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DIRICHLET FINITE BIHARMONIC FUNCTIONS ON

THE PLANE WITH DISTORTED METRICS

MITSURU NAKAI*

1. The Laplace-Beltrami operator J on a smooth manifold M with

a smooth Riemannian metric ds2 = Σijgij(x)dxidxj applied to a smooth

function φ takes the form Δψ = g~1/2 Σu (fl̂ fl̂ fy*/)**- Functions in the

class H2(M) ~ {ue CA(M); Δ2u — 0} are called biharmonic. The class

H{M) = H\M) = {u e C\M) Δu — 0} of harmonic functions is a subclass

of H2(M). Let Z>(Λf) be the class of functions φ on M having square-

integrable gradients, i.e. the Dirichlet integrals ΌM(φ) — |grad^|2*l are
Jitf

finite. In contrast with the harmonic null class ΘHD = {M HDiM) = R},

R being the real number field (cf. Sario-Nakai [3]), we consider the

biharmonic null class

(1) ΘmΏ = {M H2D(M) = HD(M)}.

This class was introduced and intensively studied by Nakai-Sario [1],

One of the main questions concerning the class (1) is: Does the pro-

perty M e ΘmD have anything to do with the harmonic degeneracy of

the ideal boundary of Ml

Let D be the unit disk \z\ < 1 and Da be the disk D equipped with

the Riemannian metric

ds = (l-\z\ra\dz\.

Nakai-Sario [1] proved

THEOREM 1. The manifold Da belongs to the null class ΘmD if and

only if a> 3/4.

The case a = 3/4 was supplemented by O'Malla [2]. The significance

of this assertion lies in an interesting contrast with the harmonic case:
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132 M. NAKAI

J}a&&HD for every a. Let C be the finite plane \z\ < oo and Ca be the

plane C equipped with the Riemannian metric

a counter part of Da. Nakai-Sario [1] also proved that Co = C e 0mD

and Ca 6 ΘmD if α: is chosen large enough. Again its significance is

revealed in an interesting contrast with the harmonic case: Ca e ΘHD

for every a. Although the existence of a with Ca £ ΘmD was assured in

[1], its exact determination, which may be useful for e.g. producing a

more delicate examples, was left unsettled. Therefore the main object

of this paper is to establish a counterpart of the above Theorem 1:

THEOREM 2. The manifold Ca belongs to the null class ΘmD if and

onlg if a < 3/2.

2. We denote by Δa, dva, and gradα the Laplace-Beltrami operator,

the volume element, and the gradient with respect to the Riemannian

manifold Ca. Let Δ, dv, grad, and C stand for the case a = 0. By

using λa(z) = (1 + \z\)~a, we see that Δa — λ~2Δ, dva = λ\dv, and gradα =

Λ;2grad. Therefore H(CJ = H(C), D(CJ = D(C), and DCa(φ) = Dc(φ). A

fortiori the assertion Ca $ ΘmD is equivalent to the Poisson equation

( 2 ) Δu(z) = λa(z)2h(z)

having a nonharmonic (Euclidean) Dirichlet finite solution u on C for

some harmonic function h. We denote by Ha(C) the class of such har-

monic functions. Clearly the constant function 0 does not belong to

Ha(C) but HJiC) U {0} forms a vector space.

In order to prove Theorem 2, we only have to show that Ha(C) = 0

if and only if a < 3/2. It will be convenient to provide a test for an

h e H(C) to belong to Ha(C). We denote by (/, g)a the inner product of

/ and g in L2(CJ = L\C, λ\dv) and by (/, g) the (/, g\. Then we have

(Nakai-Sario [1])

LEMMA 1. A nonzero harmonic function h on C belongs to the

class Ha(C) if and only if

( 3 ) SUP \(h,φ)af/Dc(φ)< oo.
ψecμo

Here C\ is the class of ^-functions with compact supports. To

prove Lemma 1 suppose h e Ha(C), i.e. (2) has a solution u e D(C). For
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φeCKO, the Green formula yields (h,φ)a = (Δu, φ) = —Dc(u,φ). By the
Schwarz inequality, \(h,φ)af < Dc(u)-Dc(φ). Conversely suppose (3) is
valid. Let & be the closure of Q(C) in D(C) with respect to Dc( ).
By the Riesz theorem, there exists u e J£? such that £(φ) = Dc(u, φ) for
every φ e <£? and in particular for every φ e C^, where ί is the bounded
extension to Jδf of (ft, •)«. Namely, (ft, φ)a — —Dc(u, φ) for every φ e C^(C).
By the Weyl lemma u is a genuine solution of (1) and also ueD(C).

3. Expand an ft e H(C) into its Fourier series:

( 4) h(reiΘ) = Σ rw(αw cos rc0 + bn sin n0), &0 = 0
n = 0

for re[0, oo) and θeR. For the sake of simplicity we call m(Jι) —
sup {n α2

w + b\ Φ 0} < oo the order of ft. We denote by Ek the class
{h e H(C) m(h) < k) for fc = 0,1,2, . . . and we set Ek = {0} for fc = - 1 ,
- 2 , . ., E'k = {heEk; h Ξ£ 0, α0 = 60 = 0}, for A: = 1,2, , and E'k = 0
for fc = 0, —1, —2, . We first prove

LEMMA 2. // 2a > k + 2 > 3, then Ek c Ha(C).

