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The random neural network (RNN) is a probabilitsic queueing theory-based model for
artificial neural networks, and it requires the use of optimization algorithms for training.
Commonly used gradient descent learning algorithms may reside in local minima, evo-
lutionary algorithms can be also used to avoid local minima. Other techniques such as
artificial bee colony (ABC), particle swarm optimization (PSO), and differential evolution
algorithms also perform well in finding the global minimum but they converge slowly. The
sequential quadratic programming (SQP) optimization algorithm can find the optimum
neural network weights, but can also get stuck in local minima. We propose to overcome the
shortcomings of these various approaches by using hybridized ABC/PSO and SQP. The
resulting algorithm is shown to compare favorably with other known techniques for train-
ing the RNN. The results show that hybrid ABC learning with SQP outperforms other
training algorithms in terms of mean-squared error and normalized root-mean-squared
error.

Keywords: artificial bee colony, learning algorithms, particle swarm optimization, random neural
networks, sequential quadratic programming

1. INTRODUCTION

Erol Gelenbe [26,27] proposed a new class of artificial neural networks (ANN) called random
neural networks (RNN) in which signals are either positive or negative spikes or “customers”.
The RNN is based on probability theory and belongs to the family of Markovian queuing
networks. It is a special case of G-networks (Gelenbe [28,29,32], Henderson [54]) in queueing
theory. In Gelenbe [29], it was shown how “signals” can trigger the movement of customers
in a queue and in Gelenbe and Fourneau [40] resets were introduced, and in Fourneau,
Gelenbe, and Suros [22] G-networks were extended to multiple classes of positive and neg-
ative customers, and generalized in Gelenbe and Labed [44] to include multiple classes.
Stability conditions for the G-network was developed in Gelenbe and Schassberger [46].

RNNs are easy to implement in hardware as its neurons can be represented by simple
counters (Abdelbaki, Gelenbe, and El-Khamy [2], Cerkez, Aybay, and Halici [18]), and in
Abdelbaki [1] the performance of the RNN was compared with conventional with ANNs
for unseen patterns not covered in the training data, and found that the RNN accurately
measured the output, while the ANN failed to predict it accurately. Similarly in Mohamed
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and Rubino [69], the authors compared RNNs with ANNs and showed that training time
for RNNs is greater than ANNs, but the RNN outperformed the ANN during run-time. The
authors further showed that the RNN had a strong generalization capability for the patterns
not covered in the training phase. ANNs are sensitive to the number of hidden neurons and
over-training allows ANNs to memorize the patterns but yields very poor generalization for
new inputs.

Much recent work has linked the RNN and G-Networks to modeling and simulation in
various areas. In Gelenbe [35], Gelenbe and Marin [45] similar models derived from energy
or G-Networks are used to represent energy consumption in sensor networks, while Gelenbe
and Ceran [37] consider energy distribution and its optimization. Other work has modeled
multiple users of energy using G-Networks to determine the optimum flow of different
sources of energy to distinct consumers (Gelenbe and Ceran [38]) and has derived fast and
efficient computational algorithms for this purpose (Ceran and Gelenbe [17]). In Gelenbe
[33,34,36], similar point process models are used for communications with spintronics, while
Wang and Gelenbe [81] use the RNN for smart routing in networks, as well as for building
Software Defined Networks (Francois and Gelenbe [23]) that optimize quality of service
(QoS). In Akinwande, Bi, and Gelenbe [6], Bi, Akinwande, and Gelenbe [13], Bi and Gelenbe
[14], the RNN issued for smart routing of evacuees in emergencies, while Abdelrahman and
Gelenbe [4] studied the movement of individuals or animals in a random environment.

Many applications of the RNN have been reported in Gelenbe [29,31], including for opti-
mization (Cancela, Robledo, and Rubino [16], Zhong, Sun, and Wu [86]), pattern recognition
(Abdelbaki, Gelenbe and Kocak [3], Gelenbe, Hussain, and Kaptan [41]), image processing
(Bakirciouglu, Gelenbe, and Kocak [9], Gelenbe, Feng, and Krishnan [39], Lu and Shen
[68]), communication systems (Mohamed and Rubino [69], Öke and Loukas [70]), multime-
dia server modeling (Gelenbe and Shachnai [47]), video compression (Cramer, Gelenbe, and
Bakircloglu [20]), routing for packet networks in Gelenbe and Kazhmaganbetova [43], Wang
and Gelenbe [83] and emergency management in Gelenbe and Wu [50]. Recently in Brun
et al. [15], Gelenbe and Wang [49], Wang, Brun, and Gelenbe [79], Wang and Gelenbe [80,82]
the authors used RNNs with reinforcement learning for dynamic task allocation in Cloud
servers and routing in multi-hop overlay networks. An intelligent internet search assistant
based on the RNN was presented in Serrano and Gelenbe [74]. Multi-layer classifiers and
auto-encoders based on the RNN were developed in Gelenbe and Yin [51].

Many researchers have used the gradient descent (GD) algorithm (Gelenbe [30]) for
learning the weights of RNN models. The GD algorithm is easier to implement but zigzag
behavior may occur near the local minimum and in case of multiple local minima shown
in Figure 1, the GD algorithm may learn suboptimal weights. In our previous work (Javed
et al. [61,62,63]), we proposed the application of the hybrid particle swarm optimization with
sequential quadratic programming (PSO–SQP) algorithm for training a smart controller for
the estimation of occupancy, thermal comfort based thermostat and heating ventilation and
air conditioning (HVAC) controller. Results showed that the GD algorithm was unable to
train the RNN model, while the PSO–SQP training algorithm gave satisfactory results. In
this work, we propose a novel application of the artificial bee colony (ABC) and hybrid arti-
ficial bee colony with sequential quadratic programming (ABC–SQP) algorithm for training
the RNN. ABC algorithm is simple and robust and it has good exploration and exploitation
capabilities in searching global optima. SQP optimization algorithm can find the optimum
weights but in presence of global minima it can get stuck in local minima. The problem
of slow convergence of ABC and local minima problem of SQP optimization can be over-
came by hybridization of ABC and SQP optimization algorithms. Initially, the RNN is
trained with ABC algorithm and then weights learned from the ABC algorithm are used as
initial start points for the SQP optimization algorithm in order to find the optimal weights.
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Figure 1. Multiple local minima.

