DIRICHLET FINITE BIHARMONIC FUNCTIONS ON THE PLANE WITH DISTORTED METRICS

MITSURU NAKAI*

1. The Laplace-Beltrami operator Δ on a smooth manifold M with a smooth Riemannian metric $d s^{2}=\sum_{i, j} g_{i j}(x) d x^{i} d x^{j}$ applied to a smooth function φ takes the form $\Delta \varphi=g^{-1 / 2} \sum_{i, j}\left(g^{1 / 2} g^{i j} \varphi_{x j}\right)_{x^{i}}$. Functions in the class $H^{2}(M)=\left\{u \in C^{4}(M) ; \Delta^{2} u=0\right\}$ are called biharmonic. The class $H(M)=H^{1}(M)=\left\{u \in C^{2}(M) ; \Delta u=0\right\}$ of harmonic functions is a subclass of $H^{2}(M)$. Let $D(M)$ be the class of functions φ on M having squareintegrable gradients, i.e. the Dirichlet integrals $\mathrm{D}_{M}(\varphi)=\int_{M}|\operatorname{grad} \varphi|^{2} * 1$ are finite. In contrast with the harmonic null class $\mathcal{O}_{H D}=\{M ; H D(M)=\boldsymbol{R}\}$, \boldsymbol{R} being the real number field (cf. Sario-Nakai [3]), we consider the biharmonic null class

$$
\begin{equation*}
\mathcal{O}_{H^{2} D}=\left\{M ; H^{2} D(M)=H D(M)\right\} . \tag{1}
\end{equation*}
$$

This class was introduced and intensively studied by Nakai-Sario [1]. One of the main questions concerning the class (1) is: Does the property $M \in \mathcal{O}_{H^{2} D}$ have anything to do with the harmonic degeneracy of the ideal boundary of M ?

Let \boldsymbol{D} be the unit disk $|z|<1$ and \boldsymbol{D}_{α} be the disk \boldsymbol{D} equipped with the Riemannian metric

$$
d s=(1-|z|)^{-\alpha}|d z|
$$

Nakai-Sario [1] proved
THEOREM 1. The manifold \boldsymbol{D}_{α} belongs to the null class $\mathcal{O}_{H^{2} D}$ if and only if $\alpha \geq 3 / 4$.

The case $\alpha=3 / 4$ was supplemented by O'Malla [2]. The significance of this assertion lies in an interesting contrast with the harmonic case:
$\boldsymbol{D}_{\alpha} \notin \mathcal{O}_{H D}$ for every α. Let \boldsymbol{C} be the finite plane $|z|<\infty$ and \boldsymbol{C}_{α} be the plane C equipped with the Riemannian metric

$$
d s=(1+|z|)^{-\alpha}|d z|,
$$

a counter part of \boldsymbol{D}_{α}. Nakai-Sario [1] also proved that $\boldsymbol{C}_{0}=\boldsymbol{C} \in \mathcal{O}_{H^{2} D}$ and $\boldsymbol{C}_{\alpha} \oplus \mathcal{O}_{H^{2} D}$ if α is chosen large enough. Again its significance is revealed in an interesting contrast with the harmonic case: $\boldsymbol{C}_{\alpha} \in \mathcal{O}_{H D}$ for every α. Although the existence of α with $\boldsymbol{C}_{\alpha} \notin \mathcal{O}_{H^{2} D}$ was assured in [1], its exact determination, which may be useful for e.g. producing a more delicate examples, was left unsettled. Therefore the main object of this paper is to establish a counterpart of the above Theorem 1:

