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Abstract

Given a mixed Hodge module N and a meromorphic function f on a complex manifold, we
associate to these data a filtration (the irregular Hodge filtration) on the exponentially twisted
holonomic module N ⊗ E f , which extends the construction of Esnault et al. (E1-degeneration
of the irregular Hodge filtration (with an appendix by Saito), J. reine angew. Math. (2015),
doi:10.1515/crelle-2014-0118). We show the strictness of the push-forward filtered D-module
through any projective morphism π : X → Y , by using the theory of mixed twistor D-modules
of Mochizuki. We consider the example of the rescaling of a regular function f , which leads to an
expression of the irregular Hodge filtration of the Laplace transform of the Gauss–Manin systems
of f in terms of the Harder–Narasimhan filtration of the Kontsevich bundles associated with f .

2010 Mathematics Subject Classification: 14F40, 32S35, 32S40

1. Introduction

1.1. The irregular Hodge filtration. The category of mixed Hodge modules
on complex manifolds, as constructed by Saito [33], is endowed with the standard
operations (push-forward by projective morphisms, pull-back by holomorphic
maps, duality, etc.). In particular, the structure of the Hodge filtration in this
category is well behaved through these operations. For a meromorphic function f
on a complex manifold X , holomorphic on the complement U of a divisor D

c© The Author(s) 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2015.8 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:Claude.Sabbah@polytechnique.edu
mailto:jdyu@ntu.edu.tw
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://dx.doi.org/10.1515/crelle-2014-0118
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1017/fms.2015.8


C. Sabbah and J.-D. Yu 2

of X , and for a mixed Hodge module with underlying filtered DX -module
(N, F•N), we will define an ‘irregular Hodge filtration’, which is a filtration on the
exponentially twisted holonomic DX -module N⊗E f , where E f denotes the OX -
module OX (∗D) equipped with the twisted integrable connection d+ d f , which
we regard as a left holonomic DX -module. We note that, although N is known to
have regular singularities, N⊗E f has irregular singularities along the components
of the divisor D where f takes the value∞, and hence cannot underlie a mixed
Hodge module. Therefore, the irregular Hodge filtration we define on N ⊗ E f ,
generalizing the definition of Deligne [7], and then [9, 30, 35], cannot be the
Hodge filtration of a mixed Hodge module in the sense of [33]. There is an
algebraic variant of this setting, where we assume that f is a rational function
on a complex smooth variety X .

REMARK 1.1. Such a filtration has been constructed in [9] in the following cases.
(a) f extends as a morphism X → P1, D is a normal crossing divisor, and the

filtered DX -module (N, F•N) is equal to (OX (∗D), F•OX (∗D)), where the
filtration is given by the order of the pole [4]. In such a setting, the filtration
was denoted F•(E f (∗H)), where H is the union of the components of D not
in f −1(∞).

(b) X = Y × P1, f is the projection to P1, and (N, F•N) underlies an arbitrary
mixed Hodge module.

DEFINITION 1.2. By a good filtration F• indexed by Q of a DX -module N, we
mean a finite family Fα+•N of good filtrations indexed by Z (as usual, this
is understood with respect to the filtration by the order F•DX , and goodness
means that Fα+pN = 0 p � 0 locally on X , and grF

α+•N is grFDX -coherent),
parameterized by α in a finite subset A of [0, 1) ∩Q, such that Fα+pN ⊂ Fβ+qN

for all α, β ∈ A and p, q ∈ Z satisfying α + p 6 β + q .
We can thus regard it as a single increasing filtration indexed by Q, such that

Fα+pN/F<α+pN = 0 for any α, p, except for α in a finite set A of [0, 1) ∩Q.
For each α, the Rees module RFα+•N is the graded module defined as∑
p Fα+pNz p, where z is a new (Laurent) polynomial variable. Then we set

RF•N :=
⊕

α∈A RFα+•N. We can then regard a (usual) good filtration indexed
by Z as a good filtration indexed by Q.

THEOREM 1.3. Let f be a meromorphic function on X, holomorphic on U =
XrD, where D is a divisor in X. For each filtered holonomic DX -module
(N, F•N) underlying a mixed Hodge module one can define canonically and
functorially a good F•DX -filtration F irr

•
(N ⊗ E f ) indexed by Q which satisfies

the following properties.
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(1) Through the canonical isomorphism (N⊗ E f )|U = N|U , we have

F irr
•
(N⊗ E f )|U = F•N|U .

(2) For each morphism ϕ : (N1, F•N1)→ (N2, F•N2) underlying a morphism
of mixed Hodge modules, the corresponding morphism

ϕ f
: (N1 ⊗ E f , F irr

•
(N1 ⊗ E f )) −→ (N2 ⊗ E f , F irr

•
(N2 ⊗ E f ))

is strictly filtered.

(3) For each α ∈ [0, 1), the push-forward π+(N ⊗ E f , F irr
α+•(N ⊗ E f )) by any

projective morphism π : X → Y is strict.

(4) Let π : X → Y be a projective morphism and let h be a meromorphic
function on Y , holomorphic on V = YrDY for some divisor DY in Y .
Assume that DX := π−1(DY ) is a divisor, and set U = π−1(V ) and
f = h ◦ π . Then the cohomology of the filtered complex π+(N ⊗ E f ,

F irr
•
(N⊗ E f )), which is strict by (3), satisfies

H jπ+RF irr(N⊗ E f ) = RF irr

[
(H jπ+N)⊗ Eh

]
.

(5) In cases 1.1(a) and 1.1(b) above, the filtration F irr
•

coincides with the
filtration FDel

•
constructed in [9].

The proof of the theorem is given in Section 5.1; it relies much on the theory
of mixed twistor D-modules of Mochizuki [19]. This theory allows one to
simplify and generalize some of the arguments given in [9], by giving a general
framework to treat, from the Hodge point of view, irregular D-modules like E f .
By specializing (3) to the case where Y is a point, we obtain the following.

COROLLARY 1.4. For (N, F•N) underlying a mixed Hodge module on a smooth
projective variety X, the spectral sequence attached to the hypercohomology
of the filtered de Rham complex F irr

α+• DR(N ⊗ E f ) degenerates at E1 for each
α ∈ [0, 1).

REMARK 1.5. The assumption that D := XrU is a divisor is not mandatory, but
it simplifies the statement. In general, higher cohomology modules supported on
XrU may appear for N⊗ E f .

1.2. Rescaling a function. Case 1.1(a) is essentially the only case where we
can give an explicit expression for F irr

•
E f (∗H) (see [9], according to 1.3(5)).

Recall that we consider a smooth complex projective variety X together with
a morphism f : X → P1. We set Pred = f −1(∞) and P = f ∗(∞). We also
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introduce a supplementary divisor H (which could be empty) having no common
components with Pred, and we assume that D := Pred ∪ H has normal crossings.
We set U = XrD. We will also consider X as a complex projective manifold
equipped with its analytic topology, which we will denote X an when the context
is not clear.

Our main example in this article, which we consider in Part II, is that of
the rescaling of the function f : X → P1. The rescaled function with rescaling
parameter v is the function v f : U × Cv → C, defined by (x, v) 7→ v f (x). This
function does not extend as a morphism to X × P1

→ P1.
We consider the projective line P1

v covered by two charts Cv and Cu

whose intersection is denoted by C∗v, and we regard v f as a rational function
v f : X × P1

v - -→P1. We are therefore in the situation in the beginning of the
previous subsection, with underlying space X := X×P1

v and reduced pole divisor
Pred := (Pred × P1

v) ∪ (X ×∞), where∞ ∈ P1
v denotes the point u = 0. We will

also set P = (P × P1)+ (X × {∞}), H = H × P1
v, and D = Pred ∪H.

We denote by E(v:u) f (∗H) the OX×P1
v
-module OX×P1

v
(∗D) equipped with the

connection d+ d(v f ) (on the open set X × Cv) and d+ d( f/u) (on the open set
X ×Cu). We denote its restriction to the corresponding open subsets by Ev f (∗H)

and E f/u(∗H), respectively. According to Theorem 1.3, it is equipped with an
irregular Hodge filtration. We make it partly explicit in Theorem 9.1 (only partly,
because around u = 0 we only make explicit its restriction to the Brieskorn lattice;
see Section 9.2).

1.3. Variation of the irregular Hodge filtration and the Kontsevich bundles.
Regarding now v ∈ C∗ as a parameter and considering the push-forward by q :
X × P1

v → P1
v of the rescaling E(v:u) f (∗H), our aim is to describe the variation

with v of the irregular Hodge filtration F irr
•

Hk(U, (Ω •

U , d + vd f )) considered in
[9], and its limiting behaviour when v→ 0 or v→∞.

The irregular Hodge filtration is conveniently computed with the Kontsevich
complex. Recall that Kontsevich has associated to f : X → P1 as in Section 1.2
and to k > 0 the subsheaf Ωk

f of Ωk
X (log D) consisting of logarithmic k-forms ω

such that d f ∧ ω remains a logarithmic (k + 1)-form, a condition which only
depends on the restriction of ω to a neighbourhood of the reduced pole divisor
Pred = f −1(∞). For each α ∈ [0, 1), let us denote by [αP] the divisor supported
on Pred with multiplicity [αei ] on the component Pi of P := f ∗(∞) with
multiplicity ei . One can also define a subsheaf Ωk

f (α) of Ωk
X (log D)([αP]) by

the condition that d f ∧ ω is a section of Ωk+1
X (log D)([αP]), so that the case

α = 0 is that considered by Kontsevich. Clearly, only those α such that αei ∈ Z
for some i are relevant. If f is the constant map, then Ωk

f = Ω
k
X (log D). One of

the main results of [9], suggested and proved by Kontsevich when P = Pred, is
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the equality, for each k,

dim Hk(U, (Ω •

U , d+ d f )
)
=

∑
p+q=k

dim Hq(X,Ω p
f (α)).

More precisely, for each pair (u, v) ∈ C2 and each α ∈ [0, 1) one can form
a complex (Ω

•

f (α), ud + vd f ), and it is shown that the dimension of the
hypercohomology Hk(X, (Ω •

f (α), ud + vd f )) is independent of (u, v) ∈ C2

and α, and is equal to the above value. The irregular Hodge numbers are then
defined as

h p,q
α ( f ) = dim Hq(X,Ω p

f (α)). (1.6)

We have h p,q
α ( f ) 6= 0 only if p, q > 0 and p+q 6 2 dim X . (See Remark 8.20(3)

for the mirror symmetry motivations related to the irregular Hodge filtration.) If f
is the constant map, we recover the results of Deligne [4, 5]:

dim Hk(U,C) = dim Hk(U, (Ω •

U , d)
)
= dim Hk(X, (Ω •

X (log D), d)
)

=

∑
p+q=k

dim H q
(
X,Ω p

X (log D)
)
.

The Hodge numbers reduce here to h p,q(X, D) = dim H q(X,Ω p
X (log D)).

Following the suggestion of Kontsevich, let us define the Kontsevich
bundles K k(α) on P1

v. We set

K k
v (α) := Hk(X, (Ω •

f (α)[v], d+ vd f )
)
,

K k
u (α) := Hk(X, (Ω •

f (α)[u], ud+ d f )
)
.

(1.7)

Using the isomorphism C[u, u−1
]
∼

−→ C[v, v−1
] given by u 7→ v−1, we have a

natural quasi-isomorphism

u• : (Ω •

f (α)[v, v
−1
], d+ vd f )

∼

−→ (Ω
•

f (α)[u, u−1
], ud+ d f ) (1.8)

induced by the multiplication by u p on the pth term of the first complex. Since
we know by the above-mentioned results that both modules K k

v (α),K
k

u (α) are
free over their respective ring C[v] or C[u], the identification

Hk(u•) : Hk(X, (Ω •

f (α)[v, v
−1
], d+vd f )

)
' Hk(X, (Ω •

f (α)[u, u−1
], ud+d f )

)
allows us to glue these modules as a bundle K k(α) on P1

v. The E1-degeneration
property can be expressed by the injectivity

Hk(X, σ>p(Ω
•

f (α)[v], d+ vd f )
)
↪−→ Hk(X, (Ω •

f (α)[v], d+ vd f )
)
,

Hk(X, σ>p(Ω
•

f (α)[u], ud+ d f )
)
↪−→ Hk(X, (Ω •

f (α)[u], ud+ d f )
)
,

(1.9)
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where σ>p denotes the stupid truncation. Since this truncation is compatible with
the gluing u•, this defines a filtration σ>pK k(α). When restricted to C∗v, this
produces the family F irr,p

α Hk(U, (Ω •

U , d+ vd f )).
We also notice that the pth graded bundle is then isomorphic to OP1(p)h

p,k−p
α ( f ),

so this filtration is the Harder–Narasimhan filtration F •K k(α), and the Birkhoff–
Grothendieck decomposition of K k(α) reads

K k(α) '
k⊕

p=0
OP1(p)h

p,k−p
α ( f ). (1.10)

In particular, all slopes of K k(α) are nonnegative, and we have

deg K k(α) =

k∑
p=0

p · h p,k−p
α ( f ).

We will show (see Lemma 6.2) that each K k(α) is naturally equipped with a
meromorphic connection having a simple pole at v = 0 and a double pole at most
at v = ∞. It follows from a remark due to Mochizuki (see Remark 6.3) that the
Harder–Narasimhan filtration satisfies the Griffiths transversality condition with
respect to the connection. This is a concrete description of the variation of the
irregular Hodge filtration (Corollary 6.6).

Our main result concerns the limiting behaviour of the variation of the irregular
Hodge filtration when v→ 0, expressed in this model.

THEOREM 1.11.

(1) The meromorphic connection ∇ on K k(α) has a logarithmic pole at v = 0,
and the eigenvalues of its residue Resv=0 ∇ belong to [−α,−α + 1) ∩Q.

(2) On each generalized eigenspace of Resv=0 ∇ the nilpotent part of the
residue strictly shifts by −1 the filtration naturally induced by the Harder–
Narasimhan filtration.

The proof of Theorem 1.11, which is sketched in Section 6, does not
remain however in the realm of Kontsevich bundles. It is obtained through
an identification of the Kontsevich bundles with the bundles H k(α) obtained
from the push-forward D-modules H k of E(v:u) f (∗H) (see Section 1.2) by the
projection q : X × P1

v → P1
v. Recall that H k

:= Rkq∗DRX×P1
v/P1

v
E(v:u) f (∗H)

is a holonomic DP1
v
-module for each k. It is equipped with its irregular Hodge

filtration F irr
•

H k obtained by push-forward, according to Theorem 1.3(3). We
define the bundles H k(α) by using this filtration, and the main comparison tools
with the Kontsevich bundles K (α) are provided by Theorems 6.4 and 6.5.
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https://doi.org/10.1017/fms.2015.8


On the irregular Hodge filtration 7

1.4. Motivations and open questions. We have already discussed in [9,
Introduction] the motivation coming from estimating p-adic eigenvalues of
Frobenius (Deligne) and that coming from mirror symmetry (Kontsevich). We
list below some more related questions and possible applications for further
investigations.

Numerical invariants of mixed twistor D-modules. The theory of mixed twistor
D-modules, as developed by Mochizuki [19], is the convenient framework to treat
wild Hodge theory. However, this theory produces very few numerical invariants
having a Hodge flavor (like Hodge numbers, degrees of Hodge bundles, etc.).
The irregular Hodge filtration, when it does exist, is intended to provide such
invariants. Let us emphasize that, contrary to classical Hodge theory, the irregular
Hodge filtration is only a by-product of the mixed twistor structure, but is not
constitutive of its definition.

Is there a suitable well-behaved category of wild Hodge D-modules with
a forgetful functor to the category of mixed twistor D-modules? What about
the expected functorial and degeneration properties? The exponentially twisted
Hodge modules should give rise to an object in such a category. Moreover,
following the definition due to Simpson of systems of Hodge bundles, we can
expect that the objects in this suitable category should carry an internal symmetry
(a C∗-action in the case of tame twistor D-modules). A possible approach to this
question would be to search for the desired category as the category of integrable
mixed twistor D-modules endowed with supplementary structures on the object
obtained by rescaling the twistor variable.

Analogies with Hodge theory. Going further in the direction of Hodge theory,
one may wonder whether the irregular Hodge filtration, when it exists, shares
similar properties with the usual Hodge filtration on mixed Hodge modules. For
example, for a morphism f : X → P1, the DX -module E f underlies a pure
integrable twistor D-module (see Proposition 3.3(2)) and is equipped with an
irregular Hodge filtration (see Theorem 1.3 with N = (OX , d)). Let π : X → Y be
a projective morphism. According to the decomposition theorem for pure twistor
D-modules [18], the push-forward π+E f decomposes, together with its twistor
structure, into a direct sum of possibly shifted simple holonomic D-modules.
One can wonder whether the analogues of Kollár’s conjectures (proved by Saito
[34]) hold for the irregular Hodge filtration of E f .

Also the consideration of the limiting behaviour, in the sense of Schmid, of
the irregular Hodge filtration raises interesting questions. We treat the case of a
tame degeneration (the case of Ev f when v → 0) in Section 7, but the case of
a nontame degeneration (like u → 0 in Section 8) remains unclear in general.
We expect that the good behaviour (by definition) of the mixed twistor modules
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by taking irregular nearby cycles along a holomorphic function should lead to
specific limiting properties for the irregular Hodge filtration, when it exists.

Extended motivic-exponential D-modules. Recall that, following [1, 6.2.4], one
defines the notion of a simple regular holonomic D-module of geometric origin
on a smooth complex algebraic variety X if it appears as a simple subquotient
in a regular holonomic DX -module obtained by using only standard geometric
functors starting from the case where the variety is a point. In particular, such
a simple regular holonomic DX -module is a simple summand of a regular
holonomic D-module underlying a polarizable Q-Hodge module of some weight,
as defined by Saito [32, 33]. It therefore underlies a simple complex polarizable
Hodge module. In other words, there exists an irreducible algebraic closed
subvariety Z ⊂ X , a Zariski smooth open set Z ◦ ⊂ Z , and an irreducible local
system on Z ◦, underlying a polarizable complex variation of Hodge structure
(see [6]), such that this regular holonomic DX -module corresponds, via the
inverse Riemann–Hilbert correspondence, to the intermediate extension of this
local system by the inclusion Z ◦ ↪→ X . In particular, it comes equipped with
a good filtration (that induced by the polarizable Q-Hodge module), and the
corresponding filtered D-module is a direct summand of the filtered D-module
underlying the polarizable Q-Hodge module.

Kontsevich [14] has defined the category of motivic-exponential D-modules by
adding the twist by E f for any rational function f to the standard permissible
operations on regular holonomic D-modules of geometric origin on algebraic
varieties. By [19], any such motivic-exponential D-module underlies a pure wild
twistor D-module (see [18]).

There is also the category of extended motivic-exponential D-modules, by
authorizing extensions of such objects, but we will not consider it here.

One can expect that any motivic-exponential D-module on a complex algebraic
variety is endowed with a canonical irregular Hodge filtration, and that this
filtration has a good behaviour with respect to the various permissible functors
(the six operations of Grothendieck, the nearby and vanishing cycles along a
function, and the twist by some E f ). Theorem 1.3 is a step towards this expected
result.

REMARK 1.12 (Hodge filtration in presence of very irregular singularities).
The holonomic DY -modules one obtains as H kπ+(N ⊗ E f ) when π is

any projective morphism may have irregular singularities that are much more
complicated than an exponential twist of a regular singularity. For example, if Y
is a disc, it is shown in [21] that any formal meromorphic connection at 0 ∈ Y
can be produced as the formalization at the origin of a connection obtained by the
procedure of Theorem 1.3(3) for some suitable N on X = Y × P1. However,
these DY -modules come equipped with a good filtration F•H kπ+(N ⊗ E f )
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obtained by pushing forward F irr
•
(N ⊗ E f ). If Y is projective and if for example

H kπ+(N⊗E
f ) = 0 except for k = ko then, according to Corollary 1.4, we obtain

the degeneration at E1 of the spectral sequence attached to the hypercohomology
of the filtered de Rham complex F• DR H koπ+(N ⊗ E f ). Examples of this kind
can be obtained by the procedure of [21] with arbitrary complicated irregular
singularities.

PART I. IRREGULAR HODGE FILTRATION AND TWIST BY E f

2. Exponentially regular holonomic D-modules

2.1. The graph construction. We refer to the expository book [11] or the
expository article [16] for basic properties of regular holonomic D-modules.

Let X be a complex manifold, and let Pred be a reduced divisor in X . We set
U = XrPred. Let f be a meromorphic function on X which is holomorphic
on U whose pole divisor P is exactly supported by Pred, that is, f takes
the value ∞ generically on each irreducible component of Pred. By definition,
locally analytically on Pred, the function f can be written as the quotient of
two holomorphic functions with no common factor, such that the zero divisor
may intersect Pred in codimension two in X at most. There exists a proper
modification π : X ′ → X with X ′ smooth, which is an isomorphism over U ,
and a holomorphic map f ′ : X ′ → P1

t , such that f ′
|π−1(U ) = f ◦ π|π−1(U ). The

pole divisor P ′ of f ′ satisfies P ′red ⊂ π
−1(Pred) =: D′, and the inclusion may be

strict. Let i f : U ↪→ U × Ct denote the graph inclusion of f . The closure U f of
U f := i f (U ) in X × P1

t is a closed analytic set of codimension one, equal to the
projection by the proper modification π × Id : X ′ × P1

t → X × P1
t of the graph

i f ′(X ′). The projection p : X ×P1
t → X induces a proper modification U f → X ,

and the pull-back of U in U f maps isomorphically to U . In particular, we have
(X ×∞)∩U f ⊂ (Pred×P1

t )∩U f . We summarize this in the following diagram.