The performance of ABC, PSO, differential evolution (DE), GD, ABC–SQP, PSO–SQP for
seven different problem sets on the basis of mean squared error (MSE), normalized root-
mean-squared error (NRMSE), number of iterations, and time required by each algorithm
is analyzed.

The main contributions of this paper are:

• A novel approach of using the ABC algorithm for training a RNN model is presented.
• A novel approach for training a RNN model with ABC–SQP (which is a hybrid

optimization method) is described.
• A detailed comparison of seven popular optimization algorithms (GD, PSO, ABC,

DE, ABC–SQP, PSO–SQP and SQP) for training RNN models for seven different
problem sets is presented. The comparison of algorithms is done on the basis of
MSE, NRMSE, the number of iterations and the time required by each algorithm.

The rest of this paper is organized as follows. The related work on training the RNN
is presented in Section 2 followed by a brief introduction to the RNN in Section 3. The
learning algorithms used in this paper are described in Section 4 followed by a description
of test problems and results in Section 5. The discussion and conclusions are presented in
Section 6.

2. RELATED WORK

Gelenbe introduced the GD algorithm for recurrent RNN in Gelenbe [30], which can
be applied to a feed-forward RNN model. Gelenbe and Timotheou [48] developed an
extension of RNN to the case of synchronous interactions in which two neurons may
create a synchronous interaction to affect third neuron. The learning algorithm for this
recurrent network was also presented in Gelenbe and Timotheou [48]. In Atalay [7],
the learning algorithm based on quadratic optimization approach was presented. How-
ever, the learning algorithm was suited for image reconstruction problems only. In Halici
[53], the reinforcement learning strategy for the RNN was tested on maze learning, and
the results were satisfactory. Convergence time for the algorithm can be reduced by
increasing a learning rate, but this may cause learning a longer path. In Likas and
Stafylopatis [67], the authors proposed the learning algorithm based on minimization of
quadratic error function using quasi-newton optimization technique. Likas and Stafylopatis
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[67] implemented Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-newton method and
Davidson–Fletcher–Powell quasi-newton method and compared it with GD algorithm for
RNN. The learning algorithm outperformed the GD learning algorithm, but was computa-
tionally more expensive than the GD algorithm. Learning algorithm for multiple class RNN
was introduced in Gelenbe and Hussain [42] by extending the GD algorithm for single class
of the RNN, and is applicable on feed-forward and recurrent RNNs. Complexity of learning
algorithm is [nC]3 for recurrent RNNs, and [nC]2 for feed-forward RNNs, where n is the
number of neurons and C is the number of signal classes. In Timotheou [77], the authors
proposed a learning algorithm for the RNN by approximating the RNN equations as a non-
negative least square (NNLS) problem, and the results showed that the performance of the
RNN NNLS algorithm was better than the GD algorithm. The resilient back-propagation
algorithm (RPROP) for the RNN was implemented in Hubert [57], and it outperformed the
GD algorithm. The Levenberg–Marquardt (LM) optimization algorithm was implemented
for the RNN in Basterrech et al. [10] where LM algorithm outperformed the GD for a few
problems, but for function approximation problems, the GD was more accurate as compared
with the LM algorithm. The training algorithm for multi-layer architecture of dense clusters
of RNN was proposed in Yin and Gelenbe [84].

Computational intelligence models inspired by nature, different aspects of human behav-
ior such as reasoning, fitness, perception, and learning have been used by many researchers
to find the optimal solution of complex fitness problems. Evolutionary algorithms have also
been used for solving optimization problems. These techniques are better than gradient-
based techniques as they do not get stuck in local minimum, which is the major limitation
of the GD algorithm. The GA proposed in Holland [56], PSO in Eberhart and Kennedy
[21], DE in Storn and Price [76], ABC in Karaboga and Basturk [65], and SQP in Hock and
Schittkowski [55] are also used to solve the optimization problems.

Evolutionary algorithms were applied for training ANNs, and in Chau [19], the authors
trained a feed-forward ANN with the PSO algorithm and found that the PSO converged
faster than the back propagation (BP) algorithm. The hybrid algorithm for ANN was
proposed in Zhang et al. [85] by combining the PSO with the BP algorithm. Hybrid
algorithms make use of strong global searching features of the PSO with local searching
capabilities of the BP algorithm. It was shown in Zhang et al. [85] that the PSO–BP
algorithm outperformed the BP algorithm and the Adaptive Particle Swarm Optimization
algorithm. GA algorithm was also used for training the ANN. Recently, hybrid PSO–SQP
algorithm have been used to train ANN for solving the two-dimensional bratu equations in
Raja, Ahmad, and Samar [72].

