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A CLOSED SIMPLICIAL MODEL CATEGORY FOR
PROPER HOMOTOPY AND SHAPE THEORIES

J.M. GARciA-CALCINES, M. GARCiA-PINILLOS AND L.J. HERNANDEZ- PARICIO

In this paper, we introduce the notion of exterior space and give a full embedding of
the category P of spaces and proper maps into the category E of exterior spaces. We
show that the category E admits the structure of a closed simplicial model category.
This technique solves the problem of using homotopy constructions available in the
localised category HoE and in the “homotopy category” mpE, which can not be
developed in the proper homotopy category.

On the other hand, for compact metrisable spaces we have formulated sets of
shape morphisms, discrete shape morphisms and strong shape morphisms in terms
of sets of exterior homotopy classes and for the case of finite covering dimension in
terms of homomorphism sets in the localised category.

As applications, we give a new version of the Whitehead Theorem for proper ho-
motopy and an exact sequence that generalises Quigley’s exact sequence and contains
the shape version of Edwards-Hastings’ Comparison Theorem.

1. INTRODUCTION

One of the main applications of proper homotopy theory is the study of non compact
spaces. For example, the classification of non compact surfaces given by Kérékjirto in
1923 used the notion of ideal point that can be considered as the first invariant of proper
homotopy theory. Freudenthal [11] generalised this notion introducing the end point
of a space and the end of a group. We can also cite the works of Siebenmann; in his
thesis [22] he analysed the obstruction to finding a boundary to an open manifold in
dimension greater than five, in [23] he also proved important s-cobordism theorems.
The proof of the Poincare conjecture in dimension four was given by Fredmann [10] by
using s-cobordism theorems and techniques of proper homotopy theory. We also want to
mention the relationship between proper homotopy theory and shape theories, for this
subject we refer the reader to [9]. For an interesting survey of the algebraic aspects of
proper homotopy theory we refer the reader to {18]. We can summarise by saying that
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there are important applications of proper homotopy theory to the study of manifolds,
ends of a group, shape and prohomotopy theories, et cetera. All these reasons and in
particular the study of non compact manifolds have motivated the authors to develop
new techniques in order to study proper homotopy invariants. The objective of our paper
is to establish a nice fraimework for the study of proper homotopy theory.

One of the main problems of the proper category is that there are few limits and
colimits. For this reason, we are not able to develop some homotopy constructions as
homotopy fibres or loop spaces. In order to establish a framework for proper homotopy
theory one can use homotopy theories with few categorical properties. Using this method
one can study the homotopy constructions that can be developed inside the proper homo-
topy category. For instance, using the notion of cofibred category introduced by Baues
[2], one can show that the proper category has the structure of a cofibred category, see
5, 1, 3].

Nevertheless, there are other possibilities, for example, we can embed the proper
category into a complete and cocomplete category and use homotopy theories that assume
the existence of limits and colimits. The last technique has the advantage that you can
construct the analogues of the standard homotopy constructions such as homotopy fibre,
loop spaces, et cetera. In this direction, one has the Edwards-Hastings embedding [9] of
the proper homotopy category of locally compact o-compact Hausdorff spaces into the
homotopy category of pro-spaces and some results of Porter [17]. One disadvantage of
this embedding is the restriction to locally compact o-compact Hausdorff spaces. Another
problem of this technique is that the homotopy constructions produce prospaces that
many times can not be geometrically interpreted as a space.

In our paper we propose a new solution: a notion of exterior space is introduced in
such a way that the category of exterior spaces is complete and cocomplete and we show
that the proper category can be considered as a full subcategory of the category of exterior
spaces. One of the main results of our paper is Theorem 4.1 in which we show that the
category E of exterior spaces admits the structure of a closed simplicial model category.
Therefore the results and properties developed by Quillen [20, 21] can be applied to the
homotopy theory of exterior spaces. The closed model categories have been very useful to
study and give algebraic models of rational homotopy theory. Recently, these Quillen’s
models have been used successfully to study some localisation and colocalisation functors,
see [8, 13].

For the closed simplicial model structure of the category E of exterior spaces, we
can consider the localised category Ho(E) obtained by inverting weak equivalences and
the “homotopy category” moE obtained dividing by exterior homotopy relations. The
category Ho(E) is equivalent to the full subcategory of cofibrant spaces mpEcos. This
implies a Whitehead Theorem for cofibrant abjects and from this fact we have obtained
a new version of the Whitehead Theorem for the proper category which is given in
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Theorem 5.3.

On the other hand, we also have nice applications to shape and to strong shape
theory. We show in Theorem 5.4 that for compact metrisable spaces with finite covering
dimension the set of strong shape morphisms can be given as a homomorphism set in
the localised category Ho(E). For compact metrisable spaces we also see that the sets
of strong shape morphisms, discrete shape morphisms and shape morphisms can be ex-
pressed as suitable sets of exterior homotopy classes. Moreover, for a pointed compact
metrisable space Y, using the exponential laws given in section 3, we give a (Serre) fi-
bration QB‘* —» Q¥ of pointed spaces such that the induced long exact sequence given
in Theorem 5.5 generalises Quigley’s exact sequence and contains a shape version of the
Comparison Theorem of Edwards-Hastings. The fibration Q,l}* — QY permits us to give
sets of strong shape, discrete shape and shape morphisms as sets of standard homotopy
classes. For a exterior space X, the topological space XN contains homotopy inormation
of the (augmented) prospace of exterior open subsets of X and the space X®+ corresponds
with the homotopy limit of this prospace.

2. PRELIMINARIES

In this section we recall some of the notions and results that will be used in this
paper. We begin by recalling the notion of closed model category introduced by Quillen
[20].

DEFINITION 2.1: A closed model category is a category C endowed with three
distinguished classes of morphisms called cofibrations, fibrations and weak equivalences,
satisfying the following properties:

CM1: C is closed under finite limits and colimits.
CM2: For two morphisms
a-t.p2L.¢
if any two of f, g and gf is a weak equivalence so is the third.
We say a morphism f in C is a retract of g if there are morphisms ¢ : f — ¢ and
® : g — f in the category of maps in C, such that ¢ = id.

