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Abstract

This paper investigates the Cauchy problem for two classes of parabolic systems with lo-
calised sources. We first give the blowup criterion, and then deal with the possibilities of
simultaneous blowup or non-simultaneous blowup under some suitable assumptions. More-
over, when simultaneous blowup occurs, we also establish precise blowup rate estimates.
Finally, using similar ideas and methods, we shall consider several nonlocal problems with
homogeneous Neumann boundary conditions.
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1. Introduction

In this paper, we study two classes of parabolic systems coupled with localised
nonlinear sources of exponent type:

u, = A H + Xep'u(X0{Oj)+'"vixoi')J\ ( x , ( ) e l " x (0, T),
v, = Av + ^»("W'')+«»c»w.')i ( X ) , ) e K " x (0> 7 ) ) ( 1 j )

u(x, 0) = uo(x), v(x, 0) = vo(x), x € RN,

and of power type:

u, = Au + up'(x0(t), tWixoit), t), (x, l ) 6 f x (0, T),

v, = Av + u"(xo(t), t)v*>(xQ(t), t), (x, 0 € R" x (0, T), (1.2)

u(x, 0) = UnCx), v(x, 0) = voOc), x e K",
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respectively, where x0 : K+ -» RN is Holder continuous, and X, //, > 0, pt, qt > 0,
i = 1, 2, are constants with p2qx > 0, which ensures that the equations in (1.1)
and (1.2) are completely coupled, while uo(x) and vo(x) are nontrivial nonnegative
continuous bounded functions in RN .

The equations in (1.1) and (1.2) describe chemical reaction-diffusion processes in
which the nonlinear reaction in a dynamical system takes place only at a single (or
sometimes several) site(s). As an example, the influence of defect structures on a
catalytic surface can be modelled by a similar equation (see [1,14]). Similar phe-
nomena are also frequently observed in biological systems, for instance on chemically
active membranes (see [5] and references therein). The additional motivation for this
study comes from parabolic inverse problems and so-called nonclassical equations
(see [2,4]).

In recent years, a lot of effort has been devoted to localised/nonlocal problems,
by which we mean that the problem is studied in a bounded domain with smooth
boundary. For the following Cauchy problem with localised reactions:

u, = Au + f(u(xo(t), 0 ) , (x,t)€RN x(0,T),

RN

Chadam et al. [3] proved the solution blows up in a finite time under the assumption
thatxo(t) = 0 and M0 > c > 0. Souplet[17,18] studied large classes of equations with
localised/nonlocal reaction terms and described the blowup properties of the solution
of (1.3) (see also [2,15,19]). In particular, Souplet in [18] proved that the solutions
of (1.3) blow up globally and gave the uniform blowup rates in WLN. For instance, if
f(u) = u", then

Op - l)(T - o r"* ' "" - C < u(x, t) < {{p - \){T - /))-'/("-') + C

in RN x [0, T) for some C > 0, where T is the maximal existence time of u.
As far as the system is concerned, Lin et al. in [13] considered the following

problem:

u , = A M + ev(xoJ\ v, = A v + eu(xaJ\ (x, l ) e f x ( 0 , T),

u(x, 0) = MoOt), U(JC, 0) = vo(x), x e RN.

They gave the blowup conditions and showed that the blowup set is \&N. Under
the assumption that x0 = 0 and initial data uo(x), VQ(X) are symmetric and radially
decreasing, they also obtained the following estimates:

- log(r - 0 - «o(O) < supK(JC, t) = M(0, t) < -C log(T -t) + C,

- log(T - 0 - uo(O) < sup v(x,t) = v(0, t) < -C log(T -t) + C,
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for some constant C > 0 and all 0 < t < T. The corresponding Neumann boundary-
value problem has also been investigated in [13].

In the case of x0 (t) = JC0, systems (1.1) and (1.2) with initial-boundary data have also
been investigated by a number of authors. For instance, Zhao and Zheng [21] and Li
and Wang [11,12] investigated (1.1) and (1.2) with homogeneous Dirichlet boundary
conditions. They obtained the critical exponents and established the uniform blowup
profiles in the interior. For other systems with space-integral sources, we refer to Li
et al. [10]. Recently, Xiang et al. [20] also studied (1.1) and (1.2) with p2 = q\ = 0
subject to homogeneous Neumann boundary values.

We remark that in connection with the local semilinear parabolic systems

u, = AM + Xep'u+<"\ v, = Av + ixepiu+qiv,

and

u, = Au + u"'v"', v, = Av + unvq\ (1.5)

with initial conditions or initial-boundary values, a lot of work has been done in
the past few years on the blowup of their solutions (see survey papers [6,8,9] and
references therein).

