AKCOGLU'S ERGODIC THEOREM FOR UNIFORM SEQUENCES

JAMES H. OLSEN

1. Introduction. Let (X, F, \mathfrak{p}) be a sigma-finite measure space. In what follows we assume p fixed, $1<p<\infty$. Let T be a contraction of $L_{p}(X, F, \mu)\left(\|T\|_{p} \leqq 1\right)$. If $f \geqq 0$ implies $T f \geqq 0$ we will say that T is positive. In this paper we prove that if $\left\{k_{i}\right\}_{i=1}^{\infty}$ is a uniform sequence (see Section 2 for definition) and T is a positive contraction of L_{p}, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} T^{k i} f(x)
$$

exists and is finite almost everywhere for every $f \in L_{p}(X, F, \mu)$.
2. Preliminaries. We begin with describing the construction of a uniform sequence as given in [2]. Let Ω be a compact metric space, B the collection of Borel subsets of Ω, and ϕ a homomorphism of Ω such that $\left\{\phi^{n}\right\}, n$ a positive integer, is an equicontinuous set of mappings. The system (Ω, ϕ) is then called uniformly L stable. We assume that Ω possesses a dense orbit, and it then follows (see [2]) that there exists a ϕ invariant probability measure on (Ω, B) which we denote by ν, such that for any $w \in \Omega$, and any continuous function f on Ω,

$$
\int f d \nu=\lim _{n} \frac{1}{n} \sum_{t=0}^{n-1} f\left(\phi^{t} w\right)
$$

Such a system will be called strictly L stable.
If $Y \in B$ and $y \in \Omega$, then we define the ith entry time $k_{i}(y, Y)$ of y into Y recursively as:

$$
\begin{aligned}
& k_{1}(y, Y)=\min \left\{i \geqq 1: \phi^{i} y \in Y\right\} \\
& k_{i}(y, Y)=\min \left\{j>k_{i-1}(y, Y): \phi^{j} y \in T\right\} \quad i>1
\end{aligned}
$$

allowing infinity as a value.
Definition. A sequence $\left\{k_{i}\right\}_{i=1}^{\infty}$ of natural numbers will be called uniform if there exist:
(1) a strictly L stable system (Ω, B, ν, ϕ)
(2) a $Y \in B$ such that $\nu(Y)>0=\nu(\partial Y)$ and
(3) a point $y \in \Omega$ such that $k_{i}=k_{i}(y, Y)$ for each $i \geqq 1$.

[^0]The $(\Omega, B, \nu, \phi), Y$ and y in the above definition will be called the apparatus connected with the uniform sequence $\left\{k_{i}\right\}_{i=1}^{\infty}$. We will also need Akcoglu's ergodic theorem ([1]) which we will state next.

Theorem. Let (X, F, μ) be a σ-finite measure space, T a positive contraction of $L_{p}(X, F, \mu)$, some $p, 1<p<\infty$. Then

$$
\lim _{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x)
$$

exists and is finite almost everywhere for all $f \in L_{p}(X, F, \mu)$.

3. Result.

Theorem. Let (X, F, μ) be a σ-finite measure space, T a positive contraction of $L_{p}(X, F, \mu)$, p fixed $1<p<\infty,\left\{k_{i}\right\}_{i=1}^{\infty}$, a uniform sequence. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} T^{k i} f
$$

exists and is finite a.e. for all f in $L_{p}(X, F, \mu)$.
Proof. We adapt the proof of Theorem 1 of [4]. Let (Ω, B, ν, ϕ) and y, Y be the apparatus connected with the uniform sequence, $X_{1} \in F$ $\mu\left(X_{1}\right)<\infty$. Let

$$
\left(\Omega^{\prime}, B^{\prime}, \nu^{\prime}\right)=(\Omega, B, \nu) \times(X, F, \mu)
$$