X ′

f ′

--

, �
i f ′ %%

π
��

∼ // i f ′(X ′)

π × Id
��

� � // X ′ × P1

π × Id
��

q ′

��

X U f
� � // X × P1

q

��

U

f 55

� r

i f

::

?�

OO

∼ // U f

?�

OO

� � // U × C
?�

OO

P1

(2.1)
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Let N be a holonomic DX -module. We assume that N is equal to its localization
N(∗Pred) (if not, replace N with N(∗Pred), which is also a holonomic DX -module,
by a theorem of Kashiwara). The localized pull-back N′ := π+N(∗D′) consists of
a single holonomic DX ′-module. We then recover N as the push-forward π+N′ =
H 0π+N

′ (see for example [31, Proposition 8.13]).
Let us set M′ = i f ′,+N

′. Then M′ = M′(∗(D′ × P1
t )), and, since SuppM′ ∩

(X ′ ×∞) ⊂ (D′ × P1
t ), we also have M′ = M′(∗[(D′ × P1

t ) ∪ (X
′
×∞)]). We

clearly have N′ = p′
+
M′ =H 0 p′

+
M′.

We set M = (π × Id)+M′ =H 0(π × Id)+M′. Then

M =M(∗(P × P1
t )) =M(∗[(P × P1

t ) ∪ (X ×∞)]),

and N = p+M = H 0 p+M. We notice that M does not depend on the choice
of π : X ′ → X . We will use the notation M = i f,⊕N, for which we still have
p+i f,⊕ = Id; this coincides with i f,+N if f extends from X to P1 (that is, if we
can take π = Id, so that f ′ = f ).

LEMMA 2.2. If N is regular holonomic, so is M = i f,⊕N.

Proof. Indeed, N′ is then regular; hence M′ is also, and then M too.

REMARK 2.3 (The graph construction for mixed Hodge modules). Let us now
start with a filtered DX -module (N, F•N) underlying a mixed Hodge module [33].
We still assume that N = N(∗Pred) (if this is not the case, we use the localization
functor in the category of mixed Hodge modules to fulfil the assumption). The
construction of Section 2.1 can be done for mixed Hodge modules, by using the
corresponding functors in the category of mixed Hodge modules. We therefore
get a mixed Hodge module (M, F•M) on X × P1

t such that p+(M, F•M) =
H 0 p+(M, F•M)= (N, F•N). If f extends as a morphism X → P1, then
(M, F•M) = i f,+(N, F•N).

2.2. Exponential twist of holonomic D-modules. The differential d f of
the function f : U → Ct extends as a meromorphic 1-form on X with poles
along Pred. We denote by E f the free OX (∗Pred)-module of rank one equipped
with the connection d+d f . For N as in Section 2.1 (in particular, N = N(∗Pred)),
we consider the holonomic DX -module N⊗OX E f .

LEMMA 2.4. For M = i f,⊕N, we have M⊗ Et
' i f,⊕(N⊗ E f ).

This implies that N⊗ E f
' p+(M⊗ Et) =H 0 p+(M⊗ Et).
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Proof. Assume first that f extends as a map X → P1
t . We will work in the chart

centred at ∞ in P1, with coordinate t ′, and we will set g = (t ′ ◦ f )−1, so that
f −1(∞) = g−1(0). We denote by e1/g the generator of E1/g. We have

ig,+(N⊗ E1/g) =
⊕

k
(N⊗ E1/g)⊗ ∂k

t ′δ(t
′
− g)

with its standard DX×Ct ′
-module structure. There exists thus a unique OX [∂t ′]-

linear isomorphism i f,+(N⊗ E1/g)
∼

−→M⊗ E1/t ′ induced by

(n ⊗ e1/g)⊗ δ(t ′ − g) 7−→ (n ⊗ δ(t ′ − g))⊗ e1/t ′ .

In other words, for each k,

(n ⊗ e1/g)⊗ ∂k
t ′δ(t

′
− g) 7−→ ∂k

t ′
[
(n ⊗ δ(t ′ − g))⊗ e1/t ′

]
.

By using the same argument as in the proof of [9, (1.6.5)], one shows that this
isomorphism is DX×P1 -linear.

Let us now consider the general case. By definition,

i f,⊕(N⊗ E f ) = (π × Id)+i f ′,+
[
π+(N⊗ E f )(∗D′)

]
.

One then checks that

π+(N⊗ E f )(∗D′) = (π+N)(∗D′)⊗ E f ′
= N′ ⊗ E f ′,

so i f ′,+[π
+(N ⊗ E f )(∗D′)] = M′ ⊗ Et by the argument above. Then, because

Et
= (π × Id)+Et , we have (π × Id)+(M′ ⊗ Et) =M⊗ Et .

2.3. Exponentially regular holonomic D-modules.

LEMMA 2.5. Assume that M is any regular holonomic DX×P1 -module. Then
the push-forward p+(M ⊗ Et) has holonomic cohomology, and it satisfies
H k p+(M⊗ Et) = 0 for k 6= 0.

Proof. The first statement follows from the holonomicity of M ⊗ Et . We can
assume that M =M(∗∞). Let us set M = p∗M. Then M is a regular holonomic
DX [t]〈∂t〉-module, and p+(M⊗ Et) is the complex

0 −→ M
∂t + 1
−−−−−→ M

•

−→ 0,

where the • indicates the term in degree zero. Set K = H −1 p+(M ⊗ Et) =

ker(∂t + 1). It is DX -holonomic, and the DX -linear inclusion K ↪→ M extends as
a natural DX [t]〈∂t〉-linear morphism K [t]⊗ E−t

→ M . It is clear that K [t]⊗ E−t
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is purely irregular along t = ∞ (this is easily seen on the generic part of the
support of K ); hence, since M is regular, this image is zero, so K = 0.

DEFINITION 2.6. We say that a holonomic DX -module Nexp is exponentially
regular if there exists a regular holonomic DX×P1 -module M such that Nexp '

H 0 p+(M⊗ Et).

PROPOSITION 2.7.

(1) If f is meromorphic on X and holomorphic on U = XrD, and if
N = N(∗D) is a regular holonomic DX -module, then N ⊗ E f is
exponentially regular.

(2) Let π : X → Y be a proper morphism, and let Nexp be exponentially regular
on X. Then, for each j , H jπ+Nexp is exponentially regular on Y .

Proof. The first point follows from Lemmas 2.2 and 2.4. For the second point,
set Nexp = H 0 p+(M ⊗ Et) with M regular on X × P1. We have, according to
Lemma 2.5,

H jπ+Nexp =H jπ+(H
0 pX,+(M⊗ Et)) =H j(π+ pX,+(M⊗ Et))

=H j(pY,+(π × Id)+(M⊗ Et)).

Now, (π × Id)+(M ⊗ Et) = (π+M) ⊗ Et , with π+M having regular holonomic
cohomology. We thus have H k pY,+H j(π × Id)+(M ⊗ Et) = 0 for k 6= 0
according to Lemma 2.5; hence

H j
(

pY,+(π × Id)+(M⊗ Et)
)
=H 0 pY,+H

j(π × Id)+(M⊗ Et)

=H 0 pY,+
(
(H jπ+M)⊗ Et

)
.

3. The mixed twistor D-module attached to E f

If f is a rational function on X with pole divisor P , the twist of a holonomic
DX -module by E f consists first in localizing this module along Pred and then
in adding d f to its connection. The main property used is that the localization
functor on holonomic DX -modules preserves coherence (and hence holonomy).

For a filtered holonomic DX -module, the stupid localization functor (∗Pred),
which consists in localizing both the module and its filtration, does not preserve
coherence since the localization of a coherent OX -module does not remain OX -
coherent. In the theory of mixed Hodge modules, there is a localization functor
which extends the one at the level of regular holonomic D-modules. We will now
consider the case of RX -modules and mixed twistor D-modules, in order to treat
the Laplace transform of mixed Hodge modules.
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We keep the analytic setting of Section 2.1. Recall the following notation used
in the theory of twistor D-modules (see [17, 18, 25]). For a complex manifold X ,
we denote by X the product X × Cz of X with the complex line having
coordinate z. The ring RX is the analytification of the Rees ring

RFDX :=
⊕
k∈N

FkDX zk

attached to the ring of differential operators equipped with its standard
filtration by the order. It is locally expressed as OX 〈ðx1, . . . ,ðxn 〉,
where ðxi := z∂xi .

The smooth case. We denote by E f/z
U the RU -module OU equipped with the

z-connection zd + d f . By using the same argument as in [24, Section 2.2],
one checks that E f/z

U underlies a smooth twistor D-module; equivalently, it
corresponds to a harmonic metric on the flat bundle (OU , d+ d f ). It follows that
E f/z

U underlies a polarized variation of smooth twistor structure of weight zero,
equivalently a pure polarized smooth twistor D-module.

The stupid localization. Similarly, writing for short

OX (∗Pred) := OX

(
∗(Pred × Cz)

)
,

we consider OX (∗Pred) · e f/z
:= (OX (∗Pred), zd + d f ), where we denote the

global section 1 of OX (∗Pred) by e f/z . This is a coherent RX (∗Pred)-module
(however, it is not necessarily RX -coherent). Note also that there is a natural
action of z2∂z , by setting z2∂z(e f/z) := − f · e f/z in OX (∗Pred). This action
commutes with that of the z-connection. We say that (OX (∗Pred), zd + d f ) is
integrable (see [25, Ch. 7]).

LEMMA 3.1. Assume that f : U → C extends as a holomorphic map f :
X → P1. Then OX (∗Pred) · e f/z is RX -coherent.

Proof. The question is local near a point of Pred and, up to shrinking X , we
may assume that f = 1/g for some holomorphic function g : X → C. Then
OX (∗Pred) · e f/z

= OX (∗{g = 0})e1/gz . If Pred has normal crossings, we choose
local coordinates such that g = x e, and the relation x eðxi e

1/x ez
= (−ei/xi)e1/x ez

gives the coherence. If Pred is arbitrary, let π : X ′ → X be a projective
modification over a neighbourhood of the point of Pred we consider, such that
π−1(Pred) has normal crossings. Set g′ = g ◦ π . Then

π+
(
OX ′(∗{g′ = 0})e1/g′z

)
=H 0π+

(
OX ′(∗{g′ = 0})e1/g′z

)
= OX (∗{g = 0})e1/gz,
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since it can be seen that g is invertible on H 0π+(OX ′(∗{g′ = 0})e1/g′z). By the
properness of π , OX (∗{g = 0})e1/gz is then RX -coherent.

PROPOSITION 3.2. If g : X → C is holomorphic, OX (∗{g = 0})e1/gz underlies
a pure wild twistor D-module of weight zero.

As a consequence, the same property holds for OX (∗Pred) · e f/z if f : U → C
extends as f : X → P1.

Proof of Proposition 3.2. This is essentially obvious from the theory of
Mochizuki [18], but we will make the argument precise. First, one can reduce to
the case where g = 0 has normal crossings, since pure wild twistor D-modules of
weight zero are stable by H 0π+, if π is a projective morphism. Here we take π
as in the proof of Lemma 3.1.

Set now U = {g 6= 0} ⊂ X . Let (C∞U , ∂, h) be the trivial bundle with its
standard holomorphic structure, equipped with its standard metric for which
h(1, 1) = 1. Consider it as a harmonic Higgs bundle on U with holomorphic
Higgs field θ = d(1/g). Since g is a monomial (in local coordinates), this
produces a nonramified good wild harmonic bundle on X , in the sense of
[18, Definition 7.1.7].

For a fixed z (denoted by λ in [18]), denote by E z the holomorphic bundle
(C∞U , ∂ + zd(1/g)). The extension PE z defined in [18, Not. 7.4.1] is nothing but
OX · exp(z/g − z/g). Together with its natural connection, it is isomorphic to
E(1+|z|

2)/gz (see [18, Example 7.4.1.2]). Since there is no Stokes phenomenon in
rank one, the construction QE z of [18, Section 11.1] consists only in dividing
the irregular value by 1 + |z|2, so QE z

' E1/gz (first point of [18, Theorem
11.1.2]). Now, E1/gz is the canonical prolongation of (C∞U , ∂, d(1/g), h) as a
coherent RX -module. It is also equal to the RX -module denoted by E in [18]
(see Section 12.3.2). Then one concludes by using [18, Proposition 19.2.1].

The twistor localization. Let H be a divisor in X , locally defined by a
holomorphic function h, and let N be a coherent RX (∗H)-module. According
to [19, Definition 3.3.1], one says that N is twistor specializable along H if
there exists a coherent RX -submodule N [∗H ] ⊂ N such that, considering
locally the graph inclusion ih : X ↪→ Y := X × C with the coordinate t on C,

• the coherent RY (∗{t = 0})-module ih,+N is strictly specializable along t = 0,
in the sense of [25, Section 3.4.a],

• ih,+(N [∗H ]) is equal to the coherent RY -submodule of ih,+N generated
by the V t

1 term of the V -filtration (with the convention taken in this article),
denoted by (ih,+N )[∗t].
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If N [∗H ] exists locally, it is unique, and hence exists globally. The category
MTMint is introduced in [19, Section 7.2], and the results of [19] imply the
following.

PROPOSITION 3.3. Let f be any meromorphic function on X with pole divisor P.

(1) The coherent RX (∗Pred)-module OX (∗Pred) · e f/z is twistor specializable
along Pred and defines OX (∗Pred) · e f/z

[∗Pred] =: E
f/z

X .

(2) Moreover, E f/z
X underlies an object of MTMint

(X) extending the object of
MTMint

(U ) that E f/z
U underlies.

(3) If f extends as a morphism f : X → P1, then E f/z
X = OX (∗Pred) · e f/z , and

the object of MTMint
(X) it underlies is pure of weight zero.

(4) Let H be any divisor in X. Then E f/z
X (∗H) is twistor specializable along H,

and the corresponding object E f/z
X [∗H ] underlies an object of MTMint

(X).

Proof. Let us start with (3). Let g be a local equation of Pred. Then

ig,+
(
OX (∗Pred) · e1/gz

)
=
(
ig,+OX (∗Pred)

)
⊗ e1/t ′z,

and [29, Proposition 2.2.5] shows that the V t ′-filtration is constant. Therefore,

ig,+
(
OX (∗Pred) · e1/gz

)
[∗t ′] = ig,+

(
OX (∗Pred) · e1/gz

)
,

and thus OX (∗Pred) · e f/z
[∗Pred] = OX (∗Pred) · e f/z , as wanted. The remaining

assertion in (3) is then given by Proposition 3.2.
Let us prove (1) and (2). If f does not extend as a morphism X → P1,

let π : X ′ → X be as in (2.1). Set D′ = P ′red ∪ H ′. Then, according to [19,
Proposition 11.2.1], E f ′/z

X ′ [∗H ′] underlies an object of MTMint
(X ′). According to

[19, Proposition 11.2.6], its push-forward H 0π+E
f ′/z

X ′ [∗H ′] underlies an object
of MTMint

(X). We also have E f ′/z
X ′ [∗H ′] = (OX ′(∗D′) · e f ′/z)[∗D′], and we can

apply [19, Lemma 3.3.17] (because we work with objects of MTM(X ′)) to deduce
that

H 0π+E
f ′/z

X ′ [∗H ′] =H 0π+(OX ′(∗D′) · e f ′/z)[∗Pred].

On the other hand, we have H 0π+(OX ′(∗D′) · e f ′/z) = OX (∗Pred) · e f/z .
Therefore the latter RX (∗Pred)-module is twistor specializable along Pred, and
we have E f/z

X =H 0π+E
f ′/z

X ′ [∗H ′]. This concludes the proof of (1) and (2).
Last, (4) follows from [19, Proposition 11.2.1].

The Laplace twist. Let f : U → C be as above, and let τ be a new variable.
We now consider the function τ f : U × Cτ → C as a meromorphic function
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on X × Cτ . Proposition 3.3 implies that E τ f/z
X×Cτ exists and underlies an object of

MTMint
(X × Cτ ). In Section 9 we will also have to consider another variable v

and the object E τv f/z
X of MTMint

(X × Cv × Cτ ).

PROPOSITION 3.4. If f : U → C extends as a morphism f : X → P1, then
E τ f/z

X×Cτ = OX ×Cτ (∗Pred) · eτ f/z .

Proof. The question is local near Pred and, using the notation as above, we have
to prove that E τ/gz

X×Cτ = OX ×Cτ (∗Pred) · eτ/gz . Equivalently, we should prove that
the V t ′-filtration of (ig,+OX ×Cτ )(∗{t

′
= 0}) · eτ/t ′z is constant. This is obtained

through the equation δ(t ′ − g)⊗ eτ/t ′z
= t ′ðτδ(t ′ − g)⊗ eτ/t ′z .

4. Strictness for exponentially twisted regular holonomic D-modules

We will first prove a particular case of Theorem 1.3. Let p : X × P1
→ X

denote the projection, and let t be the coordinate on the affine line C = P1r{∞}.
Recall that, for (M, F•M) underlying a mixed Hodge module on X × P1, we
have constructed in [9, Section 3.1] a filtration FDel

•
(M ⊗ Et) indexed by Q

(see Definition 1.2 for the corresponding Rees construction).

THEOREM 4.1. For (M, F•M) underlying a mixed Hodge module, the complex
p+RFDel

•
(M⊗ Et) is strict and has nonzero cohomology in degree zero at most.

In the case where X is a point, this is the statement of [30, Theorem 6.1]. If
(M, F•M) = i f,+(N, F•N) for some morphism f : X → P1 and some (N, F•N)
underlying a mixed Hodge module on X , one can adapt the proof given in [9,
Proposition 1.6.9] for N = OX (∗D), where D is a normal crossing divisor, and
f −1(∞) ⊂ D, but this case is not enough for our purposes. The proof that we
give below uses the full strength of the theory of mixed twistor D-modules of
Mochizuki [19].

Proof of Theorem 4.1. We first note that the second assertion in the theorem (that
is, the vanishing of H j for j 6= 0) follows from the strictness assertion together
with Lemma 2.5. So let us consider the strictness assertion.

We refer to [9, Sections 2 & 3] for the notation and results we use here. Given
the filtered DX×P1 -module (M, F•M) underlying a mixed Hodge module, we
associate to it the Rees module M := RFM =

⊕
p FpM · z p, which is a graded

RFDX×P1 -module. Its analytification M an (with respect to the z-variable) is part
of the data defining an integrable mixed twistor DX×P1 -module, according to
[19, Proposition 12.5.4].
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Let us consider the graded RFDX×P1 -module RFDel(M ⊗ Et). Our aim is to
prove the strictness (that is, the absence of z-torsion) of the push-forward modules
H j p+RFDel(M⊗ Et). Forgetting the grading, RFDel(M⊗ Et) can be obtained by
using an explicit expression of the V -filtration as in [9, Proposition 3.1.2]. It is
enough to check the strictness property on the corresponding analytic object, by
flatness. Now, the analytification (RFDel(M⊗ Et))an can be obtained by using the
analytic V -filtration, by making analytic the formula of [9, Proposition 3.1.2].
We then use that the V -filtration behaves well by push-forward for mixed twistor
D-modules, according to results of [19]. This is the main argument for proving
Theorem 4.1.

Let us denote by M̃ the (stupidly) localized module M (∗∞) and by FM
the (not graded) (RFDX×P1)[τ ]〈ðτ 〉-module M̃ [τ ] ⊗ E tτ/z . By Proposition 3.4,
this is also M [τ ] ⊗ E tτ/z . Similarly, (FM )an denotes its analytification with
respect to both τ and z. We can use Proposition 3.3 together with [19,
Proposition 11.3.4] to ensure that (FM )an underlies an integrable mixed twistor
D-module.

Let p : X × P1
× Cτ → X × Cτ denote the projection. Then p+FM an

is strict, each H j p+FM an is strictly specializable along τ = 0, and the V τ -
filtration satisfies V τ

•
H j p+FM an

= H j p+(V τ
•

FM an). Indeed, these properties
are satisfied according to the main results of [19].

We will now adapt the proof given in [9, Section 3.2], which needs a
supplementary argument, since we cannot argue with (3.2.2) in [9].

According to [9, Proposition 3.1.2], we have a long exact sequence

· · · →H j p+V τ
α

FM an τ − z
−−−−−→H j p+V τ

α
FM an

→H j p+(RFDel(M⊗ Et))an
→ · · ·

that we can thus rewrite as

· · · −→ V τ
α H j p+FM an τ − z

−−−−−→V τ
α H j p+FM an

−→H j p+(RFDel(M⊗ Et))an
−→ · · · . (4.2)

Let us first check that τ − z is injective on each H j p+FM an. In the case
considered in [9, Section 3.2], we could use (3.2.2) of [9], and when X is reduced
to a point, the argument in [30] uses the solution to a Birkhoff problem given
by Saito. We do not know how to extend the argument of [30] to the case when
dim X > 1.

LEMMA 4.3. Let Y be a complex manifold, and let N an be an RY -module which
underlies a mixed twistor D-module in the sense of [19]. Let h be a holomorphic
function on Y . Then the action of h − z is injective on N an.
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Proof. Since a mixed twistor D-module is in particular an object of the category
MTW(Y ) (see [19, Sections 7.1.1 & 7.2.1]), a simple extension argument with
respect to the weight filtration allows us to reduce to the case where N an underlies
a pure wild twistor D-module (as defined in [18]). Since the question is local
on Y , we fix some yo ∈ Y and work locally near yo.

Assume first that N an underlies a smooth pure twistor D-module. Then it is a
locally free OY -module with z-connection, and the injectivity of h − z is clear.