Motivated by the above cited papers, in this paper, we investigate the blowup
properties of solutions of the Cauchy problems (1.1) and (1.2) and extend the results
of [13,20] to more generalised cases. Using similar ideas, we shall also consider
systems (1.1), (1.2) and some other nonlocal problems with homogeneous Neumann
boundary conditions (see Section 4 for details). Note that the assumption xo(t) = x0

in [11-13,20,21] is very important, which ensures that one may directly construct a
super-solution or sub-solution to system (1.1) or (1.2). Moreover, for the Dirichlet
problem, the estimates of —AM, —Au are crucial to obtain the blowup rates. In the
present case, however, the comparison principle is invalid since xo(t) can move with
t and it seems to be hard to obtain the bounds of —AM and — Au. To overcome
these difficulties, we use some ideas of Souplet [18] and define a pair of functions
(M, U), which are the integral of the reaction terms in time and depend only on the
time variable t. More importantly, we find (M, V) is equivalent to (u, V) and then
mainly investigate the properties of (i£, u), which makes the arguments very concise
(see Sections 2 and 3 for details).

The local existence of a nonnegative solution to problem (1.1) or (1.2) can be
shown by standard methods [7,15,17], so we omit it here. First, we give the blowup
properties of the nonnegative solution of problem (1.1).

THEOREM 1.1. Assume (M, V) is a nonnegative solution 0/ (1.1), then (M, V) blows
up in a finite time. Moreover, the blowup set is the whole space WLN.

Let T be the maximal existence time of the solution (M, V) of system (1.1). The-
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orem 1.1 suggests T < oo and lim^rfllwHoo + ||v||oo) = +oo. However, a priori
there is no reason for both components of the system to blow up simultaneously. In
fact, it could happen that one of the components blows up as t ->• T, while the other
remains bounded on [0, T). This phenomenon is called non-simultaneous blowup. To
summarise, we have the following results.

THEOREM 1.2. Assume (M, V) is a nonnegative solution of (1.1). The following
conclusions hold:

(i) if Pi > P\ and q\ > q2, then u and v must blow up simultaneously;
(ii) if Pi < P\ and qi > q2, or p2 > p\ andq\ < q2, then only non-simultaneous

blowup occurs.

THEOREM 1.3. Assume (u, v) is a classical solution of problem (1.1), which blows
up at a finite time T.

(i) !f Pi > P\ > 0 and q\ > q2 > 0, then

,. u(x,t) q\-qi ,. v(x,t) pi-pi
hm = , hm|iog(r-oi

uniformly in RN.
(ii) If p2 > pi > 0 and qx = q2 > 0, then

v(x,t)

*1-*T log | iog(r - oi ~ PI - P\' (^ r I iog(r - o i

uniformly in RN.
(iii) If pi = pi > 0 a/id q\ > q2> 0, f/ien

«™ |iog(r-oi = pi"' «™ iog|iog(r-oi ~ ?i -qi

uniformly in RN.

(iv) If p2 = P\ > 0 and^i = ^2 > 0, f/ie/i there exist constants C, c > 0 SMC/I

-ciog(r - o - c < u(x, t) < -ciog(r -t) + c, x € K", r -> r,
-clog(T - / ) - C < u(x, r) < -Clog( r -0 + C, x e \&N, t -+ T.

REMARK. For p\ = q2 = 0, Theorem 1.3 (i) is sharper than (1.4). So we improve
the blowup estimates in [13,20]. Moreover, we remove the restriction that u0, v0 are
symmetric or radially decreasing. We also permit *o(O 6 WLN to move with t.

Next, we investigate problem (1.2). Throughout this paper, we take D = p2qx —
^ 0 , we also define a = (qx -q2+!)/£>, /? = (p2-pi + l)/D.
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THEOREM 1.4. (i) If p\ < 1, q2 < 1 and D < 0, then all solutions of (1.2)
exist globally.

(ii) If p\ > 1 or q2 > 1, or D > 0, then all solutions of (1.2) blow up in a finite
time. Moreover, the blowup set is the whole space RN.

REMARK. It is well known that for the local semilinear system (1.5) with Cauchy
data there exists a finite Fujita critical exponent. However, Theorem 1.4 implies that
for the localised problem (1.2) the Fujita critical exponent is +oo.

THEOREM 1.5. (i) If p2 > P\ - 1 > 0 and qi > q2 — 1 > 0, or p2 > P\ - 1
and q\ > q2 — 1 and D > 0, then for the solution («, v) of (1.2), u and v must blow
up simultaneously.

(ii) If p2 < p\ — 1 and qt > q2 — 1 > 0, or p2 > p\ — 1 > 0 and q\ < q2 — 1,
then only non-simultaneous blowup occurs.