A morphism which is both fibration (respectively, cofibration) and weak equivalence
is said to be a trivial fibration (respectively trivial cofibration ).

CMa3: If f is a retract of g, and g is a cofibration, fibration or weak equivalence, then so
is f.
CM4: Given a commutative diagram of solid arrows:
A—X
E4

B—
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the dotted arrow exist and the triangles commute, in either of the following cases:
(i) is a cofibration and p is a trivial fibration,
(ii) 7 1is a trivial cofibration and p is a fibration.
CM5: Any morphism f may be factored in two ways:
(i) f = pi, where i is a cofibration and p is a trivial fibration,
(i1) f = g¢j, where j is a trivial cofibration and ¢ is a fibration.

If the dotted arrow exists in any diagram of the form (*), in an arbitrary category,
then we say that i : A — B has the left lifting property (LLP) with respect top: X — Y,
and p has the right lifting property (RLP) with respect to i.

The initial object of C is denoted by §, and the final object by *. We call an object
X of C cofibrant, if the unique morphism ¢ — X is a cofibration; dually X is called
fibrant if X — # is a fibration. We denote by C.or and Cgp the full subcategories of C
determined by cofibrant objects and fibrant objects, respectively.

The category C is said to be pointed if the initial and final objects are isomorphic.
This object is usually denoted by * and it is called the zero object.

We denote by SS the category of simplicial sets. It is known that SS is a closed
model category. Quillen [20] gave the following structure: a simplicial map f: X — Y
is said to be a fibration (respectively, trivial fibration) if it has the RLP with respect to
V(n, k) = Aln], for 0 < k < n and n > 0 (respectively, to A[n] < A[n], for n > 0),
where V(n, k) is the simplicial subset generated by the i-faces, i # k, of the standard
n-simplex A[n] ; A[n] is generated by all the faces of A[n]. A simplicial map i: A — B
is said to be a cofibration (respectively, trivial fibration) if it has the LLP with respect
to trivial fibrations (respectively, fibrations). A simplicial map f is a weak equivalence if
it can be factored as f = pi where i is a trivial cofibration and p is a trivial fibration.

DEFINITION 2.2: A simplicial category is a category C endowed with a functor
Hom : C? x C — S8, simplicial maps o : Home(X,Y) x Hom (Y, Z) — Homq(X, Z),
called composition, defined for each triple X, Y, Z of objects of C, and a natural iso-
morphism Homg(X,Y) = Homg(X,Y),, (f ~ f), satisfying the following:

(i) the composition map is associative,
(i) if u € Home(X,Y) and f € Home(Y,Z), then Homg(u, Z),(f) =
f o 53(@). Also Homo(W,u),(g) = s§(8) o g if g € Homc(W, X),.

Let X be an object of C, and K a simplicial set. By X ® K we mean an object of
C with a simplicial map & : K — Hom(X, X ® K) which induces, in a natural way,
see [20], an isomorphism Homo(X ® K,Y) = (Homc(X,Y))¥, for all objects Y of C.
Dually, X¥ is an object of C with a simplicial map 8 : K — HomC(X K X ) which
induces an isomorphism Hom¢ (Y, XK ) = (Homc(Y, X))¥ for every object Y of C.

DEFINITION 2.3: A closed simplicial model category is a closed model category C
which is also a simplicial category and satisfies the following axioms:
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SMO: If X is an object of C and K is a finite simplicial set then X ® K and X* exist.
SMT7: Ifi: A — B isacofibration and p : X — Y is a fibration then, the pull-back map:

(Home(B, p), Home (i, X)) : Home(B, X) — Home (A, X) X promg,(a,y) Homg (B, Y)

is a fibration of simplicial sets, which is trivial if either ¢ or p is trivial.
In this paper in order to prove SM7, we shall use the following result given in [20].

PROPOSITION 2.1. Let C be a closed model category, which is a simplicial
category satisfying SMO. Then SM7 is equivalent to:
SM7(a): If p: X — Y is a fibration in C (respectively, trivial fibration) then the pull-
back morphism XA — XA x_ ., YA js a fibration (respectively, trivial fibration)
and XM — XV %y Y20 s a trivial fibration, for k € {0,1}.

Given a closed model category C, the category of fractions obtained by formal in-
version of the weak equivalences, see [12], is denoted by Ho(C) and the quotient cate-
gory obtained by dividing by homotopy relations will be denoted by myC, we note that
mC(X,Y) = mpHomo(X,Y).

3. THE CATEGORY OF EXTERIOR SPACES

Recall that a continuous map f : X — Y is said to be proper if for every closed
compact subset K of Y, f71(K) is a compact subset of X. The category of spaces and
proper maps will be denoted by P. This category and the corresponding proper homotopy
category are very useful for the study of non compact spaces. Nevertheless, one has the
problem that this category does not have enough limits and colimits and then we can
not develop the usual homotopy constructions like loops, homotopy limits and colimits,
et cetera.

In this section, we give an answer to this problem introducing the notion of exterior
space. The new category of exterior spaces and maps is complete and cocomplete and
contains as a full subcategory the category of spaces and proper maps.

DEFINITION 3.1: Let (X, 7) be a space. An externology on (X, 7) is a non empty

collection € of open subsets satisfying:
El: If E;, E;€ € then E; N E; € ¢,
E2: f Ece,U€tand ECU thenU €e¢.

An exterior space (or exterior topological space) (X,e C ) consists of a space (X, )
together with an externology €. An open E which is in € is said to be an exterior-open
subset or for shorting an e-open subset. A map f : (X,e C 7) = (X',&' C ') is said to
be exterior if it is continuous and f~1(E) € ¢, for all E € &'. The category of exterior
spaces and maps will be denoted by E.

https://doi.org/10.1017/50004972700031610 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031610

226 J.M. Garcia-Calcines, M. Garcia-Pinillos and L.J. Herndndez-Paricio [6]

EXAMPLES.