In general, we know that N an has a decomposition by the strict support
(see [25, Section 3.5], [18, Section 22.3.4], [29, Section 1.4]), and we can
therefore assume that, near yo, N an has strict support a germ of an irreducible
closed analytic subset Z ⊂ Y at yo. On a dense open set Z o of the smooth
part of Z , according to Kashiwara’s equivalence for pure twistor D-modules
(see [18, 29]), we are reduced to the smooth case considered above, and the
injectivity holds. Therefore, ker[(h − z) :N an

→N an
] is supported on a proper

closed analytic subset Z ′ of Z in the neighbourhood of yo. Let F•N an be a good
filtration of N an as an (RFDY )

an-module (which exists since we work locally
on Y ). Then, for each k, ker[(h − z) : FkN an

→ FkN an
] is a coherent OY×Cz -

submodule of N an supported on Z ′. The (RFDY )
an-submodule that it generates

is a coherent (RFDY )
an-submodule of N an supported on Z ′. It is therefore zero

since N an has strict support equal to Z . Since this holds for any k, we conclude
that ker[(h − z) :N an

→N an
] = 0.

Since H j p+FM an underlies a mixed twistor D-module, we infer from Lemma
4.3 that τ − z is injective on each H j p+FM an. We conclude that the long exact
sequence (4.2) splits into short exact sequences, and therefore H j p+(RFDelM)an

is identified with V τ
α H j p+FM an/(τ − z)V τ

α H j p+FM an for each j . Proving that
the later module is strict is a local question, near points with coordinates (τ, z) in
the neighbourhood of (τo, zo) with τo = zo.

(1) If τo = zo = 0, we use that V τ
α H j p+FM an/τV τ

α H j p+FM an is strict, due
to the strict specializability of H j p+FM an along τ = 0, and it is enough
to prove that z is injective on V τ

α H j p+FM an/(τ − z)V τ
α H j p+FM an. Due

to the strictness above, if a local section m of V τ
α H j p+FM an satisfies

zm = τm ′ for some local section m ′ of V τ
α H j p+FM an, then there exists

a local section m ′′ of V τ
α H j p+FM an such that m = τm ′′, and since τ

is injective on V τ
α H j p+FM an for α ∈ [0, 1), we have m ′ = zm ′′. As a

consequence, if a local section m of V τ
α H j p+FM an satisfies zm = (τ−z)m1

for some local section m1 of V τ
α H j p+FM an, then there exists a local section

m ′′ of V τ
α H j p+FM an such that m + m1 = τm ′′ and m1 = zm ′′; hence m =

(τ − z)m ′′, which gives the desired injectivity.

(2) We now assume that τo = zo 6= 0. Near such a point, we have
V τ
α H j p+FM an

=H j p+FM an. Let us remark, however, that the V -filtration
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of FM an along τ − τo = 0 satisfies

V (τ−τo)
k

FM an
=

{
FM an for k > 0,
(τ − τo)

−kFM an for k 6 0,

according to [27, Proposition 4.1(iii)]. Applying the push-forward
argument as above, we conclude that the V -filtration of H j p+FM an along
τ − τo = 0 satisfies the same property. Therefore, setting τ ′ = τ − τo

and z′ = z − zo, we are reduced to proving the injectivity of z′ on
V τ ′

α H j p+FM an/(τ ′ − z′)V τ ′

α H j p+FM an. We can then use the same
argument as we used for the case when τo = 0.

5. The irregular Hodge filtration

In this section, we come back to the setup of Theorem 1.3. Let f be a
meromorphic function on X with pole divisor P , and let (N, F•N) be a filtered
DX -module underlying a mixed Hodge module such that N = N(∗Pred). Let
(M, F•M) be the mixed Hodge module on X × P1 associated to (N, F•N) by
the construction of Remark 2.3. We know by Theorem 4.1 that the complex
pX,+RFDel

•
(M ⊗ Et) is strict and has cohomology in degree zero at most; hence

H 0 pX,+RFDel
•
(M ⊗ Et) is equal to the Rees module of N ⊗ E f with respect to

some good filtration, which we precisely define as F irr
•
(N⊗ E f ).

DEFINITION 5.1. The filtration F irr
•
(N ⊗ E f ) is the filtration obtained by push-

forward from FDel
•
(M⊗ Et).

5.1. Proof of Theorem 1.3.
(1) This is clear since it already holds for FDel

•
(M⊗ Et).

(2) Because the category of mixed Hodge modules is abelian, we have an exact
sequence of filtered D-modules underlying mixed Hodge modules,

0 −→ (N0, F•N0) −→ (N1, F•N1)
ϕ
−−→ (N2, F•N2) −→ (N3, F•N3) −→ 0,

which gives rise to an exact sequence of filtered D-modules underlying mixed
Hodge modules,

0→ (M0, F•M0) −→ (M1, F•M1)
ϕ
−−→ (M2, F•M2) −→ (M3, F•M3)→ 0,

and therefore, according to [9, Theorem 3.0.1(2)], to an exact sequence of filtered
D-modules:

0 −→ (M0 ⊗ Et , FDel
•
) −→ (M1 ⊗ Et , FDel

•
) −→ (M2 ⊗ Et , FDel

•
)

−→ (M3 ⊗ Et , FDel
•
) −→ 0.
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Applying H 0 p+, we keep an exact sequence, according to the second statement
in Theorem 4.1.

(3) We consider the following diagram:

X × P1

pX
��

π × IdP1
// Y × P1

pY
��

X π // Y

We thus have

π+RF irr
•
(N⊗ E f ) ' (π ◦ pX )+RFDel

•
(M⊗ Et) ' (pY ◦ (π × Id))+RFDel

•
(M⊗ Et).

On the other hand, according to [9, Proposition 3.2.3], (π × Id)+RFDel
•
(M⊗Et) is

strict, and, for each j ,

H j(π × Id)+RFDel
•
(M⊗ Et) ' RFDel

•

(
H j(π × Id)+M

)
⊗ Et .

Applying now Theorem 4.1 to H j(π × Id)+(M, F•M), we obtain the assertion.
(4) This point is similar to [9, Proposition 3.2.3].
(5) Case 1.1(a) follows from [9, Proposition 1.6.12]. Let us show case 1.1(b). If

i : P1
t ↪→ P1

t ×P1
s denotes the diagonal inclusion t 7→ (t, t) and p : P1

t × P1
s → P1

t
denotes the projection (and similarly after taking the product with X ), we have an
isomorphism

M⊗ Et
'H 0 p+(i+(M⊗ Et)) 'H 0 p+

(
(i+M)⊗ Es

)
.

We claim that, for each α ∈ [0, 1),

F irr
α+•(M⊗ Et) = FDel

α+•(M⊗ Et). (5.2)

It is enough to check that

i+
(
M⊗ Et , FDel

α+•(M⊗ Et)
)
=
(
(i+M)⊗ Es, FDel

α+•((i+M)⊗ Es)
)
, (5.3)

and this is nonobvious in the charts t ′ = 1/t and s ′ = 1/s. Let us set δ = δ(s ′−t ′).
Let us first recall that, by definition,

i+M′ =
⊕
k>0

M′ ⊗ ∂k
s′δ,

Fp(i+M′) =
⊕
k>0

Fp−k−1M
′
⊗ ∂k

s′δ
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(the shift by one comes from the left-to-right transformation on RFD-modules),
and, concerning the V -filtration, one checks that

V s′
α (i+M

′) =
⊕
k>0

V t ′
α−kM

′
⊗ ∂k

s′δ =
∑
k>0

∂k
s′s
′k(V t ′

α M
′
⊗ δ).

On the other hand, we have

FDel
α+p

(
(i+M′)⊗ E1/s′)
= s ′−1(Fp(i+M′) ∩ V s′

α (i+M
′)
)
⊗ e1/s′

+ ∂s′FDel
α+p−1

(
(i+M′)⊗ E1/s′),

i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p

= FDel
α+p−1(M

′
⊗ E1/t ′)⊗ δ + ∂s′

[
i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p−1

]
.

We will prove (5.3) by induction on p. Let po be such that Fpo−2M
′
= 0. We have

FDel
α+po

(
(i+M′)⊗ E1/s′)

= s ′−1(Fpo(i+M
′) ∩ V s′

α (i+M
′)
)
⊗ e1/s′

= s ′−1(Fpo−1M
′
∩ V t ′

α M
′
)
⊗ (δ ⊗ e1/s′)

=
(
t ′−1(Fpo−1M

′
∩ V t ′

α M
′)⊗ e1/t ′

)
⊗ δ

= i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
po
.

Let us first show by induction on p that

i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p ⊂ FDel

α+p

(
(i+M′)⊗ E1/s′).

It is thus enough to check that

FDel
α+p−1(M

′
⊗ E1/t ′)⊗ δ ⊂ FDel

α+p

(
(i+M′)⊗ E1/s′).

We have

FDel
α+p−1(M

′
⊗ E1/t ′) = t ′−1(Fp−1M

′
∩ V t ′

α M
′)⊗ e1/t ′

+ ∂t ′
(
FDel
α+p−2(M

′
⊗ E1/t ′)

)
.

Then, on the one hand, by induction,

∂t ′
(
FDel
α+p−2(M

′
⊗ E1/t ′)

)
⊗ δ

⊂ ∂t ′
[(

FDel
α+p−2(M

′
⊗ E1/t ′)

)
⊗ δ

]
+ ∂s′

[(
FDel
α+p−2(M

′
⊗ E1/t ′)

)
⊗ δ

]
= ∂t ′FDel

α+p−1

(
(i+M′)⊗ E1/s′)

+ ∂s′FDel
α+p−1

(
(i+M′)⊗ E1/s′)

⊂ FDel
α+p

(
(i+M′)⊗ E1/s′).

On the other hand, [t ′−1(Fp−1M
′
∩ V t ′

α M
′) ⊗ e1/t ′

] ⊗ δ is the degree-zero (with
respect to δ) term in FDel

α+p((i+M
′)⊗ E1/s′).
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Let us now prove by induction on p the reverse inclusion

FDel
α+p

(
(i+M′)⊗ E1/s′)

⊂ i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p.

It is enough to prove that

s ′−1(Fp(i+M′) ∩ V s′
α (i+M

′)
)
⊗ e1/s′

⊂ i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p.

The left-hand side reads∑
j>0

s ′−1((Fp− j−1M
′
∩ V t ′

α− jM
′)⊗ ∂

j
s′δ
)
⊗ e1/s′

=

∑
j>0

s ′−1(Fp− j−1M
′
∩ V t ′

α− jM
′)⊗ (∂s′ + s ′−2) j(δ ⊗ e1/s′)

=

∑
j>0

s ′−1(∂s′ + s ′−2) j
[(
(Fp− j−1M

′
∩ V t ′

α− jM
′)⊗ e1/t ′

)
⊗ δ

]
.

Writing ∂s′(m⊗ δ) = m⊗ ∂s′δ = −m⊗ ∂t ′δ = (∂t ′m)⊗ δ− ∂t ′(m⊗ δ), we obtain

s ′−1(∂s′ + s ′−2) j
[(
(Fp− j−1M

′
∩ V t ′

α− jM
′)⊗ e1/t ′

)
⊗ δ

]
⊂

j∑
i=0

∂ i
t ′

([
t ′−1∂

j−i
t ′ (Fp− j−1M

′
∩ Vα− jM

′)
]
⊗ e1/t ′

⊗ δ
)
,

and, since i+(FDel
α+•(M

′
⊗ E1/t ′)) is an F-filtration, it is enough to check that[

t ′−1∂
j−i

t ′ (Fp− j−1M
′
∩ Vα− jM

′)
]
⊗ e1/t ′

⊗ δ ⊂ i+
(
FDel
α+•(M

′
⊗ E1/t ′)

)
p−i .

Considering the term of degree zero with respect to ∂ •s′δ in the right-hand side, it
is thus enough to check that

t ′−1∂
j−i

t ′ (Fp− j−1M
′
∩ Vα− jM

′) ⊂ t ′−1(Fp−i−1M
′
∩ VαM′).

Now, the assertion is clear.

REMARK 5.4. Let f : X → P1 be a morphism, and let (N, F•N) underlie a
mixed Hodge module. It follows from 1.3(4) and (5) that i f,+(N ⊗ E f , F irr

•
) =

(M⊗ Et , FDel
•
), if we set as above (M, F•M) = i f,+(N, F•N).

5.2. The irregular Hodge filtration in terms of V τ
α . With the notation as

in the beginning of this section, we consider the pull-back module N[τ ] by the
projection r : X×Cτ → X , and the corresponding Rees object RFN[τ ] =:N [τ ],
where N := RFN. Denote by N an the analytification of N , and by r+N an that
of N [τ ]. We twist r+N an by E τ f/z to obtain the object FfN , which underlies
an object of MTMint

(X × Cτ ), according to Propositions 3.3 and 3.4, and to [19,
Proposition 11.3.4 & 12.5.4].

https://doi.org/10.1017/fms.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.8


On the irregular Hodge filtration 23

PROPOSITION 5.5. We have RF irr
α
(N⊗ E f )an

= V τ
α (

FfN )/(τ − z)V τ
α (

FfN ).

Proof. We associate to the mixed Hodge module (N, F•N) the mixed Hodge
module (M, F•M) as in Remark 2.3 (from which we keep the notation). It follows
from (5.2) and [9, Proposition 3.1.2] that the result holds for (M, F•M) on X×P1

and for f equal to the projection to P1 (note that it holds without taking ‘an’).
Applying the same argument as in the proof of Theorem 4.1, we conclude that the
operation V τ

α /(τ− z)V τ
α commutes with H 0 p+. On the other hand, by definition,

and according to (5.2), the operation RF irr
α

is compatible with H 0 p+. Therefore,
the result holds for (N, F•N).

REMARK 5.6. As a consequence, one can recover the graded module
RF irr

α
(N ⊗ E f ) from V τ

α (
FfN ) in the following way. As an OX [z]-module,

we have an inclusion RF irr
α
(N ⊗ E f ) ⊂ N[z, z−1

], and RF irr
α
(N ⊗ E f ) is obtained

from RF irr
α
(N ⊗ E f )an as the graded module with respect to the filtration on

RF irr
α
(N ⊗ E f )an induced by the z-adic filtration of OX ⊗OX [z] N[z, z−1

]. By the
proposition above, it is thus enough to identify the inclusion as OX -modules

V τ
α (

FfN )/(τ − z)V τ
α (

FfN ) ⊂ OX ⊗OX [z] N[z, z−1
]. (5.6*)

By using the strict specializability of FfN along τ = 0, one checks as in [9, Proof
of Proposition 3.1.2] that (τ − z)V τ

α (
FfN ) = V τ

α (
FfN ) ∩ (τ − z)FfN , so that

V τ
α (

FfN )/(τ − z)V τ
α (

FfN ) ⊂ FfN /(τ − z)FfN .

Let us set (recall that N = N(∗Pred))

Ñ = (RFN)(∗Pred) =
⊕

p
FpN(∗Pred)z p

⊂ N[z, z−1
],

Ñ an
= OX ⊗OX [z] Ñ ⊂ OX ⊗OX [z] N[z, z−1

].

As an OX ×Cτ -module we have FfN = r∗Ñ an, and thus as an OX -module we
have FfN /(τ − z)FfN = Ñ an. This gives the desired inclusion (5.6*).

PART II. THE CASE OF A RESCALED MEROMORPHIC FUNCTION

6. Kontsevich bundles via D-modules

In Part II, we use the setting and notation of Section 1.2. It will also be
convenient to work algebraically with respect to P1, in which case we will
consider the DX [v]〈∂v〉-module Ev f (∗H) := OX (∗D)[v] · ev f and the DX [u]〈∂u〉-
module E f/u(∗H) :=OX (∗D)[u, u−1

]·e f/u , where ev f and e f/u are other notations
for 1 which make clear the twist of the connection.
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6.1. The Laplace Gauss–Manin bundles H k(α). The bundles H k(α) on
P1
v will be obtained by gluing bundles on Cv and on Cu , which we describe below.

Over the chart Cv. Let us denote by H k
v the restriction of H k (see Section 1.3)

to the v-chart. This is nothing but the Laplace transform of the (k − dim X)th
Gauss–Manin system of f . It is known to have a regular singularity at v = 0
and no other singularity at finite distance (as follows by push-forward from
the arguments recalled in Section 7.2, or by a general result about Laplace
transformation of regular holonomic D-modules in one variable). Moreover, H k

v

is equipped with the push-forward filtration F irr
•

H k
v by OCv -coherent subsheaves,

in a strict way according to Theorem 1.3. On C∗v we obtain in such a way a
flat bundle (H k

|C∗v ,∇) equipped with a filtration F irr
•

H k
|C∗v indexed by Q, which

satisfies the Griffiths transversality condition with respect to ∇ (see Section 7.6;
see also Remark 6.3). This is the variation with respect to v of the irregular Hodge
filtration of H k(X,DREv f (∗H)).

We consider the limiting filtration (in the sense of Schmid) when v → 0. For
α ∈ [0, 1), let us denote by VαH k

v the αth term of the Kashiwara–Malgrange
filtration of H k

v at v = 0. Equivalently, due to the regularity property of the
connection at v = 0, VαH k

v is the Deligne extension of H k
|C∗v on which ∇ has a

simple pole with residue Resv=0 ∇ having eigenvalues in [−α,−α + 1). We set
grV
α H k

v = VαH k
v /V<αH k

v .

THEOREM 6.1. For each α ∈ [0, 1),

(1) the jumps β ∈ Q of the induced filtration

F irr
•

grV
α H k

v :=
F irr
•

H k
∩ VαH k

v

F irr
•

H k ∩ V<αH k
v

belong to α + Z,

(2) on each generalized eigenspace of Resv=0 ∇ acting on VαH k
v /vVαH k

v , the
nilpotent part of the residue strictly shifts by one the filtration naturally
induced by F irr

•
VαH k

v .

Our proof in Section 7.9 is obtained by showing (Proposition 7.19) that the
conditions needed for applying Saito’s criterion [32, Proposition 3.3.17] are
fulfilled. More precisely, we will work with a filtration F•Ev f (∗H) that is easy
to define, and we postpone to Section 9 the proof that this is indeed the irregular
Hodge filtration of Ev f (∗H). It would also be possible, as observed by Mochizuki
[20], to directly refer to a similar property for twistor D-modules.

Over the chart Cu . Let us now consider the chart Cu . We denote by H k
u the

restriction of H k to this chart. If j : Cu r {0} ↪→ Cu denotes the open
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inclusion, we have H k
u = j+H k

|C∗v . There is a natural OCu -lattice G0H k
u of

the free OCu [u
−1
]-module H k

u , called the Brieskorn lattice, in analogy with the
construction of Brieskorn in singularity theory [3]. It can be defined in terms of
the Hodge filtration of the Gauss–Manin system attached to f (see the appendix).
It can also be defined (see Section 8.4) as the push-forward by q in a suitable
sense of an OX×Cu (∗Pred)-module G0E

f/u(∗H) equipped with a u-connection
ud + d f : G0E

f/u(∗H) → G0E
f/u(∗H) ⊗ Ω1

X and with a compatible action of
u2∂u .

The connection on H k has a pole of order at most two at u = 0 when restricted
to G0H k

u (see Remark 8.14). In the context of DX [u]〈∂u〉-modules, E f/u(∗H)
corresponds to E f/u(∗H) = OX (∗D)[u, u−1

]e f/u .

Gluing. We can then glue G0H k
u with VαH k

v and obtain an OP1 -bundle H k(α)

with a connection having a pole of order one at v = 0 and of order two at u = 0.

6.2. The Kontsevich bundles K k(α). We now consider the Kontsevich
bundles introduced in Section 1.3. We can endow them with a natural
meromorphic connection having a pole of order one at v = 0 and of order
two at most at v = ∞, and no other pole.

In order to do so, we start by considering the morphism of complexes

u2∂u − f :
(
Ω
•

f (α)[u], ud+ d f
)
−→

(
Ω
•

f (α + 1)[u], ud+ d f
)
.

(This was suggested to us by Mochizuki.)

LEMMA 6.2. For α ∈ [0, 1), the natural inclusion of complexes

(Ω
•

f (α)[u], ud+ d f ) −→ (Ω
•

f (α + 1)[u], ud+ d f )

is a quasi-isomorphism.

This lemma allows us to define an action of u2∂u on each K k(α)|Cu , and
therefore a meromorphic connection ∇ on K k(α) with a pole of order at most
two at u = 0. We will show that ∇ has at most a simple pole at v = 0.

REMARK 6.3 (Due to Mochizuki). Let H be a vector bundle on P1 equipped
with a connection ∇ having a simple pole at v = 0 and a double pole (at most)
at v = ∞. Then the Harder–Narasimhan filtration F •H satisfies the Griffiths
transversality property with respect to ∇.

Indeed, the property is obviously true with respect to the connection d on H
coming from d on each summand in a Birkhoff–Grothendieck decomposition.
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We are thus reduced to proving a similar property for the O-linear morphism
∇ − d, and the result follows by noticing that

(H /F p−1H )⊗Ω1
P1({v = 0} + 2{u = 0})

has slopes < p, while F pH has slopes > p.

Proof of Lemma 6.2. We will show that the quotient complex has zero
cohomology. From [9, Proposition 1.4.2] we know that the inclusion of complexes

(Ω
•

f (α), d f ) −→ (Ω
•

f (α + 1), d f )

is a quasi-isomorphism, and thus the quotient complex (Q•

, d f ) has zero
cohomology. Let ω =

∑k
j=0 ω j u j be a local section of Q p

[u] such that
(ud+ d f )(ω) = 0. Then d f ∧ω0 = 0, and therefore there exists η0 ∈Q p−1 such
that ω = d f ∧η0. By replacing ω with ω− (ud+d f )η0 and iterating the process,
we can assume that ω = ωkuk and, dividing by uk , that ω ∈ Q p. It satisfies then
dω = 0 and d f ∧ ω = 0, so ω = d f ∧ η for some η ∈ Q p−1, and therefore
d f ∧ dη = 0. For any representative η̃ ∈ Ω p−1

f (α + 1), we obtain

d f ∧ dη̃ ∈ Ω p+1
f (α) ⊂ Ω

p+1
X (log D)([αP]).