THEOREM 1.6. Assume (u, v) is a nonnegative solution of (1.2), which blows up at
a finite time T.

(i) If Pi > P\ — 1. q\ > qi — 1 and D > 0, then

lim(T - O"M(JC, 0 = ( - ( - )

/ 1 / fl\ P2^P2~p'
lim(7 — t)^v(x, t) = I -

uniformly in \&N;
(ii) If pi > p\ — 1 > Oandqi = q2 — 1 > 0, //itf/z

lim | iog(r - orl/(P2~"+1>«(*, 0 = f-(P2 - p. +
'"*r \9i

1
- t)vq' (x, t)(log v(x, r ) ) K / ( ^ - ' " + 1 ) = — (p2 - pi + 1)

uniformly in \$LN;

(iii) / / "^ = Pi — 1 > 0 andqi > q2 — 1 > 0,

1
f^T- ' ' p2

lim | log(7 - t)\~inq'~q2+{)v(x, t) = ( — (qi - q:

uniformly in K^;
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(iv) If p2 = p\ — 1 > 0 andqx = q2 - 1 > 0, then

lim | log(r - Ol"1 logwO, t) = lim | log(T - 01"' log v(x, t) = ,
' - r '-*T P2 + q\

uniformly in WN.

The results for the Neumann problem will be stated in Section 4. We shall also
use C, c to denote various generic positive constants whenever there is no chance of
confusion.

This paper is organised as follows. In Section 2, we consider problem (1.1) and
prove Theorems 1.1-1.3. The proof of Theorems 1.4-1.6 is the subject of Section 3.
Finally, in Section 4, we consider several nonlocal problems with homogeneous
Neumann boundary values.

2. Blowup properties for problem (1.1)

In this section, we investigate the Cauchy problem (1.1). We denote

U(X, t) = U(t) = k I ePi»(*oU),s)+qMxo(s),s) ^ u = u + C0, (2.1)
Jo

v(x, t) = v(t) = v [ ePiU(xoisM+"^MsU) ds, v = v + C0, (2.2)

where Co = ||«olloo + INIloo- It is clear that

u, - AM = u, - Aw = Xe"«(*»(')'')+"B<*»(')'I> = u, - AM,

u, - Av = v, - Av = /xeP^^'M+i^^d),!) _ v< _ A v

Since u(x, 0) = 0 < uo(x) < u(x, 0) and u(x, 0) = 0 < vo(x) < v(x, 0), we have
u_ < u < u and £ < v < v by the maximal principle as long as (M, V) exists. In
particular, we obtain u(t) < u(xQ(t), t) < u(t) and v(t) < v(xo(t), t) < v(t), which
play important roles in the following proof.

PROOF OF THEOREM 1.1. It follows from (M, V) > (M, V) that

\eim(i) t > 0

v = ueP2U(xol')l')+qiv(x'>(')'') > ueP2-i')+q2-(') > ue/>2-(" t > 0

Therefore (M + v), > y (ek!i(t) + ekm) > 2yeki!L+v>l2, t > 0, where y = min(X, /x),

k = min(p2,9i)- Then we have

i („ + v)t>c, t> 0.
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Integrating this inequality from 0 to t, we obtain t < C - Ce~ik/2)(!L+!!)i') < C, which
implies that (j± + v) blows up in a finite time. Using M < u, v < v again, we see that
(M, V) blows up in a finite time and that the blowup set is the whole space RN. D

PROOF OF THEOREM 1.2. We denote by T the maximal existence time of (w, v).
Theorem 1.1 implies T < oo. As in the proof of Theorem 1.1, we have

w, — A . e 1 0 ' ' ° • > Ae ' ' , t € ( 0 , T),

, , ,, ^piu(xo(t),l)+g2V{xii(t),t) *~ .. npiu_(t)-¥Q2]L(O t /^ (C\ rV\

On the other hand, by u_ = u — Co, v_ = v — Co, we also get

U = U < X_gP>^+C^+1]^-+C^ = ^g(Pi+9i)c0ePi!i+?i!J f £ ( 0 7T)

V. ^^ V[ ^ )X^ = = ^Lî  £ ~ —, t € (vl, -/ )•

By the above inequalities, we see

av
That is,

ce(«i-«2)£d]1 < e^-p^-du < Ce(q'-"2)!Ldv, t € (0, T). (2.3)

The proof of simultaneous blowup is divided into four cases.
Case (i): p2 > p, > 0, qx > q2 > 0. Integrating (2.3) from 0 to t, we have

/* (o(i\—<li)\L i \ <r ->(P2-Pi)!i 1 <r /^ (o(i\-<tz))L \ \ t c ((\ T\ (0 A\
c ye — i j ; e — l i : ^ ^ " — if , «fc (,u, i ,;, \^-^J

which implies that u_ and u blow up at the same time.

