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Abstract

Given a mixed Hodge module N and a meromorphic function f on a complex manifold, we
associate to these data a filtration (the irregular Hodge filtration) on the exponentially twisted
holonomic module N ® &/, which extends the construction of Esnault et al. (E;-degeneration
of the irregular Hodge filtration (with an appendix by Saito), J. reine angew. Math. (2015),
doi:10.1515/crelle-2014-0118). We show the strictness of the push-forward filtered %-module
through any projective morphism 7 : X — Y, by using the theory of mixed twistor Z-modules
of Mochizuki. We consider the example of the rescaling of a regular function f, which leads to an
expression of the irregular Hodge filtration of the Laplace transform of the Gauss—Manin systems
of f in terms of the Harder—Narasimhan filtration of the Kontsevich bundles associated with f.

2010 Mathematics Subject Classification: 14F40, 32535, 32540

1. Introduction

1.1. The irregular Hodge filtration. The category of mixed Hodge modules
on complex manifolds, as constructed by Saito [33], is endowed with the standard
operations (push-forward by projective morphisms, pull-back by holomorphic
maps, duality, etc.). In particular, the structure of the Hodge filtration in this
category is well behaved through these operations. For a meromorphic function f
on a complex manifold X, holomorphic on the complement U of a divisor D
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of X, and for a mixed Hodge module with underlying filtered Zy-module
(N, E.N), we will define an ‘irregular Hodge filtration’, which is a filtration on the
exponentially twisted holonomic Zx-module N ® €/, where &/ denotes the O-
module O (xD) equipped with the twisted integrable connection d + d f, which
we regard as a left holonomic Zx-module. We note that, although N is known to
have regular singularities, N® &/ has irregular singularities along the components
of the divisor D where f takes the value co, and hence cannot underlie a mixed
Hodge module. Therefore, the irregular Hodge filtration we define on N ® &7,
generalizing the definition of Deligne [7], and then [9, 30, 35], cannot be the
Hodge filtration of a mixed Hodge module in the sense of [33]. There is an
algebraic variant of this setting, where we assume that f is a rational function
on a complex smooth variety X.

REMARK 1.1. Such a filtration has been constructed in [9] in the following cases.

(a) f extends as a morphism X — P!, D is a normal crossing divisor, and the
filtered Zx-module (N, F,N) is equal to (Ox(xD), F,Ox(xD)), where the
filtration is given by the order of the pole [4]. In such a setting, the filtration
was denoted F,(E/ (xH)), where H is the union of the components of D not
in f~1(00).

(b) X =Y x P!, £ is the projection to P!, and (N, F,N) underlies an arbitrary
mixed Hodge module.

DEFINITION 1.2. By a good filtration F, indexed by Q of a Px-module N, we
mean a finite family F, N of good filtrations indexed by Z (as usual, this
is understood with respect to the filtration by the order F,%x, and goodness
means that F,,,N = 0 p < 0 locally on X, and grl,, N is gr” Zy-coherent),
parameterized by « in a finite subset A of [0, 1) N Q, such that F,, ,N C Fg,,N
foralle, B € A and p, g € Z satisfyinga + p < B+ q.

We can thus regard it as a single increasing filtration indexed by Q, such that
FyipN/F_o ,N = 0 for any «, p, except for « in a finite set A of [0, 1) N Q.

For each «, the Rees module Ry, N is the graded module defined as
>, FaipNzP, where z is a new (Laurent) polynomial variable. Then we set
Ry, N := @,.4 Rr, ., N. We can then regard a (usual) good filtration indexed
by Z as a good filtration indexed by Q.

THEOREM 1.3. Let f be a meromorphic function on X, holomorphic on U =
X~\D, where D is a divisor in X. For each filtered holonomic %x-module
(N, EXN) underlying a mixed Hodge module one can define canonically and
functorially a good F,Zx-filtration F™(N ® &) indexed by Q which satisfies
the following properties.
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(1) Through the canonical isomorphism (N ® &7),; = Ny, we have
F"N® &)y = FNy.

(2) For each morphism ¢ : (N1, FN;) — (N,, F.N,) underlying a morphism
of mixed Hodge modules, the corresponding morphism

QD'f (N ® €&, Ffrr(Nl ®e) — N8, F.m(Nz ® &)
is strictly filtered.

(3) For each a € [0, 1), the push-forward m. (N ® &/, F;'i_(N ® &7)) by any
projective morphism w : X — Y is strict.

@4) Let m : X — Y be a projective morphism and let h be a meromorphic
function on Y, holomorphic on V. = Y~ Dy for some divisor Dy in Y.
Assume that Dy = w~'(Dy) is a divisor, and set U = 7~ (V) and
f = h o m. Then the cohomology of the filtered complex m,(N ® &/,
F™(N ® &7)), which is strict by (3), satisfies

%jﬂ+RFirr(N® Ef) == RFirr[(%jﬂ_FN) ® Eh]

(5) In cases 1.1(a) and 1.1(b) above, the filtration F™ coincides with the
filtration FP? constructed in [9].

The proof of the theorem is given in Section 5.1; it relies much on the theory
of mixed twistor Z-modules of Mochizuki [19]. This theory allows one to
simplify and generalize some of the arguments given in [9], by giving a general
framework to treat, from the Hodge point of view, irregular Z-modules like /.
By specializing (3) to the case where Y is a point, we obtain the following.

COROLLARY 1.4. For (N, F,N) underlying a mixed Hodge module on a smooth
projective variety X, the spectral sequence attached to the hypercohomology
of the filtered de Rham complex Fa‘t‘;{ DR(N ® &) degenerates at E, for each
a €[0,1). O

REMARK 1.5. The assumption that D := X\ U is a divisor is not mandatory, but
it simplifies the statement. In general, higher cohomology modules supported on
XU may appear for N ® &/.

1.2. Rescaling a function. Case 1.1(a) is essentially the only case where we
can give an explicit expression for Ff“Ef(*H ) (see [9], according to 1.3(5)).
Recall that we consider a smooth complex projective variety X together with
a morphism f: X — P'. We set Py = f '(00) and P = f*(c0). We also
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introduce a supplementary divisor H (which could be empty) having no common
components with Py, and we assume that D := P4 U H has normal crossings.
We set U = X~.D. We will also consider X as a complex projective manifold
equipped with its analytic topology, which we will denote X*" when the context
is not clear.

Our main example in this article, which we consider in Part II, is that of
the rescaling of the function f : X — P'. The rescaled function with rescaling
parameter v is the function vf : U x C, — C, defined by (x, v) +— vf(x). This
function does not extend as a morphism to X x P! — P!

We consider the projective line P! covered by two charts C, and C,
whose intersection is denoted by C?, and we regard vf as a rational function
vf : X x P! - -——P'. We are therefore in the situation in the beginning of the
previous subsection, with underlying space X := X x P} and reduced pole divisor
Pred = (Prea X IP’}J) U (X x 00), where oo € ]P’}J denotes the point # = 0. We will
alsoset P = (P x P') + (X x {o0}), H = H x P!, and D = P, U H.

We denote by €7/ (xH) the Oy, pi-module Oy pi (D) equipped with the
connection d + d(vf) (on the open set X x C,) and d + d(f/u) (on the open set
X x C,). We denote its restriction to the corresponding open subsets by &/ (xH)
and &//"(xH), respectively. According to Theorem 1.3, it is equipped with an
irregular Hodge filtration. We make it partly explicit in Theorem 9.1 (only partly,
because around u = 0 we only make explicit its restriction to the Brieskorn lattice;
see Section 9.2).

1.3. Variation of the irregular Hodge filtration and the Kontsevich bundles.
Regarding now v € C* as a parameter and considering the push-forward by ¢ :
X x P! — P! of the rescaling €@/ (xJ(), our aim is to describe the variation
with v of the irregular Hodge filtration F_i“H"(U, (£2;,,d 4+ vdf)) considered in
[9], and its limiting behaviour when v — 0 or v — o0.

The irregular Hodge filtration is conveniently computed with the Kontsevich
complex. Recall that Kontsevich has associated to f : X — P! as in Section 1.2
and to k > 0 the subsheaf .Q’; of 2% (log D) consisting of logarithmic k-forms @
such that d f A w remains a logarithmic (k + 1)-form, a condition which only
depends on the restriction of w to a neighbourhood of the reduced pole divisor
Prea = f'(00). For each a € [0, 1), let us denote by [« P] the divisor supported
on P,y with multiplicity [ce;] on the component P; of P := f*(co) with
multiplicity e;. One can also define a subsheaf 2 () of 2 (log D)([aP]) by
the condition that d f A w is a section of .Qf(“(log D)([aP]), so that the case
a = 0 is that considered by Kontsevich. Clearly, only those « such that «we; € Z
for some i are relevant. If f is the constant map, then .Q;i = 2% (log D). One of
the main results of [9], suggested and proved by Kontsevich when P = Py, is
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the equality, for each k,

dim H*(U, (2;,,d+df)) = Y dim H'(X, 27()).

pt+q=k

More precisely, for each pair (u,v) € C? and each a € [0, 1) one can form
a complex (Q}(a), ud + vdf), and it is shown that the dimension of the
hypercohomology H*(X, (§2%(cr), ud + vdf)) is independent of (u,v) € C?
and «, and is equal to the above value. The irregular Hodge numbers are then
defined as

hP9(f) =dim HY(X, Q]‘f(oz)). (1.6)

We have h29(f) #Oonlyif p,g > 0and p+q < 2dim X. (See Remark 8.20(3)
for the mirror symmetry motivations related to the irregular Hodge filtration.) If f
is the constant map, we recover the results of Deligne [4, 5]:
dim H"(U, C) = dim H" (U, (£2;,, d)) = dim H* (X, (225 (log D), d))
= Z dim HY (X, 2% (log D)).

p+a=k

The Hodge numbers reduce here to h7¢(X, D) = dim H4 (X, £25(log D)).
Following the suggestion of Kontsevich, let us define the Kontsevich
bundles J*(a) on P!. We set

H (@) = H (X, (2}()[v], d +vdf)),

Hf (@) = H* (X, (2} (@)[u], ud +df)). 47

Using the isomorphism C[u, u~'] —> C[v, v~'] given by u — v~', we have a
natural quasi-isomorphism

u' s (25 @)[v, v d+vdf) — (@)l u'] ud +df) (1.8)

induced by the multiplication by u#” on the pth term of the first complex. Since
we know by the above-mentioned results that both modules Jifv" (), ,%/u" (o) are
free over their respective ring C[v] or C[u], the identification

H' ) : HY(X, (25 (@)[v, v'], d+vd f)) ~ HY(X, (25 (@)[u, u™"], ud+df))

allows us to glue these modules as a bundle .#*(a) on P!. The E,-degeneration
property can be expressed by the injectivity

H (X, 07 (2}(@)v]. d+ vdf)) < H*(X, (2 @Iv].d +vdf)),

1.
H'(X, 07" (23 ()[u], ud +df)) —> H'(X, (2}()[u], ud + df)), (19
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where o 2" denotes the stupid truncation. Since this truncation is compatible with
the gluing ", this defines a filtration 027 % *(a). When restricted to C?, this
produces the family Fi™? H*(U, (£2;,, d + vd f)).

We also notice that the pth graded bundle is then isomorphic to O ( p)hg‘k_')(f ),
so this filtration is the Harder—Narasimhan filtration F*.#*(«), and the Birkhoff—
Grothendieck decomposition of J#* () reads

k ep
H @) ~ @ On(p)s "D, (1.10)
p=0

In particular, all slopes of .#*(ct) are nonnegative, and we have

k
deg A (@) =Y p-h2*(f).

p=0

We will show (see Lemma 6.2) that each #*(«) is naturally equipped with a
meromorphic connection having a simple pole at v = 0 and a double pole at most
at v = oo. It follows from a remark due to Mochizuki (see Remark 6.3) that the
Harder—Narasimhan filtration satisfies the Griffiths transversality condition with
respect to the connection. This is a concrete description of the variation of the
irregular Hodge filtration (Corollary 6.6).

Our main result concerns the limiting behaviour of the variation of the irregular
Hodge filtration when v — 0, expressed in this model.

THEOREM 1.11.

(1) The meromorphic connection V on % *(a) has a logarithmic pole at v = 0,
and the eigenvalues of its residue Res,_q V belong to [—a, —a + 1) N Q.

(2) On each generalized eigenspace of Res,—oV the nilpotent part of the
residue strictly shifts by —1 the filtration naturally induced by the Harder—
Narasimhan filtration.

The proof of Theorem 1.11, which is sketched in Section 6, does not
remain however in the realm of Kontsevich bundles. It is obtained through
an identification of the Kontsevich bundles with the bundles .7#*(«) obtained
from the push-forward Z-modules 7% of £V (xH() (see Section 1.2) by the
projection ¢ : X x P} — P}. Recall that JZ* := R*q, DRy p1/p1 € ()
is a holonomic Zp; module for each k. It is equipped with its 1rregu1ar Hodge
filtration Fir 7% obtained by push-forward, according to Theorem 1.3(3). We
define the bundles .7#* («) by using this filtration, and the main comparison tools
with the Kontsevich bundles " («) are provided by Theorems 6.4 and 6.5.
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1.4. Motivations and open questions. We have already discussed in [9,
Introduction] the motivation coming from estimating p-adic eigenvalues of
Frobenius (Deligne) and that coming from mirror symmetry (Kontsevich). We
list below some more related questions and possible applications for further
investigations.

Numerical invariants of mixed twistor 9-modules. The theory of mixed twistor
2-modules, as developed by Mochizuki [19], is the convenient framework to treat
wild Hodge theory. However, this theory produces very few numerical invariants
having a Hodge flavor (like Hodge numbers, degrees of Hodge bundles, etc.).
The irregular Hodge filtration, when it does exist, is intended to provide such
invariants. Let us emphasize that, contrary to classical Hodge theory, the irregular
Hodge filtration is only a by-product of the mixed twistor structure, but is not
constitutive of its definition.

Is there a suitable well-behaved category of wild Hodge Z-modules with
a forgetful functor to the category of mixed twistor Z-modules? What about
the expected functorial and degeneration properties? The exponentially twisted
Hodge modules should give rise to an object in such a category. Moreover,
following the definition due to Simpson of systems of Hodge bundles, we can
expect that the objects in this suitable category should carry an internal symmetry
(a C*-action in the case of tame twistor Z-modules). A possible approach to this
question would be to search for the desired category as the category of integrable
mixed twistor Z-modules endowed with supplementary structures on the object
obtained by rescaling the twistor variable.

Analogies with Hodge theory. Going further in the direction of Hodge theory,
one may wonder whether the irregular Hodge filtration, when it exists, shares
similar properties with the usual Hodge filtration on mixed Hodge modules. For
example, for a morphism f : X — P!, the Yx-module &/ underlies a pure
integrable twistor Z-module (see Proposition 3.3(2)) and is equipped with an
irregular Hodge filtration (see Theorem 1.3 with N = (0%, d)). Letw : X — Y be
a projective morphism. According to the decomposition theorem for pure twistor
2-modules [18], the push-forward 7, &/ decomposes, together with its twistor
structure, into a direct sum of possibly shifted simple holonomic Z-modules.
One can wonder whether the analogues of Kollar’s conjectures (proved by Saito
[34]) hold for the irregular Hodge filtration of €.

Also the consideration of the limiting behaviour, in the sense of Schmid, of
the irregular Hodge filtration raises interesting questions. We treat the case of a
tame degeneration (the case of €/ when v — 0) in Section 7, but the case of
a nontame degeneration (like # — 0 in Section 8) remains unclear in general.
We expect that the good behaviour (by definition) of the mixed twistor modules
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by taking irregular nearby cycles along a holomorphic function should lead to
specific limiting properties for the irregular Hodge filtration, when it exists.

Extended motivic-exponential 2-modules. Recall that, following [1, 6.2.4], one
defines the notion of a simple regular holonomic Z-module of geometric origin
on a smooth complex algebraic variety X if it appears as a simple subquotient
in a regular holonomic Zx-module obtained by using only standard geometric
functors starting from the case where the variety is a point. In particular, such
a simple regular holonomic Zx-module is a simple summand of a regular
holonomic Z-module underlying a polarizable Q-Hodge module of some weight,
as defined by Saito [32, 33]. It therefore underlies a simple complex polarizable
Hodge module. In other words, there exists an irreducible algebraic closed
subvariety Z C X, a Zariski smooth open set Z° C Z, and an irreducible local
system on Z°, underlying a polarizable complex variation of Hodge structure
(see [6]), such that this regular holonomic Zx-module corresponds, via the
inverse Riemann—Hilbert correspondence, to the intermediate extension of this
local system by the inclusion Z° < X. In particular, it comes equipped with
a good filtration (that induced by the polarizable Q-Hodge module), and the
corresponding filtered Z-module is a direct summand of the filtered Z-module
underlying the polarizable Q-Hodge module.

Kontsevich [14] has defined the category of motivic-exponential Z-modules by
adding the twist by &/ for any rational function f to the standard permissible
operations on regular holonomic Z-modules of geometric origin on algebraic
varieties. By [19], any such motivic-exponential Z-module underlies a pure wild
twistor Z-module (see [18]).

There is also the category of extended motivic-exponential &-modules, by
authorizing extensions of such objects, but we will not consider it here.

One can expect that any motivic-exponential Z-module on a complex algebraic
variety is endowed with a canonical irregular Hodge filtration, and that this
filtration has a good behaviour with respect to the various permissible functors
(the six operations of Grothendieck, the nearby and vanishing cycles along a
function, and the twist by some €/). Theorem 1.3 is a step towards this expected
result.

REMARK 1.12 (Hodge filtration in presence of very irregular singularities).

The holonomic Zy-modules one obtains as %7, (N ® /) when 7 is
any projective morphism may have irregular singularities that are much more
complicated than an exponential twist of a regular singularity. For example, if ¥
is a disc, it is shown in [21] that any formal meromorphic connection at 0 € Y
can be produced as the formalization at the origin of a connection obtained by the
procedure of Theorem 1.3(3) for some suitable N on X = Y x P'. However,
these %y-modules come equipped with a good filtration F, 7% n, (N ® &/)
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obtained by pushing forward F'™(N ® &/). If Y is projective and if for example
A (N®ET) = 0 except for k = k, then, according to Corollary 1.4, we obtain
the degeneration at £, of the spectral sequence attached to the hypercohomology
of the filtered de Rham complex F, DR 7% m, (N ® &/). Examples of this kind
can be obtained by the procedure of [21] with arbitrary complicated irregular
singularities.