On the other hand, we note that

Ω
p−1
f (α + 1) = d f ∧Ω p−2

X (log D)([αP])+Ω p−1
X (log D)([αP]),

so we can assume that η̃ ∈ Ω p−1
X (log D)([αP]). Then dη̃ ∈ Ω p

X (log D)([αP]),
and therefore dη̃ ∈ Ω p

f (α); that is, dη = 0, so ω = (ud+ d f )η.

Proof of Theorem 1.11. We will compare the filtered complex

σ>p(Ω
•

f (α)[v], d+ vd f )

with the filtered relative de Rham complex of Ev f (∗H) with respect to the
projection to Cv. We introduce in Section 7.3 a filtration F •αE

v f (∗H), which will
be shown to coincide with F irr,•

α Ev f (∗H) in Theorem 9.1.

THEOREM 6.4 (See Section 7.7, modulo Theorem 9.1). There is a natural quasi-
isomorphism of filtered complexes

(OX×Cv ⊗OX [v] Ω
•

f (α)[v], d+ vd f, σ>p) −→ (DRX×Cv/Cv VαEv f (∗H), F irr,p
α )

which is compatible with the meromorphic action of ∇∂v .
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It follows from (1.9) that applying Rq∗ to the filtered complex on the right-hand
side gives a strict complex (that is, we have a similar injectivity statement).

We apply Rkq∗ to the quasi-isomorphism of Theorem 6.4. The nonfiltered
statement gives the first point of Theorem 1.11, since Vα is compatible with proper
push-forward. The second point is then obtained by applying the second point of
Theorem 6.1.

In a way similar to Theorem 6.4, but algebraically with respect to u, we
introduce in Section 8.2 a filtration F •αG0E

f/u(∗H), which will be shown to
coincide with F irr,•

α G0E
f/u(∗H) in Theorem 9.1, and we prove the following.

THEOREM 6.5 (See Section 8.3, modulo Theorem 9.1). There is a natural quasi-
isomorphism of filtered complexes

(Ω
•

f (α)[u], ud+ d f, σ>p) −→ (DRX G0 E f/u(∗H), F irr,p
α )

which is compatible with the action of ∇∂u .

As above, it follows from (1.9) that applying Rq∗ to the filtered complex on the
right-hand side gives a strict complex.

By applying a degeneration statement similar to that of [32, Proposition 3.3.17]
proved in the appendix, we obtain a concrete description of the irregular Hodge
filtration of H k .

COROLLARY 6.6. The isomorphism K k(α)
∼

−→ H k(α) obtained by pushing
forward the quasi-isomorphisms of Theorems 6.4 and 6.5 identifies the Harder–
Narasimhan filtration of K k(α) (and hence of H k(α)) with the image on H k(α)

of the irregular Hodge filtration F irrH k .

REMARK 6.7. Another proof of Theorem 1.11 has recently been given by
Mochizuki [20], by showing an analogue of Theorem 6.4 in the framework of
mixed twistor D-modules, but not referring explicitly to the irregular Hodge
filtration.

7. The DX×Cv -module Ev f (∗H)

7.1. Setting. We will use the local setting and notation similar to that of
[9, Section 1.1] that we recall now, together with the notation introduced in
Section 1.2. In the local analytic setting, the space X an is the product of discs
∆`
× ∆m

× ∆m′ with coordinates (x, y) = (x1, . . . , x`, y1, . . . , ym, y′1, . . . , y′m′),
and we are given a multi-integer e = (e1, . . . , e`) ∈ (Z>0)

` for which we set the
following:

• f (x, y) = x−e
:=
∏`

i=1 x−ei
i ;
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• g(x, y) = 1/ f (x, y) = x e;

• Pred = {
∏`

i=1 xi = 0}, H = {
∏m

j=1 y j = 0}, D = Pred ∪ H .

Set O = C{x, y, y′}, and D = O〈∂x , ∂y, ∂y′〉 is the ring of linear differential
operators with coefficients in O , together with its standard increasing filtration
F•D by the total order with respect to ∂x , ∂y, ∂y′ :

FpD =
∑

|α|+|β|+|γ |6p

O∂αx ∂
β
y ∂

γ

y′,

where we use the standard multi-index notation with α ∈ N`, etc. Similarly, we
will denote by O[t ′] the ring of polynomials in t ′ with coefficients in O , and by
D[t ′]〈∂t ′〉 the corresponding ring of differential operators.

Consider the left D-modules

O(∗Pred) = O[x−1
], O(∗H) = O[y−1

], O(∗D) = O[x−1, y−1
]

with their standard left D-module structure. They are generated respectively by
1/
∏`

i=1 xi , 1/
∏m

j=1 y j , and 1/
∏`

i=1 xi
∏m

j=1 y j as D-modules. We will consider
on these D-modules the increasing filtration F• defined as the action of F•D on
the generator:

FpO(∗Pred) =
∑
|a|6p

O · ∂ a
x (1/

∏`

i=1 xi) =
∑
|a|6p

Ox−a−1,

FpO(∗H) =
∑
|c|6p

O · ∂ c
y(1/

∏m
j=1 y j) =

∑
|c|6p

O y−c−1,

FpO(∗D) =
∑

|a|+|c|6p

O · ∂ a
x ∂

c
y(1/

∏`

i=1 xi
∏m

j=1 y j) =
∑

|a|+|c|6p

Ox−a−1 y−c−1,

so that Fp = 0 for p < 0. These are the ‘filtrations by the order of the pole’ in [4,
(3.12.1) p. 80], taken in an increasing way. Regarding O(∗H) as a D-submodule
of O(∗D), we have FpO(∗H) = FpO(∗D)∩O(∗H), and similarly for O(∗Pred).
On the other hand, it clearly follows from the formulae above that

FpO(∗D) =
∑

q+q ′6p

FqO(∗H) · Fq ′O(∗Pred),

where the product is taken in O(∗D).

7.2. The V -filtration of the DX×Cv -module E = Ev f (∗H). On X × Cv we
consider the holonomic DX×Cv -module that we denote by Ev f (∗H). It is defined
by the formula

Ev f (∗H) :=
(
OX×Cv (∗(D × Cv)), d+ d(v f )

)
.
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For the sake of simplicity, we will set E = Ev f (∗H). Then E has a global section,
equal to 1, which we denote by ev f on X × Cv. Similarly, we will consider the
v-algebraic version of the same object, regarded as a DX [v]〈∂v〉-module:

E = Ev f (∗H) := (OX (∗D)[v], d+ d(v f )) = OX (∗D)[v] · ev f .

It is standard that the DX×Cv -module E is holonomic. However, it is not of
exponential type as considered in [9] since v f is only a rational function, but it
is exponentially regular according to Proposition 2.7(1), and hence it enters the
frame considered in Section 2.2. It is however known to have regular singularities
along v = 0 (in a sense made precise in [27]) which has been thoroughly analysed
in [22]. On the other hand, it is easy to check that F0OX×Cv (∗H)e

v f generates E
as a DX×Cv -module.

Let us recall the definition of the V -filtration (considered increasingly)
along v = 0 over Cv. For each α ∈ [0, 1) and k ∈ Z, Vα+kE is a coherent
DX×Cv/Cv -module (by regularity) equipped with an action of v∂v, and the minimal
polynomial of v∂v on Vα+kE/Vα+k−1E has roots contained in [−α−k,−α−k+1).
We have, by definition, for k > 1,

Vα−kE = v
k VαE and Vα+kE =


k∑

j=1

∂ j−1
v V1E if α = 0,

VkE+ ∂
k
vVαE if α ∈ (0, 1).

Since E[v−1
] = j0+ j+0 E is also holonomic, it also has a V -filtration. It satisfies,

for any k ∈ Z,
Vα−k(E[v

−1
]) = vk VαE.

There is also a notion of V -filtration for holonomic DX [v]〈∂v〉-modules, and we
have Vα+kE = OX×Cv ⊗OX [v] Vα+k E .

LEMMA 7.1 (Description of V•E). Let us fix β > 0 and α ∈ [0, 1).

(1) Near a point of (X r Pred), we have

Vα+k E = vmax(−k,0)E for k ∈ Z.

(2) Near a point of Pred, in the local setting of Section 7.1, we have

VβE =
∑
a>0

(
F0O(∗Pred)

)
([βP])(∗H)[v∂v]x−a Pa,β(v∂v) · ev f ,

with (convention:
∏

k∈∅ ?k = 1)

Pa,β(s) :=
∏̀
i=1

ai∏
k=1

(
s +
[βei ] + k

ei

)
.
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Proof. The first point follows from the relation ∂vev f
= f ev f . The second point

is a reformulation of [22, Lemma 4.9].

For each a > 0, let us set I (a) = {i | ai = 0} ⊂ {1, . . . , `} and x I (a) = (xi)i∈I (a).
For λ > 0 we also set Pa,λ,β(s) = (s+β)λPa,β(s). Then, near a point of Pred, each
local section of VβE has a unique decomposition∑

a>0

∑
λ>0

ha,λ,β(x I (a), y, y−1, y′)x−[βe]−1x−a Pa,λ,β(v∂v)ev f , (7.2)

with ha,λ,β(x I (a), y, y−1, y′) ∈ C{x I (a), y, y′}[y−1
]. Moreover (see [22]), a section

(7.2) belongs to V<βE if and only if

∀ a, λ > 0, ha,λ,β 6= 0 H⇒

{
λ > #{i | βei ∈ Z} if β > 0,
λ > `+ 1 if β = 0.

(7.3)

Let us make explicit the action of C[v] on a section (7.2). For j > 1, we have

v j
·ha,λ,βx−[βe]−1x−a Pa,λ,β(v∂v)ev f

= ha,λ,βx−[βe]−1x−a+ je Pa,λ,β(v∂v− j)v j∂ j
v ev f .

Set a − j e = a′ − a′′, with a′i = max(ai − jei , 0), a′′i = max( jei − ai , 0). The
polynomial

Pa,λ,β(s − j) = (s + β − j)λ
∏

i

ai∏
k=1

(
s + ([(β − j)ei ] + k)/ei

)
is a multiple of Pa′,0,β(s), and there is a polynomial Ra,λ, j,β(s) ∈ Q[s] such that

Pa,λ,β(v∂v − j)v j∂ j
v = Ra,λ, j,β(v∂v)Pa′,0,β(v∂v) =

∑
µ>0

cµPa′,µ,β(v∂v)

with cµ ∈ Q. We thus obtain

v j
· ha,λ,βx−[βe]−1x−a Pa,λ,β(v∂v)ev f

=

∑
µ>0

cµx a′′ha,λ,βx−[βe]−1x−a′Pa′,µ,β(v∂v)ev f , (7.4)

and, since I (a′) = {i | ai − jei 6 0} ⊃ I (a), we obtain the result in the form
of (7.2).

LEMMA 7.5. For any monic polynomial P(s) of degree p, there exists a monic
polynomial Q(s) of degree p such that P(v∂v)ev f

= Q(v/x e)ev f in E.
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Let us then denote by Qa,λ,β(s) the polynomial associated with Pa,λ,β(s) by
Lemma 7.5. We thus have

VβE =
∑
a>0

∑
λ>0

(
F0OX (∗Pred)

)
([βP])(∗H)x−a Qa,λ,β(v f ) · ev f , (7.6)

and we note that deg Qa,λ,β = |a| + λ. Moreover, each local section has a unique
decomposition∑

a>0

∑
λ>0

ha,λ,β(x I (a), y, y−1, y′)x−[βe]−1x−a Qa,λ,β(v f )ev f . (7.7)

COROLLARY 7.8. Let us denote by gr[v] VβE the grading of VβE with respect to
the degree in v. Then, in a neighbourhood of a point of Pred, we have

gr[v]p VβE '
(
FpOX (∗Pred)

)
([(β + p)P])(∗H) · v p.

7.3. The filtration Fα+•E. Although the function v f does not extend as a map
X × Cv → P1, we can nevertheless adapt in a natural way the definition given in
[9, (1.6.1) & (1.6.2)] for the case of the map f : X → P1.

DEFINITION 7.9 (The filtration). For α ∈ [0, 1) we set, over Cv,

Fα+p Ev f
=

(∑
k6p

FkOX (∗Pred)([(α + p)P])vk
)
[v] · ev f ,

Fα+p E =
∑

q+q ′6p

FqOX (∗H) · Fα+q ′Ev f .

The analytifications of these filtrations with respect to v are denoted Fα+pE
v f and

Fα+pE, respectively.

LEMMA 7.10. For each α ∈ [0, 1), the filtration Fα+•E is an F•DX [v]〈∂v〉-
filtration which satisfies the following properties.

(1) Fα+p1 E ⊂ Fβ+p2 E for all p1, p2 ∈ Z and β ∈ [0, 1) such that α + p1 6
β + p2. Moreover, Fα+p E = 0 for p < 0.

(2) When restricted to C∗v, the filtration Fα+pE is equal to FDel
α+pEX×C∗v as defined

in [9, (1.6.2)] for the map v f : X × C∗v → P1, and, for each vo ∈ C∗, we
have

Fα+pE/(v − vo)Fα+pE = FDel
α+pE

vo f (∗H).

https://doi.org/10.1017/fms.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.8


C. Sabbah and J.-D. Yu 32

(3) The filtration Fα+•E satisfies

Fα+p E = FpDX×Cv · FαE;

in particular, it is good with respect to F•DX [v]〈∂v〉.

Proof. The exhaustivity is clear from the expression of Definition 7.9, and the first
two points are straightforward. Let us check (3). It is enough to check it locally
analytically on X .

Near a point of XrPred. If H = ∅ and p > 0, we have Fα+p E = O[v]ev f , and
the generation by FαE is clear.

If H = {y1 · · · ym = 0} and p > 0, we have

Fα+p E =
∑
|a|6p

y−a−1O[v]ev f .

Since ∂ a
y (y
−1O[v]ev f ) = ?y−a−1O[v]ev f mod Fα+p−1 E if |a| = p, we get the

generation by FαE near such a point.

Near a point of Pred. From the equalities (for some nonzero constants ?)

∂xi

(
x−([αe]+1)

· ev f
)
= ? x−1

i x−([αe]+1)
· ev f
+ ? x−1

i x−([(α+1)e]+1)v · ev f

∂v
(
x−([αe]+1)ev f

)
= x−([(α+1)e]+1)

· ev f ,

we conclude that

F1DX [v]〈∂v〉 · FαEv f
=
(
F0O(∗Pred)+ F1O(∗Pred)v

)
[v] · x−[(α+1)e]ev f ,

and by iterating the argument we get the generation property. The corresponding
property for Fα+•E is proved similarly.

We will rely on computations made in [22], and we will first express differently
the filtration Fα+p E . Let us define G p E as the filtration by OX -modules (but not
OX [v]-modules), defined as

G p E =
p⊕

k=0
(Fp−kOX (∗H))(∗Pred)v

k
· ev f .

The filtration G•E clearly satisfies

p < 0 H⇒ G p E = 0,

q > 0 H⇒ G p E ∩ vq E = vq G p−q E,

p − q < 0 H⇒ G p E ∩ vq E = 0.

(7.11)
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For α ∈ [0, 1) and p ∈ Z, we set

F ′α+p E :=
∑

k+ j6p

(Gk E ∩ Vα+ j E). (7.12)

Then F ′α+p E is an OX [v]-module. Note also that F ′α+•E is an F•DX [v]〈∂v〉-
filtration. Indeed, Gk E is stable by ∂y′, ∂v, and we have ∂xi , ∂y j Gk E ⊂ Gk+1 E ;
moreover, Vα+ j E is stable by ∂x , ∂y, ∂y′ , and we have ∂vVα+ j E ⊂ Vα+ j+1 E .

Recall that, for j > 0, we have by definition Vα− j E = v j VαE , so that, for
k > 0,

v j
: Gk E ∩ VαE

∼

−→ Gk+ j E ∩ Vα− j E . (7.13)

Therefore, we can also write

F ′α+p E := C[v](G p E ∩ VαE)+
p∑

j=1

(G p− j E ∩ Vα+ j E). (7.14)

It follows that F ′α+p E = 0 for p < 0 (and α ∈ [0, 1)).

LEMMA 7.15. For each α ∈ [0, 1) and p ∈ Z, we have

F ′α+p E = Fα+p E .

Proof. Let us first consider an analytic neighbourhood of a point of XrPred. Due
to the relation ∂vev f

= f ev f , we have, near such a point, Vα+ j E = vmax(− j,0)E for
any j ∈ Z, and G p E =

⊕p
k=0 FkO(∗H)v p−kev f . Then, near such a point, (7.14)

reads

F ′α+p E := C[v](G p E ∩ V0 E)

= C[v]G p E = FpO(∗H)[v]ev f
= Fα+p E .

We now argue locally at a point of Pred. We refine (7.2) in order to take into
account the pole order along H , so a section of VβE can be written in a unique
way as∑

a>0

∑
λ>0

∑
c>0

ha,c,λ,β(x I (a), yJ (c), y′)x−[βe]−1x−a y−c−1 Pa,λ,β(v∂v)ev f , (7.16)

with J (c) = { j | c j = 0} and ha,c,λ,β(x I (a), yJ (c), y′) ∈ C{x I (a), y, y′}. Arguing
as in the proof of [22, Lemma 4.11], we obtain that, for β > 0, a section (7.16)
belongs to Gk E ∩ VβE if and only if the coefficients ha,c,λ,β are zero whenever
deg Pa,λ,β + |c| = |a| + |c| + λ > k (note that this condition clearly defines an
increasing filtration with respect to k).
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We will first show that FαE = F ′αE for α ∈ [0, 1). We have

F ′αE = C[v](G0 E ∩ VαE) and FαE = F0O(∗D)([αP])[v]ev f .

Here we are considering the case k = 0 and β = α. Let us consider a section
(7.16) in G0 E ∩ VαE . The only possible term occurs for a = 0, λ = 0 and c = 0,
so G0 E ∩ VαE = F0O(∗D)([αP])ev f . Therefore,

FαE := F0O(∗D)([αP])[v]ev f
= C[v](G0 E ∩ VαE) = F ′αE . (7.17)

Since Fα+p E = FpD[v]〈∂v〉 · FαE (Lemma 7.10(3)), and since F ′α+p E is an
F•DX [v]〈∂v〉-filtration, it follows that Fα+p E ⊂ F ′α+p E for all p.

Let us now show the reverse inclusion F ′α+p E ⊂ Fα+p E . Let us consider a term
in Gk E ∩ Vα+p−k E (0 6 k 6 p) of the form

h(x Iβ (a), yJ (c), y′)x−[βe]−1x−a y−c−1 Pa,λ,β(v∂v)ev f ,

with β = α+ p− k, a > 0, λ+ |a| + |c| 6 k. Let us rewrite Pa,λ,β(v∂v) in terms
of the monomials v j∂ j

v . For j 6 λ+ |a| 6 k − |c|, the result of the action of v j∂ j
v

on h(x Iβ (a), yJ (c), y′)x−[βe]−1x−a y−c−1ev f is

h(x Iβ (a), yJ (c), y′)x−[(β+ j)e]−1x−a y−c−1v j ev f

= h(x Iβ (a), yJ (c), y′)x−[(α+p)e]−1x−a+(k− j)e y−c−1v j ev f .

For a′ ∈ Z`, let us set |a′|+ =
∑

i max(0, |a′i |). Since |a|+ = |a| 6 k, the reverse
inclusion follows from the lemma below.

LEMMA 7.18. For a′ ∈ Z` and k > 0, assume that |a′|+ 6 k. Then, for j such
that 0 6 j 6 k, we have |a′ − (k − j)e|+ 6 j .

Proof. We argue by decreasing induction on j , and the result is true if j = k by
assumption. We are reduced to proving that, if |a′|+ > 1, then |a′−e|+ 6 |a′|+−1.
There exists io such that a′io

> 1, so max(a′io
, 0) = a′io

> 1 and max(a′io
− e′io

, 0) 6
a′io
−1. Since max(a′i −e′i , 0) 6 max(a′i , 0) for any i , we get |a′− e|+ 6 |a′|+−1,

as wanted.

7.4. Filtration on the nearby cycles of E along v = 0. In this subsection, we
analyse the filtration induced by Fα+•E on the nearby cycles of E along v = 0.
Our objective is to show that Saito’s criterion [32, Proposition 3.3.17] applies.

PROPOSITION 7.19.

(1) For each α ∈ [0, 1), the filtered module (Ev f (∗H), Fα+•Ev f (∗H)) is strictly
specializable and regular along v = 0, in the sense of [32, (3.2.1)].
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(2) Let V•Ev f (∗H) be the V -filtration of Ev f (∗H) along v = 0 and, for each
α ∈ [0, 1), let us set

ψv,exp(−2π iα)E
v f (∗H) := grV

α E
v f (∗H) = VαEv f (∗H)/V<αEv f (∗H).

For each α ∈ [0, 1), the jumps of the induced filtration (considered as a
filtration indexed by Q)

F•ψv,exp(−2π iα)E
v f (∗H) :=

F• ∩ VαEv f (∗H)

F• ∩ V<αEv f (∗H)

occur at α + Z at most, and the filtration

FpψvE
v f (∗H) :=

⊕
α∈[0,1)

Fα+pψv,exp(−2π iα)E
v f (∗H)

is (up to a shift by dim X − 1 on ψv, 6=1E
v f and by dim X on ψv,1Ev f ) the

Hodge filtration of a mixed Hodge module.

(3) If moreover H = ∅, this mixed Hodge module is polarized by the nilpotent
part of the monodromy naturally acting on ψvEv f , induced by the action of
exp−2π iv∂v.

The latter statement means that the weight filtration of the corresponding mixed
Hodge module is, up to a shift which depends on whether α = 0 or α 6= 0,
the monodromy filtration of the nilpotent endomorphism induced by v∂v + α on
ψv,exp(−2π iα)E

v f .