An ABC algorithm was proposed in Karaboga and Basturk [65], and performance of the
ABC was compared with GA, PSO and Particle Swarm Inspired Evolutionary algorithm
(PS-EA). Results showed that the ABC algorithm outperformed GA, PSO and PS-EA
algorithms. An ABC algorithm was also used for training an ANN in Karaboga, Akay, and
Ozturk [64] and it was compared with BP(GD), BP(LM) and GA. It was found that the
ABC algorithm can be applied for training in ANNs. In Shah, Ghazali, and Nawi [75], the
authors compared ABC training algorithms for ANN with BP algorithms and showed that
performance of ABC was better than BP. The ABC algorithm was also applied for training
the radial basis function neural networks for classification problems in Kurban and Beşdok
[66]. The performance of ABC algorithm was compared with GD, Kalman filter method
and GA. It was found that performance of ABC was better than the other algorithms.
The ABC algorithm was also used for synthesis of ANN in Garro, Sossa, and Vázquez [25],
which included not only the weights, but also the architecture and transfer function of the
ANN. The methodology maximized the accuracy and minimized the number of connections
of ANN.
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A hybrid algorithm that combined ABC algorithm and LM algorithm was also used
for training neural networks in Ozturk and Karaboga [71]. The ABC algorithm is better in
finding the global minimum, while LM algorithm works better in finding the local minimum.
Initially, the ANN was trained with ABC algorithm and then weights learned from the ABC
algorithm are used as initial start points for the LM algorithm in order to find the optimal
weights. Results showed that the performance of the hybrid algorithm was better than
ABC and LM algorithm individually. Similarly in Irani and Nasimi [59], hybrid ABC–back-
propagation (ABC–BP) was used to train neural networks for bottom hole prediction in
under balanced drilling.

The DE algorithm was used for training the ANN and the performance was com-
pared with gradient-based methods in Ilonen, Kamarainen, and Lampinen [58]. The authors
showed that there was no distinct advantage of using DE over gradient-based methods. The
DE and PSO algorithm for training of RNN were implemented in Georgiopoulos, Li, and
Kocak [52] where these algorithms were compared with the GD algorithm. The hybrid train-
ing algorithm for RNN was implemented in Aguilar and Colmenares [5] by integrating the
GA with GD algorithm. The RNN model was trained with the GD algorithm and weights
were further optimized by using the GA. Results showed that the hybrid algorithm was
better than the GD algorithm.

3. RANDOM NEURAL NETWORKS

In the RNN (shown in Figure 2), signal travels in the form of impulses between the neurons.
If the receiving signal has positive potential (+1), it represents excitation; and if the poten-
tial of the input signal is negative (−1), it represents inhibition to the receiving neuron.
Each neuron i in the RNN has a state ki(t), which represents the potential at time t. This
potential ki(t) is represented by a non-negative integer. If ki(t) > 0, then neuron i is in an
excited state and if ki(t) = 0, then neuron i is in an idle state.

Figure 2. Schematic representation of neurons in a RNN.
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When neuron i is in the excited state, it transmits an impulse according to the Poisson
process rate ri. The transmitted signal can reach neuron j as an excitation signal with
probability p+(i, j) or as inhibitory signal with probability p−(i, j), or it can leave the
network with probability d(i) such that for all i,

d(i) +
N∑

j=1

[
p+(i, j) + p−(i, j)

]
= 1, w+(i, j) = rip

+(i, j) � 0, w−(i, j) = rip
−(i, j) � 0,

(1)
so that

r(i) = (1 − d(i))−1
N∑

j=1

[
w+(i, j) + w−(i, j)

]
, (2)

which is the firing rate of neuron i. Since the “w” matrices are the product of firing rates
and probabilities, they are always non-negative. External excitatory and inhibitory signals
can also reach neuron i according to Poisson processes of rate Λi and λi, respectively. When
an excitatory spike or positive is received at neuron i its potential ki(t) will increase to +1.
If neuron i is excited and it receives an inhibitory spike, the potential of neuron i will
decrease to zero. Arrivals of inhibitory or negative signals will have no effect on neuron i
if its potential is already zero. The description of the symbols used are given in Table 1.
Consider the vector K(t) = (k1(t), . . . , kn(t)) where ki(t) is the potential of neuron i and
n is the total number of neurons in the network. Let K is continuous-time Markov process.
The stationary distribution of K is represented by:

lim
t→∞Pr(K(t))) = (k1(t), . . ., kn(t)) =

n∏
i=1

(1 − qi)qni
i , qi =

G+
i

ri + G−
i

, (3)

where

G+
i = Λi +

N∑
j=1

qjw
+(j, i), G−

i = λi +
N∑

j=1

qjw
−(j, i). (4)

For a three layer network, the qi for each layer is calculated as:

qi =
Λi

ri + λi
, qh =

∑
iεI qiw

+(i, h)
rh +

∑
i qiw−(i, h)

, qo =
∑

i qhw+(h, o)
rh +

∑
i qhw−(h, o)

, (5)

when I, H and O denote the sets of Input, Hidden and Output layers, respectively, and
i ∈ I, h ∈ H, o ∈ O. According to Mohamed and Rubino [69], the cost of computing the

Table 1. Description of RNN symbols.

RNN symbols Description

qi Probability neuron i excited at time t

p+(i, j) Probability neuron j receives positive signal from neuron i

p−(i, j) Probability neuron j receives negative signal from neuron i
ri Firing rate of neuron i
Λi Arrival rate of external positive signals
λi Arrival rate of external negative signals
d(i) Probability a signal from neuron departs from the network
ki(t) Potential of neuron i at time t
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output of the RNN is Θ(2|I||H| + 3|H| + |I|) products (or divisions) and Θ(|H| + |I|) sums,
where |X| denotes the number of elements of set X. input neurons and H is the number of
output neurons.