(1) For aspace (X, ), one can always consider the trivial externology ¢ = {X}
and on the other hand the externology ¢ = 7. Note that an externology ¢
is a topology if and only if the empty set @ is a member of € if and only if
E=T.

(2) Given an space (X, 7), we always have the externology £X of the comple-
ments of closed-compact subsets of X.

(3) IfY is a closed subspace of the Hilbert cube Q, we can consider the exter-
nology of those open subsets E such that Y ¢ E C Q.

THEOREM 3.1. There is a full enbedding e : P < E.

ProoF: The functor e carries a space X to the exterior space X, which is provided
with the topology of X and the externology eX. A map f: X — Y is carried to the
exterior map f,: X, — Y. given by f. = f. It is easy to check that amap f: X — Y in
T is proper if and only if f = f,: X, — Y, is exterior. 0

PROPOSITION 3.1. The category E is complete and cocomplete.

Proor: It suffices to prove that E has all equalisers and products (respectively, all
coequalisers and coproducts.)

Given f,g: X - Y in E, we consider A = {z: f(z) = g(z)} C X with the relative
topology and the externology €4 given by subsets of the form E = E'NA, E’' € ex. Then
the inclusion map 7 : A — X is the equaliser of f and g. We also consider the quotient
space Y/~, obtained by the equivalence relation generated by the relations f(y) ~ g(y),
y € Y, provided with the externology ey, of those E C Y/~ such that 771(E) € ey,
where m : Y — Y/~ is the quotient map; it is clear that 7 is the coequaliser of f and g. On

the other hand, given a collection of exterior spaces { Xy }re; we consider the spaces [T Xi
kel

and [] X. If we denote by p, : [ — X, the a-th projection map, then the product
kel kel

externology for H X} is given by all open sets such that contain a finite intersection of

subsets of the form p;'(E;) where E; € ¢;. We also have the sum externology for I_I X

given by the family of subsets E such that EN Xy € g, for all k € I. It is easy to check

that [T X: and I_[ X are the product and coproduct of {X,}«es in E, respectively. 0
P

REMARK. E has an initial object (@, {0} C {#}) and a final object (x, {*} C {0,*}).
These objects are not isomorphic so E is not a pointed category.

DEFINITION 3.2: Let X be an exterior space and L C X, we say that L is e-
compact if L\ F is a compact subset, for all E e-open subset of X.

Let X, Z be exterior spaces, then we define ZX = Homg(X, Z) with the topology
generated by the subsets of the form:

(K,U) = {a€Z¥:a(K)cCU}
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(L,E) = {a€Z* (L) C E}

where K C X is a compact subset, U C Z is an open subset, L C X is an e-compact
subset and E C Z an e-open subset. This construction gives a functor E” x E —» T.

We note that if X is a Hausdorff, locally compact space and ex = €X it easy to
show that the topology on ZX is also generated by the subsets of the form (K,U) and
(FX,EZ), where Ex € ex, Ez € €z and Ex is the closure of Ex in X .

Let X be an exterior space, Y a topological space, we consider on X x Y the product
topology and the externology given by those F € exyy such that for each y € Y there
exists Uy, € 7y, y € Uy and E, € ex such that £, x U, C E. This exterior space will be
denoted by X XY in order to avoid a possible confusion with the product externology.
This construction gives a functor E x T — E. When Y is a compact space we can prove
that F is an e-open subset if and only if it is an open subset and there exists G € ex
such that G x Y C E. Furthermore, if Y is a compact space and ex = sfc then exxy
coincides with the externology of complements of closed-compact subsets of X x Y.

Let Y be a topological space and Z an exterior space, then we consider on ZY =
Homy(Y, Z) the compact-open topology and the externology given by the open subsets
E of ZY such that E contains a subset of the form (K, G), where K is a compact subset
of Y and G is an e-open subset of Z. This construction gives a functor T? xE —» E. It
is not very difficult to see that, if Y is a compact space, E € 7zv is an e-open subset if
and only if it contains a subset of the form (Y, E).

THEOREM 3.2. Let X, Z be exterior spaces and Y a topological space, then
(i) If X is a Hausdorff, locally compact space and ex = X there is a natural
bijection
Homg(X XY, Z) = Homy (Y, 2*)
(ii) IfY is a locally compact space there is a natural bijection

Homg(X XY, Z) = Homg (X, 2")

PRroorF: The proof is routine and is left as an exercise. 0

In this paper we shall consider the exterior space N of non negative integers with the
discrete topology and the externology 6'ch. Note that N is a Hausdorff, locally compact
space.

Let EN be the category of exterior spaces under N. Recall that an object is given
by a exterior map a : N = X, denoted by (X,a), and the morphisms are given by

commutative triangles
N

7N

X

denoted by f: (X,a) — (Y, b).
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DEeFINITION 3.3: Let f, gbein HomE((X, a), (Y, b)), then we say f is e-homotopic
to g relative to N, written f o, g, if there is an exterior map F : XxI — Y such that
F(z,0) = f(z), F(z,1) = g(z) and F(a(k),t) = b(k), forallz € X,k € Nand t € I. The
map F is called an exterior homotopy relative to N from f to g and we shall sometimes
write F': f ~, g. The set of exterior homotopy classes relative to N will be denoted by
[(X,0), (;8)]

Let S9 denote the g-dimensional pointed sphere and let Nx S? be the exterior space
obtained by the functor E x T — E described above. From the adjunction isomorphisms
of Theorem 3.2:

Homg(Nx5%,X) = Homq (S, X")
Homg(Nx (57 x I), X) Homp (S x I, XN)

1%

one obtains the following result:

PROPOSITION 3.2. Let (X,a) be in EN. There is a natural isomorphism
- - N
[(N% 8%, idnx#), (X,0)] " 2 [(89, %) (XN, a)]

where the second member is the standard set of pointed homotopy classes.

The canonical isomorphism of the proposition above induces on [(N)’( S, tdnX*),
(X, a)]N the structure of a group for ¢ > 1 which is Abelian for ¢ > 2. For ¢ = 0 one
has a pointed set.