Proof of Proposition 7.19(2) and (3). It is enough to work in the algebraic setting
with respect to v. Recall that we set E = Ev f (∗H) for short, and that F ′ was
defined by (7.12). Let β ∈ [0, 1). We claim that

F ′α+p E ∩ VβE =

C[v](G p E ∩ VαE)+ (G p−1 E ∩ VβE) if β > α,

vC[v](G p E ∩ VαE)+ (G p E ∩ VβE) if β 6 α.
(7.20)

This implies that

F ′α+p grV
β E =

G p−1 grV
β E = F ′<α+p grV

β E if β > α,

G p grV
β E = F ′β+p grV

β E if β 6 α.
(7.21)
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Let us prove (7.20). We have F ′α+p E ⊂ Vα+p E and

F ′α+p E ∩ Vα+p−1 E

= C[v](G p E ∩ VαE)+
p−1∑
`=1

(G p−`E ∩ Vα+`E)+ (G0 E ∩ Vα+p−1 E)

= C[v](G p E ∩ VαE)+
p−1∑
`=1

(G p−`E ∩ Vα+`E),

and by decreasing induction one eventually finds that

F ′α+p E ∩ Vα+1 E = C[v](G p E ∩ VαE)+ (G p−1 E ∩ Vα+1 E).

Intersecting now with VβE gives the first line of (7.20). The second line is
obtained by showing in the same way that

F ′α+p E ∩ VαE = C[v](G p E ∩ VαE) = vC[v](G p E ∩ VαE)+ (G p E ∩ VαE).

Lemma 7.15, together with (7.21) and [22, Theorem 4.3], proves 7.19(2) and (3).

Proof of 7.19(1). Continuing the proof of (7.20) gives, for β ∈ [0, 1) and ` > 1,

F ′α+p E ∩ Vβ−`E =

v
`C[v](G p E ∩ VαE)+ (G p+`−1 E ∩ Vβ−`E) if β > α,

v`+1C[v](G p E ∩ VαE)+ (G p+`E ∩ Vβ−`E) if β 6 α,

which amounts to

F ′α+p E ∩ Vβ−`E =

v
`
[
C[v](G p E ∩ VαE)+ (G p−1 E ∩ VβE)

]
if β > α,

v`
[
vC[v](G p E ∩ VαE)+ (G p E ∩ VβE)

]
if β 6 α;

that is, in any case,

F ′α+p E ∩ Vβ−`E = v`(F ′α+p E ∩ VβE),

which is [32, (3.2.1.2)] (up to changing the convention for the V -filtration),
since v acts in an injective way on VβE .

We now wish to prove that [32, Property (3.2.1.3)] holds; that is, for each β > 0,
and for each α ∈ [0, 1) and p ∈ Z, the morphism

∂v : F ′α+p grV
β E −→ F ′α+p+1 grV

β+1 E
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is an isomorphism. Assume first that there exists po > 0 such that α + po 6 β <

α+ po+ 1 (otherwise, 0 < β < α, a case which will be treated separately). Then
a computation similar to that for proving (7.20) gives

F ′α+p E∩VβE =



C[v](G p E ∩ VαE)+
po∑
`=1

(G p−`E ∩ Vα+`E)

+ (G p−po−1 E ∩ VβE) if α + po < β < α + po + 1,

C[v](G p E ∩ VαE)+
po∑
`=1

(G p−`E ∩ Vα+`E) if β = α + po.

As a consequence, we find that

F ′α+p grV
β E =

G p−po−1 grV
β E if α + po < β < α + po + 1,

G p−po grV
β E if β = α + po.

If 0 < β < α, we also get F ′α+p grV
β E = G p grV

β E . So we are reduced to proving
that, for any β > 0 and any k, the morphism

∂v : Gk grV
β E −→ Gk grV

β+1 E (7.22)

is an isomorphism.
Away from Pred, we have grV

β E = 0 for each β > 0, so the assertion is empty.
Let us prove the assertion in the neighbourhood of a point of Pred. The left action
of ∂v on a term of the sum (7.16) gives, since ∂vev f

= x−eev f , and due to standard
commutation rules,

Pa,λ,β(v∂v + 1)ha,c,λ,β(x I (a), yJ (c), y′)x−[(β+1)e]−1x−a y−c−1ev f .

We have Pa,λ,β(v∂v + 1) = Pa,λ,β+1(v∂v), and we use (7.3) for β > 0 to conclude
that (7.22) is an isomorphism.

It remains to be checked that F ′α+• grV
β E is a good filtration for any β ∈ R. The

previous arguments reduce us to checking this for β ∈ [0, 1], and we are reduced
to proving that, for any such β, G• grV

β E is a good filtration. This follows from
[22, 4.14], since this filtration is identified (after grading by a finite filtration) to a
filtration which is already known to be good (and which is the Hodge filtration of
a mixed Hodge module).

7.5. Computation of Fα+•E ∩ VαE. The previous section shows that, for
α, β ∈ [0, 1), the computation of Fβ+•E ∩ VαE is interesting mainly when
β = α. Note that Fα+p E = 0 for p < 0 and that, away from Pred, we have
Fα+p Ev f

∩ VαEv f
= Ev f

= OX ev f .
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LEMMA 7.23. For α ∈ [0, 1) and p > 0, we have

grFα
p VαE =

⊕
k>0

(
grG

p+k Vα−k E/ grG
p+k Vα−k−1 E

)
' C[v] ⊗C

(
grG

p VαE/ grG
p Vα−1 E

)
. (7.23∗)

Note that, for p = 0, we have grG
0 VαE = G0 E ∩ VαE .

Proof. On the one hand, the natural map G p E ∩ VαE → grFα
p VαE has kernel

equal to G p E ∩ VαE ∩ (
∑

k>0(G p−1+k E ∩ Vα−k E)), according to (7.12). The
latter space is contained in G p E ∩ (G p−1 E ∩ VαE + Vα−1 E), that is, in
(G p−1 E ∩ VαE)+ (G p E ∩ Vα−1 E); but clearly the converse inclusion is also
true. We thus have an inclusion

G p E ∩ VαE
(G p−1 E ∩ VαE)+ (G p E ∩ Vα−1 E)

↪−→ grFα
p VαE . (7.24)

On the other hand,

G p E ∩ VαE ∩
(∑

k>1

G p+k E ∩ Vα−k E
)
⊂ G p E ∩ Vα−1 E ⊂ Fα+p−1 E,

so (7.24) is a direct summand in grFα
p VαE , and one can continue to get the first

expression in (7.23∗). For the second expression, we use (7.13).

LEMMA 7.25. For α ∈ [0, 1), p > 0, near a point of Pred, the following hold.

(1) The natural morphism, induced by the inclusion of each summand in
OX (∗Pred)[v],⊕

a>0
|a|6p

OI (a)x−[αe]−1x−a Qa,p−|a|,α(v/x e) −→ grG
p VαEv f , (7.25∗)

is an isomorphism.

(2) For each i = 1, . . . , `, the morphism ∂i : grG
p VαEv f

→ grG
p+1 VαEv f induced

by −∂xi /ei is given by

∂i ha,p−|a|,α(x I (a), y′)x−[αe]−1x−a Qa,p−|a|,α(v/x e)

=



ha,p−|a|,α(x I (a), y′)x−[αe]−1x−(a+1i )Qa+1i ,p+1−|a+1i |,α(v/x e)

if i /∈ I (a),

ha,p−|a|,α(0i , y′)x−[αe]−1x−(a+1i )Qa+1i ,p+1−|a+1i |,α(v/x e)

+ h(i)a,p−|a|,α(x I (a), y′)x−[αe]−1x−a Qa,p+1−|a|,α(v/x e)

if i ∈ I (a),
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where, for i ∈ I (a), we set

ha,p−|a|,α(x I (a), y′) = ha,p−|a|,α(0i , y′)+ xi h
(i)
a,p−|a|,α(x I (a), y′),

and 0i means that xi is set to be 0 in x I (a).

Proof. The first point follows from [22, Lemma 4.11]. For the second point, we
have, modulo G p Ev f

∩ VαEv f ,

∂i ha,p−|a|,α(x I (a), y′)x−[αe]−1x−a Qa,p−|a|,α(v/x e)

= ha,p−|a|,α(x I (a), y′)x−[αe]−1x−(a+1i )Qa+1i ,p−|a|,α(v/x e).

However, this is possibly not written in the form above if i ∈ I (a) (that is, ai = 0),
and we modify this expression as indicated in the statement to obtain, modulo
G p Ev f

∩ VαEv f , the desired formula.

7.6. The filtered relative de Rham complex and the rescaled Yu complex.
We consider the relative de Rham complex DRX×Cv/Cv E which is nothing but the
complex of OCv -modules

0 −→ E
d+ vd f
−−−−−−−→ Ω1

X [v] ⊗ E −→ · · · ,

and the action of ∂v by ∂/∂v + f induces a C[v]〈∂v〉-structure on each term
compatible with the differentials.

We filter this complex as usual by subcomplexes of C[v]-modules:

Fα+p DRX×Cv/Cv E =

{
Fα+pE

d+ vd f
−−−−−−−→ Ω1

X [v] ⊗ Fα+p+1E −→ · · ·

}
.

As usual, we set F p
α = Fα−p. The action of ∂v on DRX×Cv/Cv E induces a morphism

∂v : Fα+p DRX×Cv/Cv E −→ Fα+p+1 DRX×Cv/Cv E.

We will use the following notation, as in [9]:

Ωk
X×Cv/Cv (logD)([(α + j)P])+ =

{
0 if j < 0,
Ωk

X×Cv/Cv (logD)([(α + j)P]) if j > 0.

We define the rescaled Yu complex as being the filtered complex (α ∈ [0, 1) and
p ∈ Z)

FYu
α+p DRX×Cv/Cv E := OX×Cv ([(α + p)P])+

d+ vd f
−−−−−−−→ Ω1

X×Cv/Cv (logD)([(α + p + 1)P])+ −→ · · · ,
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which is a complex of OCv -modules. The connection ∂/∂v + f induces a
morphism ∇∂v : FYu

α+p DRX×Cv/Cv E→ FYu
α+p+1 DRX×Cv/Cv E.

PROPOSITION 7.26. The natural morphism

FYu
α+p DRX×Cv/Cv E −→ Fα+p DRX×Cv/Cv E

is a quasi-isomorphism for each α ∈ [0, 1) and p∈Z compatible with the action
of ∂v.

Proof. The existence of a natural morphism follows from Lemma 7.10. The
compatibility with respect to the action of ∂v is then clear. The proof is then
similar to that of [9, Proposition 1.7.4]. We note that, away from Pred, we use
that the morphism

(Ω •

X×Cv/Cv (logH), d+ vd f ) −→ (Ω •

X×Cv/Cv (∗H), d+ vd f ), (7.27)

is a filtered quasi-isomorphism. Here the analytic version of E is needed in order
to write d+ vd f = e−v f

◦ d ◦ ev f .

7.7. Proof of Theorem 6.4. We consider the complex (Ω •

f (α)[v], d + vd f ).
We have a natural connection

∇∂v : (Ω
•

f (α)[v], d+ vd f ) −→ (Ω
•

f (α + 1)[v], d+ vd f )

induced by the action of f + ∂/∂v on each term of the complex.

LEMMA 7.28. For α ∈ [0, 1), there is a natural filtered morphism(
OX×Cv⊗OX [v]Ω

•

f (α)[v], d+vd f, σ>p
)
−→ (DRX×Cv/Cv VαE, F p

α DRX×Cv/Cv VαE)

which makes the following diagram commutative:(
OX×Cv ⊗OX [v] Ω

•

f (α)[v], d+ vd f
)

∇∂v
��

// DRX×Cv/Cv VαE

∇∂v
��(

OX×Cv ⊗OX [v] Ω
•

f (α + 1)[v], d+ vd f
)

// DRX×Cv/Cv Vα+1E

Proof. Once the morphism is defined, the commutativity of the diagram is
straightforward: let d denote the differential with respect to X and dv that with
respect to v; the verification reduces to checking that e−v f

◦d◦ev f commutes with
e−v f
◦ dv ◦ ev f , a statement which follows from the commutation of d with dv.
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Away from Pred, the morphism is given by (7.27). At a point of Pred, we will
use the algebraic version E of E for simplicity. For each k > 0, we have a natural
inclusion

(F0O(∗Pred)
)
([αP])(∗H)vkev f

⊂ VαE .

Indeed, it is enough to check that we have the inclusion

x ke(F0O(∗Pred)
)
([αP])(∗H) · (v/x e)kev f

⊂ VαE

which results from the inclusion

x ke(F0O(∗Pred)
)
([αP])(∗H)Q0, j,α(v/x e) ⊂ VαE with P0, j,α(s) = (s + α) j ,

by expressing (v/x e)k in terms of the Q0, j,α(v/x e) with j 6 k. The assertion is
then clear by taking the term with a = 0 in the expression of Lemma 7.1. We thus
obtain the desired morphism.

In order to prove that it is filtered, we note that, for each k > 0, the natural
inclusion morphism Ωk

f (α)[v] → Ωk
X ⊗OX E factorizes through the subsheaf

Ωk
X ⊗OX FαVαE . Indeed, according to (7.17), we have FαVαE = FαE =

F0OX (∗D)([αP])[v] · ev f , so we are reduced to proving the inclusion Ωk
f (α) ⊂

Ωk
X ⊗ F0OX (∗D)([αP]). This is clear away from Pred, since this reduces to

Ωk
X (log H) ⊂ Ωk

X ⊗ F0OX (∗H). In the local setting of Section 7.1 near a point
of Pred, the conclusion follows from [9, Formula (1.3.1)] for α = 0, and from the
same formula multiplied by x−[αe] if α ∈ (0, 1).

We will show Theorem 6.4 with the filtration F •α introduced in Definition 7.9.
That this is the filtration F irr,•

α will be shown in Theorem 9.1. Near a point of
(X r Pred)×Cv we can write d+ vd f = e−v f

◦ d ◦ ev f to reduce the statement to
the standard result proved by Deligne [4].

We will thus focus on Pred×Cv, and it will be enough to consider the v-algebraic
version of the statement. It is also enough to prove that, for each p > 0, the pth
graded morphism is a quasi-isomorphism. We are thus led to proving that for
p > 0 the following vertical morphism is a quasi-isomorphism:

0 // Ω
p
f (α)[v]

��

// 0

��

// · · ·

0 // FαVαE ⊗Ω p // grFα
1 VαE ⊗Ω p+1 // · · ·

(7.29)

Since the question is local, we can treat the variables x and y separately, and the
main problem remains the case of the x variables, so we will assume that H = ∅.
We will use the computations of Section 7.5, from which we keep the notation.
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LEMMA 7.30. Near a point of Pred, for q ∈ Z and α ∈ [0, 1), the relative de Rham
complex

0 −→ grG
q VαEv f

−→ grG
q+1 VαEv f

⊗Ω1
−→ · · · −→ grG

q+n VαEv f
⊗Ωn

−→ 0

has zero cohomology in degrees > −q + 1 (recall that grG
q VαEv f

= 0 for q < 0).

Sketch of proof. We will forget the variables y′ and work with the variables
x ∈ C`, so we will replace n with ` in the de Rham complex above. We then
note that this complex is the simple complex associated with the hypercubical
complex built on the cube in R` with vertices ε ∈ {0, 1}`, whose vertex at ε is
grG

q+|ε| VαEv f and whose arrows (εi = 0)→ (εi = 1) are the derivatives ∂xi . We
may as well replace the arrow ∂xi with ∂i = −∂xi /ei .

The formula of Lemma 7.25(2) shows that, if εi = 0, the arrow ∂i : ε→ ε+ 1i

is injective, with cokernel identified with⊕
a′>0, a′i=0
|a′|=q+1

OI (a′)x−[αe]−1x−a′Qa′,0,α(v/x e).

We use the convention that a sum indexed by the empty set is zero, a case which
occurs if q + 1 < 0.

• If ` = 1, we only need to consider the case when q > 0. The cokernel of ∂1 is
then equal to zero, showing that ∂1 is bijective in this case, which implies the
desired assertion.

• If ` > 2, we replace (with a shift) the hypercubical `-complex with the (`−1)-
complex made of the cokernels of the injective arrows ∂1, and the formula for
the induced arrows ∂2, . . . , ∂` is then that of the case when i /∈ I (a) in the
formula of Lemma 7.25(2). Now, the maps induced by ∂2 are injective, with
cokernel ⊕

a′′>0, a′′1=a′′2=0
|a′′|=q+2

OI (a′′)x−[αe]−1x−a′′Qa′′,0,α(v/x e), etc.

From Lemma 7.30 we conclude that, for α ∈ [0, 1) and each p > 0, the
de Rham complex

0 −→ · · · −→ 0 −→ grG
0 VαEv f

⊗Ω p
−→ grG

1 VαEv f
⊗Ω p+1

−→ · · · (7.31)α

has zero cohomology in degrees > p + 1, while the de Rham complex

0 −→ · · · −→ 0 = grG
0 Vα−1 Ev f

⊗Ω p
−→ grG

1 Vα−1 Ev f
⊗Ω p+1

−→ · · ·

(7.31)α−1
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has zero cohomology in degrees > p + 2 since grG
k Vα−1 Ev f

' grG
k−1 VαEv f ,

according to (7.13). Therefore, the quotient complex (7.31)α/(7.31)α−1 has zero
cohomology in degrees > p+1. It follows then from Lemma 7.23 that the bottom
line of (7.29) has zero cohomology in degrees > p + 1. It remains to identify the
degree-p cohomology of this bottom line. As noted above, we have

FαVαEv f
= FαEv f

= F0O(∗Pred)([αP])[v]ev f ,

so the cohomology consists of sections of F0O(∗Pred)([αP])[v] ⊗ Ω p whose
images by d + vd f belong to F0O(∗Pred)([αP])[v] ⊗ Ω p+1. This cohomology
is then contained in Ω p(log Pred)([αP])[v], according to Lemma 7.32 below, and
it is then easy to identify it with Ω p

f (α)[v].

LEMMA 7.32. For k > 0, a section of F0O(∗Pred)Ω
k belongs to Ωk(log Pred) if

and only if its exterior product by
∑`

i=1 ei dxi/xi belongs to F0O(∗Pred)Ω
k+1.

7.8. Some properties of the filtration F•αH k
v . Recall that the DCv -

module H k
v is defined in Section 1.2. For α ∈ [0, 1), we denote by VαH k

v

the free C[v]-lattice of H k
v on which the connection ∇ induced by the DCv -

module structure has a simple pole, with residue as in Theorem 1.11(1). This is
also the part of indices in [0, 1) of the Kashiwara–Malgrange V -filtration of H k

v ,
which exists since it is a holonomic DCv -module.

By a standard result on the strictness of the Kashiwara–Malgrange V -filtration
with respect to proper push-forward, we have

VαH k
v = im

[
Rkq+(DRX×Cv/Cv VαE) −→ Rkq+(DRX×Cv/Cv E)

]
,

and the latter morphism is injective. We obtain, as a consequence of Proposition
7.19, the following.

COROLLARY 7.33 (of [32, Proposition 3.3.17]). For each k, α, p, F •αH
k
v satisfies

the properties (3.2.1) in [32].

Let us consider the restriction j∗F •αH
k
v ( j : C∗v ↪→ Cv).

COROLLARY 7.34. For each α ∈ [0, 1) and p ∈ Z, we have an isomorphism of
OC∗v -modules:

j∗F p
α H k

v ' OC∗v ⊗C FYu,p
α H k

dR(U,∇).

In particular, j∗F p
α H k

v =H k
|C∗v for p 6 0 and j∗F p

α H k
v = 0 for p > k.

https://doi.org/10.1017/fms.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.8


C. Sabbah and J.-D. Yu 44

Proof. The first part follows from Lemma 7.10(2), and the second part follows
from the property grp

FYu
α

H k
dR(U,∇) = 0 for p /∈ [0, k], which is a consequence of

[9, Corollary 1.5.6].

Recall that the irregular Hodge numbers h p,q
α ( f ) are defined by (1.6). As a

consequence of Corollary 7.34, we have

h p,q
α ( f ) = rk grp

Fα j∗H
p+q
v .

COROLLARY 7.35. For α ∈ [0, 1), we have F0
αH

k
v ⊃ VαH k

v .

Proof. We have seen that both OCv -modules coincide with H k
v [v

−1
] after

tensoring with OCv [v
−1
] (by Corollary 7.34 for the first one, and by a standard

property of the V -filtration for the second one). Hence for any m ∈ VαH k
v there

exists ` > 0 such that v`m ∈ F0
αH

k
v . Let p ∈ Z be such that m ∈ F p

α H k
v .

Corollary 7.33 implies that Property [32, (3.2.1.1)] holds for the filtration F •αH
k
v ,

and thus the morphism v` : (Fq
αH k

v ∩ VαH k
v ) → (Fq

αH k
v ∩ Vα−`H k

v ) is an
isomorphism for each q . It follows that

m ∈ F p
α H k

v ∩ VαH k
v and v`m ∈ F0

αH
k
v ∩ Vα−`H k

v H⇒ m ∈ F0
αH

k
v ∩ VαH k

v ,

as was to be proved.

7.9. Nearby cycles and the monodromy filtration. We now consider the
functor ψv,exp(−2π iβ) (β ∈ [0, 1)). The result of [32, Proposition 3.3.17] implies
then that, for each β ∈ [0, 1), the filtration naturally induced by the Q-indexed
filtration F •H k

v on ψv,exp(−2π iβ)H k
v is equal to

F •Hk(X,DRψv,exp(−2π iβ)E) := Hk(X, F • DRψv,exp(−2π iβ)E), (7.36)

and therefore has jumps at β+Z at most. It is then enough to consider the filtration
induced by F •βH

k
v onψv,exp(−2π iβ)H k

v . Then, according to the previous results, we
have

F p
β ψv,exp(−2π iβ)H

k
v =

{
ψv,exp(−2π iβ)H k

v if p 6 0,
0 if p > k.