PART L. IRREGULAR HODGE FILTRATION AND TWIST BY &/
2. Exponentially regular holonomic Z-modules

2.1. The graph construction. We refer to the expository book [11] or the
expository article [16] for basic properties of regular holonomic Z-modules.

Let X be a complex manifold, and let P,y be a reduced divisor in X. We set
U = X\ P,y Let f be a meromorphic function on X which is holomorphic
on U whose pole divisor P is exactly supported by P4, that is, f takes
the value oo generically on each irreducible component of P,.4. By definition,
locally analytically on P4, the function f can be written as the quotient of
two holomorphic functions with no common factor, such that the zero divisor
may intersect P.4 in codimension two in X at most. There exists a proper
modification w : X’ — X with X’ smooth, which is an isomorphism over U,
and a holomorphic map f’ : X" — P}, such that f ,, = f o 7jz-1@w). The
pole divisor P’ of f’ satisfies P, C w~ '(P.q) =: D', and the inclusion may be
strict. Leti; : U < U x C, denote the graph inclusion of f. The closure U ; of
Uy :=i;(U)in X x PP} is a closed analytic set of codimension one, equal to the
projection by the proper modification 7 x Id : X’ x P} — X x P} of the graph
i #(X"). The projection p : X x P} — X induces a proper modification Uf - X,
and the pull-back of U in ﬁf maps isomorphically to U. In particular, we have
(X xo0)NU £ C (Prea X IP") nU 7. We summarize this in the following diagram.

lf
X — i (X)—— X' xP

ﬂl T xldl T xldl

X U ——X x 7
J ! J @.1)
U—— Uf U x(C
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Let N be a holonomic Zx-module. We assume that N is equal to its localization
N(* Preq) (if not, replace N with N(x P,4), which is also a holonomic Zx-module,
by a theorem of Kashiwara). The localized pull-back N := 7 *N(*D") consists of
a single holonomic Zx.,-module. We then recover N as the push-forward 7, N' =
27 N’ (see for example [31, Proposition 8.13]).

Let us set M’ = iy N'. Then M' = M'(x(D’ x P!)), and, since SuppM' N
(X' x 00) C (D' x P}, we also have M' = M/ (x[(D’ x P) U (X’ x 00)]). We
clearly have N' = p/, M’ = J#°p/, M.

We set M = (7 x Id) M’ = 7 (7w x Id),M'. Then

M =M®(P x P))) = M*[(P x P)) U (X x 00)]),

and N = p, M = #°p, M. We notice that M does not depend on the choice
of  : X’ — X. We will use the notation M = i;gN, for which we still have
P+ife = 1d; this coincides with i ;. N if f extends from X to P! (that is, if we
can take 7 = Id, so that /' = f).

LEMMA 2.2. If N is regular holonomic, so is M = i;gN.
Proof. Indeed, N’ is then regular; hence M’ is also, and then M too. O

REMARK 2.3 (The graph construction for mixed Hodge modules). Let us now
start with a filtered Zx-module (N, F,N) underlying a mixed Hodge module [33].
We still assume that N = N(x P.q) (if this is not the case, we use the localization
functor in the category of mixed Hodge modules to fulfil the assumption). The
construction of Section 2.1 can be done for mixed Hodge modules, by using the
corresponding functors in the category of mixed Hodge modules. We therefore
get a mixed Hodge module (M, F,M) on X X ]P’,1 such that p, (M, F.M) =
H0p, (M, FM)=(N, FN). If f extends as a morphism X — P!, then
M, FM) =iz (N, FN).

2.2. Exponential twist of holonomic Z-modules. The differential df of
the function f : U — C, extends as a meromorphic 1-form on X with poles
along P.q. We denote by &/ the free Oy (* Py.q)-module of rank one equipped
with the connection d+d f. For N as in Section 2.1 (in particular, N = N(x Prq)),
we consider the holonomic Zx-module N ® ¢, 7.

LEMMA 2.4. For M = i;oN, we have M ® &' >~ i ;o (N ® &7).

This implies that N ® &/ ~ p, M ® &) = 7 p, (M ® &").
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Proof. Assume first that f extends as a map X — P!. We will work in the chart
centred at oo in P!, with coordinate ¢, and we will set g = (¢’ o f)~!, so that
f1(o0) = g7'(0). We denote by e!/¢ the generator of £/¢. We have

i (N®EV®) = @(N REVE @8t — g)
with its standard P ,c,-module structure. There exists thus a unique Ox[d,]-
linear isomorphism i ;. (N ® €'/¢) —> M ® £/ induced by
(n®e) @' —g) > M@ —g) ®e''".
In other words, for each k,
(n®e) @38t —g) > [n @3 —g) @]

By using the same argument as in the proof of [9, (1.6.5)], one shows that this
isomorphism is Py ,pi-linear.
Let us now consider the general case. By definition,

itaN®EN) = ( xId)yip  [rTN®E)D].
One then checks that
atTIN® &NED) = @tN)xD)YR & =N @&,

S0 iy [TTIN® &M (xD)] = M ® & by the argument above. Then, because
&' =(r xId)*te&', we have (7 x I[N), MR EN =M &". O

2.3. Exponentially regular holonomic Z-modules.

LEMMA 2.5. Assume that M is any regular holonomic Dy ,pi1-module. Then
the push-forward p,(M ® E') has holonomic cohomology, and it satisfies
A p, (M@ E) =0fork #0.

Proof. The first statement follows from the holonomicity of M ® E'. We can
assume that M = M(x00). Let us set M = p,M. Then M is a regular holonomic
Dx[t1(9,)-module, and p, (M ® E£') is the complex

O—>MM>M—>O,

where the . indicates the term in degree zero. Set K = # 'p, (M ® &) =

ker(d, + 1). It is Yx-holonomic, and the Zx-linear inclusion K < M extends as
anatural Px[t1(9,)-linear morphism K [f{]® E~" — M. Itis clear that K[t]® E~’
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is purely irregular along t = oo (this is easily seen on the generic part of the
support of K); hence, since M is regular, this image is zero, so K = 0. O

DEFINITION 2.6. We say that a holonomic Zx-module N, is exponentially
regular if there exists a regular holonomic Zy,pi-module M such that Ny, =~

HOp, (M@ E.

PROPOSITION 2.7.

(1) If f is meromorphic on X and holomorphic on U = X~\D, and if
N = N(D) is a regular holonomic Dx-module, then N @ &/ is
exponentially regular.

(2) Letw : X — Y be a proper morphism, and let Ny, be exponentially regular
on X. Then, for each j, 7677, Nex, is exponentially regular on Y .

Proof. The first point follows from Lemmas 2.2 and 2.4. For the second point,
set Neyp = A p (M @ &) with M regular on X x P'. We have, according to
Lemma 2.5,

AT Newy = A7 ( APy (M EN) = A (4 px MR EN)
= (py+(m x 1d),(M® &).

Now, (7 x Id), (M ® &) = (7. M) ® &', with 7, M having regular holonomic
cohomology. We thus have 7% py 7/ (m x Id)y(M ® &) = 0 for k # 0
according to Lemma 2.5; hence

H (PY,+(7T X Id)y M ® 8’)) = %OPY,+«%‘0j(7T xId),M® &
= py (AT, M) ® &), O

3. The mixed twistor Z-module attached to £/

If f is a rational function on X with pole divisor P, the twist of a holonomic
9Px-module by &/ consists first in localizing this module along P4 and then
in adding d f to its connection. The main property used is that the localization
functor on holonomic Zx-modules preserves coherence (and hence holonomy).

For a filtered holonomic Zx-module, the stupid localization functor (Pyg),
which consists in localizing both the module and its filtration, does not preserve
coherence since the localization of a coherent &’x-module does not remain O -
coherent. In the theory of mixed Hodge modules, there is a localization functor
which extends the one at the level of regular holonomic Z-modules. We will now
consider the case of % 4--modules and mixed twistor Z-modules, in order to treat
the Laplace transform of mixed Hodge modules.
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We keep the analytic setting of Section 2.1. Recall the following notation used
in the theory of twistor Z-modules (see [17, 18, 25]). For a complex manifold X,
we denote by 2" the product X x C, of X with the complex line having
coordinate z. The ring Z 4 is the analytification of the Rees ring

RF@X = @ Fk@){zk
keN
attached to the ring of differential operators equipped with its standard
filtration by the order. It is locally expressed as Oy (0, ..., 0y,),
where 0,, := z0,,.

The smooth case. We denote by (E”J/ * the #4,-module O equipped with the
z-connection zd 4+ df. By using the same argument as in [24, Section 2.2],
one checks that é"J/ ° underlies a smooth twistor Z-module; equivalently, it
corresponds to a harmonic metric on the flat bundle (&, d + df). It follows that
é”,f/ * underlies a polarized variation of smooth twistor structure of weight zero,
equivalently a pure polarized smooth twistor Z-module.

The stupid localization. Similarly, writing for short
ﬁ%'(*Pred) = ﬁ%(*(Pred X (Cz))a

we consider @ g (xPyg) - €//7 := (09 (xPyq), zd + df), where we denote the
global section 1 of &4 (*P.q) by e//*. This is a coherent % - ( P,.q)-module
(however, it is not necessarily Z 4--coherent). Note also that there is a natural
action of z%9., by setting z29.(e//?) := —f - e//* in 09 (% Pyq). This action
commutes with that of the z-connection. We say that (& g (¢ Peq), zd + df) is
integrable (see [25, Ch. 7]).

LEMMA 3.1. Assume that f : U — C extends as a holomorphic map f :
X — P'. Then O g (% Peq) - €77 is B 9 -coherent.

Proof. The question is local near a point of P4 and, up to shrinking X, we
may assume that f = 1/g for some holomorphic function g : X — C. Then
O o (%Prq) - €/* = O 9 (%{g = 0})e!/%*. If P,,q has normal crossings, we choose
local coordinates such that g = x¢, and the relation x¢3,,e"/** = (—e; /x;)e!/*
gives the coherence. If P.q is arbitrary, let 7 : X' — X be a projective
modification over a neighbourhood of the point of Py we consider, such that
7171 (Pyeq) has normal crossings. Set g’ = g o 7. Then

7 (O (+{g' = 0}e'/7)
= c%ﬂoju(ﬁgg/(*{g’ = 0})e]/g/z) =Oqa(x{g = 0})el/gz’
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since it can be seen that g is invertible on J#°m, (04 (x{g’ = 0})e'/¢?). By the
properness of 7w, 0 o (%{g = 0})e'/4 is then Z 4 -coherent. O

PROPOSITION 3.2. If g : X — C is holomorphic, O o (x{g = 0})e'/%* underlies
a pure wild twistor 9-module of weight zero.

As a consequence, the same property holds for &g ( Pyg) - €//%if f : U — C
extends as f : X — Pl

Proof of Proposition 3.2. This is essentially obvious from the theory of
Mochizuki [18], but we will make the argument precise. First, one can reduce to
the case where ¢ = 0 has normal crossings, since pure wild twistor Z-modules of
weight zero are stable by 7w, if 7 is a projective morphism. Here we take 7
as in the proof of Lemma 3.1.

Set now U = {g # 0} C X. Let ('fg",g, h) be the trivial bundle with its
standard holomorphic structure, equipped with its standard metric for which
h(1,1) = 1. Consider it as a harmonic Higgs bundle on U with holomorphic
Higgs field 8 = d(1/g). Since g is a monomial (in local coordinates), this
produces a nonramified good wild harmonic bundle on X, in the sense of
[18, Definition 7.1.7].

For a fixed z (denoted by A in [18]), denote by E* the holomorphic bundle
(65, 3+ zd(1/g)). The extension PE* defined in [18, Not. 7.4.1] is nothing but
Ox - exp(z/g — z/g). Together with its natural connection, it is isomorphic to
gU+i/sz (see [18, Example 7.4.1.2]). Since there is no Stokes phenomenon in
rank one, the construction QFE* of [18, Section 11.1] consists only in dividing
the irregular value by 1 + |z|%, so QE* ~ &Y% (first point of [18, Theorem
11.1.2]). Now, £'/# is the canonical prolongation of (4, d,d(1/g),h) as a
coherent Z o--module. It is also equal to the % 4--module denoted by € in [18]
(see Section 12.3.2). Then one concludes by using [18, Proposition 19.2.1]. [

The twistor localization. Let H be a divisor in X, locally defined by a
holomorphic function /4, and let .4#” be a coherent % o- (x H)-module. According
to [19, Definition 3.3.1], one says that .4” is twistor specializable along H if
there exists a coherent %4 --submodule .4 [*H] C .4 such that, considering
locally the graph inclusion i, : X — Y := X x C with the coordinate # on C,

e the coherent Za (x{t = 0})-module i), ;. is strictly specializable along r = 0,
in the sense of [25, Section 3.4.a],

o i, (N [xH]) is equal to the coherent o -submodule of i;, ./ generated
by the V| term of the V-filtration (with the convention taken in this article),
denoted by (i), A [xt].
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If A [xH] exists locally, it is unique, and hence exists globally. The category
MTM™ is introduced in [19, Section 7.2], and the results of [19] imply the
following.

PROPOSITION 3.3. Let f be any meromorphic function on X with pole divisor P.

(1) The coherent R g (% Prea)-module O g (% Prog) - €7/ is twistor specializable
along Pi.q and defines O o (% Preg) - €77 [% Proq] =: é‘;{/z.

(2) Moreover, é‘}{/z underlies an object of MTM™ (X) extending the object of
MTM™(U) that é"Uf/Z underlies.

(3) If f extends as a morphism f : X — P!, then EYF = O (%Prg) -¢'/%, and
the object of MTM™ (X) it underlies is pure of weight zero.

(4) Let H be any divisor in X. Then é[’ }{,/ “(xH) is twistor specializable al_ong H,
and the corresponding object &} [« H| underlies an object of MTM™(X).

Proof. Let us start with (3). Let g be a local equation of P,.4. Then
i+ (O ($Pod) - €'/5) = (ig+ O (+Pra)) ® /"7,
and [29, Proposition 2.2.5] shows that the V7 -filtration is constant. Therefore,
ig 1 (O (4 Prea) - /%) [#'] = iy 1 (O o (% Prea) - €'/%%),

and thus @ g (% Pg) - €//3[% Preq] = O 9 (% Pry) - €//%, as wanted. The remaining
assertion in (3) is then given by Proposition 3.2.

Let us prove (1) and (2). If f does not extend as a morphism X — P!,
letwr : X’ — X be asin (2.1). Set D' = P, ; U H'. Then, according to [19,
Proposition 11.2.1], gxf,//z[*H’] underlies an object of MTM™(X"). According to
[19, Proposition 11.2.6], its push-forward ,%ﬂomrc%{,// ‘[*H'] underlies an object
of MTM™(X). We also have éo){,//z[*H/] = (O9(xD’) - e/'*)[%D’], and we can
apply [19, Lemma 3.3.17] (because we work with objects of MTM(X")) to deduce
that

HOm ELxH) = AOm (O (xD') - %)% Prgl.
On the other hand, we have J#°m, (O (xD') - e/'%) = O (%Prq) - /%
Therefore the latter Z - (% P.eq)-module is twistor specializable along P4, and
we have é”){/z = %0n+5£;//z[*H’]. This concludes the proof of (1) and (2).
Last, (4) follows from [19, Proposition 11.2.1]. O

The Laplace twist. Let f : U — C be as above, and let T be a new variable.
We now consider the function tf : U x C, — C as a meromorphic function
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on X x C,. Proposition 3.3 implies that & ;’;/(ér exists and underlies an object of

MTM™(X x C,). In Section 9 we will also have to consider another variable v
and the object &5"/* of MTM™(X x C, x C,).

PROPOSITION 3.4. If f : U — C extends as a morphism f : X — P!, then
g)?:(/(ér = ﬁ%x(ﬁ, (*Pred) eIz,

Proof. The question is local near P,y and, using the notation as above, we have
to prove that @“’;/Xg(ér = Oy vc,(%Peq) - €7/%. Equivalently, we should prove that
the V"' -filtration of (ig+ O xc,)(x{t' = 0}) - e”/"% is constant. This is obtained
through the equation 8(t' — g) @ /"% = 1'9,8(t' — g) ® e”/"~. O

4. Strictness for exponentially twisted regular holonomic Z-modules

We will first prove a particular case of Theorem 1.3. Let p : X x P! — X
denote the projection, and let ¢ be the coordinate on the affine line C = P!\ {c0}.
Recall that, for (M, F,M) underlying a mixed Hodge module on X x P!, we
have constructed in [9, Section 3.1] a filtration FP!(M ® &) indexed by Q
(see Definition 1.2 for the corresponding Rees construction).

THEOREM 4.1. For (M, F,M) underlying a mixed Hodge module, the complex
P+ Rppa (M ® &) is strict and has nonzero cohomology in degree zero at most.

In the case where X is a point, this is the statement of [30, Theorem 6.1]. If
(M, EM) = i;+ (N, F.N) for some morphism f : X — P' and some (N, F,N)
underlying a mixed Hodge module on X, one can adapt the proof given in [9,
Proposition 1.6.9] for N = & (xD), where D is a normal crossing divisor, and
f~'(0c0) C D, but this case is not enough for our purposes. The proof that we
give below uses the full strength of the theory of mixed twistor Z-modules of
Mochizuki [19].

Proof of Theorem 4.1. We first note that the second assertion in the theorem (that
is, the vanishing of .7/ for j # 0) follows from the strictness assertion together
with Lemma 2.5. So let us consider the strictness assertion.

We refer to [9, Sections 2 & 3] for the notation and results we use here. Given
the filtered Py, pi-module (M, F,M) underlying a mixed Hodge module, we
associate to it the Rees module .#Z := RyM = P o F »M - zP, which is a graded
Ry Dy pi-module. Its analytification .#*" (with respect to the z-variable) is part
of the data defining an integrable mixed twistor Zy,pi-module, according to
[19, Proposition 12.5.4].
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Let us consider the graded Ry Yy pi-module Rpoa(M @ E'). Our aim is to
prove the strictness (that is, the absence of z-torsion) of the push-forward modules
7 py Rppa (M ® E"). Forgetting the grading, Rpoa (M ® ') can be obtained by
using an explicit expression of the V-filtration as in [9, Proposition 3.1.2]. It is
enough to check the strictness property on the corresponding analytic object, by
flatness. Now, the analytification (Rpoa (M & £'))*™ can be obtained by using the
analytic V-filtration, by making analytic the formula of [9, Proposition 3.1.2].
We then use that the V-filtration behaves well by push-forward for mixed twistor
2-modules, according to results of [19]. This is the main argument for proving
Theorem 4.1. "

Let us denote by .# the (stupidly) localized module .# (x00) and by 7/
the (not graded) (Ry Py )[1t](3;)-module .#Z[t] ® &'7/*. By Proposition 3.4,
this is also .Z[r] ® &'7/%. Similarly, (7)™ denotes its analytification with
respect to both 7 and z. We can use Proposition 3.3 together with [19,
Proposition 11.3.4] to ensure that (7#)™ underlies an integrable mixed twistor
2-module.