DEFINITION 3.4: Let (X, a) be an object of EN, for ¢ > 0 the g-th exterior homo-
topy group functor of (X, a) is given by 77(X,a) = [(N)?S",idNi*), (X, a)]N.
REMARK. Notice that XN can be considered as a subset of ]I;[ X. If we take in I;IIX the

topology generated by U; x ... x U, x E x E x ..., where Uy,...,U, are open subsets
of X and F is an exterior open subset of X, we have a topology between the product
topology and the box topology. We note that the relative topology is the topology given
above on XN,

4. A CLOSED SIMPLICIAL MODEL CATEGORY STRUCTURE FOR E
In this section we show that E has a closed simplicial model category structure with
the following classes of maps:
DEFINITION 4.1: Let f: X — Y be an exterior map:

(i) f is a weak exterior equivalence, denoted by weak e-equivalence, in either of the
following cases:
(a) If XN =0 then YN = 0.
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(b) If XN # @ then me(f) « mg((X,a)) — 7&((Y, fa)) is an isomorphism for all
ac XN g>o0.

(ii) f is an exterior fibration or e-fibration if it has the RLP with respect to &y :
NXx D9 — Nx (D7 x I) for all ¢ > 0, where 8(n,z) = (n,z,0).
A map which is both an e-fibration and a weak e-equivalence is said to be a trivial
e-fibration.

(iii) f is an exterior cofibration or e-cofibration if it has the LLP with respect to any
trivial e-fibration.

A map which is both an e-cofibration and a weak e-equivalence is said to be a trivial
e-cofibration. An exterior space X is said to be e-fibrant or e-cofibrant, if X — x is an
e-fibration or § — X is an e-cofibration, respectively.

In this paper we are using the simplicial closed model structure of the category T of
spaces given by Quillen [20]. Given a map f: X — Y between exterior spaces, one has
an induced continuous map fN: XN — ¥N. One can check that f is a weak e-equivalence
if and only if fN is a weak equivalence in T and f is an e-fibration if and only if fN is a
fibration in T. Note that X — * is always an e-fibration so every object in E is e-fibrant.

Consider the exterior spaces 6"} = NxS™~!  for n =0 take 67! = (), and D™ =
Nx D",

PROPOSITION 4.1. Let f: X — Y be an exterior map, then f is a trivial
e-fibration if and only if it has the RLP with respect to 69! < D9, for all ¢ > 0.

PRrRooF: Taking into account the exponential law Homg(NXY, X) = Homyg (Y, X N),
we have that f is a trivial e-fibration if and only if fN is a trivial fibration in T or fN has
the RLP with respect to S9-! — D9 for all ¢ > 0. Applying again the same exponential
law this is equivalent to say that f has the RLP with respect to 69! — 99, for all
g=0. 0

This section is devoted to prove the following result which is one of the main theorems
of our paper.

THEOREM 4.1. The category E of exterior spaces together with the classes of e-
cofibrations, e-fibrations and weak e-equivalences has a closed simplicial model category
structure.

PRrROOF: CM1 follows directly from proposition 3.1. Since f is a weak e-equivalence
if and only if fN is a weak equivalence in T, we have CM2. On the other hand, since the
notions of e-cofibration and e-fibration are defined by lifting properties, it is easy to check
that the classes of e-fibrations and e-cofibrations are closed by retracts. Furthermore, a
retract of an isomorphism is a isomorphism. Therefore CM3 is satisfied. We now prove
CMS5; for any morphism f : X — Y in E we have to prove that it can be factored in two
ways:
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(i) f = pi, where 7 is an e-cofibration and p is a trivial e-fibration.
(ii) f = qJ, where j is a trivial e-cofibration and ¢ is an e-fibration.

First, in order to obtain the factorisation (i) we construct a diagram:

X 2 X, 2= X, Xn
\&ll’% Pn
Y

Take Xy = X, pp = f and assume obtained X,,_;, consider the set A of commutative

diagrams: s
G6»-1 — X,

l 1?1:—1 (9220)

DN ———>Y
Then define i, : X,,—1 — X, by the following push-out:

[Hica v
s —> Xn-l

1 ] lin (=)

Xn

aea WA
and p, : X, — Y is the sum of p,,_; and all maps vy, A € A, so p,, extends p,_;. We take
X = colim X, and p = colim py.
If we denote the natural inclusion of X,, into X by k, : Xp, — X , and consider
1 = ko , it follows that f = pi. In order to show that i is an e-cofibration observe that,
by proposition 4.1, 8~! < D% is an e-cofibration for all gy > 0, therefore ]_I 6Nty

II D9 is an e-cofibration too. That each i, is an e-cofibration follows from t;he fact that

Y
it is the cobase extension of an e-cofibration. Now suppose that we have a commutative
diagram:

X—E

!

X—B

where q is a trivial e-fibration. Since %, is an e-cofibration, consider the lifting [, : X; -+ FE
such that [z, = v and ¢l; = vj;. By an induction argument we take [,, : X,, = E such
that l,t, = l,_1 and ql, = vk,. Now we can consider [ = colim [, : X = E, it is easy to
check that /i = v and ¢l = v.

We apply proposition 4.1 to show that p : X — Y is a trivial fibration. Consider

the following commutative diagram:
G-t -&-» X

l 1? (9220)

Dr-l —?Y
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We assume that o) : 677! — X factors through X,, for m sufficiently large, o) =
knuy , where ky: X, — X is the natural inclusion. Taking into account the construction
of Xpy1 there exists wy : D — Xy such that ppywy = vy and wy|ga-1 = tmy10s.
Then h = k,,, w, is a lifting for the diagram above.