DEFINITION 7.37. For α ∈ [0, 1) and k > 0, the spectral multiplicity function is
the function

Z 3 p 7−→ µk
α(p) := dim grp

Fα ψvH
k
v :=

∑
β∈[0,1)

dim grp
Fα ψv,exp(−2π iβ)H

k
v .
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LEMMA 7.38. For each α ∈ [0, 1), k ∈ N, and p ∈ Z, we have

µk
α(p) = h p,k−p

α .

In particular, µk
α(p) = 0 for p /∈ [0, k].

Proof. For β ∈ [0, 1), we have an isomorphism (see Corollary 7.33):

v : (F p
α H k

∩ VβH k)
∼

−→ (F p
α H k

∩ Vβ−1H
k). (7.39)

Therefore,∑
β∈[0,1)

dim F p
α ψv,exp(−2π iβ)H

k
v =

∑
β∈[0,1)

dim F p
α grV

β H k
v =

∑
β∈(α−1,α]

dim F p
α grV

β H k
v

= dim
F p
α H k

v ∩ VαH k
v

F p
α H k

v ∩ Vα−1H k
v

= dim
F p
α H k

v ∩ VαH k
v

v(F p
α H k

v ∩ VαH k
v )

(Corollary 7.33).

Since VαH k
v is OCv -free for α ∈ [0, 1), the OCv -module F p

α H k
v ∩ VαH k

v

is OCv -torsion free, and hence OCv -free, and the latter term is equal to
rk(F p

α H k
v ∩ VαH k

v ), and hence to rk(F p
α H k

v )[v
−1
]. Then it is equal to

dim FYu,p
α H k

dR(U,∇), according to Corollary 7.34. The result follows from
[9, Corollary 1.4.8].

Proof of Theorem 6.1. By Lemma 7.15 and (7.21), we can apply [22,
Theorem 5.3] to the filtration given by (7.36). It remains to identify the latter with
the irregular Hodge filtration. This follows from Theorem 9.1 below.

8. The DX×Cu -module E f/u(∗H)

We now focus on the u-chart. In this section, we will consider the DX [u]〈∂u〉-
module E f/u(∗H) := (OX (∗D)[u, u−1

], d+d( f/u)), and we use the identification

E f/u(∗H) = OX (∗D)[u, u−1
] · e f/u,

which makes clear the twist of the DX [u]〈∂u〉-structure. We will denote for short
E = E f/u(∗H).

8.1. The Brieskorn lattice of the DX[u]〈∂u〉-module E f/u(∗H). Let F•DX

denote the filtration of DX by the order of differential operators, and consider the
Rees ring RFDX :=

⊕
k FkDX · uk , which can be expressed in local coordinates
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as OX [u]〈u∂x , u∂y, u∂y′〉. It will be useful to extend it by adding the action
of u2∂u. We obtain in this way a sheaf of rings RFDX 〈u2∂u〉, which we will
denote by G0DX [u]〈∂u〉. It is naturally filtered by the order with respect to the
partials, a filtration that we denote by F•G0DX [u]〈∂u〉.

REMARK 8.1. The Rees construction is the same as that used in Section 3.
However, the notation for the extra variable used here is not the same as in
Section 3 since it will not play the same role. We will use both in Section 9.

The Brieskorn lattice G0 E defined in [23, Section 1] is the OX (∗Pred)[u]-
module

G0 E :=
⊕

j
(F jOX (∗H))(∗Pred) · u j e f/u, (8.2)

and we set, for each p ∈ Z, G p E = u−pG0 E . Then G•E is an increasing filtration
of E indexed by Z. Note that, if 5 denotes the relative connection on E induced
by the DX -module structure, then G0 E is preserved by u5. It is also preserved by
the action of u2∂u . In other words, G0 E is a G0DX [u]〈∂u〉-module. For example,
if H = ∅, we have

G0 E f/u
= OX (∗Pred)[u] · e f/u.

Using the Rees module notation, we can also write(
G0 E, u∇) =

(
(RFOX (∗H))(∗Pred), ud+ d f

)
.

8.2. The filtration Fα+•G0 E f/u(∗H). Although the function f/u does not
extend as a map X × Cu → P1, we can nevertheless adapt in a natural way the
definition given in [9, (1.6.1) & (1.6.2)] for the case of the map f : X → P1.

DEFINITION 8.3 (The filtration). For α ∈ [0, 1), we set

Fα+pG0 E f/u
= FpOX (∗Pred)

(
[(α + p)P]

)
[u] · e f/u,

Fα+pG0 E =
∑

q+q ′6p

uq FqOX (∗H) · Fα+q ′G0 E f/u.

LEMMA 8.4. For each α ∈ [0, 1), the filtration Fα+•G0 E is an F•G0DX [u]〈∂u〉-
filtration which satisfies the following properties.

(1) Fα+p1 G0 E ⊂ Fβ+p2 G0 E for all p1, p2 ∈ Z and β ∈ [0, 1) such that α+ p1 6
β + p2. Moreover, Fα+pG0 E = 0 for p < 0.

(2) The filtration Fα+•G0 E satisfies

Fα+pG0 E = FpG0DX [u]〈∂u〉 · FαG0 E;

in particular, it is good with respect to F•G0DX [u]〈∂u〉.
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Proof. The proof is similar to that of Lemma 7.10.

We will give an expression of Fα+pG0 E in terms of the V -filtration. We set
G p E = u−pG0 E , and we identify E[u−1

] with Ev f (∗H)[v−1
], so that we can

define the filtration Vα+k(E[u−1
]) as being the filtration Vα+k(Ev f (∗H)[v−1

])

considered in Section 7.2. Note that, since v is invertible on Ev f (∗H)[v−1
], and

since Vα(Ev f (∗H)[v−1
]) = Vα(Ev f (∗H)) for α ∈ [0, 1), we have

Vα+k(E[u−1
]) = Vα+k(Ev f (∗H)[v−1

]) = v−k Vα(Ev f (∗H)) = uk VαE .

For α ∈ [0, 1), we set

F ′α+pG0 E := u pC[u](G p E ∩ VαE) = C[u](G0 E ∩ u pVαE), (8.5)

where the intersection is taken in E[u−1
]. This is an F•(G0DX [u]〈∂u〉)-filtration

since u∂xi sends VαE to uVαE , and so does u2∂u = −∂v.

LEMMA 8.6. For each α ∈ [0, 1) and p ∈ Z, we have

F ′α+pG0 E = Fα+pG0 E .

Proof. The proof will be similar to that of Lemma 7.15. In the neighbourhood of
a point of XrPred, Definition 8.3 gives Fα+pG0 E =

∑p
q=0 uq FqO(∗H)[u] · e f/u ,

while a computation similar to that at the beginning of the proof of Lemma
7.15 gives G p E ∩ VαE =

⊕
06q6p FqO(∗H)uq−p

· e f/u , and hence the result
by multiplying the latter term by u pC[u].

In the neighbourhood of a point of Pred, the inclusion ⊃ is proved exactly as
in Lemma 7.15. For the inclusion ⊂, we use (7.16) with β = α. Using similarly
v j∂ j

v instead of (v∂v) j , and replacing v j with u− j , a term of G p E ∩ VαE in the
sum (7.16) can be written as

ha,c,λ, j,α(x I (a), yJ (c), y′)x−[(α+ j)e]−1x−a y−c−1u− j e f/u,

with j 6 q ′ := λ+ |a| and q := |c| 6 p − q ′. Note that p − q − j > 0. So each
term in u p(G p ∩ Vα) is a sum of terms

ha,c,λ, j,α(x I (a), yJ (c), y′) · x−[(α+q ′)e]−1x−(a−(q
′
− j)e)u p−q− j

· (uq y−c−1)e f/u

which all belong to Fα+pG0 E (Definition 8.3), since a > 0, |a| 6 q ′ and one
has, according to Lemma 7.18, |a − (q ′ − j)e|+ 6 j 6 q ′ for any j such that
0 6 j 6 q ′.
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REMARK 8.7. We conclude from the lemma that the filtration Fα+p grG
0 E

induced by Fα+pG0 E is nothing but the filtration induced by u pVα(E[u−1
]) =

Vα+p(E[u−1
]). Indeed, recalling that uG0 = G−1, we have

C[u](G0 E ∩ u p Vα(E[u−1
]))

uG0 E ∩
(
C[u](G0 E ∩ u p Vα(E[u−1]))

)
=

G0 E ∩ u p Vα(E[u−1
])

(uG0 E ∩ u p Vα(E[u−1]))+
[
G0 E ∩ u p Vα(E[u−1]) ∩ uC[u](G0 E ∩ u p Vα(E[u−1]))

]
=

G0 E ∩ u p Vα(E[u−1
])

G−1 E ∩ u p Vα(E[u−1])
.

It follows that
Fα+p grG

0 E
F<α+p grG

0 E
u−p

−−−→
∼

grV
α grG

p E = grG
p grV

α Ev f (∗H),

and we conclude that grF
α+p grG

0 E can be computed from data in the v-chart.

8.3. Proof of Theorem 6.5. We have

DRX E =
{

0 −→ OX (∗D)[u, u−1
]

d+ d f/u
−−−−−−−−→

· · ·
d+ d f/u
−−−−−−−−→ Ωn

X (∗D)[u, u−1
] −→ 0

}
.

It will be convenient to use the complex

DRX E :=
{

0 −→ OX (∗D)[u, u−1
]

ud+ d f
−−−−−−−→

· · ·
ud+ d f
−−−−−−−→ Ωn

X (∗D)[u, u−1
] −→ 0

}
.

Both complexes are obviously isomorphic by multiplying the kth term of the first
one by uk , a morphism that we denote by u•.

The subcomplex DRX G0 E of DRX E is defined by

DRX G0 E : =
{

0 −→ (RFOX (∗H))(∗Pred)
d+ d f/u
−−−−−−−−→

· · ·
d+ d f/u
−−−−−−−−→ Ωn

X ⊗ (u
−n RFOX (∗H))(∗Pred) −→ 0

}
. (8.8)

Similarly, the subcomplex DRX G0 E of DRX E is defined by

DRX G0 E : =
{

0 −→ (RFOX (∗H))(∗Pred)
ud+ d f
−−−−−−−→

· · ·
ud+ d f
−−−−−−−→ Ωn

X ⊗ (RFOX (∗H))(∗Pred) −→ 0
}
. (8.9)
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For example, if H = ∅, we obtain the complexes{
0→ OX (∗Pred)[u]

d+ d f/u
−−−−−−−−→ · · ·

d+ d f/u
−−−−−−−−→ u−nΩn

X (∗Pred)[u] → 0
}

u•
'

{
0→ OX (∗Pred)[u]

ud+ d f
−−−−−−−→ · · ·

ud+ d f
−−−−−−−→ Ωn

X (∗Pred)[u] → 0
}
.

The relative de Rham complex DRX G0 E is naturally filtered by

Fα+pDRX G0 E :=
{

0 −→ Fα+pG0E −→ Ω1
X ⊗ Fα+p+1G0E −→ · · ·

}
. (8.10)

The proof of Theorem 6.5 is obtained by adapting the proofs of [9,
Corollary 1.4.5 & Proposition 1.7.4] to the present situation. We add the
parameter u, and we consider the u-connection ud + d f . The natural inclusion
morphism Ωk

f (α)[u] → Ωk
X ⊗OX E factorizes through Ωk

X ⊗OX FαG0 E since
FαG0 E = F0OX (∗D)([αP])[u] · e f/u , and this shows that the filtered morphism
of Theorem 6.5 is well defined. To prove that it is a filtered quasi-isomorphism,
we note that, for the analogue of [9, Proposition 1.7.4], the ultimate step of
the proof, after grading the complexes, is the same as in [9], since the graded
differential is d log x−e in both cases. Similarly, the arguments of [35] used in the
proof of [9, Proposition 1.4.2 & Corollary 1.4.5] reduce the problem to proving a
quasi-isomorphism with a graded differential which does not depend on u.

8.4. Push-forward of the Brieskorn lattice. Let us consider the push-
forward H k

u as obtained in the chart Cu , that is,

H k
u = Rkq∗DRX×Cu/Cu (E)

u•
' Rkq∗DRX×Cu/Cu (E).

We set Hk
u := Γ (Cu,H k

u ), so that the above isomorphism becomes

Hk
u ' Hk(X, (Ω •

X (∗D)[u, u−1
], ud+ d f )

)
. (8.11)

We obviously have Hk
u = Hk

u[u
−1
] = Hk

v[v
−1
], and it is a free C[u, u−1

]-module
with connection.

Let us consider the C[u]-module

G0 Hk
u = Hk(X, (Ω •

X ⊗OX(u
−•RFOX (∗H))(∗Pred), d+ d f/u)

)
' Hk(X, (Ω •

X ⊗OX(RFOX (∗H))(∗Pred), ud+ d f )
)

= Hk(X,DRX×Cu/Cu (G0E)
)

according to (8.9). (8.12)
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For example, if H = ∅, we have

G0E
f/u
= OX (∗Pred)[u] · e f/u,

G0 Hk
u = Hk(X, (u−•Ω •

X (∗Pred)[u], d+ d f/u)
)

' Hk(X, (Ω •

X (∗Pred)[u], ud+ d f )
)
.

According to [33], we can apply the proposition in [23, Section 1] to E[v−1
] and

get the following.

PROPOSITION 8.13. For each k, G0 Hk
u is a free C[u]-module, and hence is a

C[u]-lattice of Hk
u , and we have C[u, u−1

] ⊗C[u] G0 Hk
u ' Hk

u = Hk
v[v
−1
] by the

isomorphism (8.11).

REMARK 8.14 (Stability under u2∂u). The natural action of u2∂u on G0 E induces
an action on u−kΩk

X ⊗ G0 E which defines an action of u2∂u on the complex
DRX (G0 E), and hence on its cohomology G0 Hk

u (equivalently, a shifted action
by u2∂u − ku on Ωk

X ⊗ G0 E , and hence on DRX (G0 X) and on its cohomology).
In other words, the action of ∂u on Hk

u has a pole of order at most two when
restricted to G0 Hk

u .

For each k, we have a natural morphism (see (8.10))

Hk(X, Fα+pDRX G0 E
)
−→ Hk(X,DRX G0 E

)
=: G0 Hk

u, (8.15)

whose image is denoted by Fα+pG0 Hk
u . The source of this morphism is a C[u]-

module of finite type because q is proper and the terms of the complex (8.10) are
OX [u]-coherent. As already mentioned after Theorem 6.5, (8.15) is injective for
each k. The filtered G0C[u]〈∂u〉-module (G0 Hk

u, Fα+•G0 Hk
u) is the (k−dim X)th

push-forward of the filtered G0DX [u]〈∂u〉-module (E, Fα+•E).

8.5. The case of cohomologically tame functions on affine varieties. In this
subsection we use the Zariski topology on U, X , and X×A1

u . We still denote by E
the DX×A1

u
-module OX×A1

u
(∗D) ·e f/u , and we make the abuse of identifying it with

OX (∗D)[u, u−1
] · e f/u (where X has its Zariski topology).

Assume that U is affine and that f : U → A1 is a cohomologically tame
function, in the sense of [26, Section 8] (see also [13, Proposition 14.13.3(2)]
for a weaker condition). In particular, f has only isolated critical points. Then
H k

dR(U, d+ d f ) = 0 unless k = n := dim X , and dim H n
dR(U, d+ d f ) is equal to

the sum of the Milnor numbers at the critical points. The Brieskorn lattice G0( f )
is defined as G0( f ) := Ωn(U )[u]/(ud+ d f )Ωn−1(U )[u].
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PROPOSITION 8.16. Under this tameness assumption on f , the natural
morphism of complexes

Rq∗DRX×A1
u/A1

u
(G0E) −→ Rq∗(Ω

•

U×A1
u/A1

u
, ud+ d f ) = (Ω •

(U )[u], ud+ d f )

is a quasi-isomorphism, from which one deduces, through Hn(u•), an equality
G0 Hn

u = u−nG0( f ) in

Hn
u ' Ω

n(U )[u, u−1
]
/
(ud+ d f )Ωn−1(U )[u, u−1

].

Proof. The natural morphism is induced by

(FkOX (∗H))(∗Pred) −→ (FkOX (∗H))(∗D) = OX (∗D) = j∗OU

(where j∗ is taken here in the Zariski topology). Through this morphism, Hk(u•)
corresponds to u• termwise on the right-hand complex. Since H k

dR(U, d+d f ) = 0
unless k = dim X = n, we also have Hk

u = 0 unless k = n, and since the kth
cohomology of the left-hand complex is contained in Hk

u , we conclude that the
left-hand complex has cohomology in degree n at most. We therefore obtain a
morphism

G0 Hn
u −→ u−nG0( f ), (8.17)

whose localization with respect to u is an isomorphism, since RFOX (∗H)[u−1
] =

OX (∗H)[u, u−1
], and thus (RFOX (∗H))(∗Pred)[u−1

] = OX (∗D)[u, u−1
]; hence

Hk
u = Hk(X, (Ω •

X (∗D)[u, u−1
], d+ d f/u)

)
= Hk(U, (Ω •

U [u, u−1
], d+ d f/u)

)
= H k(Ω

•

(U )[u, u−1
], d+ d f/u) (U affine).

Both terms of (8.17) are C[u] free of the same rank; hence the morphism (8.17)
is injective, and we may regard it as an inclusion in Hn

u through the previous
identification. The conclusion follows from the lemma below.

LEMMA 8.18. The morphism (8.17) is an isomorphism; in other words, G0 Hn
u =

u−nG0( f ) in Hn
u .

Sketch of proof. We will see in Section A.2 that the Brieskorn lattice G0 Hn
u

is identified with the Brieskorn lattice attached to the filtered DP1 -module
underlying the mixed Hodge module associated with H 0 f+OU . On the other
hand, it is shown in [28, Section 4.c] that G0( f ) is identified to the Brieskorn
lattice of the Hodge filtration of H 0 f+OU shifted by n, which leads to the
result.
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Recall (see [26]) that the spectrum of f at infinity is defined as the set of pairs
(γ, δγ ), with γ ∈Q and δγ = dim grV

γ G0( f ). It is known (see loc. cit.) that δγ = 0
unless γ ∈ [0, n] and that δγ = δn−γ (that is, the spectrum is symmetric with
respect to n/2).

COROLLARY 8.19. Under the previous assumptions, let us set γ = α + q, with
α ∈ [0, 1) and q ∈ Z. Then we have

δγ = µ
n
α(n − q) = hn−q,q

α = dim grn−γ
F•Yu

H n
dR(U, d+ d f ).

Proof. We have isomorphisms

grV
γ G0( f )

u−n

−−−→
∼

grV
γ−n G0 Hn

u = grV
α+q−n G0 Hn

u
un−q

−−−−→
∼

grV
α Gn−q Hn

u.

REMARKS 8.20.

(1) The duality δγ = δn−γ implies, together with the general duality statement
of [35, Theorem 2.2], that, if U is affine and f is cohomologically tame, we
have

dim grλF•Yu
H n

dR(U, d+ d f ) = dim grλF•Yu
H n

dR,c(U, d+ d f ) ∀ λ.

(2) Assume that U = (C∗)n with coordinates x1, . . . , xn , and that f is a
convenient and nondegenerate Laurent polynomial (in the sense of
Kouchnirenko [15]). Then it is known that f is cohomologically tame.
Moreover,

G0( f )/uG0( f ) = Ωn(U )
/

d f ∧Ωn−1(U )

' C[x±1
1 , . . . , x±1

n ]
/
(x1∂ f/∂x1, . . . , xn∂ f/∂xn) = C[x±1

]/J ( f ), (8.21)

where the isomorphism is obtained by dividing by dx1/x1∧· · ·∧dxn/xn ,
and the filtration Vγ (G0( f )/uG0( f )) is identified with the Newton filtration
Nγ (C[x±1

]/J ( f )) (see [8, Theorem 4.5]). Therefore,

dim grλF•Yu
HdR(U, d+ d f ) = dim grn−λ

F•Yu
HdR(U, d+ d f )

= dim grN
λ (C[x

±1
]/J ( f )).

(3) Let Y be a toric Fano manifold. Mirror symmetry associates with it a
convenient and nondegenerate Laurent polynomial f , and the cohomology
H ∗(Y,C) is identified with C[x±1

]/J ( f ) graded by the Newton filtration
(see [2]). Since the cohomology is generated by divisor classes (see for
example [10, Section 5.2]), it is of Hodge–Tate type, and the Hodge
filtration reduces to the filtration by the degree of the cohomology. It follows
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from the previous results that the Hodge numbers of Y coincide with the
irregular Hodge numbers associated to f . Such a mirror correspondence
was one of the motivations of Kontsevich to introduce the complexes (Ω •

f ,

ud + vd f ). (We thank É. Mann, Th. Reichelt and Ch. Sevenheck for
providing us with the necessary arguments.)

9. Relation with the irregular Hodge filtration of E(v:u) f (∗H)

In this section, we set E := E(v:u) f (∗H). We will compare the filtration
Fα+•E with the irregular Hodge filtration F irr

α+•E as defined in Section 5; namely,
we consider the case where N = OX(∗D) (notation of Section 7.1) with its
differential d twisted by the exponential of the rational function v f : X × P1

v =

X - -→ P1. The module FfN considered in Section 5.2 is obtained here by gluing
E τv f/z

[∗H] (notation of Proposition 3.3) in the v-chart with E τ f/uz
[∗H] in the u-

chart, and we will regard these modules algebraically with respect to τ , (v:u), and
z. We will use the notation introduced in Section 3.

THEOREM 9.1. For each α ∈ [0, 1), we have

Fα+•Ev f (∗H) = F irr
α+•E

v f (∗H),

Fα+•G0E
f/u(∗H) = F irr

α+•E
f/u(∗H) ∩ G0E

f/u(∗H).