Let p : X x P' x C, - X x C, denote the projection. Then p,7#™
is strict, each ¢/ p 7™ is strictly specializable along T = 0, and the V°-
filtration satisfies V7577 p Z#™ = 7 p.(VZZ#™). Indeed, these properties
are satisfied according to the main results of [19].

We will now adapt the proof given in [9, Section 3.2], which needs a
supplementary argument, since we cannot argue with (3.2.2) in [9].

According to [9, Proposition 3.1.2], we have a long exact sequence

e > %ijrV;%an i)%jp+vg%an
= p(Rppa(M @ N — ...

that we can thus rewrite as

i VI p T LA VAT p U™
— T p (RppaM® EN™ — - . (42)

Let us first check that T — z is injective on each %/ p, 7/ ™. In the case
considered in [9, Section 3.2], we could use (3.2.2) of [9], and when X is reduced
to a point, the argument in [30] uses the solution to a Birkhoff problem given
by Saito. We do not know how to extend the argument of [30] to the case when
dimX > 1.

LEMMA 4.3. Let Y be a complex manifold, and let ™ be an Za -module which
underlies a mixed twistor 9-module in the sense of [19]. Let h be a holomorphic
function on Y. Then the action of h — z is injective on A",
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Proof. Since a mixed twistor Z-module is in particular an object of the category
MTW(Y) (see [19, Sections 7.1.1 & 7.2.1]), a simple extension argument with
respect to the weight filtration allows us to reduce to the case where .4"*" underlies
a pure wild twistor Z-module (as defined in [18]). Since the question is local
on Y, we fix some y, € Y and work locally near y,.

Assume first that ./ underlies a smooth pure twistor Z-module. Then it is a
locally free & -module with z-connection, and the injectivity of 4 — z is clear.

In general, we know that 4" has a decomposition by the strict support
(see [25, Section 3.5], [18, Section 22.3.4], [29, Section 1.4]), and we can
therefore assume that, near y,, .4 has strict support a germ of an irreducible
closed analytic subset Z C Y at y,. On a dense open set Z° of the smooth
part of Z, according to Kashiwara’s equivalence for pure twistor Z-modules
(see [18, 29]), we are reduced to the smooth case considered above, and the
injectivity holds. Therefore, ker[(h — z) : A ™ — _4#"*"] is supported on a proper
closed analytic subset Z’ of Z in the neighbourhood of y,. Let F,.4"" be a good
filtration of 4™ as an (Rr%y)™-module (which exists since we work locally
on Y). Then, for each k, ker[(h — z) : Fp V™ — FA™]is a coherent Oy ¢ -
submodule of .4 supported on Z'. The (RyZy)™-submodule that it generates
is a coherent (Ry Zy)*-submodule of 4" supported on Z’'. It is therefore zero
since ./ has strict support equal to Z. Since this holds for any k, we conclude
that ker[(h — ) : A — A = 0. O

Since 7 p Z/#/* underlies a mixed twistor Z-module, we infer from Lemma
4.3 that T — z is injective on each 77 p, 7™ . We conclude that the long exact
sequence (4.2) splits into short exact sequences, and therefore 72/ p_ (R ppa M)
is identified with V? 57 p 2™ /(v — 2) VI p 2/ ™ for each j. Proving that
the later module is strict is a local question, near points with coordinates (t, z) in
the neighbourhood of (z,, z,) with 7, = z,.

(1) If , = z, = 0, we use that VI #7 p, T4 ™ |t VI A p T ™ is strict, due
to the strict specializability of ¢/ p, 7™ along T = 0, and it is enough
to prove that z is injective on V> 57 p, Z#™ /(x — 2)VI A p, T ™. Due
to the strictness above, if a local section m of V[.J¢/ P ™ satisfies
zm = tm’ for some local section m’ of V%" p /™, then there exists
a local section m” of VI poZ#™ such that m = tm”, and since
is injective on V7 p 7™ for a € [0, 1), we have m’ = zm”. As a
consequence, if a local section m of V. .72/ T ™ satisfies zm = (t —z)m,
for some local section m, of V.7 57 p, Z//™, then there exists a local section
m" of VXA p. Z#™ such that m + m; = tm” and m, = zm”; hence m =
(t — z)m”, which gives the desired injectivity.

(2) We now assume that 7, = z, # 0. Near such a point, we have
VIAT p U™ = A p, TH™. Let us remark, however, that the V -filtration
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of 7™ along t — 1, = 0 satisfies

07

Z,
YT Fyan _ A for
k 0

k >
NG =)™ fork <
according to [27, Proposition 4.1(iii)]. Applying the push-forward
argument as above, we conclude that the V-filtration of ¢/ p_ 74 along

T — 1, = 0 satisfies the same property. Therefore, setting t" = 7 — <,
and 77 = z — z,, we are reduced to proving the injectivity of 7' on
VI p W™ (v — )V A py ™. We can then use the same
argument as we used for the case when 7, = 0. O

5. The irregular Hodge filtration

In this section, we come back to the setup of Theorem 1.3. Let f be a
meromorphic function on X with pole divisor P, and let (N, F,N) be a filtered
Px-module underlying a mixed Hodge module such that N = N(*P.q). Let
(M, F.M) be the mixed Hodge module on X x P! associated to (N, F,N) by
the construction of Remark 2.3. We know by Theorem 4.1 that the complex
Px,+Rppa (M ® E') is strict and has cohomology in degree zero at most; hence
Hpx Rppa(M ® &) is equal to the Rees module of N ® &/ with respect to
some good filtration, which we precisely define as FI"(N ® £7).

DEFINITION 5.1. The filtration F'™(N ® &) is the filtration obtained by push-
forward from FP'(M ® &).

5.1. Proof of Theorem 1.3.

(1) This is clear since it already holds for FP(M ® &").

(2) Because the category of mixed Hodge modules is abelian, we have an exact
sequence of filtered Z-modules underlying mixed Hodge modules,

0 — (No, F.Ng) — (N1, FNy) RN (N2, FN;) —> (N3, F.N3) — 0,

which gives rise to an exact sequence of filtered Z-modules underlying mixed
Hodge modules,

0= Mo, EMo) —> My, EM)) —2 (Mo, FMy) — (M, EM3) — 0,

and therefore, according to [9, Theorem 3.0.1(2)], to an exact sequence of filtered
2-modules:

0— My®E,FP) — M, @&, F*) — M, ® &, FP)
— Mz ® &', FP — 0.
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Applying 7°p. , we keep an exact sequence, according to the second statement
in Theorem 4.1.
(3) We consider the following diagram:

Id
XXIP”M>YXIP’1
le lpy

X%Y

We thus have
Ty Ren(N® 1) > (0 px)  Rrpa (M ® ') = (py o (1 x 1d)) 1 Rppa (M @ E).

On the other hand, according to [9, Proposition 3.2.3], (7 x Id); Rppa (M ® E') is
strict, and, for each j,

A (7t x 1d) 4 Rppa M @ E') = Rppa (H7 (m x 1d),. M) ® €.

Applying now Theorem 4.1 to 7/ (m x 1d), (M, F,M), we obtain the assertion.
(4) This point is similar to [9, Proposition 3.2.3].
(5) Case 1.1(a) follows from [9, Proposition 1.6.12]. Let us show case 1.1(b). If
i : P! < P! x P! denotes the diagonal inclusion 7 + (¢,7) and p : P! x P! — P!
denotes the projection (and similarly after taking the product with X), we have an
isomorphism

M@ E = Hp, (i,(M® &) = A p, (M) ® E*).
We claim that, for each o € [0, 1),

Fr" M®E)=FXM®E. (5.2)

a+e

It is enough to check that

(M@ EFXIM®EN) = (M &, Fr((i:MeE)), (53

o+e o+e

and this is nonobvious in the charts ' = 1/¢ and s’ = 1/s. Letusset§ = §(s'—t').
Let us first recall that, by definition,

iM=PM® s,
k>0
F,i,M)=@ F, . M ®35s

k>0
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(the shift by one comes from the left-to-right transformation on Rz Z-modules),
and, concerning the V -filtration, one checks that

VIGM) =@V M ks =) aks" (VM ® ).
k>0 >0
On the other hand, we have
Fp (0 @)
=5 (F,(i, M) NV (@ M) @'+ Fo, (M) @ EVY),
i (FROUeE")
= FY, (M @E") @8+ [i (Fr U ee’) ]
We will prove (5.3) by induction on p. Let p, be such that F,,, _,M’ = 0. We have
F2 (M) @ &) = 5"~ (F,, (M) NV (i M) @ e
=5 (Fpm M NV, M) @ $@e')
= (" (FpaMNVIM) @) ® 8
i+(FDel (M/ ® El/l/))

a+e

Po”

Let us first show by induction on p that

i (FRLOU®EV) C F2E (M) ® &),

a+p
It is thus enough to check that
FDel I(M/ ® 81/[’) ® ) c FDel ((Z+M/) ® 81/5/).

a+p— o+p

We have
F2 @Yy =t (F,u M N VIM) @e!" + 0, (Fe, (M @ V).

o+ a+

Then, on the one hand, by induction,

8,/(FD€] (M/ ® El/t/)) ® 5

a+p—2
C (R SO @ £Y)) @8] + 3, [(F2%, W @ £)) 5]
= 0 F, (M) @ €7) + 00 F, (6. M0) ® E17)

C FDel ((Z+M/) ® 81/3/).

a+p

On the other hand, [t''(F,_ ;M N V/M') ® e"/"] ® § is the degree-zero (with
respect to §) term in F ¢ (i, M) ® evshy,
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Let us now prove by induction on p the reverse inclusion

F2 (M) @ EVY) C iy (FRA M ® el/f’))p.

a+p
It is enough to prove that
ST F @M NV M) @ Ciy (RO @ E)
The left-hand side reads
D ST (FpejmM N VM) @ 3)8) @ e

=0

p’

=D 5T E M NV M) @ @By +57 @e)
j=0

=3 5 @+ 5V [((FpjuM NV, M) @) @8]
j=0

Writing dy(m ® §) = m Q 0y = —m ® 9,8 = (dym) ® 6 — 3, (m @ §), we obtain
ST+ 5 [((Fpeye M NV M) @) ® 5]

J
c Y a;,([z’*la;‘l(Fp_j_lM’ NV M) ®e ® 3),
i=0

and, since i (F> (M’ ® €'/")) is an F-filtration, it is enough to check that

[l‘/_lat];_i(Fp,j,]M/ N Va,le)] ® el/[’ Q8 C l+(Fo]?f£(M/ ® 81/[/))p7i.
Considering the term of degree zero with respect to 9,8 in the right-hand side, it

is thus enough to check that
1718 (Fpj MU N Vo M) C 17 (F,i M N V).

Now, the assertion is clear. O

REMARK 5.4. Let f : X — P! be a morphism, and let (N, F,N) underlie a
mixed Hodge module. It follows from 1.3(4) and (5) that i, (N ® &/, F'™) =
M ® &', FP), if we set as above (M, M) = i s (N, F.N).

5.2. The irregular Hodge filtration in terms of V. With the notation as
in the beginning of this section, we consider the pull-back module N[z] by the
projection r : X x C, — X, and the corresponding Rees object Rz N[t] =: 4[],
where 4" := RyN. Denote by .4 the analytification of ./, and by r*.4"*" that
of A [t]. We twist r+.4"™ by &7//% to obtain the object 724", which underlies
an object of MTM™ (X x C,), according to Propositions 3.3 and 3.4, and to [19,
Proposition 11.3.4 & 12.5.4].
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PROPOSITION 5.5. We have Rpin(N ® EN)™ = VI(TLN)/(x — )V (TN).

Proof. We associate to the mixed Hodge module (N, F,N) the mixed Hodge
module (M, F,M) as in Remark 2.3 (from which we keep the notation). It follows
from (5.2) and [9, Proposition 3.1.2] that the result holds for (M, F,M) on X x P!
and for f equal to the projection to P! (note that it holds without taking ‘an’).
Applying the same argument as in the proof of Theorem 4.1, we conclude that the
operation V! /(t —z) V[ commutes with 7% p_.. On the other hand, by definition,
and according to (5.2), the operation R is compatible with 7 p.,. Therefore,
the result holds for (N, F,N). O

REMARK 5.6. As a consequence, one can recover the graded module
Rer(N ® &’y from V7 (7LY) in the following way. As an Ox[z]-module,
we have an inclusion Rpix(N'® €/) C N[z, z7'], and Rpir(N ® E/) is obtained
from Rpm(N ® &)™ as the graded module with respect to the filtration on
Rpin(N ® €7)™ induced by the z-adic filtration of 04 ®,() N[z, z”']. By the
proposition above, it is thus enough to identify the inclusion as & o--modules

VTN )/ (t =) VI(TN) C Op ¢y Nlz, 271 (5.6%)

By using the strict specializability of 724" along T = 0, one checks as in [9, Proof
of Proposition 3.1.2] that (t — z) VX (ZLA) = VI (TN N (x — 2)7LA, so that

VI (x — ) VITN) C TN [ (x — )TN .
Let us set (recall that N = N (% Preq))
N = (REN) (5 Preg) = @ F,N(xPe)z” C NIz, 271,
P

N = Oy @oyg N C O ®oyn Nz, 27'1.
As an O g yc,-module we have AN = r*c/Va“, and thus as an & o-module we
have 7L/ /(t — 7)7iV = A", This gives the desired inclusion (5.6%).
PART II. THE CASE OF A RESCALED MEROMORPHIC FUNCTION
6. Kontsevich bundles via Z-modules

In Part II, we use the setting and notation of Section 1.2. It will also be
convenient to work algebraically with respect to P!, in which case we will
consider the Zx[v](9d,)-module E¥ (xH) := Ox(xD)[v]-e* and the Dx[u](d,)-
module Ef*(xH) := Ox (xD)[u, u~']-e//*, where e/ and e//* are other notations
for 1 which make clear the twist of the connection.
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6.1. The Laplace Gauss—Manin bundles 7*(a). The bundles JZ*(«) on
P! will be obtained by gluing bundles on C, and on C,, which we describe below.

Over the chart C,. Let us denote by J* the restriction of J#* (see Section 1.3)
to the v-chart. This is nothing but the Laplace transform of the (k — dim X)th
Gauss—Manin system of f. It is known to have a regular singularity at v = 0
and no other singularity at finite distance (as follows by push-forward from
the arguments recalled in Section 7.2, or by a general result about Laplace
transformation of regular holonomic Z-modules in one variable). Moreover, 7
is equipped with the push-forward filtration FI™.72* by O, -coherent subsheaves,
in a strict way according to Theorem 1.3. On C; we obtain in such a way a
flat bundle (%ﬂ o> V) equipped with a filtration F, ‘”ffé* indexed by Q, which
satisfies the Grlfﬁths transversality condition with respect to V (see Section 7.6;
see also Remark 6.3). This is the variation with respect to v of the irregular Hodge
filtration of H*(X, DR &Y (xH)).

We consider the limiting filtration (in the sense of Schmid) when v — 0. For
a € [0, 1), let us denote by V,7* the ath term of the Kashiwara—Malgrange
filtration of % at v = 0. Equivalently, due to the regularity property of the
connection at v = 0, V,5* is the Deligne extension of %f . on which V has a
simple pole with residue Resv _o V having eigenvalues in [—a, —a + 1). We set

gr;/ jiik Ve f%ik/v@ﬁ%ik
THEOREM 6.1. Foreach o € [0, 1),
(1) the jumps B € Q of the induced filtration
Fr0% NV, 5k
Firg0k N\ V_o 7k

Flrr gr %k

belong to a + Z,

(2) on each generalized eigenspace of Res,—o V acting on Vy HX |vVy K, the
nilpotent part of the residue strictly shifts by one the filtration naturally
induced by F™V, 7",

Our proof in Section 7.9 is obtained by showing (Proposition 7.19) that the
conditions needed for applying Saito’s criterion [32, Proposition 3.3.17] are
fulfilled. More precisely, we will work with a filtration F,E% (%) that is easy
to define, and we postpone to Section 9 the proof that this is indeed the irregular
Hodge filtration of £/ (x3(). It would also be possible, as observed by Mochizuki
[20], to directly refer to a similar property for twistor Z-modules.

Over the chart C,. Let us now consider the chart C,. We denote by jﬂ’;" the
restriction of #* to this chart. If j : C, . {0} — C, denotes the open
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inclusion, we have JZ = j /(.. There is a natural O,-lattice Gy of
the free O, [u~']-module 7%, called the Brieskorn lattice, in analogy with the
construction of Brieskorn in singularity theory [3]. It can be defined in terms of
the Hodge filtration of the Gauss—Manin system attached to f (see the appendix).
It can also be defined (see Section 8.4) as the push-forward by ¢ in a suitable
sense of an Oy, (¥Preq)-module Go&//"(xH) equipped with a u-connection
ud 4+ df : Go&//"(xH) - Go&//"(xH) ® 2} and with a compatible action of
u?9,.

The connection on .7 has a pole of order at most two at u = O when restricted
to Go/* (see Remark 8.14). In the context of Px[u](d,)-modules, &//*(xH)
corresponds to E//“(xH) = Ox(xD)[u, u='le//".

Gluing. We can then glue Go. 7 with V,.7* and obtain an Opi-bundle 7% ()
with a connection having a pole of order one at v = 0 and of order two at u = 0.

6.2. The Kontsevich bundles 7 *(a). We now consider the Kontsevich
bundles introduced in Section 1.3. We can endow them with a natural
meromorphic connection having a pole of order one at v = 0 and of order
two at most at v = 0o, and no other pole.

In order to do so, we start by considering the morphism of complexes

ud, — f: (.Q}(oz)[u], ud + df) — (.Q}(oz + D[u], ud + df).
(This was suggested to us by Mochizuki.)
LEMMA 6.2. For o € [0, 1), the natural inclusion of complexes
(2;(@)[ul, ud +df) —> (2](a + Dlul, ud +df)
is a quasi-isomorphism.