Case (ii): p2 > p\ > 0, qt = q2 > 0. As for Case (i), integrating (2.3) on [0, t] yields

cu < e{pi-<*)u- -\<Cv, t e (0, T ) . (2.5)

Then we see u and £ simultaneously blow up.

Case (iii): p2 = p{ > 0, q\ > q2 > 0. Similar to (ii), we have

cu < e
(qi-qi)- - 1 < Cu, t € (0, T).

Therefore u_ and £ have the same blowup time.

Case (iv): p2 = p{ > 0, qx = q2 > 0. We can deduce the following inequalities
from (2.3):

cv(t) < u(t) < Cv{t), t € (0, T). (2.6)
Hence, by Cases (i)—(iv), we have completed the proof of simultaneous blowup.
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We now investigate non-simultaneous blowup. Firstly, we consider the case p2 <
Px and <7i > q2. Divide it into two subcases.

If p2 < P\ and qx > q2, we integrate (2.3) on [0, t] to obtain

) (e l t e (0 r )
qi-qi Pi-Pi

Recall that u < u < u + Co and v_ < v < v_ + Co. If u and v, equivalently w and v_,
blow up at the same time T, then the above inequality leads to a contradiction as we
send t to T.

If />2 < P\ and ^, = q2, (2.3) is equivalent to cdv < e(Pl~p<)mdu_ < Cdv_,
t € (0, T). Integrating from 0 to t, we obtain

cv(t) < (e^-"te<'> - 1), t € (0, D .
(Pi- Pi)

As in the previous proof, we see that this inequality will lead to a contradiction if both
u and v blow up at T.

In the case of p2 > p\ and #i < q2, taking a similar procedure, we may prove the
conclusion. The proof of Theorem 1.2 is completed. •

To complete the proof of Theorem 1.3, we recall the facts

u(t) < u(x, t) < w(r) < K(0 + CO, x € RN, t > 0,

v(t) < v(x, t) < v(t) < v(t) + Co, x e RN, t > 0.

So it will be enough to prove the following lemma.

LEMMA 2.1. (i) If p2 > px > 0andqx > q2 > 0, f/ie/i

v(0 Pi~P\
lim — = —^ ^— , lim
< r̂ | iog(7-oi piqi-piqi »-7-|iog(r-oi

(ii) If p2 > p\ > 0 andqi = q2 > 0, t/ien

limlim = Hm
« ™ i o g | i o g ( r - o i Pi-Pi' ' ™ | i o g ( r - o i

(iii) If p2 = p\ > 0 andq\ > q2 > 0,

/ - r | i 0 g ( r - o i PI »-»Mog|iog(r-oi qi-qi

(iv) Ifp2 = py > 0 and O| = ^2 > 0, f/ien rftere exist constants C, c > 0 SMC/I

-clog(7 - 0 - C < u(t) < -C log(r - 0 + C, t € (0, T),

-c log(7 - 0 - C < u(r) < -C log(r - 0 + C, r e (0, T).
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PROOF, (i) Since u and v simultaneously blow up, by (2.4) there exists To such that

(4i-q2)v-C<(p2-pi)u<(qi-q2)v + C, te(T0,T). (2.7)

As in the proof of Theorem 1.2, we see

c e x p (PlUlSLElSlA < A e x p (PlU_(t) + qiELZliu(t) _
\ ? ? / V qq

(

exp (Plu(t) + ^BlZliuit)
V q\ -12

U). ,e(T0.T).
/

We can then easily deduce the estimates of u from

- log(7 - / ) - C < Pzqx ~ Pl92 u(t) < - l o g ( r -t) + C, t€ (0, r ) .
9\ -qi

We use (2.7) again to get the blowup estimates of y_ from

-log(r -t)-C< P2<lx ~ m i v(t) < -log(J -t) + C, te (0, T).
Pi-P\

(ii) Similar to (i), it follows from (2.5) that for some To e (0, T),

cv(t) < *<«-"«'> < Cv(t), t € (7b, T). (2.8)

Substituting into ce^0^"^10 < v,(t) < CeP2iLi')+ll2!L('\ t e (0, T), we get

Since ^2 > 0> we see that /^° s~nliP2~Pl)e~''25 ds is convergent for any fixed A/ > 0.
Integrating the above inequalities from t to T yields that

-t) < f £ x)e-iu ds < C ( r _ ^^ (2.9)

Ac)

for any r e (2o, T). Notice that

lim ^ • = - . (2.10)
u(/)->-oo £-P2/(P2-pi)e-«2j! q2

Therefore, combining (2.9) and (2.10), we easily deduce

c(T - / ) " ' < vp2Hp2-'")e92~ < C(T - t)~', t -> 7.
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Thus we have proved

- log(T - t) - C < q2y_ + ——— log v < - log(T -t) + C, t -> T.
P2 - P\

By using lim,_7- log £(r)/u(r) = 0, we see

On the other hand, using (2.8) again, we have

l i m

>-r logv(f)

It follows from (2.11) that
l i m

<-7-log | log(7-0 | Pi-Pi'
(iii) The conclusions can be proved by arguments similar to those for (ii).
(iv) In this case, we use (2.6) to obtain c e ^ 1 0 < u,(r) < C\eClsif\ t € (0, T).