The proof of the theorem will be done in various steps. For the sake of
simplicity, we will only treat the case where H = ∅.
• First, one identifies E τv f/z as a submodule of OX (∗Pred)[v, τ, z] · eτv f/z and

E τ f/uz as a submodule of OX (∗Pred)[u, u−1, τ, z] ·eτ f/uz . According to Proposition
3.4, we may have a strict inclusion only near points of Pred×{v = 0} and points of
{ f = 0}× {u = 0}. For the latter set, the computation is much simplified because
we only consider the intersection with G0E. For the former set, we will need
explicit computations of the V -filtration entering the very definition of E τv f/z in
Proposition 3.3.
• Second, one computes the terms V τ

α E τv f/z (respectively, V τ
α E τ f/uz) of the

V -filtration relative to τ = 0, in order to apply Proposition 5.5. We will work
analytically with respect to the variables of X and algebraically with respect to τ ,
(u : v), and z.

9.1. Computation in the v-chart. We use the algebraic version (with respect
to v, τ, z) RF(DX [v, τ ]〈∂v, ∂τ 〉) of RX ×Cv×Cτ . Recall that E τv f/z is a coherent
RF(DX [v, τ ]〈∂v, ∂τ 〉)-submodule of OX (∗Pred)[v, τ ]·eτv f/z . We will set e= eτv f/z .

Computation away from Pred. Since τv f is holomorphic, we have E τv f/z
=

OXrPred[v, τ ] · e
τv f/z . Then, from the relation ðτe = v f e, we conclude that E τv f/z
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is already (RFDX [v, τ ]〈∂v〉)-coherent, and hence the V τ -filtration is given by
V τ

k E τv f/z
= τmax(−k,0)E τv f/z: by uniqueness of the V τ -filtration, it is enough to

check the strictness of the grV τ

k E τv f/z , which is clear. Therefore, only α = 0
is relevant. In particular, V τ

0 E τv f/z
= E τv f/z . Hence, the quotient modulo

(τ − z)E τv f/z is equal to Ev f
[z].

On the other hand, we have Fα+p Ev f
= Ev f for any α ∈ [0, 1) and p > 0, and

Fα−1 Ev f
= 0; that is, RF Ev f

= Ev f
[z].

Computation in a neighbourhood of Pred. Near a point of Pred, let us set g = 1/ f ,
which is holomorphic in a neighbourhood of this point. In local coordinates we
have g = x e.

First step: computation of E τv/gz . By the very definition of Proposition 3.3(1)
we have, on this neighbourhood, E τv/gz

= (OX (∗Pred)[τ, v, z] · eτv/gz)[∗Pred]. Let
ig : X ↪→ X × Ct ′ denote the graph inclusion of g, and let p : X × Ct ′ → X
denote the projection. Then, by definition of [∗Pred], ig,+E τv/gz is the
RF(DX [t ′, v, τ ]〈∂t ′, ∂v, ∂τ 〉)-submodule of (ig,+OX (∗Pred)[v, τ, z]) · eτv/t ′z gener-
ated by V t ′

1 .

LEMMA 9.2. As an RF(DX [v, τ ]〈∂v, ∂τ 〉)-module, the submodule E τv/gz is
generated by x−1e. Moreover,

E τv/gz
∩ (τ − z)OX (∗Pred)[v, τ, z] · e = (τ − z)E τv/gz. (9.2∗)

Proof. Our first task is to compute the V t ′-filtration of

(ig,+OX (∗Pred)[v, τ, z]) · eτv/t ′z
=
⊕
k>0

OX (∗Pred)[v, τ, z](ðk
t ′δ)⊗ eτv/t ′z.

For α ∈ [0, 1), let us set

(δ ⊗ e)1+α := x−[αe]−1δ ⊗ eτv/t ′z

(δ ⊗ e)<1+α := x−dαeeδ ⊗ eτv/t ′z.

Then (δ ⊗ e)1+α satisfies the following equations:

ðv(δ ⊗ e)1+α =
τ

g
(δ ⊗ e)1+α

ðτ (δ ⊗ e)1+α =
v

g
(δ ⊗ e)1+α

ðt ′(δ ⊗ e)1+α = x−[αe]−1(ðt ′δ)⊗ eτv/t ′z
−
τv

g2
(δ ⊗ e)1+α

ðxi (δ ⊗ e)1+α = −
ei

xi

(
ðt ′ t ′ +

(1+ [αei ])z
ei

+ t ′ðτðv
)
(δ ⊗ e)1+α.

(9.3)
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As a consequence, we have

t ′ðe
x(δ ⊗ e)1+α = (−e)e ∏

i

ei∏
j=1

(
t ′ðt ′ +

( j + [αei ])z
ei

+ t ′ðτðv
)
(δ ⊗ e)1+α.

Similarly, for (δ ⊗ e)<1+α, the last line of (9.3) reads

ðxi (δ ⊗ e)<1+α = −
ei

xi

(
ðt ′ t ′ +

dαeiez
ei
+ t ′ðτðv

)
(δ ⊗ e)<1+α,

and we have

t ′ðe
x(δ ⊗ e)<1+α = (−e)e ∏

i

ei−1∏
j=0

(
t ′ðt ′ +

( j + dαeie)z
ei

+ t ′ðτðv
)
(δ ⊗ e)<1+α.

We then easily deduce a Bernstein relation for (δ ⊗ e)1+α and for (δ ⊗ e)<1+α,
showing that (δ ⊗ e)1+α belongs to V t ′

1+α(ig,+OX [v, τ, z]) · eτv/t ′z and (δ ⊗ e)<1+α

to V t ′
<1+α(ig,+OX [v, τ, z]) ·eτv/t ′z . We will now give an explicit expression of these

modules.
We have

(ig,+OX [v, τ, z]) · eτv/t ′z

=
⊕
k>0

OX (∗Pred)[v, τ, z](ðk
t ′δ)⊗ eτv/t ′z

=
⊕
k>0

OX (∗Pred)[v, τ, z]ðk
t ′(δ ⊗ e)1+α (third line of (9.3))

=
⊕
k>0

OX (∗Pred)[v, τ, z]ðk
t ′ t
′k(δ ⊗ e)1+α (t ′(δ ⊗ e)1+α) = g(δ ⊗ e)1+α)

=
⊕
k>0

OX (∗Pred)[v
′, τ ′, z](ðt ′ t ′)k(δ ⊗ e)1+α (setting v′ = v/g, τ ′ = τ/g)

' OX (∗Pred)[v
′, τ ′, η, z] (setting η = ðt ′ t ′, and (δ ⊗ e)1+α 7−→ 1).

We have a similar identification by using (δ ⊗ e)<1+α. Let us write the last line of
(9.3) as

(ðxi + ei x e−1iðvðτ )(δ ⊗ e)1+α = −
ei

xi

(
ðt ′ t ′ +

(1+ [αei ])z
ei

)
(δ ⊗ e)1+α.

For a ∈ N` and α ∈ [0, 1), let us set (with the convention that a product indexed
by the empty set is equal to one)

pa,α(s, z) =
∏

i

ai∏
j=1

(
s +

( j + [αei ])z
ei

)
,

pa,<α(s, z) =
∏

i

ai−1∏
j=0

(
s +

( j + dαeie)z
ei

)
.

(9.4)
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We then have

(ðxi + ei x e−1iðvðτ )a(δ ⊗ e)1+α = (−e)ax−a pa,α(ð′t t
′, z)(δ ⊗ e)1+α

(ðxi + ei x e−1iðvðτ )a(δ ⊗ e)<1+α = (−e)ax−a pa,<α(ð′t t
′, z)(δ ⊗ e)<1+α.

Let us set

U1+α =
∑
a>0

OX [v
′, τ ′, η, z]x−a pa,α(η, z) ⊂ OX (∗Pred)[v

′, τ ′, η, z]

U<1+α =
∑
a>0

OX [v
′, τ ′, η, z]x−a pa,<α(η, z) ⊂ OX (∗Pred)[v

′, τ ′, η, z].

We thus have isomorphisms, by sending η to ∂t ′ t ′:

U1+α
· (δ ⊗ e)1+α
−−−−−−−−−→

∼

V t ′
0 RF(DX [t ′, v, τ ]〈∂t ′, ∂v, ∂τ 〉) · (δ ⊗ e)1+α

U<1+α
· (δ ⊗ e)<1+α
−−−−−−−−−−→

∼

V t ′
0 RF(DX [t ′, v, τ ]〈∂t ′, ∂v, ∂τ 〉) · (δ ⊗ e)<1+α.

If we set I (a) = {i | ai = 0} for a ∈ N`, and if I (a)c = {i | ai > 1} denotes
its complement in {1, . . . , `}, then every element in OX (∗Pred)[v

′, τ ′, η, z] can be
written in a unique way as∑

a>0

h̃a(x I (a), v
′, τ ′, η, z)x−a (9.5)

with h̃a(x I (a), v
′, τ ′, η, z) ∈ C{x I (a)}[v

′, τ ′, η, z]. Since pa,α divides pa′,α if a′ > a,
we deduce that each element of U1+α can be written as∑

a>0

ha,α(x I (a), v
′, τ ′, η, z)x−a pa,α(η, z), (9.6)

and the coefficient h̃a of x−a in its decomposition (9.5) is

ha,α(x I (a), v
′, τ ′, η, z)pa,α(η, z).

By uniqueness, we conclude that an element written as (9.5) belongs to
U1+α if and only if pa,α(η, z) divides h̃a(x I (a), v

′, τ ′, η, z). In particular, the
decomposition (9.6) is unique.

We wish to identify U1+α · (δ ⊗ e)1+α with V t ′
1+α(ig,+OX (∗Pred)[v, τ, z]) · eτv/t ′z

and U<1+α · (δ⊗ e)<1+α with V t ′
<1+α(ig,+OX (∗Pred)[v, τ, z]) · eτv/t ′z . It is enough to

check that

(t ′ðt ′ + (1+ α)z)mU1+α · (δ ⊗ e)1+α ⊂ U<1+α · (δ ⊗ e)<1+α for m big enough
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and
U1+α · (δ ⊗ e)1+α/U<1+α · (δ ⊗ e)<1+α has no z-torsion

(see [25, Lemma 3.3.4 & Section 3.4.a]). For the first point, we set

Iα = {i | αei ∈ Z} and, for a > 0, Iα(a) = Iα ∩ I (a) and Iα(a)c = Iα ∩ I (a)c.

Then (δ ⊗ e)1+α = x−1Iα (δ ⊗ e)<1+α, and we have the relation∏
i∈Iα
(ðxi − ei x e−1iðvðτ ) · (δ ⊗ e)<1+α = (−e)1Iα (ðt ′ t ′ + αz)#Iα (δ ⊗ e)1+α

= (−e)1Iα
(
t ′ðt ′ + (1+ α)z

)#Iα
(δ ⊗ e)1+α.

For the torsion-free assertion, let us consider a section (9.6) of U1+α, and let us
decompose (in a unique way) ha,α(x I (a), v

′, τ ′, η, z) as

ha,α(x I (a), v
′, τ ′, η, z) =

∑
ε∈{0,1}Iα(a)

ha,α,ε(x I (a+1Iα−ε)
, v′, τ ′, η, z)xε,

where ha,α,ε is holomorphic in its x-variables and polynomial in v′, τ ′, η, z. Then
the decomposition (9.6) reads∑

a>0

∑
ε∈{0,1}Iα(a)

ha,α,ε(x I (a+1Iα−ε)
, v′, τ ′, η, z)x−(a−ε) pa,α(η, z).

We now note that, for ε ∈ {0, 1}Iα(a), setting b = a + 1Iα − ε, we have

pb,<α(η, z) = (η + αz)#Iα(b)c · pa,α(η, z).

The unique decomposition (9.6) can thus also be written uniquely as∑
b>0

h′b,α(x I (b), v
′, τ ′, η, z)x−b pb,<α(η, z)

(η + αz)#Iα(b)c
· x1Iα , (9.7)

with h′b,α = ha,α,ε, where (a, ε) is defined by the following conditions:

ai = bi if i /∈ Iα,

ai = bi − 1 and εi = 0 if i ∈ Iα and bi > 1,

ai = 0 and εi = 1 if i ∈ Iα and bi = 0.

The condition that a section (9.7) · (δ ⊗ e)1+α = (9.7) · x−1Iα (δ ⊗ e)<1+α belongs
to U<1+α · (δ ⊗ e)<1+α now reads

∀ b > 0, (η + αz)#Iα(b)c divides h′b,α(x I (b), v
′, τ ′, η, z).
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It is therefore clear that a section of U1+α · (δ ⊗ e)1+α belongs, when multiplied
by z, to U<1+α · (δ⊗ e)<1+α if and only if it already belongs to U<1+α · (δ⊗ e)<1+α.
In other words, U1+α · (δ ⊗ e)1+α/U<1+α · (δ ⊗ e)<1+α has no z-torsion.

We conclude that

V t ′
0 RF(DX [t ′, v, τ ]〈∂t ′, ∂v, ∂τ 〉) · (δ ⊗ e)1 =U1 · (δ ⊗ e)1

= V t ′
1 (ig,+OX (∗Pred)[v, τ, z]) · (δ ⊗ e)1,

and hence ig,+E τv/gz is generated by (δ ⊗ e)1. It follows that E τv/gz is generated
by x−1e.

We will prove the analogue of (9.2∗) after applying ig,+, from which one
deduces similarly (9.2∗). We first notice that the equality

V t ′
1 (ig,+E

τv/gz)∩ (τ − z)(ig,+OX (∗Pred)[v, τ, z]) · eτv/t ′z
= (τ − z)V t ′

1 (ig,+E
τv/gz)

immediately follows from the unique decomposition (9.6) of a local section of
V t ′

1 (ig,+E τv/gz). To end the proof, it therefore suffices to produce a similar unique
decomposition of local sections of V t ′

1+k(ig,+E τv/gz) :=
∑k

j=0 ð
j
t ′V

t ′
1 (ig,+E τv/gz)

for any k > 1. This is obtained by writing

ðk
t ′(δ ⊗ e)1 = x−keðk

t ′ t
′k(δ ⊗ e)1 = x−ke

k−1∏
j=0
(ðt ′ t ′ + j z)(δ ⊗ e)1,

giving rise to a formula similar to (9.6) for sections of V t ′
1+k(ig,+E τv/gz), which

makes use of polynomials pa,k (k > 1), derived from pa,0 like in [22, Lemma 4.7].

Second step: computation of the V τ -filtration of E τv/gz . For α ∈ [0, 1), let us set
eα = eτv/gz/x [αe]+1.

LEMMA 9.8. The V τ
•

-filtration of E τv/gz satisfies

V τ
α E τv/gz

= V τ
0 RF(DX [v, τ ]〈∂v, ∂τ 〉) · eα ∀α ∈ [0, 1).

Proof. Since we are only interested in giving the formula for V τ
α E τv/gz , we can

as well work with the localized module E τv/gz
[τ−1
] (see [25, Lemma 3.4.1]). In

such a way, we can write

eα = x−[αe](x−1e) = x d(1−α)eeτ−1ðv(x−1e),

showing that eα is a section of E τv/gz
[τ−1
]. For α ∈ [0, 1), let us also set

e<α =
( ∏

i∈Iα
xi

)
eα =: x1Iα eα,
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and, for p ∈ Z,

U τ
α+p(E

τv/gz
[τ−1
]) = τ−pV τ

0 RF(DX [v, τ ]〈∂v, ∂τ 〉) · eα
U τ
<α+p(E

τv/gz
[τ−1
]) = τ−pV τ

0 RF(DX [v, τ ]〈∂v, ∂τ 〉) · e<α,

so that, clearly,

U τ
<α+p(E

τv/gz
[τ−1
]) ⊂ U τ

α+p(E
τv/gz
[τ−1
]). (9.9)

For p 6 0, we will set U τ
α+pE

τv/gz
= U τ

α+p(E
τv/gz
[τ−1
]) and U τ

<α+pE
τv/gz
=

U τ
<α+p(E

τv/gz
[τ−1
]). We will prove that U τ

•
(E τv/gz

[τ−1
]) is the good V τ -filtration

of E τv/gz
[τ−1
]. It is enough to prove that U τ

αE
τv/gz
= V τ

α E τv/gz for α ∈ [0, 1).
The proof will be very similar to that of Lemma 9.2, although with the variable τ
instead of the variable t ′.

By using (9.9), one first easily checks that U τ
α−1E

τv/gz
⊂ U τ

<αE
τv/gz and

(τðτ + αz)#IαU τ
αE

τv/gz
⊂ U τ

<αE
τv/gz.

Indeed, the first point follows from the relation τeα = x eðveα = x e−1Iαðve<α, and
the second one follows from the relation

(τðτ + αz)#Iαeα =
(
(−1)#Iα∏

i∈Iα ei

) ∏
i∈Iα

ðxi · e<α.

Due to the uniqueness of the V τ -filtration, the assertion of the lemma would
follow from the property that grU τ

α E τv/gz has no z-torsion. We will argue in a
way similar to that of Lemma 9.2 by finding a suitable expression for the sections
of U τ

αE
τv/gz .

Let us decompose OX [x−1, z][v, τ ] as OX [x−1, z][v, vτ ]⊕τOX [x−1, z][vτ, τ ].
Due to the relation vτe = x eτðτe, we have isomorphisms of OX [x−1, z]-modules

OX [x−1, z][v, vτ ] · e ∼

−→ OX [x−1, z, v][τðτ ] · e

OX [x−1, z][vτ, τ ] · e ∼

−→ OX [x−1, z, τ ]〈τðτ 〉 · e
(9.10)

given respectively by

v j(vτ)ke 7−→ x kev j
k−1∏
i=0

(
τðτ − i z

)
e, (vτ ) jτ k

7−→ x jeτ k
j−1∏
i=0

(
τðτ − i z

)
e.

We thus obtain an isomorphism of free OX [x−1, z]-modules:

OX [x−1, z][v, τ ] · e ∼

−→
(
OX [x−1, z, v][τðτ ] ⊕ τOX [x−1, z, τ ]〈τðτ 〉

)
· e.
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We can replace e with eα or e<α in the above isomorphism. We will express
U τ
αE

τv/gz and U τ
<αE

τv/gz as sub-OX [z]-modules of the right-hand side, and by
using the generator e<α in both cases, to make the computation of the quotient
module easier.

We note first that U τ
αE

τv/gz
= OX [v, z]〈ðx ,ðv, τðτ 〉 · eα, that is, we can forget

the action of τ , since τ keα = x keðk
veα. We have a similar assertion for U τ

<αE
τv/gz .

From the relation

v`ða
xð

k
v(τðτ )

j eα

=


? x−(a+(k−`)e)τ k−` pa,α(τðτ + (k − `)z, z)

· (τðτ + (k − `)z) j
`−1∏
i=0
(τðτ − i z)eα if k > ` > 0,

? x−av`−k pa,α(τðτ , z)(τðτ ) j
k−1∏
i=0
(τðτ − i z)eα if 0 6 k 6 `,

for some nonzero constants ? and with pa,α(s, z) defined by (9.4), we conclude
that, through the isomorphism (9.10),

U τ
αE

τv/gz
=

∑
a>0

OX [z][v, τðτ ] · x−a pa,α(τðτ , z)eα

+

∑
a>0

∑
n>0

τ nOX [z][τðτ ]x−(a+ne) pa,α(τðτ + nz, z)eα.

Formula (9.4) shows that, if a > a′ > 0, then pa′,α divides pa,α. It follows that
any section of U τ

αE
τv/gz can be written as∑

a>0

ha,α(x I (a), v, τðτ , z)x−a pa,α(τðτ , z) · eα

+

∑
n>0

τ n
∑
a>0

ga,α,n(x I (a+ne), τðτ , z)x−(a+ne) pa,α(τðτ + nz, z) · eα (9.11)

with ha,α holomorphic in its x-variables and polynomial in v, τðτ , z, and ga,α,n
holomorphic in its x-variables and polynomial in τðτ , z.

Let us check that the decomposition (9.11) is unique. The coefficient h(n)

of τ n (n > 0) is uniquely determined by the section. If n = 0, the function
h(0) ∈ OX,0[x−1, v, η, z] decomposes uniquely as

∑
a>0 h(0)a (x I (a), v, η, z)x−a.

Thus h(0)a must be divisible by pa,α(η, z), and this determines ha,α(x I (a), v, η, z)
uniquely. We argue similarly for n > 0 and h(n) ∈ OX,0[x−1, η, z].

There is a similar decomposition for sections of U τ
<αE

τv/gz , by replacing
pa,α(τðτ , z) · eα with pa,<α(τðτ , z) · e<α. In order to check whether a
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section (9.11) belongs to U τ
<αE

τv/gz , we replace eα with x−1Iα e<α. Let us
decompose (in a unique way) ha,α(x I (a), v, τðτ , z) as

ha,α(x I (a), v, τðτ , z) =
∑

ε∈{0,1}Iα(a)

ha,α,ε(x I (a+1Iα−ε)
, v, τðτ , z)xε,

where ha,α,ε is holomorphic in its x-variables and polynomial in v, τðτ , z. We
have a similar decomposition for ga,α,n(x I (a+ne), τðτ , z). Then the decomposition
(9.11) reads∑

a>0

∑
ε∈{0,1}Iα(a)

ha,α,ε(x I (a+1Iα−ε)
, v, τðτ , z)x−(a+1Iα−ε) pa,α(τðτ , z) · e<α

+

∑
a>0

∑
n>0

∑
ε∈{0,1}Iα(a+ne)

τ nga,α,n(x I (a+ne+1Iα−ε)
, τðτ , z)

· x−(a+ne+1Iα−ε) pa,α(τðτ + nz, z) · e<α.

We now note that, for ε ∈ {0, 1}Iα(a), setting b = a + 1Iα − ε, we have

pb,<α(s, z) = (s + αz)#Iα(b)c · pa,α(s, z).