This lemma allows us to define an action of u*d, on each #*(a)c,, and
therefore a meromorphic connection V on .#*(a) with a pole of order at most
two at u = 0. We will show that V has at most a simple pole at v = 0.

REMARK 6.3 (Due to Mochizuki). Let .7 be a vector bundle on P! equipped
with a connection V having a simple pole at v = 0 and a double pole (at most)
at v = 0o. Then the Harder-Narasimhan filtration F*.7Z satisfies the Griffiths
transversality property with respect to V.

Indeed, the property is obviously true with respect to the connection d on .77
coming from d on each summand in a Birkhoff-Grothendieck decomposition.
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We are thus reduced to proving a similar property for the ¢-linear morphism
V —d, and the result follows by noticing that

(AJFP ) @ 2L (v = 0} + 2{u = 0))
has slopes < p, while F” ¢ has slopes > p.

Proof of Lemma 6.2. We will show that the quotient complex has zero
cohomology. From [9, Proposition 1.4.2] we know that the inclusion of complexes

(£25(c), df) — (23(a+1),df)

is a quasi-isomorphism, and thus the quotient complex (Z2°,df) has zero
cohomology. Let w = ZI;:() w;u’/ be a local section of 2”[u] such that

(ud + df)(w) = 0. Thend f A w, = 0, and therefore there exists n, € 27! such
that w = d f A ny. By replacing o with w — (ud 4 d f)n, and iterating the process,
we can assume that o = au* and, dividing by u*, that € 27. It satisfies then
do =0and df Aw = 0,50 w = df A n for some n € 27!, and therefore
df A dn = 0. For any representative 7] € .Q}’_l (o + 1), we obtain

df Adif e 27 () C 25" (log D)([a P)).
On the other hand, we note that
20 @+ 1) = df A 25 (og D)([P)) + 27 (log D)([a P)),

so we can assume that 7 € £27"' (log D)([a P]). Then dij € 2% (log D)([e P)),
and therefore d7] € .Q]’f (a); thatis,dn = 0,s0 w = (ud +d f)n. O

Proof of Theorem 1.11. We will compare the filtered complex
07" (2} ()], d+ vdf)

with the filtered relative de Rham complex of &% (x3() with respect to the
projection to C,. We introduce in Section 7.3 a filtration F;E”f (*H), which will
be shown to coincide with F™* €% (x3{) in Theorem 9.1.

THEOREM 6.4 (See Section 7.7, modulo Theorem 9.1). There is a natural quasi-
isomorphism of filtered complexes

(Oxxc, @yt 27(@[v], d+vdf, 077) — (DRyc,/c, Vol (xH), F)"7)

which is compatible with the meromorphic action of V.
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It follows from (1.9) that applying Rg, to the filtered complex on the right-hand
side gives a strict complex (that is, we have a similar injectivity statement).

We apply R’g, to the quasi-isomorphism of Theorem 6.4. The nonfiltered
statement gives the first point of Theorem 1.11, since V,, is compatible with proper
push-forward. The second point is then obtained by applying the second point of
Theorem 6.1. O

In a way similar to Theorem 6.4, but algebraically with respect to u, we
introduce in Section 8.2 a filtration F(;GOSf M (xH), which will be shown to
coincide with F™*G,&//*(xH) in Theorem 9.1, and we prove the following.

THEOREM 6.5 (See Section 8.3, modulo Theorem 9.1). There is a natural quasi-
isomorphism of filtered complexes

(Q}(Ol)[u], ud + df, O’>p) — (DRy GoEf/“ (xH), F(;i[mp)

which is compatible with the action of V,,.

As above, it follows from (1.9) that applying Rg, to the filtered complex on the
right-hand side gives a strict complex.

By applying a degeneration statement similar to that of [32, Proposition 3.3.17]
proved in the appendix, we obtain a concrete description of the irregular Hodge
filtration of 7.

COROLLARY 6.6. The isomorphism ¢ * (o) —> *(a) obtained by pushing
forward the quasi-isomorphisms of Theorems 6.4 and 6.5 identifies the Harder—
Narasimhan filtration of ' * (&) (and hence of F* () with the image on 7% ()
of the irregular Hodge filtration F™.7¢*.

REMARK 6.7. Another proof of Theorem 1.11 has recently been given by
Mochizuki [20], by showing an analogue of Theorem 6.4 in the framework of
mixed twistor Z-modules, but not referring explicitly to the irregular Hodge
filtration.

7. The Py c,-module E/ (+3)

7.1. Setting. We will use the local setting and notation similar to that of
[9, Section 1.1] that we recall now, together with the notation introduced in
Section 1.2. In the local analytic setting, the space X*" is the product of discs
Al x A™ x A™ with coordinates (x, V) = (X1, e X Vo eeos Yoo Yoo vs Yoo
and we are given a multi-integer e = (e, ..., e;) € (Z-()" for which we set the
following:

¢

L4 f(X, y) =x"‘:= l—[i=1xife,-;
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o g(x,y)=1/f(x,y) =x“
o Poy= {l_[l X =0}, H = {]—[m =0},D=P.qUH.
Set 0 = C{x,y,y'},and ¥ = max, dy, dy) is the ring of linear differential

operators with coefficients in &, together with its standard increasing filtration
F.Z by the total order with respect to d,, dy, 9,

F,9= Y 033,

x Ty Ty
la|+1Bl+IY ISP

where we use the standard multi-index notation with « € N¢, etc. Similarly, we
will denote by &[¢'] the ring of polynomials in ¢’ with coefficients in &, and by
P[t'1(d,/) the corresponding ring of differential operators.

Consider the left Z-modules

O(xPea) = Olx7"), OG+xH)=0Oly™"], O(D)=0Ox"", y™]

with their standard left Z-module structure. They are generated respectively by
/T, xi, 1/ [T}, yj,and 1/ M, x [T}, y; as Z-modules. We will consider
on these Z-modules the increasing filtration F, defined as the action of F,Z on
the generator:

F,0Pe) =Y O -9/ [[_ x) =Y Ox 7",

lal<p la|<p

F,0H) =Y -9/ y)=Y_ Oy
lel<p lel<p

F,0xD)= Y O 9/l x[ly)= Y Ox 'y
lal+lel<p lal+le|<p

so that F}, = 0 for p < 0. These are the ‘filtrations by the order of the pole’ in [4,
(3.12.1) p. 80], taken in an increasing way. Regarding &'(xH) as a Z-submodule
of 0 (xD),wehave F,0(xH) = F,0(*D)N 0 (xH), and similarly for &' (* P.q).
On the other hand, it clearly follows from the formulae above that

F,0(+xD)= Y F,0(xH) FyO(+Pyy),
q+q'<p

where the product is taken in &' (xD).

7.2. The Vfiltration of the Zyc,-module £ = & (%3). On X x C, we
consider the holonomic Py, c,-module that we denote by Y (xH). It is defined
by the formula

&Y (xH) := (Oxxc,(x(D x C,)), d + d(vf)).
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For the sake of simplicity, we will set & = £/ (xJ). Then & has a global section,
equal to 1, which we denote by e/ on X x C,. Similarly, we will consider the
v-algebraic version of the same object, regarded as a Zx[v](d,)-module:

E = EY (+H) := (Ox(+D)[v], d + d(vf)) = Ox(+D)[v] - e”.

It is standard that the Py.c,-module € is holonomic. However, it is not of
exponential type as considered in [9] since vf is only a rational function, but it
is exponentially regular according to Proposition 2.7(1), and hence it enters the
frame considered in Section 2.2. It is however known to have regular singularities
along v = 0 (in a sense made precise in [27]) which has been thoroughly analysed
in [22]. On the other hand, it is easy to check that FOyx,c, (*H)e" generates &
as a Dxc,-module.

Let us recall the definition of the V-filtration (considered increasingly)
along v = 0 over C,. For each o € [0,1) and k € Z, V, € is a coherent
PDx «c, c,-module (by regularity) equipped with an action of vd,, and the minimal
polynomial of vd, on V, €/ V, 1«1 € has roots contained in [—a—k, —a—k+1).
We have, by definition, for k > 1,

k
3'vie  ifa=0,
Vok& =0V, € and V,, &= JX:; v
Vi€ +05V,E ifa € (0, 1).

Since E[v7'] = j N j(;L € is also holonomic, it also has a V-filtration. It satisfies,
forany k € Z,
Vo i (') = V'V, E.

There is also a notion of V-filtration for holonomic Zx[v](d,)-modules, and we
have VaJrkg = ﬁXX(CU R oxv] Va+kE~
LEMMA 7.1 (Description of V,E). Letus fix 8 > 0 and a € [0, 1).
(1) Near a point of (X \ Prq), we have
Vok E = v"™ROE fork e 7.

(2) Near a point of P, in the local setting of Section 7.1, we have

VsE = Z (FoO (% Prea)) B P+ H) 3, ]1x ™ Py (v0,) - €/,

a>0
with (convention: [ [, * = 1)

[Bei] + k>.

€;

L a;
Pos(s):=11T1 (s +
i=1k=1
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Proof. The first point follows from the relation 9,/ = fe*/. The second point
is a reformulation of [22, Lemma 4.9]. O

Foreacha > 0,letusset I(a) ={i |a; =0} C{l,..., £} and x; (o) = (X;)ici(a)-
For A > 0 we also set P, ; (s) = (s + B)" P, g(s). Then, near a point of P4, each
local section of Vi E has a unique decomposition

Z Zha,k,ﬂ(xl(a)’ v,y y’)x_[ﬁe]_lx_apa,x,ﬁ(Uau)evf, (7.2)

a>0 2>0

with hg 5 5 (X1@ys ¥, YY) € Clxia), ¥, ¥}y ~'1. Moreover (see [22]), a section
(7.2) belongs to V_gz E if and only if

(7.3)

A>#i| e €7} if 0,
Va,h >0, he,p#0= }L>E{z|ﬂee }oif B >

+1 if 6 =0.

Let us make explicit the action of C[v] on a section (7.2). For j > 1, we have

v/ g px T PTIX TP, 5 (03,)eY = hg px TP TP, L(0d, — jvidle.
Seta — je = a’ — a”, with a; = max(a; — je;, 0), a = max(je; — a;, 0). The

polynomial

[T (s + (B — el + k/er)

Puspls =) =6+ B = )] i
i =1

is a multiple of Py ¢ 4(s), and there is a polynomial R, ; ; s(s) € Q[s] such that

Pa g0, — V8] = Ras p(03,) Puop(vd) = Y _ €y Parup(vd,)

n=0
with ¢, € Q. We thus obtain

vl - ha,,\'ﬂx*[ﬂelflx*“ Pa,,\,,g(vav)e”f

= Z cﬂxa”ha’)\,ﬂx_w”_lx_a, Pa/’u,ﬂ (vav)e”f, (74)

n=0

and, since I (a’) = {i | a; — je; < 0} D I(a), we obtain the result in the form
of (7.2).

LEMMA 7.5. For any monic polynomial P(s) of degree p, there exists a monic
polynomial Q(s) of degree p such that P(vd,)e” = Q(v/x®)e" in &. O
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Let us then denote by Q,; z(s) the polynomial associated with P, ; g(s) by
Lemma 7.5. We thus have

ViE =) > (FoOx(xPea)) ((BP)(+H)x ™ Qus p(vf) -, (7.6)

a>0 23>0

and we note that deg Q,, s = |a| + A. Moreover, each local section has a unique
decomposition

YD hasrpCras ¥,y XTI TQ, s (0 e (7.7)

az=0 A>0

COROLLARY 7.8. Let us denote by gr'"! V4 E the grading of Vs E with respect to
the degree in v. Then, in a neighbourhood of a point of P4, we have

gl V4 E ~ (F,Ox (+Pea))([(B + p)P1)(xH) - v".

7.3. Thefiltration F,,,E. Although the function vf does not extend as a map

X x C, — P!, we can nevertheless adapt in a natural way the definition given in
[9, (1.6.1) & (1.6.2)] for the case of the map f : X — P!,

DEFINITION 7.9 (The filtration). For a € [0, 1) we set, over C,,

ForpE" = (Z F O (% Preg) ([(¢ + p)P])vk>[v] e,
k<p
FurpE= Y F,0x(xH) ForyEV.

q+q'<p

The analytifications of these filtrations with respect to v are denoted F,;,&" and
Fy+,€, respectively.

LEMMA 7.10. For each a € [0, 1), the filtration F,..E is an F,9x[v]{d,)-
filtration which satisfies the following properties.

(1) Fyyp E C Fgyp,E forall py, pr € Z and B € [0, 1) such that a + p; <
B + p2. Moreover, F ,E =0 for p <0.

(2) When restricted to C;, the filtration F,, ,€ is equal to F, fjlpé’ xxc: as defined
in [9, (1.6.2)] for the map vf : X x C* — P!, and, for each v, € C*, we
have ,

Foyp€/( = v5)Foy € = F5, 8% (xH).
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(3) The filtration F, E satisfies
FaH—pE = Fp-@Xx(Cv - P E;
in particular, it is good with respect to F,Zx[v](d,).
Proof. The exhaustivity is clear from the expression of Definition 7.9, and the first

two points are straightforward. Let us check (3). It is enough to check it locally
analytically on X.

Near a point of X\ Pq. If H = @ and p > 0, we have F,, ,E = Olvle, and
the generation by F, E is clear.
IfH={y; - -y, =0}and p > 0, we have

FyipE = Z y 1 owle”.
lal<p
Since 3¢(y~'O[v]e”) = xy ' O[vle” mod F,y, E if |a| = p, we get the
generation by F, E near such a point.

Near a point of P.y. From the equalities (for some nonzero constants %)
ax[_ (x—([ae]+1) . evf) — *xi—lx—([vte]+1) Lo + *xi—lx—([(a+l)e]+1)v e
3, (xf(laeHl)evf) — o (etDel+) | gof
we conclude that
FiDx[0](3,) - Fu B = (FyO (% Prea) + Fi O (% Preg)v) [v] - xT1F Vel

and by iterating the argument we get the generation property. The corresponding
property for F, ., E is proved similarly. O

We will rely on computations made in [22], and we will first express differently
the filtration F,, ,E. Let us define G, E as the filtration by &’x-modules (but not
O'x[v]-modules), defined as

p "
G,E = @(F,_Ox(xH))(x Preg)V* - €.
k=0

The filtration G, E clearly satisfies

p<0= G,E=0,
qg>20= G,ENVIE =v'G,_,E, (7.11)
p—q<0=G,ENVE =0.
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Fora € [0, 1) and p € Z, we set

Fl ,E:= > (GENV,.,E). (7.12)
k+j<p

Then F,, E is an Ox[v]-module. Note also that F,, E is an F,Zx[v](d,)-

filtration. Indeed, G E is stable by 9/, d,, and we have 9, d,,GE C G E;

moreover, V. ; E is stable by 9., d,, dy/, and we have 9,V ;E C Vyy 1 E.

Recall that, for j > 0, we have by definition V,_;E = v/ V,E, so that, for

k>0, _ ~
vV G ENV,E — Gy ENV, E. (7.13)
Therefore, we can also write
p
F;HE =ClWI(G,ENV,E) + Z(G,,_]E N Voi, E). (7.14)

j=1

It follows that F/, E =0 for p < 0 (and @ € [0, 1)).

a+p
LEMMA 7.15. Foreach o € [0, 1) and p € Z, we have

F,, E = F,.,E.
Proof. Let us first consider an analytic neighbourhood of a point of X\ P4. Due
to the relation d,e*’ = fe*/, we have, near such a point, V., ; E = v™* /0O E for
any j € Z, and G,E = @@}_, FO(xH)v"*e*/. Then, near such a point, (7.14)
reads

F,. ,E = CI(G,ENVE)
= C[v]G,E = F,0(xH)[vle" = F,,,E.
We now argue locally at a point of P.q. We refine (7.2) in order to take into

account the pole order along H, so a section of VgzE can be written in a unique
way as

Z Z Z haerp(X1@)» Yie)s y)x ety maymet Pa,k,ﬁ(vav)evfa (7.16)

a>0 130 ¢>0

with J(¢) = {j | ¢; = 0} and hg s (X1, Yi(e)» Y) € Clxi@), ¥, y'}. Arguing
as in the proof of [22, Lemma 4.11], we obtain that, for 8 > 0, a section (7.16)
belongs to G E N V4 E if and only if the coefficients &, ; s are zero whenever
deg P, p + |c| = |a| + |c|] + A > k (note that this condition clearly defines an
increasing filtration with respect to k).
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We will first show that F, E = FE for « € [0, 1). We have
F.E =C[I(GyENV,E) and F,E = F,0(+D)([aP])[v]e”.

Here we are considering the case k = 0 and B = «. Let us consider a section
(7.16) in GoE NV, E. The only possible term occurs fora = 0, > =0 and ¢ = 0,
s0 GoE NV, E = Fy0(+D)([a P])e* . Therefore,

F,E := Fy0(«*D)([aP])[v]e” = C[v](GoE N V,E) = F.E. (7.17)

Since Fyy,E = F,2[v](d,) - F,E (Lemma 7.10(3)), and since F;WE is an
F.Zx[v]{d,)-filtration, it follows that F,, ,E C Fo;+,;E for all p.

Let us now show the reverse inclusion F,,, ,E C Fy,E. Let us consider a term
in G E N Vypp i E (0 < k < p) of the form

—[Bel-1_.—a  —c—1
h(x[ﬁ(a)a yJ(c)’y,)-x [Ae] X ay ¢ Pa,k,ﬂ(vav)eu'fa

with =a+p—k,a > 0,1+ |a|l+ |c| < k. Let us rewrite P, , g(vd,) in terms
of the monomials v/d/. For j < A + |a| < k — |c|, the result of the action of v/d/

1 —a,,—c—1 :
on h(X1,), Yi(e)s y/)x [pel-1y—ay—c-levf jg
/ 1 — —c—1,.j
h(xlﬁ(a)’ Vi)Y )x [(B+el= “y ‘v Cvf
= h(xlﬁ(a)’ Vi), y/)xfl(aer)eJ 1x7a+(kfj)ey7c71vjevf‘

Fora’ € Z*, letus set |a’|, = >, max(0, |a}]). Since |a|, = |a| < k, the reverse
inclusion follows from the lemma below. O

LEMMA 7.18. For a' € Z' and k > 0, assume that |a'|, < k. Then, for j such
that 0 < j < k, we have |a' — (k — j)e|, < j.