The other factorisation f = ¢j is similarly obtained by constructing a diagram:

X n X, 72 X, X,
xlq% 9n
Y

Take Xo = X, g0 = f and suppose X,_; constructed, then consider the set A of
commutative diagrams:

uy
DIr ——» Xn—l

36‘] 1(171—1 (g2 20)
DT T’ Y
Then we obtain j, : X,_1 = X, as the push-out of ][] uy and [ 8%; ¢, : X, = Y is the
AEA AEA

sum of ¢,_; and all maps vy, A € A. Taking X = colim Xp,g=colimg,and j = X — X
the natural inclusion, we have that f = ¢j. Using similar arguments to those used in
factorisation (i), we can prove that j is an e-cofibration and ¢ is an e-fibration. It is not
very difficult to prove that j, : X,,_; — X, is a strong deformation retract since each
8} is a strong deformation retract. Therefore one has bijections 7¢(j) : 72((X,a)) —
wg((f , ia)) when XN # 0, and using again the assumption that exterior maps of the
form 67 —» X , 6% — X factor through X,, for m sufficiently large. Furthermore, j
has the LLP with respect to e-fibrations. Thus CMS5 is satisfied.

Clearly CM4 (i) is a consequence from the definition of e-cofibration. We derive
CM4 (ii) from CM5 and CM2 as follows. Suppose that ¢ is a trivial e-cofibration, then
by CMS5 (ii), it can be factored as ¢ = ¢j, where j : A = Z is an e-cofibration having the
LLP with respect to e-fibrations and ¢ is an e-fibration. Since CM2 holds, ¢ is a trivial
e-fibration. Then there is a lifting 7 : B — Z in the following commutative diagram:

A——>2Z
g |s
B g zZ
So the map i is a retract of j. Therefore i has the LLP with respect to e-fibrations. [

In the proof of 4.1 we have used the assumption that an exterior map of the form
NxK — X, where K is a Hausdorff compact space, factors through X,, for m sufficiently
large. We are going to prove this fact in proposition 4.2. Next we analyse some properties
of the filtrations above. Observe that each exterior map X,_; — X, is injective because
it is the cobase change of a injective map, so we can write X C X, C Xo C---C X, C
... C X. On the other hand, we can suppose that X, \ Xn_; # 0, for all n.
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We use the fact that in a push-out diagram in E of the form:

A—1sy

X——2Z
if 7 is injective and closed (e-closed) then 1 isf also a closed (e-closed) map. By the form
in which X, has been constructed, we infer that X,,_, is closed and e-closed in X,. So
X is closed and e-closed in X taking into account that X has the weak topology and the
weak externology. Using these properties the filtrations used to factor maps one has:

LEMMA 4.1.

(a) {p} is closed and e-closed in X,, for allp e X, \ X.

(b) IfK C X , where K is a compact subset, then there is n € N such that
K C X,.

PRrOOF: (a) If p € X,, \ X, then there is m, 1 < m < n, such that p € X, \ X1,
thus for the first kind of filtration p € D% or for the second kind of filtration p € D9 xI.
Because we consider in both cases the externology of the complements of closed-compact
subsets, we have that {p} is e-closed. Furthermore, since {p} N X, =0 forall k < m -1,
we have that {p} is closed and e-closed in X,, . We have that X, — X, is closed and
e-closed so X, — X, is also closed and e-closed. Therefore we have that {p} is closed
and e-closed in X,,. :

(b) Suppose that K ¢ X, for all n. Then there is a sequence {k;};cny C K satisfying
that k; € Xp, \ Xn,—1, ki € X, for all < € N. Consider the subspace T = {k; : i € N} . If
S C T, then we have that SN X,, is finite and SN X, N X = 0. Applying (a) we have
that S N X, is closed for every n . Thus S is closed in X , therefore T has the discrete
topology and is closed in X .SinceTCK , it follows that T is compact; this contradicts
the fact that T is an infinite discrete space. 0

PROPOSITION 4.2. Let Z be an exterior space, Hausdorfl, o-compact, locally
compact space and having the externology of the complements of closed-compact subsets.
Then, given f: Z — X an exterior map, f factors through X,, for n sufficiently large.

PRrOOF: We consider an increasing sequence of compact subsets { K, }nen such that
K, C Int(K.11), Z = U K,, and suppose that f does not factor through any X.
By Lemma 4.1 we have ntelﬁa.t f(K;) € Xy, ni > n;_y. We can construct a sequence
a(z) € Z such that f(a(i)) € Xm, \ Xm;—1 and a(1) € X, \ X. Now we define a map
o = fa: N — X; one can check that o is an exterior map and satisfies o (i) € X \ Xni-1,
o(1) € X. On the other hand Im 0N X, is finite and therefore e-closed in X, for all n, so
Im o is e-closed in X. Since 0='(Im ¢) = N we obtain that N is e-closed contradicting
the fact that N is not compact. 0
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We now define the functor Homg, : E” x E — SS by
Homg(X,Y)(y)
HME(]" g)n

Homg(idx X |¢.],idy)
HomE(f>_< |’idA[n]| ,g)

Here we consider the category of simplicial sets as a functor category SS = SetsAoP,

where A is the category whose objects are all the finite ordered sets [n] = {0 <1< --- <
n} and whose morphisms [n] — [m] are those maps ¢ : [n] — [m] which preserve the
order.

If f € Homg(X,Y), and g € Homg(Y, Z),, let go, f be the composite:

idx;(A de Aln)|

XA x(|Aln]| x IA[n]I)-——' Yx|A[n]|

where A = (id, ¢d) is the diagonal map. We also have a natural isomorphism Homg(X,Y)
&~ Homg(X,Y), since |A[0]| = *. One can check that E with this structure is a simplicial
category.

DEFINITION 4.2: Let X be an exterior space and K a finite simplicial set. We
define X ® K = X x |K| and X¥ = XK1,

Observe that | K| is a Hausdorff compact space if K is a finite simplicial set.

Given a small category I, the functor category Sets!’? is also called the category of
presheaves on I. We recall the construction of the category of elements of a presheaf P,
denoted by f; P. The objects of [; P are pairs (i, p), where 7 is an object of I and z is
an element of P(i). Its morphisms (7/,p') — (i,p) are those morphisms u : i' — ¢ of I for
which P(u) : P(i) — P(¢') satisfies P(u)p = p’. This category has a canonical projection
functor mp : f; P — I defined by np(i,p) = i.