4. LEARNING ALGORITHMS

A useful objective function for training the RNN given in (6) (Gelenbe [30]) is the quadratic
cost function:

f(x) =
1
2

N∑
p=1

∑
o∈O

[qo(p) − qdes,o]
2
, (6)

where N is the number of patterns, and qo(p) is the output of the RNN calculated by
solving (5).

The GD algorithm developed by Gelenbe [30] adjusts the parameters in order to mini-
mize the cost function f(x) represented by Eq. (6). For details of updating the weights of
RNN with GD algorithm, reader is referred to Gelenbe [30].

4.1. ABC Algorithm

In this work, the ABC algorithm proposed in Karaboga and Basturk [65] was used for
training the RNN. The ABC algorithm was used to find optimized weights of the RNN.
The procedure for finding the optimal weights for the RNN using ABC algorithm is as
follows:

Step 1: Initialize a population of si solutions, where i = 1, . . . , SN , and SN denotes the
size of population. Each solution is D-dimensional vector, where D represents the num-
ber of parameters to be optimized. Each solution is an array of interconnected weights
of the feed-forward RNN of I Input nodes, H hidden nodes and O output nodes. The
dimensions of D is 2(I.H+H.O). The solution (food source positions) is formulated as si =
[w+L1

ih w+L2
ho w−L1

ih w−L2
ho ], where i ∈ I, h ∈ H, o ∈ O. The weights are randomly distributed

over the interval of [0,1].

w+L1
ih is positive interconnection weight between node i of layer 0 and node h of layer 1.

w+L2
ho is positive interconnection weight between node h of layer 1 and node o of layer 2.

w−L1
ih is negative interconnection weight between node i of layer 0 and node h of layer 1.

w−L2
ho is negative interconnection weight between node h of layer 1 and node o of layer 2.

Step 2: Evaluate the fitness value (fiti) of population (see Karaboga and Basturk [65]).

where

fiti =
{ 1

1+f(x) iff(x) � 0
1 + |(f(x)| iff(x) < 0

}
(7)

Step 3: For each employed bee, calculate new solution Vij and evaluate the fitness.

Vij = sij + θij(sij − skj) (8)
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where k = 1, 2, . . . , SN , and j = 1, 2, . . . ,D are randomly chosen indexes, and θij is a ran-
dom number between [−1, 1]. θij controls the contribution of difference of two randomly
selected positions in production of neighbor food sources are sij .

Step 4: Apply the greedy selection process.

Step 5: Calculate the probability value Probi of the solution si by using Eq. (9).

Probi =
fiti∑SN

n=1 fiti
. (9)

Step 6: For each onlooker bee, calculate the new solution Vij by selecting the solution sij

on the basis of probability Probij .

Step 7: Calculate the fitness value fiti.

Step 8: Apply the greedy selection process.

Step 9: Check if there is any food source abandoned by the bees. If there is any scout, bee
will randomly determine the new food source (solution si) by using Eq. (10).

sij = sj
min + rand(0, 1)(sj

max − sj
min). (10)

Step 10: Store the best solution achieved so far.

Step 11: Go to Step 3 until reach the maximum number of cycles, or the minimum threshold
for MSE is achieved, or MSE remain unchanged for certain number of cycles.

4.2. Sequential Quadratic Programming

Consider the equality constrained problem

minf(x) =
1
2

N∑
p=1

O∑
o=1

[qo(p) − qdes,o]
2 (11)

subject to

c(x) = 0 (12)

where 0 � X � 1, N is the number of patterns, O is the number of output, qdes,o is the
desired output in training pattern, qo(p) is the output of RNN calculated by solving Eq. (5).

Constraint handling strategies usually convert the problem into sub-problems so that it can
be easily solved, and used as the basis of an iterative process. In de Freitas Vaz and da Graça
Pinto Fernandes [24], Richards [73], Venter and Haftka [78], the constraint problems are
transformed into unconstrained problems. The constraint handling strategies should pre-
serve the feasibility of constraints in the optimization solution. This constraint feasibility
can be guaranteed by including Karush–Kuhn Tucker (KKT) equations in optimization
formulation. The KKT equations are necessary and sufficient condition for optimality of
constrained optimization problem.

SQP proposed in Hock and Schittkowski [55] is an efficient and accurate nonlinear pro-
gramming method for constrained optimization. The SQP algorithm can be considered as
an application of Newton’s method to KKT optimality conditions for Eq. (6). The SQP
uses BFGS quasi-newton method to calculate the approximation of Hessian of Lagrangian
function at every iteration.The problem is transformed in to quadratic programming (QP)
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sub-problem stated whose solution is used to form a search direction for a line search pro-
cedure. The Lagrangian function is shown in Eq. (13) where λ is the vector of Lagrangian
multiplier

L(Xk, λ) = f(Xk) + c(Xk)T λ. (13)

The problem is transformed in to QP sub-problem stated by Eq. (11) subject to Eq. (12)

min
1
2
dT Hkd + �f(Xk)T d (14)

subject to Lb � Xk + dk � Ub
The Hessian of the Lagrangian function is constructed from quasi-newton formula

Hk+1 = Hk +
qkqT

k

qT
k sk

− HT
k sT

k skHk

sT
k Hksk

, (15)

where

sk = Xk+1 − Xk, (16)

qk = �L(Xk+1, λk+1) −�L(Xk, λk+1). (17)

At every iteration of QP sub-problem, the direction dk is obtained using Eq. (14). The new
iterate obtained by using this solution is given by

Xk+1 = Xk + αkdk, (18)

where αk is the step length values used to obtain sufficient decrease in augmented
Lagrangian function

LA(X,λ, ρ) = f(X) − λT (X) +
ρ

2
c(X)C(X) (19)

ρ is the non-negative scalar. The procedure will continue until the minimum threshold of
Eq. (11) is achieved or sk has reached some tolerance value.