The unique decomposition (9.11) can thus also be written uniquely as∑
b>0

h′b,α(x I (b), v, τðτ , z)x−b pb,<α(τðτ , z)
(τðτ + αz)#Iα(b)c

· e<α

+

∑
b>0

∑
n>0

τ ng′b,α,n(x I (b+ne), v, τðτ , z)x−(b+ne) pb,<α(τðτ + nz, z)
(τðτ + (n + α)z)#Iα(b)c

· e<α

(9.12)

with h′b,α = ha,α,ε, where (a, ε) is defined by the following conditions:

ai = bi if i /∈ Iα,
ai = bi − 1 and εi = 0 if i ∈ Iα and bi > 1,
ai = 0 and εi = 1 if i ∈ Iα and bi = 0,

and similarly for g′b,α,n . The condition that a section (9.12) belongs to U τ
<αE

τv/gz

now reads

∀ b > 0, (τðτ + αz)#Iα(b)c divides h′b,α(x I (b), v, τðτ , z),

∀ b > 0,∀ n > 0, (τðτ + (n + α)z)#Iα(b)c divides g′b,α,n(x I (b+ne), τðτ , z).

It is therefore clear that a section (9.12) of U τ
αE

τv/gz belongs, when multiplied
by z, to U τ

<αE
τv/gz if and only if it already belongs to U τ

<αE
τv/gz . In other words,

grU τ

α E τv/gz has no z-torsion.
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Third step: End the proof of Theorem 9.1 in the v-chart. We will now use the
expression of Lemma 9.8 to regard V τ

α E τv/gz as an OX [v, τ, z]-submodule of
OX [x−1, v, τ, z] · eα. We can write (locally on X near P)

V τ
0 (RFDX [v, τ ]〈∂v, ∂τ 〉) = OX [v, τ, z]〈ðx ,ðy′,ðv, τðτ 〉,

and we notice that the action of τðτ on eα is equal to that of vðv, so we
can forget τðτ . We will also forget (y′,ðy′), which plays no significant role.
Recall that the variables x are indexed as x1, . . . , x`. Working now within
OX [x−1, v, τ, z] · eα, we have, by induction on |a|,

(xðx)
aðc

veα ≡ z|a|+cx−ce
( |a|∑

j=0

qa,c, j(x)x− jev j

)
eα mod (τ − z)OX [x−1, v, τ, z],

where qa,c, j(x) is some polynomial and qa,c,|a|(x) is a nonzero constant. From this
one concludes that there exist polynomials ra,c, j(x, z), with ra,c,|a|(x, z) constant,
such that

ða
xð

c
veα ≡ z|a|+cx−(|a|+c)e

( |a|∑
j=0

ra,c, j(x, z)x (|a|− j)e−av j

)
x−[αe]−1e

mod (τ − z)OX [x−1, v, τ, z],

and, since for 0 6 j 6 |a| we have |a− (|a|− j)e|+ 6 j (see the end of the proof
of Lemma 7.15), the coefficient of v j belongs to F jOX (∗Pred)([(α + p)P]) with
p = |a| + c. Using that

(τ − z)V τ
α E τv/gz

= (τ − z)E τv/gz
∩ V τ

α E τv/gz

(see [9, Proof of Proposition 3.1.2])
= (τ − z)OX [x−1, v, τ, z] ∩ V τ

α E τv/gz (Lemma 9.2),

we conclude that the coefficient of z p in gr(V τ
α E τv/gz/(τ − z)V τ

α E τv/gz) (graded
with respect to the z-adic filtration) is contained in Fα+p Ev f , so F irr

α+p Ev f
⊂

Fα+p Ev f , according to Remark 5.6.
In order to obtain the reverse inclusion, we remark that, for |a| + c = p

fixed, x−av|a|ev f /x [(α+p)e]+1
∈ F|a|OX (∗Pred)([(α + p)P])v|a|ev f is equal, up to

a nonzero constant and modulo
∑

j<|a| F jOX (∗Pred)([(α + p)P])v j ev f , to the
class of ða

xðc
veα. We conclude by induction on |a|, the case where |a| = 0 being

clear.
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9.2. Computation in the u-chart.

Computation away from Pred. We have Fα+pG0 E f/u
= G0 E f/u

= OXrP [u]e f/u

for p > 0. We set similarly e = eτ f/uz .

LEMMA 9.13. With respect to the inclusion E τ f/uz
⊂ OXrPred[u, u−1, τ, z] · e, we

have e ∈ E τ f/uz .

Proof. The statement is local near a point of { f = 0}, since otherwise we have
equality in the previous inclusion, according to Proposition 3.4, and it amounts to
proving that e ∈ V u

1 (OXrPred[u, u−1, τ, z] · e), so we are reduced to computing the
order of e with respect to the V u-filtration.

Let us first assume that the divisor { f = 0} has normal crossings. Let us choose
local coordinates x1, . . . , xn such that f (x) = x m with m ∈ Nn (a local setting not
to be confused with that of Section 7.1). From the relation uðue = −(τ f/u)e, we
obtain

ðxi ( f e) =
m i z
xi

x me+
m i

xi

τ f
u

x me = −m i(uðu − z)x m−1i e,

and iterating the process we find that

ðm
x ( f e) = (−m)m

n∏
i=1

mi∏
j=1
(uðu − j z/m i) · e.

Since f e = uðτe, this gives a Bernstein relation for e showing that e ∈
V u
<0(OXrPred[u, u−1, τ, z] · e).
When { f = 0} is arbitrary, the proof proceeds exactly like in [12]. We work

locally near a point of { f = 0}, and we choose a projective birational morphism
π : X ′ → X which is an isomorphism away from { f = 0} and such that
f ′ := f ◦ π defines a normal crossing divisor. Using the global section eτ f ′/uz

of V u
<0E

τ f ′/uz (first part of the proof), one constructs a global section e′ of
H 0π+V u

<0E
τ f ′/uz which coincides with e away from { f = 0}. This is done

by using the global section 1X←X ′ of RX←X ′[u, τ ]〈uðu〉. Because E τ f ′/uz

underlies a mixed twistor module, H 0π+E τ f ′/uz is strictly specializable along
u = 0, and we have V u

<0H
0π+E τ f ′/uz

= H 0π+V u
<0E

τ f ′/uz . Therefore, e′ is a
section of V u

<0H
0π+E τ f ′/uz , and thus it satisfies a nontrivial Bernstein equation

of the form ∏
β<0
(uðu + βz)νβ · e′ = u P(x, u,ðx ,ðτ , uðu) · e′.

We conclude that e satisfies the same equation away from { f = 0}, and hence
everywhere, since OX [u, u−1, τ, z] has no OX -torsion.
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Due to the relation f τðue = −τ 2ð2
τe, we conclude that

V τ
0 E τ f/uz

⊃ V τ
0 RF(D(XrP)[u, τ ]〈∂u, ∂τ 〉) · e ⊃ OXrP [u, τ, z] · e.

Then, computing modulo (τ − z)E τ f/uz , F irr
α+p E f/u contains OXrP [u, z] · e f/u

=

G0 E f/u , and hence Fα+pG0 E f/u
= F irr

α+pG0 E f/u away from Pred.

REMARK 9.14. The explicit computation of F irr
α+p E f/u in the neighbourhood of

f = 0 would be more complicated, and restricting to G0 E f/u allows us to avoid
this computation. Let us however note that, in the neighbourhood of the smooth
locus of f −1(0), an explicit formula for F irr

α+p E f/u can be obtained from Lemma
9.8 by setting there g = u and v = f . Since the order of the pole at u = 0 is one,
the only interesting α is zero, and the result is

F irr
p E f/u

=
1

u p+1

( p∑
j=0

OX [u]
f k

uk

)
· e f/u ( f smooth).

This formula extends in a natural way to F irr
α+p E f/u(∗H), provided that moreover

f −1(0) has no common component with H and that f −1(0) ∪ H has normal
crossings.

Computation near Pred. The computation is similar to, and even simpler than,
the computation done in the v-chart. Indeed, due to Proposition 3.4, we have
E τ/ux ez

= OX (∗Pred)[u, u−1, τ, z] · eτ/ux ez , and there is no need for an analogue
of Lemma 9.2. We will consider the variable u as part of the x-variables, and the
divisor u = 0 of X (see Section 1.2). For α ∈ [0, 1), we set eα = eτ/ux ez/ux [αe]+1.
The following lemma is similar to Lemma 9.8.

LEMMA 9.15. The V τ
•

-filtration of E τ/ux ez satisfies

V τ
α E τ/ux ez

= V τ
0 RF(DX [u, τ ]〈∂u, ∂τ 〉) · eα ∀α ∈ [0, 1).

We also obtain

ða
xð

b
ueα ∈ z|a|+b F|a|+b

(
OX (∗Pred)[u, u−1

]
)(
[(α + |a| + b)P]

)
· eτ/ux ez

mod (τ − z)E τ/ux ez,

where F•(OX (∗Pred)[u, u−1
]) is the filtration by the order of the pole along

Pred. Moreover, the coefficient of (ux e)−(|a|+b)
· (ux [αe]+1)−1

· eτ/ux ez is a nonzero
constant. It follows that

F irr
α+p E1/ux e

= Fp
(
OX (∗Pred)[u, u−1

]
)(
[(α + p)P]

)
· e1/ux e

.
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Intersecting with G0 E1/ux e
= OX (∗Pred)[u]e1/ux e gives

F irr
α+p E1/ux e

∩ G0 E1/ux e
= FpOX (∗Pred)

(
[(α + p)P]

)
[u] · e1/ux e

= Fα+pG0 E1/ux e
.

This ends the proof of Theorem 9.1.

9.3. Another viewpoint on Theorem 9.1 at the de Rham level. Let us
assume that the zero divisor f −1(0) of f : X → P1 is smooth, that it has no
component in common with D, and that f −1(0) ∪ D still has normal crossings.
We have a filtration Fα+•E (by using the formula given in Remark 9.14 in the u-
chart). Then the proof of Theorem 9.1 gives in fact the equality Fα+•E = F irr

α+•E .
Let π : X̃→ X be a projective birational morphism such that v f extends as a

morphism ṽ f : X̃→ P1 and D̃ := π−1(D) is a normal crossing divisor in X̃. The
pole divisor of v f is Pred and that of ṽ f , which we denote by P̃red, is contained
in π−1(Pred). We denote by H̃ the remaining components of D̃. The construction
of [9] produces a filtration FDel

α+•E
ṽ f (∗H̃). Note that

π+E
ṽ f (∗H̃) =H 0π+E

ṽ f (∗H̃) = E(v:u) f (∗H) =: E.

By Theorem 1.3, the push-forward π+(Eṽ f (∗H̃), FDel
α+•E

ṽ f (∗H̃)) is strict, since
FDel
α+•E

ṽ f (∗H̃) = F irr
α+•E

ṽ f (∗H̃), and it produces the filtration F irr
α+•E, which is

nothing but Fα+•E by Theorem 9.1 in the present setting. The strictness of the
push-forward implies a quasi-isomorphism at the de Rham level:

F p
α DRE ' Rπ∗F

p
Del,α DREṽ f (∗H̃), (9.16)

where, as usual, we set, for a filtered D-module (M, F•M),

F p DRM = {F−pM −→ Ω1
⊗ F−p+1M −→ · · · }.

We will show how to recover the quasi-isomorphism (9.16) for a suitable
modification π : X̃ → X by a direct computation. This will give, in the present
setting, a proof of the degeneration at E1 of the spectral sequence attached to the
hypercohomology of Hk(X, Fα+• DRE)which only relies on [9] for ṽ f : X̃→ P1,
and not on the finer results of Theorem 1.3. However, the identification at the level
of filtered D-modules, and not only at the level of filtered de Rham complexes, is
needed for the application to Kontsevich bundles given in Theorem 1.11.

Let us set, for each p and α ∈ [0, 1),

F p
N,α DRE

=

{
Ω

p
X(logD)([αP])

d+ d(v f )
−−−−−−−→ Ω

p+1
X (logD)([(α + 1)P])→ · · ·

}
[−p].

Such a filtration already appeared in [35] in the study of the toric case, where the
notation Fλ

NP(∇) was used (NP for Newton polygon).
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LEMMA 9.17. The natural morphism F p
N,α DRE → F p

α DRE is a quasi-
isomorphism.

Proof. Let us prove the lemma in the v-chart for instance (the proof in the u-
chart is similar), and let us assume that H = ∅ for the sake of simplicity, so
that D = Pred (the general case is obtained by a Kunneth formula). Recall that
n = dim X . Everything below is thus only valid on X×Cv. Consider the following
complexes, with differentials induced by d+ d(v f ):

Φ1(p) :
{
Ω

p
X(logPred)

(
[αP]

)
−→Ω

p+1
X (logPred)

(
[(α + 1)P]

)
−→ · · ·

−→Ωn+1
X (logPred)

(
[(α + n − p + 1)P]

)}
[−p],

and, for k such that 1 < k 6 n − p + 2,

Φk(p) :
{
Φ<n−k+2

1 −→ F0OX(∗Pred)Ω
n−k+2
X

(
[(α + n − p − k + 2)P]

)
−→ · · ·

−→

( k−1∑
j=0

F jOX(∗Pred)v
j
)
Ωn+1

X

(
[(α + n − p + 1)P]

)}
.

Then Φ1(p) = F p
NP,α DRE and Φn−p+2(p) = F p

α DRE. On each successive
quotient grΦk = Φk/Φk−1, the induced differential becomes −(v/x e)

∑
ei dxi/xi .

Except at the first nonzero term, the complex grΦk decomposes into many parts
of the Koszul complex associated with −(v/x e){e1dx1/x1, . . . , e`dx`/x`}. By a
direct computation, the first nonzero chain map of grΦk is injective. In particular,
grΦk is quasi-isomorphic to zero.

Let us now end the direct proof of (9.16). In the discussion of the toric case in
[35, Section 4], a specific resolution π : X̃→ X of v f is constructed inductively
by taking blowups along irreducible components of the intersection of the pole
set Pred of v f with its zero set ( f −1(0)×P1

v)∪ (X ×{v = 0}). Then it is shown in
[35] that (9.16) holds when we replace its left-hand side with F p

N,α DRE. Lemma
9.17 allows us to conclude.

Appendix. Brieskorn lattices and Hodge filtration

A.1. Brieskorn lattices in dimension one. Let (M, F•M) be a holonomic
C[t]〈∂t〉-module equipped with a good filtration. We denote by G the holonomic
C[t]〈∂t〉-module C[∂t , ∂

−1
t ] ⊗C[∂t ] M . If we identify C[t]〈∂t〉 with C[v]〈∂v〉 by the

Laplace correspondence t 7→ ∂v, ∂t 7→ −v, we also regard G as a holonomic
C[v]〈∂v〉-module on which the multiplication by v is bijective. It is therefore also
a C[v, v−1

]-module. We will denote by l̂oc the natural morphism M → G.
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The Brieskorn lattice G(F•)
0 of the filtration F•M is defined as the saturation of

the filtration by the operator ∂−1
t ; that is,

G(F•)
0 :=

∑
j

∂− j
t l̂oc(F j M) ⊂ G. (∗)

It is naturally a C[∂−1
t ]-module (equivalently, a C[v−1

]-module). We will also set
G p
(F•) = v

−pG(F•)
0 for any p ∈ Z. Let us make the link with the definition in [28,

Section 1.d]. Let po be an index of generation, so that Fpo+`M = Fpo M + · · · +
∂`t Fpo M for any ` > 0. Then the definition in [28] is

G(F•)
0 = ∂−po

t

∑
j>0

∂− j
t l̂oc(Fpo M). (∗∗)

Let us check that both definitions give the same result. Let us write (∗) as

G(F•)
0 = ∂−po

t

∑
j

∂− j
t l̂oc(Fpo+ j M).

First, for j 6 0, we have

∂− j
t l̂oc(Fpo+ j M) = l̂oc(∂− j

t Fpo+ j M) ⊂ l̂oc(Fpo M),

so we can also write

G(F•)
0 = ∂−po

t

∑
j>0

∂− j
t l̂oc(Fpo+ j M)

= ∂−po
t

∑
j>0

∂− j
t

[
l̂oc(Fpo M)+ · · · + ∂ j

t l̂oc(Fpo M)
]

= ∂−po
t

∑
j>0

∂− j
t l̂oc(Fpo M) = (∗∗).

We now express the Brieskorn lattice of the filtration as obtained by a
push-forward operation. We consider the holonomic C[t, v]〈∂t , ∂v〉-module
M[v, v−1

]evt . The (t, v)-Brieskorn lattice is the C[t, v−1
]-module defined by the

following formula (see [23, Section 1]):

G0(M, F•M) =
⊕

j
F j M · v− j evt

⊂ M[v, v−1
]evt ,

G p(M, F•M) = v−pG0(M, F•M).

We have ∂tG p(M, F•M)⊂G p−1(M, F•M) since ∂t F j M⊂F j+1 M and ∂t evt
=vevt .

The relative de Rham complex

DR(M[v, v−1
]evt) :=

{
M[v, v−1

]evt ∂t
−−→ M[v, v−1

]evt
}
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has cohomology in degree one only, and we have a natural identification as
C[v]〈∂v〉-modules

coker
[
∂t : M[v, v−1

]evt
−→ M[v, v−1

]evt
]
' G

by sending
∑

j m jv
− j evt to

∑
j(−∂t)

− j l̂oc(m j). This relative de Rham complex
is filtered by the subcomplexes

G p DR(M[v, v−1
]evt) :=

{
G p(M, F•M)

∂t
−−→ G p−1(M, F•M)

}
. (A.1)

LEMMA A.2 (Push-forward). The relative de Rham complex is strictly filtered
by the G •-filtration and, through the previous identification, the filtration on its
H 1
' G is equal to G•−1

(F•).

Proof. With respect to the previous identification, G p(M, F•M) is sent onto G p
(F•)

according to definition (∗). It remains to show that (im ∂t) ∩ G p(M, F•M) =
∂tG p+1(M, F•M), and it is enough to check this for p = 0.

We have ∂t(
∑

j m jv
− j evt) =

∑
j(∂t m j + m j+1)v

− j evt , and by induction on j
we deduce that (∂t m j + m j+1) ∈ F j M for all j implies that m j ∈ F j−1 M for
all j .

REMARK A.3 (Rees modules). It will also be useful to have the following
interpretation in terms of Rees modules (see Proof of Theorem 4.1), for which we
use the variable u instead of z here. We can twist the Rees module RF M by et/u

by changing the action of u∂t to that of u∂t + 1. We denote the corresponding
RFC[t]〈∂t〉-module by RF M ·et/u . This is nothing but G0(M, F•M) by the change
of variable u = v−1.

The push-forward of an RFC[t]〈∂t〉-module M by the constant map q : Ct =

SpecC[t] → SpecC is nothing but the de Rham complex ∂t : M → u−1M ,
where the latter term is in degree zero. The push-forward q+(RF M · et/u) is thus
equal to the complex (with the • in degree zero):

RF M · et/u ∂t
−−→ u−1 RF M · et/u

•

.

Setting u = v−1, we thus have an identification

G0(M, F•M)
∂t // G −1(M, F•M)

RF M · et/u ∂t // u−1 RF M · et/u

so we can interpret G−1
(F•) as H 0q+(RF M · et/u), while H−1q+(RF M · et/u) = 0.
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A.2. Brieskorn lattices in arbitrary dimension. We fix k, and we will apply
the previous result to (M, F•M) = H k−dim X f+(OX (∗D), (F•OX (∗H))(∗Pred)).
Here, we identify filtered C[t]〈∂t〉-modules and DP1(∗∞)-modules filtered by
OP1(∗∞)-modules. We know that the latter underlies a mixed Hodge module (up
to a shift of the filtration), according to [33]. Working with Rees modules, the
strictness property for the push-forward f+ of mixed Hodge modules can also be
stated by saying that the push-forward f+[(RFOX (∗H))(∗Pred)] is strict, and thus

H k−dim X f+
(
(RFOX (∗H))(∗Pred)

)
= RF M.

On the other hand, one checks that

H k−dim X f+
(
(RFOX (∗H))(∗Pred)·e f/u

)
'
(
H k−dim X f+(RFOX (∗H)(∗Pred)

)
·et/u,

and, since H j q+(RF M · et/u) = 0 for j 6= 0, we conclude that

H k−dim X (q ◦ f )+
(
(RFOX (∗H))(∗Pred) · e f/u

)
'H 0q+(RF M · et/u).

The left-hand term is by definition equal to

Hk(X, (Ω •

X ⊗OX(u
−•RFOX (∗H))(∗Pred), d+ u−1d f )

)
,

that is, to G0 Hk
u as defined by (8.12), while the right-hand term is equal to G−1

as defined above.

Acknowledgements

The first author was supported by the grants ANR-08-BLAN-0317-01 and
ANR-13-IS01-0001-01 of the Agence nationale de la recherche. The second
author was partially supported by the NCTS and the MoST of Taiwan.

We thank Maxim Kontsevich for suggesting to us the properties stated in
Theorem 1.11 and Takuro Mochizuki for explaining to us some of his results on
mixed twistor D-modules and his useful comments. In particular, he suggested
various improvements and simplifications to the first version of this article. We
owe to him the statement of Theorem 6.4. We thank the referees for their careful
reading of the manuscript. Last but not least, we thank Hélène Esnault for the
many discussions we had together and for many suggestions and questions on the
subject of this article.

References

[1] A. A Beilinson, J. N Bernstein and P. Deligne, ‘Faisceaux pervers’, in Analyse et topologie
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[6] P. Deligne, ‘Un théorème de finitude pour la monodromie’, in Discrete Groups in Geometry

and Analysis, New Haven, CT, 1984, Progress in Mathematics, 67 (Birkhäuser, Boston, MA,
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