
Proceeding! of the Edinburgh Mathematical Society (1989) 32, 7J-«0 ©

DISTRIBUTIVE ELEMENTS IN THE NEAR-RINGS OF
POLYNOMIALS

by JAIME GUTIERREZ* and CARLOS RUIZ DE VELASCO Y BELLAS

(Received 21st May 1987)

0. Introduction

As usual in the theory of polynomial near-rings, we deal with right near-rings. If
N = (N, +,•) is a near-ring, the set of distributive elements of N will be denoted by Nd;

, for all r,seN}.

It is easy to check that, if JV is an abelian near-ring (i.e., r + s = s + r, for all r, seN), then
Nd is a subring of N.

In this paper we describe the distributive elements of the near-ring of polynomials
over a commutative ring with identity, which will be denoted by R. We also prove that
if R is an integral domain, the set of distributive elements contains the subrings of the
near-ring of polynomials; in particular, the near-ring of polynomials has an unique
maximal subring.

1. The ring of the distributive elements

The set R[X], of all polynomials over R in the* indeterminate X, is a near-ring under
addition " + " and substitution of polynomials "o" (i.e., f(X)og(X)=f(g(X))=fog (see
[1]> W ) . We shall denote by R0[X] the set of all polynomials over R whose constant
term is zero.

1.1. Immediate properties

(i) R0[X] is a subnear-ring of (R[X~\,+,o) and agrees with R[_X~]0, the zero-
symmetric part of R[X~\, +,°).

(ii) (K[X]d , +,<>) and ( R 0 [ * L , +,<>) are rings, and R[X]d is a subring of R0[X~\d.

(iii) (R[X]d> +) and (R0[*L> + ) are R-submodules of R[X] and R0\_X~\ {respectively).
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(iv) (R[X-\d, +,o) and (R0[*L, +.°) are subrings of the ring (End(K[AT]), +,o) and
(End(i?0[A

r])J +,o) (respectively).

Proof, (i) See [4, chap. 7-78].

(ii) The firsts two assertions are immediate. For the third, let feR[X~\d, let us say

/ = anX" + • • • + axX + a0; then

a0 = / ° 0 = / o ( 0 + 0) = / o 0 + / o 0 = a0 + a0 hence ao = 0.

(iii) They are immediate.
(iv) Consider the map i:/?[*],,-• End (/?[*]) defined by i(f)(g)= fog (/eR[AT]d and

ge J?[.Y]); it is well defined and it is a morphism of rings.
Moreover, Ker(i) = {0}. In fact, if/eKer(i), then f = foX = 0.

1.2. Consequence. The set RX = {aX\aeR} is a subring of R[X~\d (resp.R0[X~}d)
isomorphic to R.

Proof. As XeR[X]d and R\_X~\d is a R-module, this shows that R[X~\d^RX. Clearly
aXobX = abX, and therefore RX is a subring of R[X]d.

Our main goal in this section is to find all the elements of R\_X~\d and Ro[^]</- The
proofs of several results are similar for both, so we shall just give the proof for either
R[X~\d or i?oC-̂ ]<i- First of all we reduce the problem to the case of monomials.

Lemma 1.3. Let a be a non-zero element of R and let n^.2, an integer:

(i) If aX"iR0{_X~\d (aXn$R[X]a), there exists an integer i, l g i g n - 1 , such that

(ii) If aX" e R[X]d (aX" e R0[X]d), then the order of a {denoted by 0(a)) is finite.

Proof, (i) If aXn<tR0[X~\d, there exists /, geR0[X~] such that: aX"o(f
ag", hence for some i, l ^ i ^ n — 1 , we have a(?)#0. Let ; = max{i/l ^ i ^ n — 1 , a(")#0},
then aXno(X' + Xt + l) = a(X'(l+X))n = aXtn{l+X)'l = aX"1 + anX'n+l + ---+a(';)X"'+J+
aX"'Xn,iinda('j)X"1+J^O.

(ii) If 0(a) is infinite, we have

aX" o (X + X2) = aX" + anX"+1 + • • • + anX2n ~l + aX2n # aX" o X + aX" o X2

= aX" + aX2n;

by hypothesis anX2"~l=£0, which leads to a contradiction.
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Proposition 1.4. Let f = anX" +••• + a1XeR[X~\; then f e R[X]d (resp. RolX]d) if and
only if a,X'eR[X~\d (resp. R0[X]d)for all i= l , . . . , n .