The following result is proved in Theorem 2 of Chapter I of [15]:

THEOREM 4.2. Ify:I— Cisa functor from a small category I to a cocomplete
category C, the functor R, from C to Sets!’? given by

Rx(C) : i~ Home(x(1), C)
has a left adjoint functor L, : Sets’™® — C defined for each functor P in Sets™™" as

the colimit:
L(P) = colim (/P X c)
1

Using this theorem, if we consider for each exterior space X, the functor B(X) :
A — E given by B(X)([n]) = Xx|A[n] |, then there is an associated left adjoint
Lpxy: Sets®°? —s E which carries a simplicial set K to the exterior space
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Lo (K) = colim (/A K™1%%) E)

Therefore one has the adjunction isomorphism

Homg(Lpx)(K),Y) % Homss(K, Homg(X, Y))

where K is a finite simplicial set, and X, Y exterior spaces.
The following lemma will be useful in proving that E satisfies SMO:

LEMMA 4.2. Let X be an exterior space and suppose that F' : J — T is a functor

such that J is a finite category, each F (i) and colim;cy F(t) are compact Hausdorff spaces.

Then _ _
colimie3(X X F(i)) = X Xcolim;cy F(3).

PROOF: It is an immediate consequence of the properties of the adjunction isomor-
phisms given in Theorem 3.2. 0

The following properties of colimits will be useful.

Given a functor L : J' — J and an object j € J, the comma category j | L has
as objects morphisms of the form u : j = L(j'). A morphism from ug : j = L(j}) to
uy : 7 — L(j}) is a morphism v’ : j; — j; which satisfies L(v')ug = u;.

A category J is called connected if, given any two objects jo , j1 in J, there is a
finite sequence of arrows (both directions possible) joining jg to j;. A functor L:J' — J
is final if for each j in J, the comma category 7 | L is nonempty and connected. For
more details concerning final functors, we refer the reader to [14] and [7]. We shall use
the following:

PROPOSITION 4.3. IfL:J' — Jisfinaland F:J — C is a functor such that
colim FL exists, then colim F exists and the canonical map colim FL — colim F is an
isomorphism.

Denote by A/n the full subcategory of A determined by the objects [0}, [1],...,[n].
Given a simplicial set K, one defines the functor Sk,(K) as the composite (A/n)°? —
AP X gets.

PROPOSITION 4.4. IfK isasimplicial set, with dim(K) < n, then the canon-
ical functor I : fA/nSk"(K)_,fA K is final.

Next, we shall see that E, the category of exterior spaces, has a closed simplicial
model category structure.

PROPOSITION 4.5. E satisfies SMO and SMY7.

PROOF: In order to prove SMO, if X is an exterior space and K is a finite simplicial
set, we have the following:
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X®K = Xx

colim (/A KX®AYL SetsA°p>|

X xcolim (/AK VK SetsdP I—k T)

IR

I

X Xcolim ( /A/ Ska(K) 5 /A K Mg T)

IR

colim (/A/ Ska(K) 5 /AK Hymge p X5- E)

IR

cotim, ( [ K "5 E) = Lax(K).

Observe that each simplicial set K is isomorphic to colim ( fa KZ¥ Sets®? ) On the
other hand, the realisation functor |.| : Sets®® & T preserves colimits because it is a
left adjoint. So we have a natural bijection on X, Y and K :

Homg(X ® K,Y) 2 Homgs (K, Homg(X,Y))

Furthermore, X ® (K x L) = XX |K x L| 2 XX(|K| x |L|) = (X ® K)® L.
As a consequence we have:

Homg(X,Y**¥) = Homg(X ® (L x K),Y)
Homg((X® L)® K,Y)
HomE(X ® L,YK)
>~ Homg (X, (YK)L)

[

1%

So we have that YX<L = (YX)*, Homg(Y,XX) = Homg(Y @ K,X) =
Homgs(K, Homy (Y, X)) and SMO is satisfied.

We now prove SM7. We shall see that E satisfies SM7(a). Let p: X — Y be an e-
fibration (respectively, trivial e-fibration): Since (.)N is a right adjoint, it follows that (.)N
preserves pull-backs. Moreover, we have that (X Y)N = (X N)Y in T, for every exterior
space X and every locally compact space Y . From these remarks one has that the e-
fibration (respectively, trivial e-fibration) p satisfies SM7(a) if and only if the fibration
pN of T satisfies SM7(a). However, the last statement follows from the fact that T has
a closed simplicial model category structure. 0

With SMO and SM7 we complete the proof of our main Theorem 4.1.
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5. APPLICATIONS

A. WHITEHEAD THEOREM FOR N-COMPLEXES.

Consider again the exterior spaces 6™~ = NxS§" !, for n = 0 take 6~ = 0,
and ®" = NXD" provided with the usual topologies and the externologies given by
the corresponding families of complements of closed-compact subsets. Using sums and
push-outs, we can construct the following spaces:

DEFINITION 5.1: An N-complex consists of an exterior space X with a filtration
P=X_,CXyCX, C...C X such that X is the colimit of the filtration and for n > 0,
X, is obtained from X,,_; by a push-out of the form

I_I,_., Pa
Hoea &2 ' —2—> X,y
1 |-
D7 X
I_IQEA o I_[aeA Yo n

The subspace ¢, (D%) will be called an n-dimensional N-cell of X and ¢, : 67! —
Xp—1 will be called the attaching map of N-cell ¢, (D?).

We note that from the definition of N-complex it follows that every N-complex is a
cofibrant exterior space. It is clear that for cofibrant exterior spaces right homotopies, left
homotopies and exterior homotopies (Definition 3.3) induce the same relations between
maps. From Quillen [20], one has that the homotopy category mo(Ecof) is equivalent to
the localised category Ho(E), then one has

THEOREM 5.1. Let X, Y be N-complexes and let f : X — Y be an exterior

map. Then f is a homotopy exterior equivalence if and only if f is a weak exterior
equivalence.

B. EMBEDDING AND WHITEHEAD THEOREMS FOR PROPER HOMOTOPY CATEGORIES.

The full embeddings P < E, PN < EN induce full embeddings 7o(P) < mo(E),
g (PN) — (EN), where 7(C) denotes the category obtained by dividing morphisms
by the corresponding homotopy relations.