Integrating from t to T, we see

-clog(7 -t)-C < v(t) < -C \og(T -t) + C, t e (0, T).

The estimates of u_ are immediately obtained by en < M < Cv. D

PROOF OF THEOREM 1.3. Notice that

u(x,t) v(x,t)
lim = hm = 1

uniformly in K^. It follows from Lemma 2.1 that Theorem 1.3 holds. •

3. Blowup properties for problem (1.2)

In this section, we consider problem (1.2). We first give the blowup criterion and
then discuss the blowup properties. By an argument similar to that for problem (1.1),
we define

«(0 = f «
./o

v(t) = f un

Jo

"' (xo(s), 5)u91 (xo(s), s) ds, u{t) = u(t) + Co, t > 0,

(xo(s), s)v*2(x0(s), s) ds, v(t) = w(0 + Co, t > 0,
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where Co = ||«olloo + II Volloo- Then we have

M, - AM = u, - AH = up'(x0(t), t)vq'(x0(t), t) = u, - AM,

v, - Av_ = v, - Av — u^ixoit), t)vq2(x0(t), t) = v, - Av.

Moreover, u(x, 0) = 0 < uQ(x) < u(x, 0) and v(x, 0) = 0 < vo(x) < v(x, 0). Using
the maximum principle, we have u < u <u and t> < v < v as long as (u, v) exists.
In particular, u(t) < u(xo(t), t) < u(t) and v(t) < v(xo(t), t) < TJ(t). Hence

u, > up'vq', u, > u^v92, u, < MPIU", v, < M^U92, r € (0, T). (3.1)

PROOF OF THEOREM 1.4. Since the nonlinearities of (3.1) are not necessarily locally
Lipschitz, it is not clear whether the comparison principle is applicable in all cases.
However, by i<(0) = TJ(O) = Co > 0, we may apply the comparison principle for
(17, ~v) and (vu, 7) (for the construction of (uJ, J), see the following arguments).

Case (i): p, < 1, q2 < 1 and D < 0. Take w(x, t) = (C + t)p, s(x, t) = (C + 0",
where C > 0 is to be chosen, p = —2{q\ —q2 + l)/D and q — —2(p2 — P\ + l)/£>.
It follows that p, q > 0, p{\ — px) — qqx =2 and q(l — q2) — pp2 = 2. After a
simple calculation, we obtain

w, = p(C + t)"-1 > (C + t)"-2 = wPl?", t > 0,

' 2 t>0,

for C sufficiently large. If we further take C > 0 such that C > 17(0) = Co,
Cq > v(0) = Co, we have (17, v) < (w, J) for / > 0 by (3.1) and the comparison
principle. This shows that (w, v) exists globally.

Case (ii): px < \,q2 < 1, D = 0. Given large C > Co, we take w(x, t) = Cep/,
J(x, 0 = Ce*', where pis to be chosen later and q = (1 — P\)qx~

xp = P2O —<l2)~xP-
Then

= wp'?", r > 0,

J, = tfCe" > C"+fte(WI1+«*)' = wpir>2, t > 0,

for p large enough. Therefore, arguments analogous with those for Case (i) imply
that the solution (u, v) of (1.2) is global.

Case (iii): pt > 1. Without loss of generality, we suppose that T > 1. Using
(3.1) and noticing that v(t) is nondecreasing in t, wehave«,(f) > MP I(0^.? I (1). f .> 1-
Combining this inequality with M(1) > 0, we see that (M, V) blows up in a finite time.
Therefore the solution (M, V) of (1.2) also blows up in a finite time.

Case (iv): q2 > 1. The arguments are similar to those for Case (iii), so we omit
them here.
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Case (v): px < 1, q2 < 1 and D > 0. In this case, it follows from p2q\ > 0 that
Pi > Pi — 1, 9i > ?2 — 1 and D > 0. By Lemma 3.1 (i), we have

namely,

- q i ' ^ + V{u-DI(^+X))t>C t€(To,T).