Proof. Suppose feR\_X\ and a^C"$R\X]d, and we consider,; = m a x { i / l ^ i ^ n —1,
(see Lemma 1.3) and t an integer^ 1; then we get f(X)°(X' + X'+1) =

= anX'n + ----+alX' + anX
u+1)n + --- + alX' + 1 = (*). On the other hand

l) = an(X' + X'+l)n+--+al(X' + X'+1) = (**). Moreover, the first sum-
mand of (**) is: an(X' + X'+1)n = anX

tn + --- + anCj)X"l+J+anX
u+l)n, (with an(])X'n+J*0

which is the highest degree monomial (different from aJC^t + i)n) occurring in the
development of an(X' + X'+1)". We now prove that for a large enough integer t,
an(")X'"+J#0 is the highest degree monomial (different from anX

<t+1)'1) occurring in the
development of the polynomial f(X)o(X' + X'+l). In fact, the monomials of f(X)o
(X' + X'+1) are all of the form aJZ)Xtm+k with Ogfc^m<n except for the monomials
given by anX" (a case already studied above). Now, we can choose an integer t large
enough such that tn+j>tm + k; since (*) = (**), contradiction.

Theorem 1.5. / / all the non-zero elements of R have infinite order (torsion free), then:

Proof. It is an immediate consequence of l.l(ii), 1.3(ii) and 1.4.

We now prove some preliminary lemmas for the explicit description of R\_X]d and
in the remaining cases.

Lemma 1.6. Let n, p be two integers such that n^.1 and p is a prime number. Suppose
n=p"r, where a is a non-negative integer and r is a positive integer such that p does not
divide r. Then, ift^a, the integer ("pt) is divisible by p"~' but it is not divisible by p"~'+l.

From this last result it is easy to prove the following lemma, of which we have not
found any references in the literature.

Lemma 1.7. Let n>l be an integer. The greatest common divisor (gcd) of
{(") 11 = 1,2,..., n — 1} is p ifn is a power of a prime number p, and 1 otherwise.

Proof. Let d be the gcd of {(") \ i = 1,2,..., n — 1}. If n is a power of the prime p, say
n = pa, then d divides (^.-0, and by Lemma 1.6 we get d = p. Now, if n = p\l ...p",', with
t ^ 2 , then d = p\l ...p"' with O^a.fSa,; as d divides ("pf,) for all i, i=l,...,t, using again
the lemma, we conclude a, = 0, i=l,...,t.

Proposition 1.8. Let a ^ O be an element of R and let M ^ 2 be an integer. Then
aX" 6 R[X~\d (resp. R0[X]d) if and only if the order of a divides (?) for all i = 1,..., n -1.

Proof. Let us suppose aX"e/?[*]„, we have aXn( 1 + X)" = a(X( 1 + X)f = a(X +
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X2)n = aXno(X + X2) = aX" + aX2n. By expanding the first member, we notice a(f)Xm+t =
0 for all i= 1,2,...,/j-l; hence a(?) = 0.

Theorem 1.9. Let a # 0 be an element of R, and let n^.2 be an integer; then
aX"eR[X~}d (resp. RoL^lid) if and only if there exists a prime p and a positive integer a
such that n=p" and 0(a) = p.

Proof. Let us assume aX"eR\_X~\d, by Proposition 1.8 0(a) divides gcd{(")\i =
l , . . . ,n—1}; as 0(a)>l, using Lemma 1.7, we have n = p" for some prime p and an
integer a > 0. Now the converse is obvious.

As a consequence of 1.4 and 1.9 we obtain the following:

Theorem 1.10.

In order to get an explicit description of the ring R[X~]d, we introduce the following
notation: given a prime p

I p :={aeK|0(a)=p}u{0},

Lemma 1.11. (i) For every prime p, lp is an ideal of R.

(ii) / /p , q are different primes, the set IpI,: = {ab \ ae lp, b e I,} = {0}.

(iii) For every prime p , Ip[AT] is an ideal of R[_X~\d.

Proof. It is straightforward; for (iii) it is enough to consider monomials and use (i)
and (ii).

Theorem 1.12. We have

where P denotes the set of all prime numbers.

Proof. It is an immediate consequence of 1.9 and 1.11.

We note that RX is a subring of R[X]d, but it is not an ideal. In the following
corollary we express R[X]d as a direct sum of ideals in some particular cases. For every
prime p we define
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I* IX]: = K X " " + a, _ XX>" -' + • • • + a.X"' + a0Xp°M e Ip, n ̂  0}

Lemma 1.13. For every prime p, l*[X] is an ideal of R[X]d.