Proof. We argue by decreasing induction on j, and the result is true if j = k by
assumption. We are reduced to proving that, if |a’|, > 1, then |@'—e|, < |a/|+— 1.
There exists i, such thata; > 1, so max(q; ,0) = a; > 1and max(a; —e¢; ,0) <
a; — 1. Since max(a; —e¢; O) < max(a;, 0) ‘for anyz ‘we get |a’ —el+ |a |Jr -1,
as wanted. (|

7.4. Filtration on the nearby cycles of € along v = 0. In this subsection, we
analyse the filtration induced by F,,.E on the nearby cycles of € along v = 0.
Our objective is to show that Saito’s criterion [32, Proposition 3.3.17] applies.

PROPOSITION 7.19.

(1) Foreach a € [0, 1), the filtered module (£ (xH), F,..E (xH)) is strictly
specializable and regular along v = 0, in the sense of [32, (3.2.1)].
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(2) Let V8% (xH) be the V filtration of Y (xH) along v = 0 and, for each
a € [0, 1), let us set

1pv,exp(72niot)((:Uf(*j{) = gr: (C"Uf(*g_(:) = Vagvf(*g{)/v<a€vf(*g{)~

For each o € [0, 1), the jumps of the induced filtration (considered as a
filtration indexed by QQ)

F, NV, & (%K)
F,N V_o &% (xH)

F. wu,exp(72nia) 8vf (*j{) =

occur at o + 7 at most, and the filtration

prugvf(*f}f) = @ Fa—t—va,exp(—Zﬂia)eUf(*g{)

«el0,1)

is (up to a shift by dim X — 1 on ¥, »1&Y and by dim X on v, 1€ ) the
Hodge filtration of a mixed Hodge module.

3) If moreover H = &, this mixed Hodge module is polarized by the nilpotent
part of the monodromy naturally acting on ,&", induced by the action of
exp —2mivad,.

The latter statement means that the weight filtration of the corresponding mixed
Hodge module is, up to a shift which depends on whether « = 0 or @ # O,
the monodromy filtration of the nilpotent endomorphism induced by vd, + o on
wv,exp(—Zﬂia)Evf~

Proof of Proposition 7.19(2) and (3). Itis enough to work in the algebraic setting
with respect to v. Recall that we set E = E*/(xH) for short, and that F’ was
defined by (7.12). Let 8 € [0, 1). We claim that

ClvI(G,ENV,E)+(G,.1ENV4E) if > a,
FO’hLPE NVRE = (7.20)
VCIWI(G,ENVL,E)+(G,ENVRE) ifB <a.

This implies that

Pl E = Gpagy E=F., gy E ifB>a, 721)
a+p B Gp gr/\; E — F/

b, ary E if B <a.
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Let us prove (7.20). We have F‘;erE C VuypE and
Fl,ENVisp E
p—1
= Cv)(GyE NVoyE) + Y (GptE N VarsE) + (GoE N Vi p 1 E)
=1
p—1
= Cv)(G,ENVyE) + Y (GpiEN Vo E),

=1

and by decreasing induction one eventually finds that

F. ENVyE =Cl(G,ENVyE)+ (Gp1ENV, E).

a+p
Intersecting now with VzE gives the first line of (7.20). The second line is
obtained by showing in the same way that

F,, ENV,E=CvI(G,ENV,E)=vCvI(G,ENV,E)+ (G,ENV,E).

a+p

Lemma 7.15, together with (7.21) and [22, Theorem 4.3], proves 7.19(2) and (3).
O

Proof of 7.19(1). Continuing the proof of (7.20) gives, for 8 € [0, 1) and £ > 1,

VICWI(GE N VyE) + (G paent ENVy_E) if B> a,

F()/t+pE N Vﬂ_[E ==

v”lC[v](G,,E NVLE)+ (G, ENVsE) if <o,
which amounts to

V [CWI(G,ENV,E)+ (G,.iENV4E)] if B> a,
Fo/H—pE ﬂ Vﬂ,gE ==

v [vCWI(G,ENV,E)+ (G,ENV4E)] if B <a;
that is, in any case,

F, ,ENVs_E =v(F, ,ENV4E),

a+p

which is [32, (3.2.1.2)] (up to changing the convention for the V-filtration),
since v acts in an injective way on V3 E.

We now wish to prove that [32, Property (3.2.1.3)] holds; that is, for each 8 > 0,
and for each o € [0, 1) and p € Z, the morphism

A 2l 14 / 14
O Fy et E— F, 8, E
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is an isomorphism. Assume first that there exists p, > O such that o 4+ p, < 8 <
o+ p, + 1 (otherwise, 0 < 8 < «, a case which will be treated separately). Then
a computation similar to that for proving (7.20) gives

Po
ClwI(G,ENVLE) +) (GpiENVurE)
=1
F‘O/[erE‘m‘/ﬂE‘:< +(Gp_pﬁ_1EﬂVﬂE) 1f0l+po<ﬂ <05+p0+1,
Po
ClwI(G,ENVuE) + Y (G, EN Vo E) if =+ p,.
(=1

As a consequence, we find that

/ Vv GP—po—lgr;‘;E ifa+p()<ﬂ<a+p()+17
F, gz E= , .
GP—po grﬂ E lf:B =o+ Po-

If0 <p <o, wealsoget F, gr/‘; E =G, gr‘g E. So we are reduced to proving
that, for any 8 > 0 and any k, the morphism

3, : Gy grg E — G, gr[‘;rl E (7.22)

is an isomorphism.

Away from P4, we have ng E = 0 for each 8 > 0, so the assertion is empty.
Let us prove the assertion in the neighbourhood of a point of P.4. The left action
of 9, on a term of the sum (7.16) gives, since d,e*/ = x~“e*/, and due to standard
commutation rules,

Paj g0y + Dhges g(Xi@)s Vi y)xTHEFDeE  may me=lguf

We have P, ; g(v0, +1) = P, p+1(v9,), and we use (7.3) for B > 0 to conclude
that (7.22) is an isomorphism.

It remains to be checked that F, gr/‘; E is a good filtration for any 8 € R. The
previous arguments reduce us to checking this for g € [0, 1], and we are reduced
to proving that, for any such g, G, grﬁ‘,’ E is a good filtration. This follows from
[22, 4.14], since this filtration is identified (after grading by a finite filtration) to a
filtration which is already known to be good (and which is the Hodge filtration of
a mixed Hodge module). O

7.5. Computation of F,, ,E N V,E. The previous section shows that, for
a, B € [0,1), the computation of Fg,,E N V,E is interesting mainly when
B = «a. Note that F,,,E = 0 for p < 0 and that, away from P.q, we have
FuiyEYY NV,EY = EY = Oge".
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LEMMA 7.23. Fora € [0, 1) and p > 0, we have
gr,fu V,E = ke>90 (grg+k Va,kE/grngk Va,k,]E)
~ Clv) @c (&1 VuE/ &r§ Vo i E). (7.23%)

Note that, for p = 0, we have gr§ V,E = GoE N V,E.

Proof. On the one hand, the natural map G,E N V,E — grﬁ“ V. E has kernel
equal to G, E NV, E N (Z/@o(prHkE N V,_+E)), according to (7.12). The
latter space is contained in G,E N (G,_1E N V,E + V,_,E), that is, in
(G- ENVLE)+(G,ENV,_E); but clearly the converse inclusion is also
true. We thus have an inclusion
G,ENV,E
(G ENVL,E)Y+ (G, ENV,_ E)

On the other hand,

— grie V,E. (7.24)

GpENVEN (Y Gy N Vi E) € GEN Vo E C Fup i E,
1

so (7.24) is a direct summand in grlf“ V., E, and one can continue to get the first
expression in (7.23x). For the second expression, we use (7.13). ]

LEMMA 7.25. Fora € [0, 1), p = 0, near a point of Py, the following hold.

(1) The natural morphism, induced by the inclusion of each summand in

ﬁX (*Pred) [U],
D Orwx 0yt (V/X) —> grg V,EY, (7.25%)

a>0
lal<p
is an isomorphism.
(2) Foreachi =1, ..., L, the morphism 0; : grg V,EY — grl(irl V,EY induced
by —0,,/e; is given by
aiha,pf\a\,oz (xl(a)s y/)x—[ote]—lx—a Qa,pf\a\,a(v/xe)
ha p—tae X1, Y)X AT Q a0 (V/X6)
ifi ¢la),
=\ hapotala (0, Y)x T =@ G a0 (V/X6)

) lwel—1.—
+ gy are K@y Y X7 Q. p+1-lala(V/X°)
ifi € I(a),
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where, fori € I(a), we set

ha,pf\a\,a(-xl(a)’ y/) = ha,pf\a\,a(oiv y/) + xihfjﬁ)p_wha(xl(a)’ y,)7

and 0; means that x; is set to be 0 in x; ).

Proof. The first point follows from [22, Lemma 4.11]. For the second point, we
have, modulo G,E* N V,E",
8i//la,p—lal,ot (xl(a)v y/)x—[aejflea Qa,p—\a\.a(v/xe)

— -1, - 1;
:ha,p—lal,a(xl(a)vy/)x L )Qa+li,p—|a|,a(v/xe)-

However, this is possibly not written in the form above if i € I (a) (thatis, a; = 0),
and we modify this expression as indicated in the statement to obtain, modulo
G,E" NV,EY, the desired formula. O

7.6. The filtered relative de Rham complex and the rescaled Yu complex.
We consider the relative de Rham complex DRy, ,c, € which is nothing but the
complex of O, -modules

d+ vdf
e

0— ¢ e — -,

and the action of 9, by d/dv + f induces a C[v](d,)-structure on each term
compatible with the differentials.
We filter this complex as usual by subcomplexes of C[v]-modules:

d+vdf
—_

FoH—pDRXXCv/CUE: {F<)z-0—p8 Q)l([v]®Fa+p+18—> }

Asusual, we set F? = F,_,. The action of 9, on DRy, ¢, € induces a morphism
8,, . Faer DRXX(Cv/CU & — Fat+p+l DRXX(Cv/(CU E.
We will use the following notation, as in [9]:
0 if j <0
2% e, e, log D) ([(« + j)PD = . o
/e |24, Gog D) ([ + HPY)if j >0,

We define the rescaled Yu complex as being the filtered complex (o € [0, 1) and
p el

EM DRy.c,/c, € = Oxxc,([(@ + p)P]);

a+p
d+ vd
—f> ‘Q)l(xcv/cv(k)g D)y[(x+p+ DHPDHy — -+,

https://doi.org/10.1017/fms.2015.8 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.8

C. Sabbah and J.-D. Yu 40

which is a complex of O¢ -modules. The connection d/dv + f induces a
morphism V;, : ng;p DRy.c,/c, € = Foﬁpﬂ DRy.c,/c, €.

PROPOSITION 7.26. The natural morphism
F) ,DRx.c,/c, € — Farp DRxyc,/c, €

is a quasi-isomorphism for each a € [0, 1) and p € Z compatible with the action
of 0.

Proof. The existence of a natural morphism follows from Lemma 7.10. The
compatibility with respect to the action of 9, is then clear. The proof is then
similar to that of [9, Proposition 1.7.4]. We note that, away from P.4, we use
that the morphism

(2% c,/c,log H), d+ vdf) — (25, ¢, /c,(*F0), d +vdf), (7.27)
is a filtered quasi-isomorphism. Here the analytic version of € is needed in order
towrited +vdf = e odoe?. O
7.7. Proof of Theorem 6.4. We consider the complex (.Q'f(oz)[v], d+ vdf).
We have a natural connection '

Y, (25 @[v], d+ vdf) — (5@ + D[v],d+ vdf)
induced by the action of f + d/dv on each term of the complex.
LEMMA 7.28. For a € [0, 1), there is a natural filtered morphism
(Oxxc,®@6x1125 (@)[v], d4vd f, 077) —> (DRy.c,/c, Val. FL DRy.c,/c, Val)

which makes the following diagram commutative:

(Oxxc, @y 2% (a)[v], d + Udf) — DRy, /e, Vo€

Vs, l lvav

(Oxxc, ®oyw 25 (@ + D[v], d + vd f) —— DRy, /e, Vas1€

Proof. Once the morphism is defined, the commutativity of the diagram is
straightforward: let d denote the differential with respect to X and d, that with
respect to v; the verification reduces to checking that e=*/ od o e*/ commutes with
e % od, o e, astatement which follows from the commutation of d with d, .
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Away from P4, the morphism is given by (7.27). At a point of Py, we will
use the algebraic version E of € for simplicity. For each k > 0, we have a natural
inclusion

(FoO (% Peea)) ([ P]) (xH)v e C V,E.

Indeed, it is enough to check that we have the inclusion
xM(Fo0 (% Pe)) ([ PD (+H) - (v/x)e” C V,E
which results from the inclusion
X (Fo0 (% Prea)) ([ P (xH) Qo j o (v/X°) C V,E  with Py j4(s) = (s + )/,

by expressing (v/x¢)* in terms of the Qg (v/x¢) with j < k. The assertion is
then clear by taking the term with a = 0 in the expression of Lemma 7.1. We thus
obtain the desired morphism.

In order to prove that it is filtered, we note that, for each £ > 0, the natural
inclusion morphism .Q§ (@)[v] - 2% ®4, E factorizes through the subsheaf
.Qf( ®ey FyVoE. Indeed, according to (7.17), we have F,V,E = F,E =
FoOx (D) ([aP])[v] - e/, so we are reduced to proving the inclusion 9; (@) C
.Q§ ® FoOx(xD)([aP]). This is clear away from P,.q4, since this reduces to
R%(logH) C Qf( ® FyOx(xH). In the local setting of Section 7.1 near a point
of P4, the conclusion follows from [9, Formula (1.3.1)] for « = 0, and from the
same formula multiplied by x ¢! if o € (0, 1). O

We will show Theorem 6.4 with the filtration F,, introduced in Definition 7.9.
That this is the filtration F,™* will be shown in Theorem 9.1. Near a point of
(X \ Prg) x C, we can write d + vd f = e~/ od o e* to reduce the statement to
the standard result proved by Deligne [4].

We will thus focus on P4 xC,, and it will be enough to consider the v-algebraic
version of the statement. It is also enough to prove that, for each p > 0, the pth
graded morphism is a quasi-isomorphism. We are thus led to proving that for
p = 0 the following vertical morphism is a quasi-isomorphism:

0—— 2%()[v] 0

J —

0— F,V,E® Q2" — grj* V,E® Q' — ...
Since the question is local, we can treat the variables x and y separately, and the

main problem remains the case of the x variables, so we will assume that H = &.
We will use the computations of Section 7.5, from which we keep the notation.
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LEMMA 7.30. Near a point of Py, for q € Z and o € [0, 1), the relative de Rham
complex

0— gl V,EY — gl \ V,E"QQ2' — ... — af V,E' 02" —0

q+n

has zero cohomology in degrees > —q + 1 (recall that gr Vo, EY =0 forq < 0).

Sketch of proof. We will forget the variables y’ and work with the variables
x € C, so we will replace n with ¢ in the de Rham complex above. We then
note that this complex is the simple complex associated with the hypercubical
complex built on the cube in R* with vertices € € {0, 1}¢, whose vertex at € is
gquHEl V. E¥ and whose arrows (¢; = 0) — (g; = 1) are the derivatives 9,,. We
may as well replace the arrow d,, with 9; = —9,, /e;.

The formula of Lemma 7.25(2) shows that, if ¢; = 0, the arrow 0; : € — & + 1;
is injective, with cokernel identified with

1
EB Orarx “ 7 Q0.0 (0/x°).
a’'>0, a =0
a|=q+1

We use the convention that a sum indexed by the empty set is zero, a case which
occursifg +1 < 0.

e If £ = 1, we only need to consider the case when g > 0. The cokernel of 9, is
then equal to zero, showing that 9; is bijective in this case, which implies the
desired assertion.

e If ¢ > 2, we replace (with a shift) the hypercubical £-complex with the (£ — 1)-
complex made of the cokernels of the injective arrows 9, and the formula for

the induced arrows 0., ..., d, is then that of the case when i ¢ [(a) in the
formula of Lemma 7.25(2). Now, the maps induced by 9, are injective, with
cokernel
ﬁ](a//)x [oe]= 1 Qa” M(v/x ) etc. O
a" >0, a{=a}=0
la”|=q+2

From Lemma 7.30 we conclude that, for « € [0, 1) and each p > 0, the
de Rham complex

0— - —0— af V,EV®R" — al V,EVY @27 — ... (7.31),
has zero cohomology in degrees > p + 1, while the de Rham complex

0— - —0=glV, \[EY®@Q" — g%V, \EV @ Q' — ...

(7.31)q—1
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has zero cohomology in degrees > p + 2 since grf V, EY ~ gr¥ | V,EY,
according to (7.13). Therefore, the quotient complex (7.31),/(7.31),_; has zero
cohomology in degrees > p 4+ 1. It follows then from Lemma 7.23 that the bottom
line of (7.29) has zero cohomology in degrees > p + 1. It remains to identify the
degree- p cohomology of this bottom line. As noted above, we have

FVoE" = F,E" = Fy0 (% Peg) ([a PD)[v]e”,

so the cohomology consists of sections of Fy& (* Peq)([a P])[v] ® 27 whose
images by d + vdf belong to FyO (x Preg) ([ P])[v] ® £27*!. This cohomology
is then contained in £2” (log P..q) ([ P])[v], according to Lemma 7.32 below, and
it is then easy to identify it with .Q}’ (c)[v]. O

LEMMA 7.32. For k > 0, a section of FyO (% Prq)$2* belongs to $2*(log Peq) if
and only if its exterior product by Zle e;dx; /x; belongs to FyO (x P,eg) 2. O

7.8. Some properties of the filtration F;.*. Recall that the Z,-
module J* is defined in Section 1.2. For @ € [0, 1), we denote by V,#*
the free C[v]-lattice of %ka on which the connection V induced by the Zc, -
module structure has a simple pole, with residue as in Theorem 1.11(1). This is
also the part of indices in [0, 1) of the Kashiwara-Malgrange V -filtration of .7,
which exists since it is a holonomic %, -module.

By a standard result on the strictness of the Kashiwara—Malgrange V -filtration
with respect to proper push-forward, we have

V, 75 =im [RkCI+(DRxXCU/<cU V&) — R*q (DRy.c,/c, 0],

and the latter morphism is injective. We obtain, as a consequence of Proposition
7.19, the following.

COROLLARY 7.33 (of [32, Proposition 3.3.17]). Foreachk, o, p, Fojjﬁ" satisfies
the properties (3.2.1) in [32]. O

Let us consider the restriction j*Foj%ﬂv" (Jj:C = C,).

COROLLARY 7.34. For each a € [0, 1) and p € Z, we have an isomorphism of
Oc:-modules:

JYFP A ~ Op: @c FY""Hyp (U, V).

