much smaller than any fundamental energy
scale? The problem is even more serious when we remember that in quantum
field theory we use the freedom to add or subtract a constant from the potential
by absorbing the infinite zero-point energy into it. Furthermore, at each phase
transition this zero-point energy changes by a finite, calculable amount. Before
the discovery of the accelerated expansion of the Universe, which is most simply
interpreted as a cosmological constant, �/(8πG) � (2 × 10−3 eV)4 
= 0, it was
justifiable to assume that the freedom of the cosmological constant has to be used
in order to annihilate any vacuum energy contribution from quantum field theory,
so that the effective cosmological constant would vanish,�eff = �+8πGW0 = 0.
Present observations, however, indicate that this compensation takes place only
approximately, leaving a small but nonvanishing effective cosmological constant,
�eff 
= 0, which starts to dominate the expansion of the Universe just at present
time, when there are sufficiently developed intelligent beings in the Universe that
wonder about it. In all the cosmic past, this cosmological constant was completely
negligible, and in all the cosmic future, it will be the only relevant contribution
to expansion. Only at present it is comparable with the mean mass density of
the Universe. Apart from the bizarre value of �eff, we thus also have a strange
coincidence problem.

This is presently one of the deepest problems of physics. Ordinary quantum
field theory does not determine the vacuum energy of quantum fields, but only
changes that may happen depending on the external conditions. We may hope that
a quantum theory of gravity addresses the cosmological constant problem. The
cosmological constant may even represent our first observational data related to
quantum gravity.

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

1.1 Coordinates
Find the coordinate transformation leading from the coordinates used in
Eq. (1.9) to those of Eq. (1.10) and finally of Eq. (1.8).
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1.2 FL universes are conformally flat
Show that FL universes are conformally flat (also when the curvature does
not vanish) and find the coordinate transformation (τ,r)→ (σ,ρ) such that

−dτ 2 + a2(τ )γij dx
i dxj = A2(σ,ρ)ημν dX

μ dXν, (1.175)

with σ = X0 and ρ2 = ∑3
i=1(X

i)2.

1.3 Matter and radiation mixture
Consider an FL universe containing a mixture of nonrelativistic matter
(dust) and radiation with vanishing curvature. The respective densities and
pressures are ρm, ρr , and Pm = 0, Pr = ρr/3. We denote the ratio of
radiation to matter by R = ρr/ρm.

(a) Determine w and c2
s as functions of R. What is the time dependence

of R?
(b) For a given redshift zeq � 1 of matter and radiation equality determine

the scale factor as a function of conformal and of physical time;
normalize the scale factor to 1 at equality, aeq = 1.

(c) Determine teq and τeq as functions of zeq, and H0.

1.4 Cosmological constant∗

Investigate the dynamics of an FL universe with matter (P = 0) and a
cosmological constant �.

(1) Show for a sufficiently small cosmological constant and positive
curvature that the Universe recollapses in a “big crunch,” while for
a larger cosmological constant or nonpositive curvature, the Universe
expands forever.

(b) Show furthermore that for an even higher cosmological constant there
are solutions that have no big bang in the past, but issue from a previous
contracting phase. The transition from the contracting to an expanding
phase is called the “bounce.”

(c) Make a plot in the plane (�m,��) distinguishing the regimes deter-
mined earlier.

(d) For case (b), determine (numerically) the redshift of the bounce as a
function of �� for fixed �m = 0.1. Discuss.

1.5 Helium recombination
Write the Saha equation Eq. (1.73) for the two helium recombination
processes and use it to determine the helium recombination temperatures,
T2→1 and T1→0.
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Hint: As a simplifying assumption neglect the fact that helium uses up
some of the electrons and simply set ne � nB .

1.6 Rayleigh scattering
The Rayleigh scattering cross section for an atom is σRa � α2/λ4, where
α is the polarizability and λ the photon wavelength. For hydrogen atoms
α � 3.8×10−24cm3. Show that after recombination the Rayleigh scattering
rate of CMB photons on hydrogen atoms is much smaller than the
expansion rate H .

1.7 Distribution functions
Show that in the nonrelativistic limit,m� T both, the Fermi–Dirac and the
Bose–Einstein distributions reduce to a Maxwell–Boltzmann distribution
and the number and energy density are given by

n = 2

(2π)3
exp(−(m− μ)/T )(2πmT )3/2, ρ = mn, (1.176)

where μ is the chemical potential.

1.8 Liouville equation
Using that, in an FL universe the distribution function f depends only on
(conformal) time t and p = √

γijpipj , derive Eq. (1.88).

1.9 The neutrino background
Determine the neutrino cross section for the reaction e− + ν̄ → e− + ν̄
at energy Eν = Tν(t0). Compare it with the cross section of the neutrinos
detected in the super-Kamiokande experiment. Keeping the efficiency of
super-Kamiokande, how large a water tank would you need to detect
neutrinos from the cosmic background?

1.10 Angular diameter distance
Determine the angular diameter distance to the last scattering surface under
the assumptions K = � = 0. Under which angle do we presently see the
causal horizon of this time, a(trec)trec ? How does this result change if one
admits a cosmological constant so that �m = 0.3 and �� = 0.7?

1.11 Resonant amplification
Consider an inflaton coupled to a scalar field with Lχ = − 1

2 ∂μχ ∂
μχ − 1

2
m2
χχ

2 and Lint = − 1
2 g̃φ

2χ2. Consider the equation of motion of χ in the
classical background solution φ(t) = φ0 cos(mφτ). Neglect the cosmic
expansion. Show that the equation for each Fourier mode can be written as
a Mathieu equation and discuss the resonance frequencies and widths.
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