Corollary 1.14. Let R be a unitary commutative ring with the following property (P):
"there are some prime numbers P\,---,ps and elements at in lpl,...,as in lPs such that
l=at + ••• +a", then:

The property required in Corollary 1.14 is not always verified as we can see in the
following:

Examples 1.15. (i) Let R be a ring of characteristic an integer n > l such that
n=p1p2...pr, r>\ and pl,p2,...,pr distinct primes; we have here
Pi ...pi-iPiPi+x ...prelpi, for all i=l,2,...,r; where "denotes omission of the p,. As

gcd(p2 ...pr...pl...p,-lpi + 1...pr... PiP2 ... pr-1) = 1

we get l = a t + •• • +ar with a.-elp., so this kind (or class) of rings verifies the above
property (P).

(ii) Let R = Z12, the integers modulo 12, then I2 = {0,6}, I3 = {0,4,8} and Ip = {0}
otherwise. In this case 1 cannot be expressed as a sum of elements of the Ip's, hence this
ring does not verify the property.

Corollary 1.16. If the characteristic of R is a prime number p, then

The elements of R[X]d are, in this case, the so called p-polynomials. They were
introduced and studied by Ore when R is a finite field, but in another context, they have
interesting properties (see [3]). See also [2] pages 108 onwards and references there
mentioned.

2. Rings in near-rings of polynomials

In this section, we investigate rings which are contained in R[X]. Since all rings are
zero-symmetric near-rings, we only need to search for them in R0[X~\.

We prove our main result:

Theorem 2.1. Let S be a subring of R[X~\ (not necessarily unitary). If R is an integral
domain then S is contained in
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The proof requires a series of lemmas as well as a number of results from Section 1.

Lemma 2.2. Let R be an integral domain and let S be a subring of R\_X~\ {not
necessarily unitary) then: f°(X + f)=f + fof for all feS.

Proof. Let / # 0 then / /o/VOeS, we have / o ( / + / o / ) = / o / + / o / o / = ( / +
f°f)°f but on the other hand f°(f+f°f)=f°(X + f)of since R is an integral
domain hence / is right cancellable (see [1]).

The characteristic of an integral domain is either 0 or a prime number p. We treat
those cases separately and start with:

Proposition 2.3. Let R be an integral domain of characteristic 0 and let S be a subring
(not necessarily unitary) then: S is contained in R[X~\d.

Proof. Let f=anX" + •••a1XeS, by the last lemma; f°(X+f)=f+fof then
an(X + f)"+---+a1(X+f) = anX

n+---+a1X + aJn+---+a1f, we get n=\ or an = 0, and
we end the proof using Proposition 1.5.

Corollary 2.4. Let R be an integral domain of characteristic 0 then the subrings of
are (isomorphic to) subrings of the ring R.

Proof. It is immediate using 1.2, 1.5 and 2.3.

Hence we have proved our Theorem 2.1 in the case when the characteristic of R is 0.
Now we consider the case of characteristic a prime number p.

Lemma 2.5. (a) The set R'[_X']0: = {fBR0[_x']/f' = constant, where f is the formal
derivative of f} is a subnear-ring of R[X~\ containing R[_X~\d and moreover R'[_X~\0 =
R[X~\d if and only if R is torsion free.

(b) / / R is an integral domain of characteristic a prime number p. Let a # 0 be an
element of R and let n^.2 be an integer then: aX" e R'[X~\0 if and only if p divides n.

Proof, (a) The first assertion is straightforward. It suffices to observe that / =
anX

n+ •• •+alXeR'[X']0 if and only if a^1 e R'[X]0, for all i=\ to n, now use 1.9. For
the second assertion; let a # 0 be an element of R and let n^2 be an integer such that
na = 0 and n = pV ...p\'. We distinguish two cases: if t^.2, then aX"eR'[X]o but
aXn$R[X~\d. If t = l , let q be a prime number with q¥=Pi, then aX"Y' eR'[X~\0 but
aXpY' $R\_X]d. The converse is immediate.

(b) is immediate.