Suppose that X is a locally finite CW-complex with finite dimension d and for each
0 < k < d either X has no k-cells or X has an infinite countable number of k-cells. Under
these conditions X with the externology X admits the structure of a finite N-complex.
Taking into account that N-complexes are cofibrant one has

THEOREM 5.2. Let X,Y be finite N-complexes. Then
Homwo(p) (X, Y) = HomHo (E) (Xe, Ye)

that is, e : P — E induces a full embedding my(PN) — Ho(E), where mo(Py) denotes
the proper homotopy category of finite N-complexes.
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THEOREM 5.3. Let f: X — Y be a proper map between finite N-complexes.
Then f is a proper homotopy equivalence if and only if f, = f is a weak exterior equiva-
lence.

REMARK. If X is an object in PN, then the homotopy groups 7£(X,) are a global version
of Brown’s proper homotopy groups, see {4]. The differences are that we are using proper
maps instead of germs of proper maps and we consider a base sequence instead of a base
ray.

C. LOCALISED CATEGORY OF EXTERIOR SPACES AND STRONG SHAPE THEORY.

In some geometric contexts such as knot theory or Riemannian geometry, one fre-
quently studies the classification of some families of pairs under isomorphisms (diffeo-
morphisms, isometries, et cetera).

The following category SPairs will be useful in these contexts. The objects in
SPairs are pairs (X, A) of topological spaces and the morphisms are saturated maps,
that is, maps f : (X, A) — (Y, B) such that f~}(B) C A. In a natural way we have a
notion of saturated homotopy and the associated homotopy category mo{SPairs).

Note that we have a functor SPairs — E which carries amap f : (X, A) — (Y, B)
to f{ X\A: X\ A — Y\ B, where X \ A has the relative topology and externology
given by ex\a = {U\ A / U € 7x, A C U} and similarly for Y\ B. This functor
induces a functor mo(SPairs) — 7p(E) and a full embedding Ho(SPairs) — Ho(E),
where Ho(SPairs) is the category of pairs and saturated maps localised by maps f :
(X,A) = (Y,B) such that f | X\ A: X\ A — Y \ B is a weak exterior homotopy
equivalence in E. For example if K and L are knots in S® then we can consider the
associated exterior spaces S%\ K and S*\ L and we can say that K and L are equivalent
if 3\ K and S®\ L are isomorphic in Ho(E). In the case of smooth knots the study of
this notion reduces to invariants and tools of standard homotopy theory, however these
exterior spaces have more interest for the case of wild knots.

As a new application, we are going to show that the study of the strong shape
category of Hausdorff compact metrisable spaces can be formulated in terms of exterior
spaces and the corresponding localised category. For a formulation of the strong shape
category we refer the reader to [9], other references on the strong shape theory are
(19, 17, 16]. In particular we are going to use the approach to category SSh of the
strong shape of compact metrisable spaces given by Edwards-Hastings [9], where SSh is
introduced by using the telescopic construction.

We know that any compact metric A with finite covering dimension can be con-
sidered as a subspace of the interior Int(I/""!) of some (n — 1)-cube. Suppose that
A C Int(I*') ¢ I"™' C I* and B C Int(I™!) Cc I*™' C I™, where I* — I+
denotes the inclusion (¢1,---,t) ~ (0,t;,---,t). Note that pairs (I*, A) (I™, B) are
carried by the functor SPairs— E to exterior spaces I™ \ A and I™ \ B. With this
notation, one can prove the following:
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THEOREM 5.4. Let A, B compact spaces and suppose that we have inclusions
AcInt(I™) c It eI, BoIm(I™) c ™t c I,
Then we have: )
(i) There exists a bijection Homggn (A, B) = Homyo g)(I" \ A,I™ \ B).
(ii) A, B have the same strong shape type if and only if I" \ A is isomorphic
to I\ B in Ho(E).

Proor: Take neighbourhoods of A in I*~! and of B in I™-!

Nf>ONADODNED---D A4
NEoONEONE>...DB.

Denote by @ = ] the Hilbert cube and take the inclusions I* < @Q, (t1,- -+, ) ~
(t1, -, t,1/2, 1/21\,{- -}, for k = n—1or k = m — 1. Using these inclusions we can
suppose that A and B are subspaces of the pseudointerior of the Hilbert cube. We can
choose neighbourhoods of A, B in @

Uf DUfDU>---D A
UEoUEDUZ>---0B

such that U2 = N x M2, UP = NP x MP where M , MP are contractible compact
spaces. The projections U2 — N2 , U? — NP are homotopy equivalences that induce
proper homotopy equivalences on the telescopic constructions T'el ({U{“}) — Tel ({N{‘}),

Tel({UP}) - Tel({NF}). Then one has

(1) Homssn(A4,B) = Homuyp)(Tel({U2}), Tel({UF}))
(2) > Homye)(Tel({N{}), Tel({NF}))
(3) & Homqyg)(I"\ A, I™ \ B)
(4) = Homuog)(I"\ 4,I™ \ B)

where for (1) we consider the definition of the hom-set in the strong shape category
using telescopes, see [9, page 231], (2) follows from the proper homotopy equivalences
between the corresponding telescopes, to obtain isomorphism (3) we consider T'el ({N,»A}),
Tel({NiB }) as subspaces of I"™ and I™, respectively, isomorphism (4) comes from the fact
that I\ A, I™\ B admit the structure of a finite N-complex, and therefore we can apply
Theorem 5.2. 0
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D. SHAPE, STRONG SHAPE AND DISCRETE (INWARD) SHAPE THEORIES AND EXTERIOR
HOMOTOPY CATEGORIES.