Integrating this inequality from To to t, we obtain

Since 91 > 92 - 1 and D > 0, the above inequality cannot hold for all time. Therefore
(j±, v) blows up in a finite time and so does (u, v).

It follows from u_ < u, u < u that the blowup set is K^. •

The following lemma will play a key role in establishing simultaneous blowup.
From now on, we take To = 7/2.

LEMMA 3.1. There exist constants C > c > 0, such that

(i) if Pi > P\ - 1. <?i > 1i — 1. D > 0» tfie/z

l +' -1-1, r € (r0, T)

(ii) if pi > p\ — 1 > 0, q\ = q2 — 1 > 0,

CMP2-P,+i < log u < CM P 2 - P I + I , ci7P2-pi+l < logU < CuP2-p'+\ t e (To, T);

(iii) if pi = P\ — 1 > 0, q\ > q2 — 1 > 0, tfien

Cy?,-«2+i < l o g M < Cv<"-i>+l, cu"-«+ l < Iogi7 < Cw"-«2+1, f 6 (r0, T);

(iv) i/p2 = Pi — 1 > 0. Q\ = ai — 1 > 0. then

cu < log v < Cu, cu < log U < Cu, t € (To, T).

PROOF, (i) We prove that i/"-«+l < CM''2"'""1"1 holds for all t e (To, T). Let

7(0 = C

where C is to be determined. Notice that

u, = u, < M « F 2 = (M + C o r ( u + Co)*2.
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By (3.1), we easily obtain

)P2(y_ + C0)
q2

On the other hand, note that w and y_ are nondecreasing in t. Taking C with

v(T0)

we see that J'(t) > 0 for t € (r0) 7) and 7(r0) > 0, which implies J(t) > 0, t e
(To, T). Therefore, there exists some constant C > 0 such that y_qx-qi+i < CMP2~'"+1,

/ € (r0, 7). The other inequalities can be proved by similar arguments.
The proof of (ii)-(iv) is similar to (i), so we omit it. The proof of the lemma is

completed. •

PROOF OF THEOREM 1.5. The assumption of Theorem 1.5 ensures that (u, v) blows
up in a finite time. The simultaneous blowup can be directly obtained by Lemma 3.1.
It remains to prove the non-simultaneous blowup.

In the case of p2 < P\ — 1 and q\>_qi — 1, we assume both u and £ blow up at a
finite time T to draw a contradiction. Notice that

up>vq' < w, <(u + Co)7"(v + Co)", t € (0, T),

un!Lqi <v4<(iL+ C0)
n(v + Co)'2, t € (0, r ) .

It follows that

u"'vq' du
~7~(u + C0)^(u + C0)

92 ~ dv

By the assumption that M and y_ simultaneously blow up, we see there exists Tt < T
such that

du
cu"'-p2(t)vq'-q2(t) < — < Cu"'-p2(t)v'"-q2(t), t € (F,, T),
~ ~ dy_ ~

namely,

cv«-n(t)dv < H"""(f)du < Cvq'-q2(t)dv, t e (Tu T). (3.2)

In the case of p2 < P\ — 1 and qx > q2 — 1, we integrate (3.2) on [7|, t] to obtain

(vq'-q2+l(t)-v'"-q2+l(Tl)) <

https://doi.org/10.1017/S1446181100003400 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003400


50 Zhaoyin Xiang, Qiong Chen and Chunlai Mu [14]

for all t e (Tx, T). By p2 < px — 1, qx > q2 — 1, we see the left-hand side approaches
+oo, while the right-hand side is finite as t —> T. This is a contradiction.

If Pi < P\ — 1 and q\= q2 — 1, (3.2) is equivalent to

cv~\t)dv < uP2-p'(t)du < CvTl(t)dv, t € (7*,, T).

As in the previous proof, we integrate the above inequalities to obtain

c(logv(f)-v(Tt)) < + l ( M " J - " ' + 1 ( 0 - M " - " + I ( r , ) ) , r € ( r , , r ) .

This is a contradiction as r -»• T. So only non-simultaneous blowup occurs.
For the case p2 > P\ — 1 and ^i < q2 - 1, we can prove the conclusion by similar

arguments. •

Recall that u(t) < u(x, t) < u(t) + Co and u(r) < v(x, t) < v(t) + Co for all
(x, t) € U.N x [t > 0}. To prove Theorem 1.6, it is sufficient to show the following
lemma.