4.3. Hybrid ABC Algorithm with SQP Algorithm

The ABC algorithm is good in finding global minima but it might be slow to converge
to global minima, while in the presence of multiple local minima, the SQP optimization
method usually converges to local minima. In this paper, we propose a hybrid ABC–SQP
algorithm for RNN training. First, RNN was trained with ABC algorithm to find the global
minima, then based on this feasible start point from ABC algorithm, SQP optimization
algorithm converged to global minima. The flow chart of the hybrid ABC–SQP is shown in
Figure 3.

4.4. PSO for Training RNN

4.4.1. AIW-PSO learning procedure The steps required for the implementation of
AIW–PSO training algorithm proposed in Georgiopoulos et al. [52] are as follows:

Step 1: Initialize a population of S particles with random positions and velocities of d
dimensions in the problem space. The position vector is an array of interconnected weights
of feed-forward RNN of I Input nodes, H hidden nodes and O output nodes. The dimensions

https://doi.org/10.1017/S0269964817000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000201


RANDOM NEURAL NETWORK LEARNING HEURISTICS 445

Figure 3. The flow diagram of hybrid ABC–SQP algorithm.

of D is 2(I.H+H.O). The position vector is formulated as Xsd = [w+L1
ih w+L2

ho w−L1
ih w−L2

ho ],
where i ∈ I, h ∈ H, o ∈ O. The weights are randomly distributed over the interval of [0,1].

Step 2: Each particle from position in generation k moves to new position k+1 by using
PSO equation given in Eq. (20). The c1 constant value is set to 2.6 and c2, constant value
is set to 1.1.

V k+1
sd = WV k

sd + c1rand()(P k
bestsd − Xk

sd) + c2rand()(Gk
bestsd − Xk

sd) (20)

Xk+1
sd = Xk

sd + V k+1
sd , (21)

W k
sd = 1 − 1

1 + exp(−α.ISAk
sd)

, (22)

ISAk
sd =

∣∣Xk
sd − P k

bestsd

∣∣∣∣P k
bestsd − Gk

bestsd

∣∣ . (23)

Step 3: For each particle, evaluate the fitness function of Eq. (6).
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Step 4: Compare particle fitness evaluation with particle’s personal best Pbest. If current
fitness evaluation value is less than Pbest, then update Pbest to current value and the Pbest

location equal to current location in D dimensional space.

Step 5: Compare fitness evaluation with all Pbest of population S. If Pbest is less than Gbest

update Gbest to the current particle’s array index.

Step 6: For checking the convergence criteria, compute the average squared error of Eq.
(6). If the MSE is not less than threshold, go to Step 2. If stopping criteria for maximum
number of iterations is achieved, learning is complete.

4.5. Hybrid PSO with SQP

The hybrid PSO–SQP algorithm first uses the PSO algorithm for finding the global minima,
then based on this feasible start point from ABC algorithm, SQP optimization algorithm
converged to global minima. In this paper, the number of iterations for PSO is set to
2000. After getting initial starting point from PSO the SQP optimization algorithm has
been executed for maximum of 400 iterations. The flow chart of PSO–SQP is shown in
Figure 4.

Figure 4. The flow diagram of hybrid PSO–SQP algorithm.
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4.6. DE Optimization for Training RNN

The steps required for the implementation of DE training algorithm proposed in
Georgiopoulos et al. [52] are as follows:

Step 1: Initialize a population of S particles with random positions and velocities of D
dimensions in the problem space. The position vector is an array of interconnected weights of
feed-forward RNN of I Input nodes, H hidden nodes and O output nodes. The dimensions of
D is 2(I.H+H.O). The position vector is formulated as Xsd = [w+L1

ih w+L2
ho w−L1

ih w−L2
ho ], where

L1 is the layer 1, L2 is the layer 2, and i ∈ I, h ∈ H, o ∈ O. The weights are randomly
distributed over the interval of [0,1].

Step 2: Randomly generate three integer numbers r1d, r2d, r3dε[1, S], where r1d �= r2d �=
r3d �= S. Set the value of F and CR to 0.8 and 0.7, respectively.

Step 3: Mutation operator is the prime operator of DE and it is the implementation of
this operation that makes DE different from other Evolutionary algorithms. Mutate every
particle of the population (1 � s � S) by applying the DE equation:

Y k+1
sd = Xk

r1d
+ F (Xr2d

− Xr3d
). (24)

The mutated sth particle at generation k+1 is of dimension D. The mutated sth particle is
sum of another particle at location r1d and difference of particle values at location r2d and
r3d. The contribution of difference of particles is controlled by parameter F.

Step 4: Randomly generate one real number rand() ε [0, 1]. Cross over the mutated particle
and the original particle using Eq. (25).

{
Uk+1

sd = Y k+1
sd if rand() � CR

Uk+1
sd = Xk+1

sd if rand() > CR

}
. (25)

Step 5: Evaluate the fitness function given in Eq. (6) for Uk+1
sd . If fitness value for Uk+1

sd is
less than Xk

sd, then update Xk+1
sd to Uk+1

sd else Xk+1
sd = Xk

sd.

Step 6: For checking the convergence criteria, compute the average squared error of Eq. (6).
If the mean square error is not less than threshold, go to Step 2. If stopping criteria is met
or maximum number of iterations is achieved, learning is complete.