In particular, j*F} )} = . for p < 0and j*F? )} =0 for p > k.
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Proof. The first part follows from Lemma 7.10(2), and the second part follows
from the property gr’y, Hiz (U, V) = 0 for p ¢ [0, k], which is a consequence of

[9, Corollary 1.5.6]. L]

Recall that the irregular Hodge numbers h2-9(f) are defined by (1.6). As a
consequence of Corollary 7.34, we have

hl?(f) = rk g} j .
COROLLARY 7.35. Fora € [0, 1), we have FX 7% >V, F.

Proof. We have seen that both O¢,-modules coincide with JZ*[v™'] after
tensoring with &¢, [v~'] (by Corollary 7.34 for the first one, and by a standard
property of the V-filtration for the second one). Hence for any m € V,.%* there
exists £ > 0 such that v'm € F2*. Let p € Z be such that m € FF.#F.
Corollary 7.33 implies that Property [32, (3.2.1.1)] holds for the filtration F;. 72,
and thus the morphism v* : (F45€5 NV, ) — (FIA* N V,_(JF) is an
isomorphism for each g. It follows that

me Fr ANV, " andv'm € FPoA NV, " = m e FO. A NV, H#F,

as was to be proved. O

7.9. Nearby cycles and the monodromy filtration. We now consider the
functor ¥, exp—2xig) (B € [0, 1)). The result of [32, Proposition 3.3.17] implies
then that, for each 8 € [0, 1), the filtration naturally induced by the QQ-indexed
filtration F*. 7 on Y, exp(—2rip)-7Z." is equal to

F*H (X, DR Y, exp-2ip) €) := H (X, F* DR Y, exp(-2i) €), (7.36)

and therefore has jumps at 8+7Z at most. It is then enough to consider the filtration
induced by F;.72," on Y, exp(—2rip) -/, - Then, according to the previous results, we
have

wv,exp(—Qniﬁ)%k if P < Oa

Fp v,exp(—27i %kz
p Vooni-2mip 7y 0 if p > k.

DEFINITION 7.37. For « € [0, 1) and k > O, the spectral multiplicity function is
the function

Z> pr— ILI;(P) = dlmgr‘:} vaff)k = Z dim gr[f)‘a Wu,exp(—zmﬂ)jﬁk-
Bel0,1)
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LEMMA 7.38. Foreacha € [0, 1), k € N, and p € Z, we have
1y (p) = hE*r.

In particular, u* (p) = 0 for p ¢ [0, k].

Proof. For g € [0, 1), we have an isomorphism (see Corollary 7.33):

v (FP A5 N\ V5 — (FP A0V ). (7.39)
Therefore,
D dim F Yy epanip A = Y dimFlgry At = > dim F) grj A
Bel0,1) Bel0,1) Be(a—1,a]

Fr %N v,k
FS AR NV FF
Fr ANV, Ak

m o (FI A Va%%") (Corollary 7.33).

= dim

=di

Since V,. ) is Oc,-free for a € [0, 1), the O -module FP 2% N V, 7}
is Oc,-torsion free, and hence Og, -free, and the latter term is equal to
tk(FP A% N Vo 5), and hence to  rk(FP%)[v™"']. Then it is equal to
dim FY*“? H}, (U, V), according to Corollary 7.34. The result follows from
[9, Corollary 1.4.8]. O

Proof of Theorem 6.1. By Lemma 7.15 and (7.21), we can apply [22,
Theorem 5.3] to the filtration given by (7.36). It remains to identify the latter with
the irregular Hodge filtration. This follows from Theorem 9.1 below. 0

8. The Zx,c,-module E/7*(x3)

We now focus on the u-chart. In this section, we will consider the Zx[u]{d,)-
module E/*(xH) := (Ox(*D)[u, u~"], d4+d( f/u)), and we use the identification

E/M(xH) = Ox(*D)[u, u™"]- e/,
which makes clear the twist of the Zx[u](d,)-structure. We will denote for short

E = Ef/"(xH).

8.1. The Brieskorn lattice of the Zx[u](d,)-module E//*(xH). Let F,%
denote the filtration of Zx by the order of differential operators, and consider the
Rees ring Rr Zx = B, FxPx - u*, which can be expressed in local coordinates
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as Ox[ul(udy, ud,, udy). It will be useful to extend it by adding the action
of u?du. We obtain in this way a sheaf of rings Ry Zx (ud,), which we will
denote by GoPx[u](d,). It is naturally filtered by the order with respect to the
partials, a filtration that we denote by F,Go%x[u](d,).

REMARK 8.1. The Rees construction is the same as that used in Section 3.
However, the notation for the extra variable used here is not the same as in
Section 3 since it will not play the same role. We will use both in Section 9.

The Brieskorn lattice GoE defined in [23, Section 1] is the Ox(xPreq)[u]-
module o
GoE = @(F;Ox(xH)) (% Preg) - u’ e’ (8.2)
J

and we set, foreach p € Z, G,E = u~"G(E. Then G.E is an increasing filtration
of E indexed by Z. Note that, if 57 denotes the relative connection on E induced
by the Yx-module structure, then G E is preserved by uv. It is also preserved by
the action of #?9,. In other words, Gy E is a GoPx[u](d,)-module. For example,
if H = &, we have

GoE'" = Ox (% Peg)lu] - /"

Using the Rees module notation, we can also write

(GoE, uV) = ((RpOx(xH)) (% Preq), ud + d f).

8.2. The filtration F,,,GyE//*(#H). Although the function f/u does not
extend as a map X x C, — P!, we can nevertheless adapt in a natural way the
definition given in [9, (1.6.1) & (1.6.2)] for the case of the map f : X — P'.

DEFINITION 8.3 (The filtration). For « € [0, 1), we set
FouipGoE!" = F,Ox (% Preg) ([ + p) P1)[u] - &/,
FurpGoE = Y u'F,Ox(xH) - FoyyGoE'".

q+q'sp

LEMMA 8.4. Foreach a € [0, 1), the filtration F, . .GyE is an F,Gy9x[ul{d,)-
filtration which satisfies the following properties.

(1) Fyyp, GoE C Fgip,GoE forall py, p> € Ziand B € [0, 1) such that a+p; <
B + p2. Moreover, F,,,GoE =0 for p <O.

(2) The filtration F,,GyE satisfies
FoH—pGOE = FpGOQX[u]<au> . FaGOE;

in particular, it is good with respect to F,GyDx[u]{d,).
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Proof. The proof is similar to that of Lemma 7.10. O

We will give an expression of F,,GoE in terms of the V-filtration. We set
G,E = u""GyE, and we identify E[u~'] with E¥ (xH)[v"'], so that we can
define the filtration V, (E[u~']) as being the filtration V, (EY (xH)[v~'])
considered in Section 7.2. Note that, since v is invertible on E* (xH)[v~'], and
since V,(EY (xH)[v™']) = V,(EY (xH)) for a € [0, 1), we have

Vork (Eu™"]) = Vo (EY («H)[v™']) = v * Vo (EY (xH)) = u' V,E.
For a € [0, 1), we set
F;H,GOE = u’Clul(G,ENV,E) = Clul(GoE Nu’V,E), (8.5)

where the intersection is taken in E[u~']. This is an F.(Go%x[u](d,))-filtration
since ud,, sends V, E to uV, E, and so does u*d, = —0,.

LEMMA 8.6. Foreacha € [0, 1) and p € Z, we have
FD’W,GOE = FyypGoE.

Proof. The proof will be similar to that of Lemma 7.15. In the neighbourhood of
a point of X\ P.q, Definition 8.3 gives F,,,GoE = Z;’:O ulF,0(xH)[u) - e/,
while a computation similar to that at the beginning of the proof of Lemma
7.15 gives G,E N V,E = @y , F;OxH)u?™? - e/, and hence the result
by multiplying the latter term by u”Clu].

In the neighbourhood of a point of P,q4, the inclusion D is proved exactly as
in Lemma 7.15. For the inclusion C, we use (7.16) with 8 = «. Using similarly
v/9/ instead of (vd,)/, and replacing v/ with u~/, a term of G,E N V, E in the
sum (7.16) can be written as

Nacr ja(Xi@ys Vi) y)x TNty may ety il
with j < ¢’ :=A+|aland g := |c|] < p — q'. Note that p — g — j > 0. So each
term in u” (G, N V,) is a sum of terms
ha,c,A,j,a(xI(a)7 Vi@ y/) . x—[(Ot+q')e]—1x—(a—(q'—j)e)up—q—j . (uqy—ﬂ—l)ef/u
which all belong to F,.,GoE (Definition 8.3), since @ > 0, |a| < ¢’ and one

has, according to Lemma 7.18, |a — (¢’ — j)e|. < j < ¢’ for any j such that
0<j<q. [
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REMARK 8.7. We conclude from the lemma that the filtration F,,,gr§ E
induced by F,,,GoE is nothing but the filtration induced by u”V, (E [ =
Vaﬂ,(E[u"]). Indeed, recalling that uG, = G_,, we have
Clul(GoE Nu? Vo (E[u™'1))
uGoE N (Clul(GoE Nur V,(E[u='1)))
_ GoENu?V,(E[u™'])
"~ WGoE NurV(Elu="1) + [GoE Nur V(E[u="1) N uClul(GoE Nur Vo (E[u='1))]
GoE Nu?V,(E[u™'])
TG LENuV,(Elu])
It follows that

Furpgtg E u?

V. .G _ .G .V pof
r er’ E =gr’ gr’ EY (xH),
Fory @i E gr, gr, gr, gr, EY (xH)

and we conclude that gry, , gr§’ E can be computed from data in the v-chart.

8.3. Proof of Theorem 6.5. We have

DRy E = {0 —> Ox(*D)[u, u™'] M

M 2% (xD)[u, ull — 0}.

It will be convenient to use the complex

d+d
DRE = [0 —> Ox(xD)lu, u] wdtdf,

M) 2% (xD)[u, u'l— 0}.

Both complexes are obviously isomorphic by multiplying the kth term of the first
one by u*, a morphism that we denote by u".
The subcomplex DRy GoE of DRy E is defined by

DRy GoE : = {0 s (R Oy (s H)) 5Py ST

—>d +df/u 2% (U "RpOx(xH)) (% Preg) —> 0}‘ (8.8)

Similarly, the subcomplex DRy GoE of DRy E is defined by

d+d
DRYGOE : = {0 —> (Re O (+H))(x Pe) ud+df,

d+d
u 2% @ (RpOx(xH)) (% Prea) —> 0}. (8.9)
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For example, if H = @, we obtain the complexes

d+df/u d+4df/u

{0 Oveplul U2 kP lu] — 0}

ud4df ud4df

£ {O — Ox (% Preg)[u] §2% (k Preg) [u] — 0]-

The relative de Rham complex DRy G E is naturally filtered by
FosyDRyGoE = {o 5 FuyyGo€ —> 21 ® Fuipi1Gol —> } (8.10)

The proof of Theorem 6.5 is obtained by adapting the proofs of [9,
Corollary 1.4.5 & Proposition 1.7.4] to the present situation. We add the
parameter u#, and we consider the u-connection ud 4 df. The natural inclusion
morphism Qj‘,(a)[u] — 2% ®4, E factorizes through 2% ®4, F,GoE since
F,GyE = FyOx(*D)([a P])[u] - e//*, and this shows that the filtered morphism
of Theorem 6.5 is well defined. To prove that it is a filtered quasi-isomorphism,
we note that, for the analogue of [9, Proposition 1.7.4], the ultimate step of
the proof, after grading the complexes, is the same as in [9], since the graded
differential is d log x ~° in both cases. Similarly, the arguments of [35] used in the
proof of [9, Proposition 1.4.2 & Corollary 1.4.5] reduce the problem to proving a
quasi-isomorphism with a graded differential which does not depend on u. O

8.4. Push-forward of the Brieskorn lattice. Let us consider the push-
forward ,%’;" as obtained in the chart C,, that is,

H* = R*q. DRy c,/c,(€) E‘: R*q. DRy c,/c, (E).
We set H ft =TI (C,, L%’j["), so that the above isomorphism becomes
HY ~ H"(X, (25 («D)[u, u™"], ud + df)). (8.11)
We obviously have HY = HX[u™'] = H¥[v™'], and it is a free C[u, u~']-module
with connection.

Let us consider the C[u]-module

GoH,, = H" (X, (2} ®6,(u™ Rr Ox (xH)) (+ Prea). d + d f/11))
~ H*(X, (2% ®0(Rp Ox (+H)) (% Prea), ud + d )
= H*(X, DRyxc,/c,(Go€)) according to (8.9). (8.12)
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For example, if H = &, we have

Go&" = Oy (+Prea)lul - ",
GoH,, = H"(X, (u™" 25 (+Pra)[u], d + d f/u))
= Hk(X’ (‘Q).((*Pred)[u], ud + df))

According to [33], we can apply the proposition in [23, Section 1] to E[v~!] and
get the following.

PROPOSITION 8.13. For each k, GOHﬁ is a free Clu]-module, and hence is a
Clul-lattice of HY, and we have Clu, u™"] ®cpg GoH' ~ HY = H"[v™"] by the
isomorphism (8.11). ]

REMARK 8.14 (Stability under #%9,). The natural action of #*9, on Gy E induces
an action on u~*Q2% ® GoE which defines an action of u?d, on the complex
DRy (G(E), and hence on its cohomology GoH" (equivalently, a shifted action
by u?d, — ku on 2% ® GyE, and hence on DRy (G¢X) and on its cohomology).
In other words, the action of 9, on H ’; has a pole of order at most two when
restricted to GoH~.

For each k, we have a natural morphism (see (8.10))

H*(X, Fu1,DRxGoE) — H"(X, DRxG(E) =: GoHL, (8.15)
whose image is denoted by F,.,GoH ﬁ The source of this morphism is a C[u]-
module of finite type because ¢ is proper and the terms of the complex (8.10) are
O’x[u]-coherent. As already mentioned after Theorem 6.5, (8.15) is injective for
each k. The filtered GoC[u](d,)-module (GoH*, F,,.GoH*) is the (k —dim X)th
push-forward of the filtered Gy Zx[u](d,)-module (E, F,,.E).

8.5. The case of cohomologically tame functions on affine varieties. In this
subsection we use the Zariski topology on U, X, and X x A! . We still denote by &
the Py a1 -module Oy A, (D) -e//*, and we make the abuse of identifying it with
Ox(*D)[u,u™'] - e//* (where X has its Zariski topology).

Assume that U is affine and that f : U — A! is a cohomologically tame
function, in the sense of [26, Section 8] (see also [13, Proposition 14.13.3(2)]
for a weaker condition). In particular, f has only isolated critical points. Then
Hd"R(U, d+df) =O0unless k = n :=dim X, and dim Hj; (U, d+df) is equal to
the sum of the Milnor numbers at the critical points. The Brieskorn lattice G( f)
is defined as Go(f) := 2" (U)[ul/(ud + d £)2"1(U)[u].
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PROPOSITION 8.16. Under this tameness assumption on f, the natural
morphism of complexes

RG. DRy 11, (GoE) —> RQ(2), 0 0 - ud +df) = (2°(U)[u), ud + d )

is a quasi-isomorphism, from which one deduces, through H"(u"), an equality
GoH =u™G(f) in

H) >~ Q"(U)[u,u™"1/(ud +d )" (U)[u, u™"].
Proof. The natural morphism is induced by
(FiOx (xH))(x Prea) —> (FyOx(xH))(xD) = Ox(xD) = j.Oy

(where j, is taken here in the Zariski topology). Through this morphism, H* (1)
corresponds to u” termwise on the right-hand complex. Since Hj (U, d+d f) =0
unless k = dim X = n, we also have Hﬁ = 0 unless k = n, and since the kth
cohomology of the left-hand complex is contained in H*, we conclude that the
left-hand complex has cohomology in degree n at most. We therefore obtain a
morphism

GoH, — u"Gy(f), 8.17)

whose localization with respect to u is an isomorphism, since Ry Ox(x*H)[u™'] =
Ox(xH)[u, u™"], and thus (R Ox (x+H)) (xPeg)[u™'] = Ox(xD)[u, u~']; hence

H' = H*(X, (23 «D)[u,u™"],d + df/u))
= H"(U, (2, [u,u™"'],d+df/u))
= HY(Q'(W)[u,u"],d+df/u) (U affine).

Both terms of (8.17) are C[u] free of the same rank; hence the morphism (8.17)
is injective, and we may regard it as an inclusion in H, through the previous
identification. The conclusion follows from the lemma below. [

LEMMA 8.18. The morphism (8.17) is an isomorphism, in other words, GoH', =
u'Go(f)in H,.

Sketch of proof. We will see in Section A.2 that the Brieskorn lattice GoH/
is identified with the Brieskorn lattice attached to the filtered Zpi-module
underlying the mixed Hodge module associated with J#° f, 0. On the other
hand, it is shown in [28, Section 4.c] that Go(f) is identified to the Brieskorn
lattice of the Hodge filtration of J#° f, O} shifted by n, which leads to the
result. O
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Recall (see [26]) that the spectrum of f at infinity is defined as the set of pairs
(y,6,),withy € Qand 6, = dim gr;’ Go(f).Itis known (see loc. cit.) that§, =0
unless y € [0, n] and that §, = §,_, (that is, the spectrum is symmetric with
respect to n/2).

COROLLARY 8.19. Under the previous assumptions, let us set y = o + q, with
o € [0,1) and g € Z. Then we have

8, = ui(n —q) = hi~"4 = dimgr’.” Hie (U, d +df).

Proof. We have isomorphisms

u1

! Go(f) = gV, GoH! = g, , GoH} “— ! G"H. O

REMARKS 8.20.

(1) The duality §, = §,_, implies, together with the general duality statement
of [35, Theorem 2.2], that, if U is affine and f is cohomologically tame, we
have

dimgr}\.{u Hp (U, d+df) = dimgrj\,;u Hi (U, d+df) Vi

(2) Assume that U = (C*)" with coordinates xi,...,x,, and that f is a
convenient and nondegenerate Laurent polynomial (in the sense of
Kouchnirenko [15]). Then it is known that f is cohomologically tame.
Moreover,

Go(f)/uGO(f) — Q”(U)/df A Qn—l(U)
=~ Clxf! o1/ i, xdf fox) = CLe1/T(F), (821)
where the isomorphism is obtained by dividing by dx;/x; A--- Adx, /x,,

and the filtration V,, (Go(f)/uG(f)) is identified with the Newton filtration
N, (C[x®'1/J(f)) (see [8, Theorem 4.5]). Therefore,

dim gr;; Hy(U,d+df) = dimgr.* Hg(U,d +df)
= dim gr}) (C[x*'1/J ().