We only have to show that rn cos ^ and rn sin n<9 belong to Ha{C)
for every ^ with 1 < n < 2a — 2. Since the reasoning is the same, we
only show that rn cos nθ eHa(C). Let φeC£(C), and expand it into its
Fourier series:

( 5) φ(reίθ) = Σ (αn(r) cos nθ + bn(r) sin %5)
n = 0

where an(r) and &w(r) are all in CQ[0, OO). Observe that

( 6) Dc(φ) = 2] π:(Γ«(r) 2 + Vn(rf)rdr + n*Γ(an(rγ + bn(r
wo Jo

On the other hand we have

(h,φ)a = Γ (Γφ(reίθ) cos nθdθ)rn+1(l + r)~2adr
Jo \Jo /

= πΓan(r)rn+1(l + r)~2adr.
Jo

By the Schwarz inequality

(7) \(h,ψ)af<π2K
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where Ka = f°°r2π+3(l + r)'^dτ is finite if and only if 2a > n + 2 > 3.
Jo

By (6) and (7), we have (3) and rn cos nθ e Ha(C).

LEMMA 3. // k + 3 > 2a, then Ha(C) c E'k.

Let the Fourier expansion of heHa(C) be given by (4) and suppose

< + K ΦO. For t > 1 let

(r - P<*)Xt - r)2, r e r , f l ;

θ , r e [ 0 , o o ) - [ * < • , « ,

which belongs to CJ(O, oo). Then the function

^(re ί (?) = pt(r)(an cos w0 + δn sin %5)

belongs to CJ(C). By an easy computation we find the universal positive

constants A, B and tQ > 1 such that

( 9 ) (h, τφt)β > Aτt«+n-2a, Dc{τφt) < BτΨ

for every t > t0 and τ > 0. If 6 + n — 2a > 4, then (9) implies that

\(h,φt)a\
2IDc(φt) -> oo, which contradicts (3). If 6 + n - 2a = 4, then (9)

takes the form

(10) (h, τψt)a !> A r i 4 , Dc(r<pt) <C Bτ2t8.

Let {£JΓ=o be a sequence of real numbers such that tv + v < ί j^. Next

consider a sequence {τv}^=1 given by

(ID τvtt = ^ (v = l , 2 , . 0 .

We then consider a sequence {̂ }~=i of functions Φμ in CJ(C) given by

(12) Φμ(reίθ) = JZ τvΨtυ{reid) .

By (10) and (11) we deduce that

(13) (h,Φμ)a >AΣv~ι.

By definition (12) we see that (dΦμ/dxί)2 = Σ : = i t A / ^ ) 2 tt = 1»2)?

 a n ^

a fortiori D ^ ) = Σ - i ^ c W Again by (10) and (11) we obtain

(14) Dc(Φμ) < B Σ V* - - 25
From (13) and (14) it follows that
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\(h,Φμ)J/Dc(Φμ) > [A*IB) E H
μ

as ^—> oo, in violation of (3). Hence w must satisfy 6 + n — 2α < 4,

i.e. w + 2 < 2 α r < & + 3. Then n < k, and £rβ(C) c £7fc. Because of

Lemma 2

m(Λ)

α0 = h(reίθ) — 2] rw(απ cos nθ + bn sin nθ)
n = \

must belong to Ha(C) unless a0 = 0. It is easy to find a bounded se-

quence {̂ }Γ c Cl(C) such that ^ converges to 1 and Dc(<pμ) —> 0. If

aQeHa(C), then |(α o ,^) | 2 -> fearo^(1 + r)-2«rdr)2 > 0; but Dc(Ψμ) -> 0 as

μ-> oo, in violation of (3). Therefore α0 = 0 and h e E'k, i.e. Ha(C) c Z?£.

4. Suppose that Ha(C) = 0. If 2a > 1 + 2 = 3, then by Lemma 2,

E[ c Ha(C), a contradiction. Therefore 2α < 3. Conversely suppose that

2a < 3, i.e. 0 + 3 > 2a. By Lemma 3 we see that Ha(C) c E'o = 0. Thus

jffβ(C) = 0 if and only if a < 3/2. This completes the proof of Theorem 2.

5. Let ux and ^2 be Dirichlet finite solutions of (2). Then ux — u2

is a Dirichlet finite harmonic function on C, i.e. ux — u2eHD{C) — R.

Therefore the vector space H2D(Ca)/R is isomorphic to Ha(C) U {0}. By

Lemmas 2 and 3, Ha(C) U {0} = E'k(2a - 2 > fc > 2a - 3). Since d i m # ί

= 2fc for fe > 0 and — 0 for k < 0, as a more precise form of Theorem

2, we obtain

THEOREM 3. Let da be the dimension of the vector space H2D(CJ/

HD(Ca) = H2D(CJ/R. If a< 3/2, then da = 0. If a > 3/2, ίΛew dα = 2ka

with 2a - 2 > ka > 2a - 3.
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