In order to give the set of strong shape morphisms as a hom-set in the category
Ho(E) , the hom-set of the strong shape category of compact metric spaces has been
defined by using a telescopic construction in subsection above. Nevertheless, we also want
to consider the notion of “approaching map” given by Quigley [19] and the correspond-
ing approaching homotopy theory. Both formulations of the strong shape category of
compact metric spaces are equivalent. We refer the reader to (6] for a proof of this fact.
In this paper, Cathey considered several representations of the strong shape category. In
particular, [6, Theorem 2.14] gives a representation using telescopic constructions and [6,
Theorem 2.13 and Lemma 2.12] prove that the hom-set can be also represented by ap-
proaching maps. In the subsection above the hom-set based in the telescopic construction
has been denoted by Homsgsgn(A, B) . In this subsection, to recall that we are thinking
on a different formulation of the strong shape category we shall denote the hom-set by
Sh(A, B). Of course using the equivalence of categories between both formulations, for
compact metric spaces one has natural isomorphisms Homggn(A, B) = Sh(A4, B).

It is well known that a compact metrisable Y is homeomorphic to a closed subspace
of the Hilbert cube Q. Given a continuous map i:Y — Q such that ¢ : Y — #(Y) is a
homeomorphism, we can consider the exterior space @} = Q whose externology is given
by those open subsets U of @ such that i(Y) C U C Q. Given two continuous maps
i:Y =2Q,j:Y >Qsuchthati:Y = i(Y), j: Y — j(Y) are homeomorphisms, one
can use that Q is an absolute retract and locally convex to check that Qi, @} have the
same exterior homotopy type. Because the exterior homotopy type does not depend on
the given “inclusion”, the exterior space above will be denoted by Qy .

If we consider the functor E?xXE — T, (X, Z) ~» ZX, given in section 3, one obtains
the spaces Ql;i and Ql;*, where R, is the subspace of non negative real numbers provided
with the externology eR+. In the case that we have chosen a base point o € Y C Q, we
can consider the exterior maps

N—)QY) nMyO’nEN
Ry 2 Qy, r~y,T€R,

as base points of the spaces Q,” and Q&*, respectively.
We also consider the inclusion map in : N — R, and the induced maps

in* : Qyt - QY
inxidy : NxX = RyxX
where X is a compact metrisable space and Nx X, R, XX have the externologies given
in Section 3.

Given X, Y compact metrisable spaces, we can use exterior maps Ry XX — Qy
instead of Quigley’s approaching maps of the form R, x@Qx — Qy to represent strong
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shape morphisms. Therefore the set of strong shape morphism from X to Y can be
defined by

SSh(X,Y) = mE(R. XX, Qy) = mT (X, Q}")
and the set of discrete (inward) shape morphisms by

DSh(X,Y) = mE(NXX,Qy) = nT (X, QY)

where we have applied the exponential law given in Theorem 3.2(i).
The set of shape morphisms from X to Y is given by

Sh(X,Y) = Image(mE(R, %X, Qy) "4 n,E(Nx X, Qy))
or equivalently
Sh(X,Y) 2 Image(moT(X, Q%) T nT (X, QY))

If we consider the shift operator sx : NxX — NxX, sx(n,z) = (n+1,z), (n,z) €
NXx X, then an alternative definition of Sh(X,Y’) can be given as the equaliser

s*

x -
Sh(X,Y) — mE(Nx X, Qy) — - mE(NxX,Qy)
id
For the pointed setting, given zo € X C @ and yy € Y C @, we consider the category
ER+ and the objects R; XX, Qy with the base rays
R+_)R+>—<X7 TM(Tv’EO)’TGR-I-a
R+_)QY7 TMyO’T€R+a
then the set of pointed strong shape morphisms is given by

SSh*(X,Y) = mER+ (R, XX, Q) = mT* (X, Q).

We take the category EN and the objects Nx X, Qy with the sequences
N> NxX n~ (n,z), n€N
N—)Qy nMyo,nGN,
to define the set of pointed discrete shape morphisms as

DSh*(X,Y) = mEN(NX X, Qy) = moT" (X, Q™).

The inclusion in : N — R, induces a canonical functor moER+ — moEN that can be used
to define the set of pointed shape morphisms as

Sh*(X,Y) = Image(moE® (RyxX,Qy) — mEN(NX X, Qy))
= TImage(mT*(X,Q3") = mT* (X, QY))
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In order to compare the different sets of shape morphisms, we can consider the
(Serre) fibration in* : Q§+ — QY. First we note that the homotopy fibre of this map is
homeomorphic to the space Q(Q,’f) which is the mapping space of Hawai earrings close
to Y in @ and based at yo € Y. Therefore one has the fibre sequence

L= (QY) (@) - o - ¥

where the map Q(Q?}) = Q(Qﬁ) is given as follows: An element of Q Qﬁ) is deter-
mined by a pointed exterior map a : NxS! = Qy, let a, : S! — Qy denote the map
0, () = a(n, z). The operator S — I maps the element represented by « into an element
f3 such that B, = a1 - 05}, where apy1 - ;' denotes the usual product path and o ! is
the inverse path.

Applying the functor moT* (X, —) to the sequence above, one has the following:

THEOREM 5.5. Let X,Y be compact metrisable spaces, then the following se-
quence is exact:
... > DSh*(2*X,Y) %5 DSh*(2*X,Y) - SSh*(XP-'X,Y) — DSh*(Zr-1X, Y) =
- DSh*(Z£X,Y) 5 DSh*(TX, Y) — SSh'(X,Y) - DSh'(X,Y)
where for p > 0 one has that
Sh*(SPX,Y) = Image(SSh*(SPX,Y) - DSh*(S*X,Y))
Ker(DSh*(2?X,Y) — DSh*(£°X,Y)) .

1%

REMARK. (1) If in the sequence above, we take X = S° then Sh*(S",Y) is the n-th
fundamental group defined by Borsuk. The group SSh*(5™,Y) is Quigley’s approaching
group and DSh*(S",Y") corresponds to Quigley’s inward group. We note that from the
exact sequence above one obtains easily Quigley’s exact sequence [19].

(2) From the last terms of the exact sequence of the theorem, one obtains the short
exact sequence

0 — Coker(S — I) = SSh*(X,Y) = Sh*(X,Y) = 0

which is a version of the Comparison Theorem of Edwards-Hastings [9], obtained without
using the Bousfield-Kan spectral sequence of a tower of fibrations.
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