(3) Let Y be a toric Fano manifold. Mirror symmetry associates with it a
convenient and nondegenerate Laurent polynomial f, and the cohomology
H*(Y, C) is identified with C[x*!]/J(f) graded by the Newton filtration
(see [2]). Since the cohomology is generated by divisor classes (see for

example [10, Section 5.2]), it is of Hodge-Tate type, and the Hodge
filtration reduces to the filtration by the degree of the cohomology. It follows
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from the previous results that the Hodge numbers of Y coincide with the
irregular Hodge numbers associated to f. Such a mirror correspondence
was one of the motivations of Kontsevich to introduce the complexes (§27,

ud + vdf). (We thank E. Mann, Th. Reichelt and Ch. Sevenheck for
providing us with the necessary arguments.)

9. Relation with the irregular Hodge filtration of &)/ (+J()

In this section, we set & := &/ (xH). We will compare the filtration
F,..E with the irregular Hodge filtration Fgfi& as defined in Section 5; namely,
we consider the case where N = Oy (xD) (notation of Section 7.1) with its
differential d twisted by the exponential of the rational function vf : X x P! =
X - - — P'. The module 724" considered in Section 5.2 is obtained here by gluing
&2 [xH] (notation of Proposition 3.3) in the v-chart with &*//“*[+J] in the u-
chart, and we will regard these modules algebraically with respect to t, (v:u), and
z. We will use the notation introduced in Section 3.

THEOREM 9.1. For each o € [0, 1), we have
For € (+30) = FIT €% (x30),
Four Go&/M (x3H) = F &1 (+x30) N G/ (xF).

The proof of the theorem will be done in various steps. For the sake of
simplicity, we will only treat the case where H = &.

. First, one identifies &™//% as a submodule of Oy (xP.q)[v, T, z] - €™/ and
&/ as a submodule of O (x Preg)[u, u™", 7, z]-€™//**. According to Proposition
3.4, we may have a strict inclusion only near points of P4 x {v = 0} and points of
{f = 0} x {u = 0}. For the latter set, the computation is much simplified because
we only consider the intersection with Gy€. For the former set, we will need
explicit computations of the V-filtration entering the very definition of &7//% in
Proposition 3.3.

. Second, one computes the terms V& ™/% (respectively, V.F&™/") of the
V -filtration relative to T = 0, in order to apply Proposition 5.5. We will work
analytically with respect to the variables of X and algebraically with respect to 7,
(u :v),and z.

9.1. Computation in the v-chart. We use the algebraic version (with respect
to v, 7, 2) Rr(Zx[v, t1(3,, 3;)) of Za xc,«c,. Recall that £7//% is a coherent
Ry (Dx[v, t1(9,, 3,))-submodule of Oy (% P.eg)[v, T]-€7%7%. We will set e = /%,

Computation away from P4 Since tvf is holomorphic, we have &7/ =
Oxpylv, T]-€™//*. Then, from the relation 0,e = vfe, we conclude that &7/
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is already (Rp%x|[v, t]{d,))-coherent, and hence the V*-filtration is given by
VEE™IE = gmax(=k0) £Tvi/z; by uniqueness of the V™-filtration, it is enough to
check the strictness of the gr]” &™//%, which is clear. Therefore, only @ = 0
is relevant. In particular, Vi&™/% = &™//2. Hence, the quotient modulo
(t — 2)&™//7 is equal to EV/[z].

On the other hand, we have F,,,E* = E" forany « € [0, 1) and p > 0, and
F, E" = 0;thatis, RFE = E"[z].

Computation in a neighbourhood of P.y. Near a point of P,q, letusset g = 1/f,
which is holomorphic in a neighbourhood of this point. In local coordinates we
have g = x°.

First step: computation of &™/$*. By the very definition of Proposition 3.3(1)
we have, on this neighbourhood, &7/8* = (O (% Preg)[T, v, 2] - €7/57) [% Preq]. Let
i, : X = X x C, denote the graph inclusion of g, and let p: X xC, — X
denote the projection. Then, by definition of [kPeal, ig+& /% is the
Rp(Dxlt', v, T1(dy, ,, 3;))-submodule of (i, | Ox (* Pea)[v, T, z]) - €7/"* gener-
ated by V.

LEMMA 9.2. As an Rp(Dx|v, t1(9,, 9;))-module, the submodule &% is

generated by x~'e. Moreover,

E7E N (= )Ox(xPe)l, T, 2] e = (T = )EVE (920)

Proof. Our first task is to compute the V" filtration of

(ig+ Ox(xPeo)lv, 7. 2]) - €' = @@ Ox (% Prea)v, 7, 2] (0}8) @ &7/,

k>0
For o € [0, 1), let us set
Qe =x 15 R
Qe e =x 5 ® ot/

Then (6 ® e),., satisfies the following equations:
T
0,(0® €)1 = ;(5 ® €)14a

v
0:(6®e€)q = §(3 ® €)1t

) v 9.3)
6[’(8 ® e)1+a = x*[ae]fl(aﬂa) ® eTU/t f - ?(8 ® e)]+0l

i 1 :
8xi(8 ® e)1+a = _ﬁ(ﬁt’l/ + M

Xi €

+18,0,) (5 ® )1
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As a consequence, we have

(35 ® )10 = (=) [T [ (ra. + U tlealz

i j=1 i

+ z/arav)«s ® €)140.

Similarly, for (6 ® €)_,4, the last line of (9.3) reads

6x,~ (8 ® e)<1+a = _ﬁ<81/l‘/ + M + t/61—8v>(5 [ e)<]+a,
X; e;
and we have
at |+ [ae; ,
t/ﬁ)i((s ® e)<1+a = (_e)e l_[ l_[ (t/ﬁt’ + (JL—-DZ + 1 6161))(8 ® e)<1+a‘
i j=0 i

We then easily deduce a Bernstein relation for (6 ® e);,, and for (§ ® €) .14,
showing that (§ ® e);,, belongs to Vlt;a(ig,+ﬁx[v, 7,z]) - e/  and (6§ ® €) 11
to V<1+a (ig+Oxlv, 7,2])- e™/"2. We will now give an explicit expression of these
modules.

We have

/t'z

(Ig+Oxlv,7,2]) - €
= P Ox(xPea)[v, T, 2](3"8) @ ™"

k=0

=P Ox(xPrea)lv, T, 2]5 (6 ® €14 (third line of (9.3))

k=0

= @ Ox(+Ped)[v, 7, 2] 1“3 ® )14 ('8 @ €)110) = 86 @ €)114)

k>0

=@ Ox+Pe)V, T/, 21(0,1) (8 ® )14 (setting v’ = v/g, T/ = 1/g)
k>0

>~ Ox(+Pea)[V', T',m, 2] (setting n = 0,¢', and (8§ ® €)1y, —> 1).

We have a similar identification by using (§ ® e).1,. Let us write the last line of
(9.3) as

e,: (8,/% n (1 + [ae; ]z

@, + ex 10,006 ® €10 = — - JE@e) 0.

€;

For a € N* and o € [0, 1), let us set (with the convention that a product indexed
by the empty set is equal to one)

Paats. ) =TT 11 (5 + M)

i j=l1 €;

(j + [aei 1)z G4
Pa,<a(5, Z) 1_[ l_[ ( ]—[>

i j=0 €;
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We then have

(axi + eixe71i6v61)a(5 ® e)l+a = (_e)axiapa,a(égt/v Z)((S ® e)H—a
(6)” + ei')ce_liﬁvaf)a((S ® e)<1+0t - (_e)ax_apa,<a(5;t/v Z)(S ® e)<l+a-

Let us set
Uit = Y OxIV', 7,0, 28 paa (1, 2) C Ox(+Prg)lv', 7', 1, 2]
a>0
Uatra =Y, Oxlv', ', 1, 215 Pa.ca(n, 2) C Ox (xPea) V', T/, 1, 2.
az>0

We thus have isomorphisms, by sending 7 to 9,¢":

(6 ®e)14a

Usa VIR (DxIt', v, Tl By, 8:)) - (6 ® €)144

: (6 ® e)<l+o¢

Udisa VIR ( Dkt v, T3, 8y, 3:)) - (8 ® €)1 1a-

If we set I(a) = {i | a; = 0} fora € N, and if I(a)° = {i | a; > 1} denotes
its complement in {1, ..., £}, then every element in O (x Pq)[V', T/, 1, 2] can be
written in a unique way as

> hap@ v T )X 9.5)

a>0

with Ea(x,(,l), v, 7', n, z) € Clx o}V, T, 1, 2]. Since p, , divides p, o ifa’ > a,
we deduce that each element of U, can be written as

D haw i@ V' T 0 DX paa (. 2), (9.6)

a>0
and the coefficient ﬁa of x~* in its decomposition (9.5) is

ha,a(xl(a)v U,’ T/v n, Z)pa,a(n’ Z)'

By uniqueness, we conclude that an element written as (9.5) belongs to
Ui, if and only if p,(n, z) divides h,(x;q, V', T/, 0, z). In particular, the
decomposition (9.6) is unique.

We wish to identify U, - (§ @ €)14, With Vl’;a(ig,JrﬁX(*Pred)[v, 7,z]) - e™/*
and U_ ., - (§ ®e) |, with Viwu (ig.+ Ox(xPeg)v, T, 2]) -e™/" Tt is enough to
check that

@0, + (1 +a@)2)" Uiy - R €)14e C U iye - (§®€)14, form big enough
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and
Uito - 0 ®€) 140/ U<ita - (0 ® €) <140 has no z-torsion

(see [25, Lemma 3.3.4 & Section 3.4.a]). For the first point, we set
I, ={i|ae; € Z} and,fora >0, I,(a)=1,NI(a)and l,(a) =1,NI(a).
Then (6 ® €)1, = x (8 ® €)1, and we have the relation

1_[ (6xi - eixeiliavzsr) . (5 X e)<l+oz = (_e)lla (5t’t, + az)#la (5 ® e)l+o¢

i€ly
= (=)' (10, + (1 + 0)2)"™ (5 ® €)1 40
For the torsion-free assertion, let us consider a section (9.6) of U,,,, and let us

decompose (in a unique way) h, o (X7, V', T/, 1, 2) as
p q Y) Na, (a) n

ha,a(xl(a)’ U/, T/’ , Z) = Z ha,a,s(xl(a+llu7€)y U/a 7/9 n, Z)xe’
e€l0,1}la(@

where £, 4 1s holomorphic in its x-variables and polynomial in v’, ¢/, 5, z. Then
the decomposition (9.6) reads

Z Z ha,a,e(xl(a+1,a—e)» ‘U/, T/a n, Z)xf(ais)Pa,a(Tl» Z)-

a>0 ge(0,1)le@
We now note that, for € € {0, 1}/« setting b = a + 1,, — &, we have

Pb<a(1,2) = (1 +a2)™®" . p,.(n, 2).
The unique decomposition (9.6) can thus also be written uniquely as

—b pb,<a(77’ Z) 1z,

Zh/ (xl(b)a v, T, n,2)Xx i
b (n + az)tle®

5>0

) 0.7

with &y, , = hg ¢, Where (a, €) is defined by the following conditions:

ai:bi ifl.¢la,
a,=b;—1landg; =0 ifiel,andb; > 1,
a,=0ande; =1 ifi e l,andb; =0.

The condition that a section (9.7) - (§ ® €) 144 = (9.7) - x 1= (§ ® €)_ 4, belongs
to Usj4y - (6 ® €)1, now reads

Vb >0, (n+az)"® divides ), (x;4), V', T’ 1, 2).
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It is therefore clear that a section of U, - (6 ® e),,, belongs, when multiplied
by z,to U4 (§ ® €)1, if and only if it already belongs to U_ ., - (6 @ €) .1 14-
In other words, U 4 - (6 @ €)14¢/U-i1a - (6 ® €) .14, has no z-torsion.

We conclude that

VIR Dkt v, T3, 8,,8;)) - 6 R €=U, - (§ ®e),
= V! (i, 4 Ox (+ Pea)[v, T, 2]) - (S ® €)1,

and hence i, . &"/%% is generated by (8 ® e);. It follows that &7V/¢% is generated
by xe.

We will prove the analogue of (9.2x) after applying i, ., from which one
deduces similarly (9.2:x). We first notice that the equality

VE (ig 78 N (T = 2)(ig 1 Ox (% Pra) [0, T, 2]) - €77 = (T — 2) V[ (i 4 E7V/%%)

immediately follows from the unique decomposition (9.6) of a local section of
V! (i ¢+ &/8%). To end the proof, it therefore suffices to produce a similar unique

decomposition of local sections of V[, (i, &™/8) = ZI;:O 0LV (g4 E7/5%)
for any k > 1. This is obtained by writing

k—1
e =x 06 @e) =x T [[@ 4+ j2)E e,
j=0
giving rise to a formula similar to (9.6) for sections of Vl’;k (ig+& ™/82)  which

makes use of polynomials p, , (k > 1), derived from p, ¢ like in [22, Lemma 4.7].
O

Second step: computation of the V' -filtration of &¥V/%*. For a € [0, 1), let us set
e, = erv/gz/x[ae]+1.

LEMMA 9.8. The V' -filtration of &/ satisfies

VIE™S = Vi Rp(xlv, T)(0,, 8:)) - € Ve € [0, 1),

Proof. Since we are only interested in giving the formula for V' &7/#%, we can
as well work with the localized module &**/¢?[t~!] (see [25, Lemma 3.4.1]). In
such a way, we can write

e, = x (xle) = x[I-®1 =15 (xe),

showing that e, is a section of &™*/¢:[t~!]. For « € [0, 1), let us also set

€o = ( [ xi>ea =: x'le,,

i€l
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and, for p € Z,

E™E[TT]) = TPV Rp(Dxlv, T1(0,, 0:)) - €
ETET)) = TPV R (Dxlv, T1(0y, 00)) - e

a+p(

<a+p(

so that, clearly,

(éorv/gZ[.[fl]) C UT ((garv/gz[l.*l])' 9.9)

<0(+I7

For p < 0, we will set Uy, &7/8* = U;, (&™/[t7']) and UL, 67/ =

UL, (&7 T71]). We w111 prove that Uf(é"”/g*[t’l]) is the good V™ -filtration
of &™/%:[t~1]. It is enough to prove that UT&™/¢* = VIE™/E for a € [0, 1).
The proof will be very similar to that of Lemma 9.2, although with the variable ©
instead of the variable ¢’

By using (9.9), one first easily checks that UZ_,&™/¢* C UL, &% and
(10, + a) U &/ C UL, E7

Indeed, the first point follows from the relation e, = x°0,e, = x° =3 ,e_,, and
the second one follows from the relation

(TE§ —i—(xz)#l”e _ ((_1)#111) 1_[ 6 e
T a — 1—[ e. ) Xi <a-
iel, €1/ i€ly

Due to the uniqueness of the V*-filtration, the assertion of the lemma would
follow from the property that gr/" £7/¢¢ has no z-torsion. We will argue in a
way similar to that of Lemma 9.2 by finding a suitable expression for the sections
of UI&™/8%.

Let us decompose Ox[x~!, z][v, ] as Ox[x !, z][v, vT]® T Ox[x 7!, z][vT, T].
Due to the relation vre = x70,e, we have isomorphisms of &y[x~!, z]-modules

Ox[x7 !, Zl[v, vt] - e —> Ox[x ", z, v][t0,] - e

. (9.10)
Ox[x7', zl[vt, 7] - € — Ox[x~', 2z, T)(z0,) - e
given respectively by
' k-l _1
v/ (vT)¥e —> xke/ I1 (r5, — iz)e, (vt) ¢ — x/eth ]_[ (‘c5 — lz)
i=0 i=0

1

We thus obtain an isomorphism of free Ox[x~!, z]-modules:

Ox[x7", z1[v, 7] - e —> (Ox[x 7", 2, v][13,] ® tOx[x 7", 2, T)(7D,)) -
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We can replace e with e, or e_, in the above isomorphism. We will express
UIE™/8 and UT &7/ as sub-Ox[z]-modules of the right-hand side, and by
using the generator e_, in both cases, to make the computation of the quotient
module easier.
We note first that U &™/8 = O[v, z](D,, D,, T0;) - €,, that is, we can forget
the action of 7, since t¥e, = x**d%e,. We have a similar assertion for UT &™V/¢,
From the relation

0 090" (10,) e,
xR0 p (20, + (k= Oz, 2)
-1
(10, + (k — 0)z)! [[(r0; —iz)e, ifk>¢€2>0,

i=0

k=1
* XV po o (10, 2)(10:) [ (10, —iz)e, if 0 <k <&,
i=0

for some nonzero constants * and with p, (s, z) defined by (9.4), we conclude
that, through the isomorphism (9.10),

U;éafv/gz = Z ﬁX[Z][U7 751] ° x_apa,a(f6ry Z)ea

az>0

+ DY T Ox[zlT0 x4 py o (3; + 12, e

a>0 n>0

Formula (9.4) shows that, if @ > a’ > 0, then p, , divides p, .. It follows that
any section of UZ&™V/¢* can be written as

Zha,a(xl(a), v, Tﬁ‘[’ Z)x_apa,a(r8r: Z) - €y

a>0

+ D "D GawnCr@ine 06, DX py o (10 +1z,2) ey (9.11)

n>0 a>0

with %, , holomorphic in its x-variables and polynomial in v, 70,, z, and g,.4.,
holomorphic in its x-variables and polynomial in td,, z.

Let us check that the decomposition (9.11) is unique. The coefficient /™
of " (n > 0) is uniquely determined by the section. If n = 0, the function
h® € Oxolx', v,1n,z] decomposes uniquely as Y a0 hO (X1 @), v, 1, 2)x 7
Thus 2” must be divisible by p, (1, z), and this determines h, o (X;(@), U, 7, 2)
uniquely. We argue similarly for n > 0 and A" € Oy o[x7', 1, z].