LEMMA 3.2. (i) Ifp2 > px - 1, qx > q2 - 1 and D > 0, then

hm(T - t)au = [ - [ - )
' - r - \a\pj

(ii) //"p2 > Pi — 1 > 0 anrf^i = q2 — 1 > 0, then

( 1

lim(r - r)u*1(logi0''2/(/'2"'"+1) = — (p2 - P\

(iii) If p2 = pt — 1 > 0 andq\ > q2 — 1 > 0,

l i m ( r - 0 « P 2 g )

—(91-92

(iv) //"/>2 = Pi — 1 > 0 andq\ = q2 — 1 > 0,

lim | log(T - OP1 logM = lim | log(7 - r)!"1 log v = l/(p2 + qx).
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PROOF. We will use the notation / ~ g if lim^r f(t)/g(t) = 1. Under the
assumption of Theorem 1.6, by Lemma 3.1, u and v blow up simultaneously at a finite
time T. Then u(t) < u(x, t) < u(t) + Co and u(f) < v(x, t) < v(t) + Co imply that

w, = u>»(xo(t),t)v'»(xo(t),t) - M " 1 ^ ' ,

) , t) ~ ««£*,

as t -> T. Therefore we easily get

^~ ~ ~" "2('\ , t -> T. (3.4)

(i) p2> P\ — \,q\ > q2 — \ and D > 0. It follows from (3.4) that

Pi ~ P\ + 1

Substituting this into (3.3), we obtain

t -* T.

( a — a x I

Pi-Pi + I

( D — D -L \

01 - 92 + 1

( a a \
^ ' ^ 2 J M(?iK-Pi«+Pi+9i)/(?i-?2+D^\ t -* T

PP + Ij

Integrating these equivalences from t to 7\ we can get the conclusion (i).
(ii) p2 > P\ — 1 > 0 and #i = q2 - 1 > 0. By (3.4), we have

H"2-pi+1(0~logv(/), t -)• r . (3.5)
P2 - Pi + 1

Substituting (3.5) into (3.3), we obtain

v,(0 ~ (P2 - Pi + 1)''2/<W"'"+

By an integration from f (r is sufficiently close to T) to 7\ we see

~ (P2 - Pi + l)W«-"+l>(7' - 0-

Having ^2 > 1 implies that the integral on the left-hand side is convergent. Notice
that

+

lim ^ = — — . (3.6)
) + v'-«(lOg)-P2/(«-'''+|) q2 — 1
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Then we easily get, as t -> T,

/ ( 1 ) - 0- (3-7)

Since qx = q2 - 1, we have established the estimates of y_. Combining (3.5) and (3.7),
we get vq' ~ <7,~'(r - / )~ 'M"P 2

) as t -»• T. Substituting it into (3.3) and integrating
from t to T, we may deduce the asymptotic behaviour of M:

lim | log(r - t)\-l/lp>-pi+l)u(t) = ( —(p2 - px + 1) )

(iii) Using arguments similar to those for (ii), we can prove the conclusion,
(iv) p2 = pi — 1 > 0 and qx = q2 — 1 > 0. In this case, we have log u(t) ~ log u(0,

as t -> 7. Integrating (3.3) from ? to T, we obtain

1 fr 1 fT

—M-p2(r)~/ u?1(j)rf5, — u ~ " ( 0 ~ / uP2(s)ds, t-+T.
Pi h <7i .A

Therefore p2 > 0 implies that lim,_T/( «P2(i)d5 = 0, and qt > 0 suggests that

lim,_r /, u." (s) ds = 0. Moreover, we also see

a uP2(.s)ds f v"'(s)ds) ~-Pl + q \ t-*T. (3.8)

Jt ) Ptfli
Then, integrating (3.8), we obtain

f uP2(.s)ds [ v!»(s)ds ~ P2 + qi (T -t), t^-T.
J, Jt Piqi

That is,

M - « ( O J T " ( O ~ ( P 2 +

Combining this with (3.3), we easily deduce that

«'(0

w'(0

Therefore we

1
/>2 + <7l

1

P2 + ?l

obtain

logu(f)

-up'-p2(T

-vq2~qt(T -

1

r ) - ' ~

-|iog(r-

l
P2 +

I

-01-

(T t\~

(r o"1

' logu(0,

'M(0, t -> r

w(0, f -»• r .

which implies that the conclusion of (iv) holds. •
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4. Neumann problem for several nonlocal models

In this section, we investigate the following four diffusion systems with nonlocal
sources. The first is

u, = Au + X I ePlu+qiV dx, (x, t) e £2 x (0, T),
J° (4.1)

vt = Av + fj, e
P2U+q2V dx, (x, t) G £2 x (0, T).