Φ the operator on $L_{p}(\Omega, B, \nu)$ defined by

$$
\Phi f=f \circ \phi
$$

T^{\prime} the operator induced on $L_{p}\left(\Omega^{\prime}, B^{\prime}, \nu^{\prime}\right)$ by defining

$$
T^{\prime}(f \cdot g)=\Phi f \cdot T g
$$

where

$$
f \in L_{p}(\Omega, B, \nu) \text { and } g \in L_{p}(X, F, \mu)
$$

Then T^{\prime} is a positive contraction of $L_{p}\left(\Omega^{\prime}, B^{\prime}, \nu^{\prime}\right)$. Let $f \in L_{p}(X, F, \mu)$, $f \geqq 0$ and $\epsilon>0$. As in the proof of Theorem 1 of [2] there exists open subsets Y_{1}, Y_{2} and W of Ω such that
(1) $Y_{1} \subseteq Y \subseteq Y_{2}$
(2) $\nu\left(Y_{2}-Y_{1}\right)<\epsilon$
(3) $y \in W$
(4) for any $w \in W$ and any $n \geqq 0$,

$$
1_{Y_{1}}\left(\phi^{n} w\right) \leqq 1_{Y}\left(\phi^{n} y\right) \leqq 1_{Y_{2}}\left(\phi^{n} w\right)
$$

Put
$g_{1}(x, w)=f(x) 1_{Y_{1}}(w)$
$g_{2}(x, w)=f(x) 1_{Y_{2}}(w)$.

Akcoglu's ergodic theorem ([1]) implies

$$
\bar{g}_{i}(x, w)=\lim _{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{i}(x, w)
$$

exists and is finite a.e. for $i=1,2$.
The mean ergodic theorem ([3], p. 54) implies

$$
\lim _{n}\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{i}-\bar{g}_{i}\right\|_{p}=0 \quad \text { for } i=1,2
$$

We will need

$$
\lim _{n}\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k}\left(g_{2}-g_{1}\right)-\left(\bar{g}_{2}-\bar{g}_{1}\right)\right\|_{1}=0
$$

To show this, recall $\mu\left(X_{1}\right)<\infty$. Then

$$
1 \in L_{q}\left(X_{1} \times W, B^{\prime}, \nu^{\prime}\right)
$$

and we have

$$
\begin{aligned}
& \left|\int_{X_{1} \times W}\left(\bar{g}_{2}-\bar{g}_{1}\right) d \nu^{\prime}-\int_{X_{1} \times W}\left(\frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) 1_{Y_{2}-Y_{1}}\left(\phi^{k} w\right)\right) d \nu^{\prime}\right| \\
& \quad=\left\lvert\, \int_{X_{1} \times W}\left(\bar{g}_{2}(x, w)-\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{2}(x, w)\right) d \nu^{\prime}\right. \\
& \left.\quad+\int_{X_{1 \times W}}\left(\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{1}(x, w)-\bar{g}_{1}(x, w)\right) d \nu^{\prime} \right\rvert\, \\
& \leqq\left(\left\|\bar{g}_{2}-\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{2}(x, w)\right\|_{p}+\left\|\bar{g}_{1}-\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} g_{1}(x, w)\right\|_{p}\right) \\
& \quad \times\left[\nu^{\prime}\left(X_{1} \times W\right)\right]^{1 / 4}
\end{aligned}
$$

Therefore

$$
\lim _{n} \int_{X_{1 \times W}}\left(\frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) 1_{Y_{2}-Y_{1}} \phi^{k}(w) d \nu^{\prime}\right)=\int_{X_{1} \times W}\left(\bar{g}_{2}-\bar{g}_{1}\right) d \nu^{\prime}
$$

Then

$$
\begin{aligned}
\int_{X_{1} \times W}\left(\bar{g}_{2}-\bar{g}_{1}\right) d \nu^{\prime}=\int_{X_{1} \times W}\left(\lim _{n} \frac{1}{n} \sum_{k=0}^{n-1}\right. & T^{\prime k} f(x) 1_{Y_{2}}\left(\phi^{k}(w)\right) \\
& \left.-\frac{1}{n} \sum_{k=0}^{n-1} T^{\prime k} f(x) 1_{Y_{1}} \phi^{k}(w)\right) d \nu^{\prime}
\end{aligned}
$$

Put

$$
\begin{aligned}
& S(x, w)=S(x)=\lim _{n} \sup \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) 1_{Y}\left(\phi^{k} y\right) \\
& s(x, w)=s(x)=\liminf _{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) 1_{Y}\left(\phi^{k} y\right)
\end{aligned}
$$