5. RESULTS

In this section, the performance of the algorithms are compared for six different test
problems. Problems 1–3 are the examples of pattern classification, while Problems 4–7
are examples of function approximations. The mean of MSE (MMSE), standard devia-
tion of MSE (SDMSE), best mean-squared error (BMSE) and worst mean-squared error
(WMSE) were compared for different number of iterations. The performance of algorithms
were further compared in terms of NRMSE and computational time.

The learning rate for the GD algorithm was 0.01. Population size for ABC, PSO, SQP
was 40. The maximum number of iteration/epochs for GD/ABC/PSO/DE algorithms was
2000.

https://doi.org/10.1017/S0269964817000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000201


448 A. Javed et al.

5.1. Comparison of Training Algorithms for Pattern Classification Problems

5.1.1. Test problem 1 – XOR problem. The exclusive-OR (XOR) problem has been
widely used by researchers for evaluating the performance of learning algorithms. The XOR
is difficult classification problem of mapping two binary numbers into one binary output.
In this evaluation, a 2-4-1 feed-forward network with 24 interconnection weights was used
for comparison. The inputs and outputs are normalized between 0 and 1. The value of D
was 24, where D is the number of optimization parameters. The MMSE, SDMSE, BMSE
and WMSE for XOR problem in relation to ABC, PSO, DE, GD, ABC–SQP, PSO–SQP
and SQP are given in Table 2. The MMSE achieved by the GD algorithm was 1.90E-01,
while the MMSE achieved by ABC was 2.21E-02, 4.12E-02 with the PSO, 6.49E-02 with
DE after 2000 iterations. The MMSE achieved by ABC–SQP was 9.28E-03, 4.12E-02 with
PSO–SQP and 1.92E-02 with SQP.

The hybrid ABC algorithm outperformed all algorithms and the MMSE was 9.28E-03
after 100 iterations. The MMSE of ABC–SQP algorithm was 95.16% less than GD algorithm,
while the MMSE of ABC–SQP was 77.42% less than the PSO/PSO–SQP algorithm, 85.7%
less than the DE, 52.4% less than the SQP, 57.8% less than the ABC and 95.16% less than
the GD algorithm. The BMSE achieved by ABC–SQP, PSO–SQP and SQP was 9.28E-03
but PSO–SQP and SQP was not robust, and in case of SQP the failure rate (the SQP failed
to start) was 40%.

5.1.2. Test problem 2 – parity bit problem. The RNN learning algorithms were also
tested against parity bit problem. A 3-4-1 feed-forward RNN network with 32 intercon-
nection weights was trained. If the number of binary inputs were odd, the output was 1
otherwise output was 0 as shown in Table 3. The inputs for RNN were x, y, z, and the
output of RNN was f(x, y, z). The MMSE, SD–MSE, WMSE and BMSE with the GD,
ABC, PSO, DE, ABC–SQP, PSO–SQP and SQP are shown in Table 4.

Table 2. Statistical Results for XOR problem with ABC, PSO, DE, GD,
ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 2.21E-02 4.12E-02 6.49E-02 1.90E-01 9.28E-03 4.12E-02 1.95E-02
SDMSE 2.86E-03 2.27E-02 3.25E-10 8.39E-03 8.77E-08 2.27E-02 1.42E-02
BMSE 1.87E-02 9.28E-03 6.49E-02 2.01E-01 9.28E-03 9.28E-03 9.28E-03
WMSE 2.76E-02 7.41E-02 6.49E-02 2.27E-01 9.28E-03 7.41E-02 Fails

Table 3. Parity bit problem.

x y z f(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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Table 4. Statistical Results for parity bit problem with ABC, PSO, DE, GD,
ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 1.11E-01 1.40E-01 1.21E-01 2.22E-01 1.03E-01 1.38E-01 1.16E-01
SDMSE 1.71E-03 1.07E-02 1.27E-02 2.72E-04 2.16E-04 1.16E-02 8.15E-03
BMSE 1.07E-01 1.24E-01 1.03E-01 2.50E-01 1.02E-01 1.24E-01 1.03E-01
WMSE 1.13E-01 1.57E-01 1.46E-01 2.51E-01 1.03E-01 1.57E-01 Fails

The MMSE with ABC algorithm was 1.11E-01, with PSO was 1.40E-01, with DE was
1.21E-01, with GD was 2.22E-01, with ABC–SQP was 1.03E-01, with PSO–SQP was 1.38E-
01 and with SQP was 1.16E-01. Results showed that the ABC–SQP algorithm outperformed
other algorithms. The MMSE with ABC–SQP was 54.5% less than GD, 15.5% less than
DE, 26.9% less than PSO, 7.74% less than ABC, 25.83% less than PSO–SQP, and 11.1%
less than SQP. The failure rate of SQP algorithm was 28.75%.

5.1.3. Test problem 3 – IRIS flower database. Iris dataset is one of the best known
datasets available for pattern recognition problems and is available in Bache and Lichman
[8]. The dataset contains three classes (Iris Setosa, Iris Versicolour, Iris Virginica) of 50
instances each, in which each class refers to a type of Iris plant. The inputs for the dataset
were: Sepal length in cm, Sepal width in cm, Petal length in cm, Petal width in cm. For
classification, a feed-forward RNN with five neurons in hidden layer gave good performance.
The mean percentage of correct classification after 10 runs with GD algorithm was 66.7%,
with ABC was 87.3% with ABC–SQP was 95.33%, with PSO was 68.21%, with PSO–SQP
was 95.10%, with SQP was 95.10%, with DE was 86.78%.