Jn

Hereafter, fi c K" is a bounded domain with smooth boundary 3 £2. If we use the
mean value theorem for integrals, we may consider the following system with localised
reaction terms:

u = Au + X e ,
v, = Av + /ie«»teW..)+n.teW.0>

 (4-2)

for (x, t) e £2 x (0, T). Next, we study the power-type system with space-integrals

u, = Au + J up'vq'dx, (JC, t) e £2 x (0, T),
7 (4-3)

v, = Av + / uP2vq2dx, (x, t) € £2 x (0, T).
Jn

Finally, we investigate the system

w, = AM + K " ( J C 1 ( O , O W " ( * I ( O , O .
(4.4)

v, = Av + uP2(x2(t),t)v
q2(x2(t),t),

(x, t) e £2 x (0, T). We investigate all these models coupled with homogeneous
Neumann boundary values and Cauchy data,

3M dv
— (x,t) = —(x,t)=0, (x,t)edax(0,T),
dv dv (4.5)
u(x, 0) = uo(x), v(x, 0) = vo(x), x e £2,

where vis the unit outward normal of 3 £2, whileM0(*), vo(x) e C2+Or(£2),(0 < a < 1),
are nonnegative nontrivial functions and the consistency conditions hold:

3M0 _ dvo _
dv ~ dv ~

on the boundary 3£2. We also assume X\, x2 : R
+ —»• £2 are Holder continuous.
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As mentioned in the introduction, some authors have studied the above problems
with homogeneous Dirichlet boundary conditions (see [10] for (4.3), [21] for (4.2)
and (4.4) with xt(t) = x2(t) = 0, and [16] for some special cases). In these papers,
the establishment of blowup estimates is based on the fact that — Au < C, — Av < C
(which is essentially due to Souplet [18]). For the Neumann boundary problem,
however, the estimates of—Aw, — Av are not straightforward. Recently, using Green's
function, Xiang et al. [20] considered systems (4.1)-(4.4) (subject to (4.5) for each
case) with px = q2 = 0.

We will use the ideas for dealing with the Cauchy problems (1.1) and (1.2) to
investigate the Neumann problem. Using procedures similar to those for the Cauchy
problem, we may define two functions G\(t), G2(t) by integrating the reaction terms
on (0, t). For example, we define

Gl(t) = X f f e"iU{xx)+qMx'T)dxdr, t > 0,
Jo Jn

G2(t) = fj, f I e^^+w^dxdT, t > 0,
Jo Jn

for problem (4.1). Then, we take Gx(t) = Gx(t) + Co, G2(t) = G2(t) + Co, where
Co = HMOIIOO + lluolloo- The arguments are based on the following lemma.

LEMMA 4.1. Assume (u, v) is a solution of (4.1) (respectively (4.2), (4.3), (4.4))
with (4.5). Then

Gl(t)<u(x,t)<Gl(t), G2(t)<v(x,t)<G2(t), (x,t)eQx(0,T).

Lemma 4.1 can be proved by the standard comparison principle (see Lemma 3.2
in [20]).

We will find G\(t), G2(t) (respectively G\(t), G2(t)) have properties similar to
those of functions M, V (respectively u, v) defined in Sections 2 and 3 for the Cauchy
problem (1.1) and (1.2). Therefore, using arguments similar to those in Sections 2
and 3, we have the following theorems.

THEOREM 4.2. For problems (4.1) and (4.5) and (4.2) and (4.5), the conclusions of
Theorems 1.1-1.3 hold except that RN is replaced with Q.

THEOREM 4.3. For problem (4.4) and (4.5), the conclusions of Theorems 1.4-1.6
hold except that the blowup set is replaced with Q.

THEOREM 4.4. For problem (4.3) and (4.5), we have:

(1) The conclusions of Theorems 1.4 and 1.5 hold except that the blowup set is
replaced with Q.
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(2) The following asymptotic behaviour holds:

(i) If Pi > P\ ~ 1. Q\ > Qi — 1 0"^ O > 0, then

lim(r -
r •«•(?(?)

I^T

(ii) If Pi > P\ — 1 > Oandqi = q2 — 1 > 0,

lim | log(7 — t)\~1/(P2~p'+i)u(x, t) = (p2 — Pi + 1)

lim(r - f)u9l(^, OGoguU, t))P2/(P2-pi+l) = \—(p2 - P\ + 1))

(iii) / / p 2 = / ? , - ! > Oandqi > q 2 - \ >0,

lim(r -0«ft(JC,OGogM(*,0)"/(""*1+l) = (—(9i - 9 2

(lim | log(r - Or1/("-'1+')«(JC, 0 =

(iv) 7/"p2 = Pi - 1 > 0 and 91 = q2 — 1 > 0, then

lim I log(T - Ol"1 log«(jc, t) = lim | log(r - t)\~l log v(x, t) = l/(p2 + qx).

All these limits hold uniformly in Q.

REMARK. Theorems 4.2-4.4 extend the results in [13,20] to more general cases.
Moreover, their proofs are completely different from those of [13,20].
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