Lemma 2.6. Let R be an integral domain of characteristic a prime number p and let S
be a subring of R[X~\ (not necessarily unitary) then: S is contained in R'[X]0.
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Proof. Let f = anX" + ••• +atXeS. If n = l then S is contained in R'[X~\0. Suppose
n^2. First we show that p divides n. Suppose gcd(n,p) = l by Lemma 2.2 fo(X +
f)=f + f°f, we have (anX

n+---+aiX)o(X+f) = a^X+f)n+---+a1(X+f), the first
summand an(X+f)n = anX

n + ••• +naJn-iX+ aj"; we see nanf-
1X = nan

nX
ni--l)+1 +

..., with nan
nX

ni"-1)+l¥=0, so fo(X+f)-(f+fof) = na
n
nX

Mn-1)+1 + ... #0, contradic-
tion. Hence p divides n.

We take r = max {i/i = 1,2,..., n, af # 0 and gcd( i, p) = 1}. Two cases occur:

(i) If r= 1 by 2.5 feR'[X~]0, then S is contained in R'[_X]0.

(ii) If r ^ 2 , we have f = anX" + ---+arX
r+---+atX with a r # 0 , r<n, gcd(r,p) = l

again by 2.2 f°(X + f)=f+fof and by the properties of the derivative we get:
(/'o(X + /))(l + / ' ) = / ' + ( / ' o / ) / ' on the right hand side we have (f'o{X +

--+a1)f'. Let g = {raAX + fY-1 + -+al)-f', then g # 0 and
the degree of g is n(r- l) . Let h=(rar(X + f)r-1 + ••• +ai)f'-(f'of)f, then the
degree of h, t is t<n( r - l ) . So (/ '° (* + /))(!+ / ' ) - / ' + ( / ' » / ) / ' =

O, a contradiction. Therefore r=\ and

Proposition 2.7. Let R be an integral domain of characteristic a prime number p and
let S be a subring o//?[X] (not neccessarily unitary) then: S is contained in

Proof. Let f = anX
n+ ••• +aiXeS. There exist /i,geR[AT] such t ha t / = /i+g, with

geR[X]d and h = bmXm+---+btX\ with fc,X^i?[X]d for all i=l , . . . ,m and r> l . If
/i = 0, then /e i?[X] d and S is contained in

Suppose / J # 0 , by Lemma 2.6 /ei? ' [^]o s o /ie/?'[^Go- BY Lemma 2.5 we get
h = bmXprm*~ + ---+b,Xprtk- with r,^l,fei#0, ik^l , gcd(p,kt) = 1 for all i = t,...,m, and
p'-'fcj > p"fe,- for all; > i.

Let rh = mm{rji = t,...,m}. To simplify notation, we shall write kh = k and rh = r; then
/i = (bmXPSm*- + • • • + bhX

k +•••+ b^P*1"-)oX*. Let F be the quotient field of R and let F
be the algebraic closure off. There exist cteF, with c(#0 and /i = X1^ o (c^P5"1*- + • • • +
chX

k+---+c,XpS'1'-). We can write h(X) = XproC, where c = cjC**- + ••••+ chX
k + • • • +

c.XP5'*-. By Lemma 2.2 f°(X + f) = f + fof, since geR[X]d, ho(X+ f) = h + h°f; so
(Xproc)o(X + / ) = XproC + Xproco/, as A^eFCXL we have X^o(co(X + /)) = X^o(c +
co/), since r > l and since R is an integral domain then c°(X + f) = c + cof Using the
properties of the derivative we have (c'o(X + /))(l + / ' ) = c' + (c 'o/) / ' and we arrive at a
contradiction. The proof is similar to the one in Lemma 2.6 and is therefore omitted.

This completes the proof of Theorem 2.1.

Remark 2.8. If R is not an integral domain, then Theorem 2.1 does not hold: we
take R = Z4, the ring of integers modulo 4. Let B be the group generated by <X, 2X3'
for
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all i^0> then B = <Ar,2Ar3' for all i^0> is an infinite unitary ring, but B is not
contained in R[X]d. We also see that B is not contained in R'[X]0.

Corollary 2.9. Let R be an integral domain of characteristic a prime number p, then:

(i) /?[X] has an unique maximal subring.

(ii) i?[X] has a subring S isomorphic to the polynomial ring (ZP[X], +,•), where Z p is
the field of integers modulo p. In particular, the subrings of ZV\X~\ are (isomorphic
to) subrings of the polynomial ring (ZP[X~\, +,•).

Proof, (ii) The map (f> from (Zp[X]d, +,o) to ( Z P [ X ] , + , ) , defined as follows:
(f>(aXp") = aXn is a ring isomorphism. The proof is now immediate using 1.16 and 2.7.
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