5.2. Comparison of Training Algorithms for Function Approximation Problems

5.2.1. Test problem 4 – temperature prediction for residential building. The training
algorithms were compared for training a RNN model used for building energy usage
described in Javed et al. [60]. The future air temperature of the living room was predicted by
the RNN model, which was three layered network and trained with data of 05 days collected
after every 120 s from living room of the building and validated with data of 15 days. Dur-
ing the training period the outside temperature varied between −8.2 and 7.7◦C and during
the validation period the outside temperature varied between −21.1 and 10.3◦C. The RNN
model had four neurons as input layer, five neurons in the hidden layer and one neuron in
the output layer. The inputs of the RNN model were current room air temperature (Tair),
outside temperature (Tout), the number of occupants and flowrate (m′) of inlet water for
radiator, and the output of the RNN model was the future ((t+2) min) air temperature of
room at present time “t”. The input data were normalized between 0.1 and 0.9.

A 4-5-1 feed-forward RNN model with 50 interconnection weights was trained. The
MMSE, SDMSE, BMSE and WMSE for the temperature forecast problem with ABC, PSO,
DE, GD, ABC–SQP, PSO–SQP and SQP are given in Table 5. After 2,000 iterations the
MMSE achieved with ABC algorithm was 2.77E-04, with PSO was 8.33E-04, with DE was
3.56E-05, with GD was 2.52E-03. The MMSE after 250 iterations with ABC–SQP algorithm
was 1.27E-06, with PSO–SQP was 1.28E-06 and with SQP was 1.30E-06. The MMSE for
ABC–SQP algorithm was 99.53% less than ABC algorithm, 99.85% less than PSO, 96.40%
less than DE, 99.94% less than GD, 0.38% less than PSO–SQP and 1.61% less than SQP
algorithms.
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Table 5. Statistical results for temperature forecast problem with ABC, PSO,
DE, GD, ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 2.77E-04 8.33E-04 3.56E-05 2.52E-03 1.28E-06 1.28E-06 1.30E-06
SDMSE 1.08E-04 8.46E-04 4.69E-05 5.23E-04 1.02E-08 9.10E-10 5.19E-08
BMSE 1.52E-04 1.31E-06 1.30E-06 1.74E-03 1.26E-06 1.28E-06 1.28E-06
WMSE 4.38E-04 2.09E-03 1.28E-04 8.46E-04 1.29E-06 1.29E-06 1.45E-06

Table 6. Statistical results for temperature forecast problem for three zone
building with ABC, PSO, DE, GD, ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 9.88E-03 2.40E-02 9.58E-03 5.36E-02 3.89E-03 5.48E-03 4.00E-03
SDMSE 7.36E-04 4.17E-03 9.37E-04 6.92E-03 1.51E-04 1.64E-03 6.97E-05
BMSE 9.02E-03 1.73E-02 7.98E-03 4.09E-02 3.57E-03 3.68E-03 3.89E-03
WMSE 1.12E-02 2.98E-02 1.07E-02 6.28E-02 4.04E-03 7.77E-03 4.10E-03

5.2.2. Test problem 5 – three zone building model. A three zone single story building
situated in Chicago, USA was modeled in Energy Plus to generate training dataset for
system identification using MLE+ (see Bernal et al. [12]). The building was fitted with the
floor heating system. The inputs for the RNN model were: temperature setpoint for zone
1, temperature setpoint for zone 2, temperature setpoint for zone 3, outside temperature,
transmitted solar gains, total internal heat gains in zone 1, total internal heat gains in zone
2, total internal heat gains in zone 3 and floor temperature. The outputs of the RNN model
were mean air temperature for zone 1, mean air temperature for zone 2, and mean air
temperature for zone 3. A RNN model with nine neurons in the hidden layer gave the best
performance so the selected RNN model was 9–9–3 network. The statistical results with
ABC, PSO, DE, GD ABC–SQP, PSO–SQP and SQP for this problem are given in Table 6.
The MMSE with ABC–SQP algorithm was 60.7% less than ABC algorithm, 83.76% less
than PSO, 59.49% less than DE, 92.75% less than GD, 29.06% less than PSO–SQP and
3.02% less than SQP algorithm.

5.2.3. Test problem 6 – engine behavior modeling. This dataset was collected during
an engine operation and available with neural network toolbox (see Beale, Hagan, and
Demuth [11]). This benchmark problem is an example of nonlinear regression or function
approximation problem. The engine speed and fuel rate are selected as inputs to the network
while engine torque and nitrous oxide emission were selected as network outputs. A 2–4–2
RNN was selected for this problem. The statistical results of ABC, PSO, DE, GD, ABC–
SQP, PSO–SQP and SQP are given in Table 7. The MMSE with ABC–SQP algorithm was
42.20% less than ABC algorithm, 55.5% less than PSO, 22.6% less than DE, 64.4% less
than GD, 11.17% less than PSO–SQP and 10.01% less than SQP algorithm.

5.2.4. Test problem 7 – occupancy estimation. We exploited the significant statistical
correlations between the occupancy levels and the CO2 concentration, room temperature,
and ventilation actuation signals in order to identify a dynamic model for estimation of the
occupancy level in Javed et al. [63]. The inputs for the RNN model were: air temperature
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Table 7. Statistical Results for engine behavior problem with ABC, PSO, DE, GD,
ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 1.51E-02 2.01E-02 1.16E-02 7.38E-02 8.92E-03 1.00E-02 9.89E-03
SDMSE 3.19E-04 2.54E-03 1.83E-03 1.84E-02 3.97E-03 1.94E-03 1.84E-03
BMSE 1.45E-02 1.63E-02 8.96E-03 5.89E-02 1.97E-04 8.00E-03 7.99E-03
WMSE 1.57E-02 2.38E-02 1.40E-02 1.08E-01 1.22E-02 1.22E-02 1.22E-02

Table 8. Statistical Results for Occupancy Estimation problem with ABC, PSO, DE,
GD, ABC–SQP, PSO–SQP, SQP.