There is a similar decomposition for sections of U’ &/¢%, by replacing
DPaw(10:,2) - €, with p, 4(t0;,2) - e.,. In order to check whether a
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section (9.11) belongs to UZ &7/, we replace e, with x ‘«e_,. Let us
decompose (in a unique way) h, o (X7 @), v, TO;, 2) as

ha.a(xl(a)a v, 751’ Z) = Z ha,cx,s(xl(a+llufs): v, T6ra Z)xe,
e€{0,1}la(@

where h,, . is holomorphic in its x-variables and polynomial in v, td,, z. We
have a similar decomposition for g4 ¢, (X7 @+ney» TOz, 2). Then the decomposition
(9.11) reads

—(a+1;. —
Z Z ha,a.s(xl(a—&-l/a—e)’ v, 7:615 Z)X @t €)pa,a(r5n Z) c €y

az0 gc{0,1}/a(@

+ Z Z Z 7" 8a.wn(X1(atne+1,,—e)s TOr, 2)

a>0 n>0 ge{0,1}la(@+ne)
. x—(a+ne+11a —é‘)pa’a (‘L’6f +nz, Z) ce_y.
We now note that, for € € {0, 1}’«@, setting b = a + 1,, — &, we have

Ph.<a(s5,2) = (s + )™ - py (s, 2).
The unique decomposition (9.11) can thus also be written uniquely as

_p Pb<a (t6fa Z)

h T oo .
Z b,ot(xl(b)v v, 61" Z)x (1:5,—1—0[2)#’”(”)" € o

5>0

— b+
+ Z Z Tng;,a,n (xl(b+ne)y va t6r7 Z)x ( ”9)

b>0 n>0

pb,<a(‘[6‘[ + nz, Z) .
(20c + (1 + @)) "

9.12)

<o

with &y, , = hg ¢, Where (a, €) is defined by the following conditions:
a;, = bi if i ¢ Ioza
a;,=b;—lande; =0 ifiel,andb; > 1,
a,=0andeg; =1 ifiel,andb; =0,

and similarly for g , . The condition that a section (9.12) belongs to UZ,&™/¢?
now reads

Vb >0, (13, +az)™® divides hj ,(x;p), v, 70, 2),
Vb>0,Yn>0, (104 (n+a)2)"® divides g}, ,(X/@p+ne)» TOr. 2).

It is therefore clear that a section (9.12) of UF&™/$% belongs, when multiplied
by z, to UL, &™/%% if and only if it already belongs to U”_&™/¢. In other words,
gr¥" £7v/8 has no z-torsion. O
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Third step: End the proof of Theorem 9.1 in the v-chart. We will now use the
expression of Lemma 9.8 to regard V;é’”/“ as an Ox[v, T, z]-submodule of
Ox[x~', v, 1,z] - €. We can write (locally on X near P)

VOT(RF-@X[U’ T]<av9 a‘r)) = ﬁX[U, T, Z]<8X9 6)”’ 61}5 T6‘E>v

and we notice that the action of td, on e, is equal to that of vd,, so we
can forget 70,. We will also forget (y’, 0,), which plays no significant role.
Recall that the variables x are indexed as xi,...,x,. Working now within
Ox[x~', v, 1,z] - €, we have, by induction on |a|,

la]

(x0,)"0%e, = z'"'+”x—“(z Qo) (x)x_jev’)ea mod (t —2)Ox[x~", v, 7, 2],

j=0

where ¢, . j (x) is some polynomial and ¢, . 4/(x) is a nonzero constant. From this
one concludes that there exist polynomials r, . j (x, z), wWith 74 ¢ ¢/ (x, Z) constant,
such that

la|
5z5f}ea = Z|a|+cx*(\a\+c)e ( Z ra,c’j(x’ Z)x(a_/)tztzl},/>x[¢Jze]1e

Jj=0

mod (t — 2)Ox[x~', v, 7, 2],

and, since for 0 < j < |a| we have |a — (|a| — j)e|, < j (see the end of the proof
of Lemma 7.15), the coefficient of v/ belongs to F;Ox (% Preq)([( + p) P]) with
p = |a| + c. Using that

(t — Z)Vofgtv/gz =(t — Z)@@rv/gz N Vaf@ﬁ’w/gz
(see [9, Proof of Proposition 3.1.2])
= (t = 2)0x[x™, v, 7,2l N V7 E™E (Lemma 9.2),

we conclude that the coefficient of z” in gr(VI&™/%/(t — z) VI &%) (graded
with respect to the z-adic filtration) is contained in Fy,E", so F) E* C
F,i,E", according to Remark 5.6.

In order to obtain the reverse inclusion, we remark that, for |a| + ¢ = p
fixed, x vl /xl@tPetl e B Oy (% Pea)([(@ + p) PDv“le™ is equal, up to
a nonzero constant and modulo »_, F; Ox (% Pea) ([( + p)PDv/e¥, to the
class of 0?0¢e,. We conclude by induction on |a|, the case where |a| = 0 being
clear. O]
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9.2. Computation in the u-chart.

Computation away from Prq. We have F,,,GoE/" = GoE/" = Ox_p[ule//"
for p > 0. We set similarly e = e™//*%,

LEMMA 9.13. With respect to the inclusion &/ C Oxpolu, ul t,z]-e we
have e € &1z,

Proof. The statement is local near a point of { f = 0}, since otherwise we have
equality in the previous inclusion, according to Proposition 3.4, and it amounts to
proving that e € V' (Ox_p,[u, u=!, 7,z]-e), so we are reduced to computing the
order of e with respect to the V*-filtration.

Let us first assume that the divisor { f = 0} has normal crossings. Let us choose

local coordinates xy, ..., x, such that f(x) = x™ with m € N" (a local setting not
to be confused with that of Section 7.1). From the relation ud,e = —(tf/u)e, we
obtain
miZ . m; tf m—1;
0,,(fe) = —x"e+ — —x"e=—m;(ud, — 2)x" e,

Xi Xi

and iterating the process we find that

o7 (fe) = (=m)" [T ], — jz/m)) -e.
i=1j=
Since fe = ud.e, this gives a Bernstein relation for e showing that e €
Vi(Ox pylu,u™", 7,2]-e).

When { f = 0} is arbitrary, the proof proceeds exactly like in [12]. We work
locally near a point of { f = 0}, and we choose a projective birational morphism
m : X' — X which is an isomorphism away from {f = 0} and such that
f' := f om defines a normal crossing divisor. Using the global section e®/"/*
of V4 & '/uz(first part of the proof), one constructs a global section e of
A0, V!, &= which coincides with e away from {f = 0}. This is done
by using the global section 15 . 2 of Za 9 [u, T](ud,). Because &'/
underlies a mixed twistor module, .7, &/'/** is strictly specializable along
u = 0, and we have V¥ 7 n, &/ = #n, V¥ & /" Therefore, € is a
section of V¥ .7 m,&7/*, and thus it satisfies a nontrivial Bernstein equation
of the form

[]@d, + B2)" -¢ =uP(x,u,d,,d,,ud,)-¢€.

B<0

We conclude that e satisfies the same equation away from { f = 0}, and hence
everywhere, since Ox[u, u™!, 7, z] has no Ox-torsion. O
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Due to the relation ft0,e = —t2d%e, we conclude that
V()t@(orf/uZ D VOIRF(@(X\P)[ua T]<8ua ar)) €D ﬁX\P[”» 7,7] - e.

Then, computing modulo (v — z)&/*, F)i E//* contains Ox. plu, z] - e//* =
GoE//*, and hence F,, ,GoE//* = F;ipGoEf/“ away from Peq.

REMARK 9.14. The explicit computation of F,7  E/* in the neighbourhood of
f = 0 would be more complicated, and restricting to Gy E//* allows us to avoid
this computation. Let us however note that, in the neighbourhood of the smooth
locus of f~'(0), an explicit formula for F); |E//* can be obtained from Lemma
9.8 by setting there g = u and v = f. Since the order of the pole at u = 0 is one,

the only interesting « is zero, and the result is
i f/ 1 3 f ¢ f/
Fimp/ = W(Z ﬁx[u]ﬁ) /" (f smooth).
Jj=0

This formula extends in a natural way to Fy; | E//*(sxH), provided that moreover
f71(0) has no common component with H and that f~'(0) U H has normal
crossings.

Computation near P.4. The computation is similar to, and even simpler than,
the computation done in the v-chart. Indeed, due to Proposition 3.4, we have
E = Oy (%Peg)[u, u™", 7, z] - €/*%, and there is no need for an analogue
of Lemma 9.2. We will consider the variable u as part of the x-variables, and the
divisor u = 0 of X (see Section 1.2). For « € [0, 1), we set e, = e”/"**% /yx@e+1,
The following lemma is similar to Lemma 9.8.

LEMMA 9.15. The V' -filtration of &7/"*** satisfies
VJ(?T/”XEZ = Vy Rr(Dxlu, t1(0,,9;)) -, VYa €[0,1). O
We also obtain
0?00y € 2" Fia1p(Ox (x Pre) [u, u™"1) ([(cx + |a] + B)P]) - gr/ux
mod (t — z)&7/"7,

where F,(Ox(*Prg)[u,u™']) is the filtration by the order of the pole along
P..a. Moreover, the coefficient of (ux®)~Uel+? . (yxleet1)y=1 . e7/1x*z i3 3 nonzero
constant. It follows that

Fit BV = Fy (Ox (e P, 1) (I + p)P1) -/

a+p
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Intersecting with GoE'/"*" = O (x Peg)[ule'/"* gives

FHT El/uxe ) GOEl/ux" — Fpﬁx(*Pred)([(a + p)P]) [M] . el/uxe — Fo[+pG0El/uxe-

a+p

This ends the proof of Theorem 9.1. O

9.3. Another viewpoint on Theorem 9.1 at the de Rham level. Let us
assume that the zero divisor f~1(0) of f : X — P! is smooth, that it has no
component in common with D, and that £~!(0) U D still has normal crossings.
We have a filtration F,,E (by using the formula given in Remark 9.14 in the u-
chart). Then the proof of Theorem 9.1 gives in fact the equality F, E = F,7 T E.

Let f)C — X be a projective birational morphism such that vf extends asa
morphism vf X—>PandD:=nx 1(D) is a normal crossing divisor in X. The
pole divisor of vf is P4 and that of v f which we denote by iPred, is contained
in 771 (Prq). We denote by H the e remaining components of D. The construction
of [9] produces a filtration F ¢l €% (xH). Note that

7T+€vf(*9'f) = %07@8#(*5}() = VIS (xH) =: &.

By Theorem 1.3, the push-forward 7, (&Y (+3), F Delgﬁ(*ﬁ?f)) is strict, since
Ffﬂ&”f (xH) = Fit € & (+90), and it produces the filtration F" €, which is
nothing but F,.,& by Theorem 9.1 in the present setting. The strictness of the

push-forward implies a quasi-isomorphism at the de Rham level:
F’DRE =~ Rm,Fl, DR EY (+H), (9.16)
where, as usual, we set, for a filtered Z-module (M, F,M),
FPFDRM={F M— Q'® F ,,, M — ---}.

We will show hgw to recover the quasi-isomorphism (9.16) for a suitable
modification 7 : X — X by a direct computation. This will give, in the present
setting, a proof of the degeneration at E of the spectral sequence attached to the
hypercohomology of H*(X, F, . DR &) which only relies on [9] for v of : X — P!,
and not on the finer results of Theorem 1.3. However, the identification at the level
of filtered Z-modules, and not only at the level of filtered de Rham complexes, is
needed for the application to Kontsevich bundles given in Theorem 1.11.
Let us set, for each p and o € [0, 1),

FJ,DRE

+d(vf)

d
= {Qg’g(log D)([«P]) Q8 (log DY([(a + NP — - -- }[_p]‘

Such a filtration already appeared in [35] in the study of the toric case, where the
notation Fi;(V) was used (NP for Newton polygon).
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LEMMA 9.17. The natural morphism F{,DRE — F’DRE is a quasi-
isomorphism.

Proof. Let us prove the lemma in the v-chart for instance (the proof in the u-
chart is similar), and let us assume that H = & for the sake of simplicity, so
that D = P4 (the general case is obtained by a Kunneth formula). Recall that
n = dim X. Everything below is thus only valid on X x C,. Consider the following
complexes, with differentials induced by d 4+ d(vf):

@, (p) : {Qg(log Prea) ([ P]) —> 20 (log Prea) ([(@ + DP]) —> - -
— 24 (l0g Pra) ([(@ + 1 = p+ DP]) | =1,
and, fork suchthat | <k <n—p+2,
®(p) : {q>1<"—k+2 — FyOx (5P 2 ([ 41— p —k +2)P]) —> ---

k—1
— (Y FOxePav’ )25 (@ +1 = p+ D).

j=0

Then @,(p) = FI\[I)P,a DRE and ®,_,.,(p) = FPDRE. On each successive
quotient grf = &, /®;_,, the induced differential becomes —(v/x¢) >_ e;dx; /x;.
Except at the first nonzero term, the complex gr{ decomposes into many parts

of the Koszul complex associated with —(v/x){e;dx;/xy, ..., e;dx./x,}. By a
direct computation, the first nonzero chain map of gr is injective. In particular,
gr? is quasi-isomorphic to zero. O

Let us now end the direct proof of (9.16). In the discussion of the toric case in
[35, Section 4], a specific resolution 7 : X — X of vf is constructed inductively
by taking blowups along irreducible components of the intersection of the pole
set Preq of vf with its zero set (f~'(0) x P!) U (X x {v = 0}). Then it is shown in
[35] that (9.16) holds when we replace its left-hand side with Fﬁ’a DR €. Lemma
9.17 allows us to conclude. O

Appendix. Brieskorn lattices and Hodge filtration

A.l. Brieskorn lattices in dimension one. Let (M, F,M) be a holonomic
Clt]{9,)-module equipped with a good filtration. We denote by G the holonomic
Cl[#1(d,)-module C[d,, ;'] ®cpa,; M. If we identify C[¢](d,) with C[v](d,) by the
Laplace correspondence ¢ +— d,, 9, — —v, we also regard G as a holonomic
Clv]{d,)-module on which the multiplication by v is bijective. It is therefore also
a C[v, v']-module. We will denote by loc the natural morphism M — G.
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The Brieskorn lattice G| * of the filtration F,M is defined as the saturation of
the filtration by the operator 9,'; that is,

G = Za oc(F;M) C G. (*)
J

It is naturally a (C[B‘l] module (equivalently, a C[v~']-module). We will also set

Gp £y =V "G( *) for any p € Z. Let us make the link with the definition in [28
Sectlon 1.d]. Let D, be an index of generation, so that F, ;M = F, M + --- +
8‘Z F, M for any £ > 0. Then the definition in [28] is

Gy =977 ", Toc(F,,M). (se5)

j>0

Let us check that both definitions give the same result. Let us write () as

G = Za TToc(F,,. i M).

First, for j < 0, we have
0, TToc( Fp+iM) = 100(8 TF,,+iM) Cloc( M),
so we can also write

Gy =0, 8, loc(F,, ;M)

j=0

=0, Z 9 [IBE(FP(;M) toeet afjl/&:(Fp"M)]
>0

— a Po Za Jloc( Pn (**)
j=0

We now express the Brieskorn lattice of the filtration as obtained by a
push-forward operation. We consider the holonomic Clz, v](9,, d,)-module
M{[v, v~']e". The (¢, v)-Brieskorn lattice is the C[¢, v~']-module defined by the
following formula (see [23, Section 1]):

G (M, F.M) =@ F;M -v7e" C M[v,v']e”,
J

GP(M, F.M) = v "9y(M, F.M).

We have 9,47 (M, F.M)C%"~"(M, F,M) since 8, F;M C F; ;M and 3,e" =ve™.
The relative de Rham complex

DR(M[v, v"']e") := {M[v, o 1e 20 M. v’l]e’”}
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has cohomology in degree one only, and we have a natural identification as
Cl[v]{0,)-modules

coker [8, : M[v, v e — Mo, v_l]e”’] ~G

by sending . m jvle to Y j(—a,)*j loc(m ;). This relative de Rham complex
is filtered by the subcomplexes

4P DR(M[v, v"'1e") := {gﬂ(M, F.M) N @r-'(M, F,M)}. (A.1)

LEMMA A.2 (Push-forward). The relative de Rham complex is strictly filtered
by the G*-filtration and, through the previous identification, the filtration on its
H' >~ G is equal 1o G ().

Proof. With respect to the previous identification, 47 (M, F,M) is sent onto G(” )
according to definition (). It remains to show that (imd,) N ¥?(M, F,M) =
0,97 (M, F,M), and it is enough to check this for p = 0.

We have 9,(3_; mjvie) = > @m; + mj41)v /e, and by induction on j
we deduce that (d,;m; +m;) € F;M for all j implies that m; € F;_;M for
all j. O

REMARK A.3 (Rees modules). It will also be useful to have the following
interpretation in terms of Rees modules (see Proof of Theorem 4.1), for which we
use the variable u instead of z here. We can twist the Rees module Ry M by e'/*
by changing the action of ud; to that of ud; + 1. We denote the corresponding
RyC[t](d,)-module by Rz M -¢e'/*. This is nothing but %,(M, F,M) by the change
of variable u = v~!.

The push-forward of an RC[¢](d;)-module .# by the constant map g : C, =
Spec C[t] — Spec C is nothing but the de Rham complex 9, : A4 — u~'. 4,
where the latter term is in degree zero. The push-forward g, (RyM - '/*) is thus
equal to the complex (with the - in degree zero):

9
RiM e/ — u='RpM - '/".

1

Setting u = v~', we thus have an identification

G(M, F.M) L G-' (M, F.M)

9
RiM -e/" — 5 y="R.M - e'/®

$o we can interpret G(_Fl.) as H'q (RyM -¢e'*), while H 'g, (RpM -e'/*) = 0.
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A.2. Brieskorn lattices in arbitrary dimension. We fix k, and we will apply
the previous result to (M, F,M) = % 4mX £ (Ox(xD), (F,Ox (xH)) (% Preg))-
Here, we identify filtered C[¢](9,)-modules and Zpi (x00)-modules filtered by
Opi (x00)-modules. We know that the latter underlies a mixed Hodge module (up
to a shift of the filtration), according to [33]. Working with Rees modules, the
strictness property for the push-forward f, of mixed Hodge modules can also be
stated by saying that the push-forward f. [(RyOx (xH))(* P.gq)] is strict, and thus

AN ((Rp Ox (xH)) (+Prea)) = R M.
On the other hand, one checks that
A f((Rp Ox (6 H)) (5 Prog) €)= (AU £ (Rp O () (4 Preg) ) €,
and, since /g, (RpM - /") = 0 for j # 0, we conclude that
AN (g o [ (RpOx (xH)) (% Prea) - €1") 22 A4 (RpM - €''").
The left-hand term is by definition equal to
H" (X, (2}, ®y(u™ Rr Ox () H)) (+ Pe), d + u~'d ),

that is, to GoH" as defined by (8.12), while the right-hand term is equal to G
as defined above.
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