Then $\bar{g}_{1}(x, w) \leqq s(x) \leqq S(x) \leqq \bar{g}_{2}(x, w)$ almost everywhere on $X_{1} \times W$. We want to show $S(x)=s(x)$ a.e., or

$$
\int_{X_{1}} S(x)-s(x)=0
$$

But

$$
\begin{aligned}
& \int_{X_{1}}(S(x, w)-s(x, w)) d \mu=\frac{1}{\nu(w)} \int_{X_{1} \times W}\left(S(x, w)-s(x, w) d \nu^{\prime}\right. \\
& \leqq \frac{1}{\nu(w)} \int_{X_{1} \times W}\left(\bar{g}_{2}-\bar{g}_{1}\right) d \nu^{\prime}=\frac{1}{\nu(w)} \lim _{n} \int_{X_{1} \times W} \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) 1_{y_{2}-y_{1}} \\
& \times\left(\phi^{k}(w)\right) d \nu^{\prime}=\frac{1}{\nu(w)} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{X_{1}} T^{k} f(x) d \mu \int_{W} 1_{y_{2}-y_{1}} \phi^{k}(w) d \nu^{\prime} \\
& \leqq \frac{1}{\nu(w)} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\|f\|_{p} \mu\left(X_{1}\right)^{1 / q} \int_{W} 1_{y_{2}-y_{1}} \phi^{k}(w) d \nu \\
& \leqq \frac{1}{\nu(w)}\|f\|_{p} \mu\left(X_{1}\right)^{1 / q} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{W} 1_{y_{2}-y_{1}} \phi^{k}(w) d \nu
\end{aligned}
$$

Now using the mean ergodic theorem, the Birkoff ergodic theorem and the ergodicity of ϕ, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{W} 1_{y_{2}-y_{1}} \phi^{k}(w) d \nu=\int_{W} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} 1_{y_{2}-y_{1}} \phi^{k}(w) d \nu \\
&=\int_{W} \nu\left(y_{2}-y_{1}\right) d \nu=\nu(w) \nu\left(y_{2}-y_{1}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\int_{X_{1}}(S(x, w)-s(x, w)) d \mu \leqq \frac{1}{\nu(w)}\|f\|_{p} \mu\left(X_{1}\right)^{1 / q} \nu\left(y_{2}\right. & \left.-y_{1}\right) \nu(w) \\
& <\|f\|_{p} \mu\left(X_{1}\right)^{1 / q} \epsilon
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary, and $\mu\left(X_{1}\right)<\infty$, we have $S(X)=s(x)$ almost everywhere on X_{1}, and since X is σ-finite, we have

$$
S(X)=\lim _{n} \frac{1}{n} \sum_{k=0}^{n-1} T f(x) 1_{Y}\left(\phi^{k} y\right)
$$

exists and is finite a.e. However,

$$
\lim \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right) 1_{Y}\left(\phi^{k} y\right)=\lim \frac{1}{n} \sum_{i=1}^{n-1} \chi_{\left\{i \cdot k_{i} \leqq n\right\}} T^{k_{i}} f(x),
$$

and in $[\mathbf{2}]$ it is shown that

$$
\lim _{n} \frac{n}{\left|\left\{i: k_{i} \leqq n\right\}\right|} \quad \text { exists. }
$$

Hence

$$
\lim _{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{k_{i}} f(x)=\lim _{n}-\frac{n}{\left|\left\{i: k_{i} \leqq n\right\}\right|} \cdot-\frac{1}{n} \sum_{k=0}^{n-1} x_{\left\{i: k_{i} \leqq n\right\}} T^{k i} f(x) .
$$

exists and is finite almost everywhere. This concludes the proof of the theorem.

References

1. M. A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Can. J. Math. 2\% (1975), 1075-1082.
2. A. Brunel and M. Keene, Ergodic theorems for operator sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 12 (1969), 231-240.
3. R. L. Lorch, Spectral theory (Oxford, 1962).
4. R. Sato, On the individual ergodic theorem for subsequences, Studia Mathematica. T XL. V. (1973), 31-35.

North Dakota State University, Fargo, North Dakota

[^0]: Received September 19, 1978 and in revised form June 13, 1979.