ABC PSO DE GD ABC–SQP PSO–SQP SQP

MMSE 2.96E-02 4.26E-02 3.64E-02 8.62E-02 2.02E-02 1.28E-02 2.12E-02
SDMSE 4.82E-04 1.22E-02 6.93E-04 4.19E-03 2.69E-04 2.08E-03 4.80E-04
BMSE 2.91E-02 3.16E-02 3.47E-02 8.10E-02 2.02E-02 1.24E-01 2.07E-02
WMSE 3.06E-02 6.15E-02 3.69E-02 9.20E-02 2.02E-02 1.63E-02 2.17E-02

of room, inlet air temperature, inlet CO2 concentration, indoor CO2 levels, and inlet air
actuation signal, while output of RNN model is occupancy levels. The statistical results of
ABC, PSO, DE, GD, ABC–SQP, PSO–SQP and SQP are given in Table 8.

5.3. Performance Comparison for NRMSE

The validation metric used in this work is fitness value (i.e., NRMSE) defined in the system
identification toolbox of Matlab as follows:

fit :=

⎛
⎝1 − ‖ŷ − y‖∥∥∥y − 1

N

∑i=1
N y(i)

∥∥∥
⎞
⎠ × 100, (26)

where ŷ is output of RNN and y is the target output. The fitness percentage for all
test problems are given in Table 9. The ABC–SQP outperformed other algorithms for
all problems in terms of NRMSE. Results showed that the ABC–SQP problem outper-
formed other training algorithms in terms of fitness percentage except for Problems 6 and
7. For Problem 6, the fitness percentage of PSO–SQP is 78% which is 0.12% better than
ABC–SQP. Similarly for Problem 7, the fitness percentage of SQP is 1.84% better than
ABC–SQP.

5.4. Comparison of Computational Time

The computational time required by training algorithms was also compared for all test
problems as shown in Table 10 in terms of average execution time required for each iteration.
The average execution time by GD for all problems was the lowest but the MMSE for the
GD algorithm was highest. The execution time by ABC, DE and PSO was dependent on
size of population, greater the population size higher is the execution time.
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Table 9. Fitness percentage.

Problem ABC (%) PSO (%) DE (%) GD (%) ABC–SQP (%) PSO–SQP (%) SQP (%)

Problem 1 70.16 61.50 49.29 50.29 80.76 61.5 73.95
Problem 2 33.63 25.23 30.60 2.24 36.31 25.84 36.29
Problem 4 90.04 84.13 96.97 66.67 99.31 99.31 99.31
Problem 5 79.32 67.45 79.82 77.31 87.16 84.88 86.96
Problem 6 72.29 67.56 75.65 54.27 77.88 78.00 77.72
Problem 7 47.94 37.20 40.2 8.95 59.02 58.45 60.86

Table 10. Average computational time – iteration per seconds.

Problems ABC PSO DE GD ABC–SQP PSO–SQP SQP

Problem 1 0.024 0.029 0.549 0.0086 0.020 0.029 0.0189
Problem 2 0.030 0.036 0.92 0.011 0.030 0.036 0.038
Problem 3 0.39 0.4 0.63 0.135 0.41 0.44 0.76
Problem 4 8.39 8.66 12.57 3.21 9.13 8.68 9.05
Problem 5 2.62 2.76 15.52 3.19 6.38 6.55 30.48
Problem 6 2.44 1.56 4.06 0.90 2.56 1.64 2.74
Problem 7 0.62 0.59 1.16 0.47 0.74 0.77 2.02

6. CONCLUSION

In this work, the ABC algorithm, which is a relatively new algorithm for optimization
has been used for training RNN models for pattern classification problems (Problems 1–3)
and function approximation problems (Problems 4–7). A hybrid ABC–SQP algorithm has
also been proposed in this study, which was developed by combining the ABC algorithm
and the SQP optimization algorithm. The ABC–SQP combined the strength of ABC
algorithm for finding global minima and strength of SQP optimization algorithm for con-
vergence to minima based on feasible starting point. The results of this work showed that
ABC and ABC–SQP can successfully be used for training RNN models and ABC–SQP
algorithm outperformed ABC, PSO, PSO–SQP, DE and GD algorithm in terms of MSE
and NRMSE.

For function approximation problems, that is, Problems 4–7, the performance of the DE
algorithm was better than the ABC algorithm in terms of NRMSE and MMSE. However, the
computational time of ABC was 33.25% less than DE for Problem 4, 83.11% less than DE for
Problem 5, 39.9% less for Problem 6 and 54% less for Problem 7. Due to the higher execution
time, the DE was not suitable for hybridization with SQP algorithm. The execution time of
the GD algorithm for training Problems 1–7 was 57.5, 63.33 67.07, 64.8, 50.0 and 64.84%,
respectively less than the execution time required by the ABC–SQP algorithm.

However, the MMSE of the ABC–SQP algorithm was 95.16% less than GD for Prob-
lem 1, 54.5% less for Problem 2, 99.94% less for Problem 4, 92.75% less for Problem 5,
64.4% less than GD for Problem 6 and 57.4% less than GD for Problem 7. It was further
noticed that the ABC algorithm outperformed the GD algorithm in terms of MSE and
NRMSE.

In the majority of the function approximation and pattern classification problems, the
accuracy of the trained network was more important than the computational time that
was being used. By minor compromises on computational time, the training error could be
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reduced significantly. In real-time applications, the training algorithm needs to be be robust
and accurate, and the results showed that the ABC and ABC–SQP algorithms were more
robust and accurate than other algorithms.
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