THEOREM 2. The manifold \boldsymbol{C}_{α} belongs to the null class $\mathcal{O}_{H^{2} D}$ if and onlg if $\alpha \leq 3 / 2$.
2. We denote by $\Delta_{\alpha}, d v_{\alpha}$, and $\operatorname{grad}_{\alpha}$ the Laplace-Beltrami operator, the volume element, and the gradient with respect to the Riemannian manifold C_{α}. Let Δ, $d v, \operatorname{grad}$, and C stand for the case $\alpha=0$. By using $\lambda_{\alpha}(z)=(1+|z|)^{-\alpha}$, we see that $\Delta_{\alpha}=\lambda_{\alpha}^{-2} \Delta, d v_{\alpha}=\lambda_{\alpha}^{2} d v$, and $\operatorname{grad}_{\alpha}=$ λ_{α}^{-2} grad. Therefore $H\left(\boldsymbol{C}_{\alpha}\right)=H(\boldsymbol{C}), D\left(\boldsymbol{C}_{\alpha}\right)=D(\boldsymbol{C})$, and $D_{C_{\alpha}}(\varphi)=D_{\boldsymbol{C}}(\varphi)$. A fortiori the assertion $\boldsymbol{C}_{\alpha} \notin \mathcal{O}_{H^{2} D}$ is equivalent to the Poisson equation

$$
\begin{equation*}
\Delta u(z)=\lambda_{\alpha}(z)^{2} h(z) \tag{2}
\end{equation*}
$$

having a nonharmonic (Euclidean) Dirichlet finite solution u on C for some harmonic function h. We denote by $H_{\alpha}(C)$ the class of such harmonic functions. Clearly the constant function 0 does not belong to $H_{\alpha}(\boldsymbol{C})$ but $H_{\alpha}(\boldsymbol{C}) \cup\{0\}$ forms a vector space.

In order to prove Theorem 2, we only have to show that $H_{\alpha}(\boldsymbol{C})=\emptyset$ if and only if $\alpha \leq 3 / 2$. It will be convenient to provide a test for an $h \in H(C)$ to belong to $H_{\alpha}(\boldsymbol{C})$. We denote by $(f, g)_{\alpha}$ the inner product of f and g in $L^{2}\left(\boldsymbol{C}_{\alpha}\right)=L^{2}\left(\boldsymbol{C}, \lambda_{\alpha}^{2} d v\right)$ and by (f, g) the $(f, g)_{0}$. Then we have (Nakai-Sario [1])

Lemma 1. A nonzero harmonic function h on C belongs to the class $H_{\alpha}(\boldsymbol{C})$ if and only if

$$
\begin{equation*}
\sup _{\varphi \in C_{0}^{(C)}}\left|(h, \varphi)_{\alpha}\right|^{2} / D_{C}(\varphi)<\infty . \tag{3}
\end{equation*}
$$

Here C_{0}^{1} is the class of C^{1}-functions with compact supports. To prove Lemma 1 suppose $h \in H_{\alpha}(\boldsymbol{C})$, i.e. (2) has a solution $u \in D(C)$. For
$\varphi \in C_{0}^{1}(\boldsymbol{C})$, the Green formula yields $(h, \varphi)_{\alpha}=(\Delta u, \varphi)=-D_{C}(u, \varphi)$. By the Schwarz inequality, $\left|(h, \varphi)_{\alpha}\right|^{2} \leq D_{\boldsymbol{C}}(u) \cdot D_{\boldsymbol{C}}(\varphi)$. Conversely suppose (3) is valid. Let \mathscr{L} be the closure of $C_{0}^{\infty}(\boldsymbol{C})$ in $D(\boldsymbol{C})$ with respect to $D_{C}(\cdot)$. By the Riesz theorem, there exists $u \in \mathscr{L}$ such that $\ell(\varphi)=D_{c}(u, \varphi)$ for every $\varphi \in \mathscr{L}$ and in particular for every $\varphi \in C_{0}^{\infty}$, where ℓ is the bounded extension to \mathscr{L} of $(h, \cdot)_{\alpha}$. Namely, $(h, \varphi)_{\alpha}=-D_{\boldsymbol{c}}(u, \varphi)$ for every $\varphi \in C_{0}^{\infty}(\boldsymbol{C})$. By the Weyl lemma u is a genuine solution of (1) and also $u \in D(C)$.
3. Expand an $h \in H(C)$ into its Fourier series:

$$
\begin{equation*}
h\left(r e^{i \theta}\right)=\sum_{n=0}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \quad b_{0}=0 \tag{4}
\end{equation*}
$$

for $r \in[0, \infty)$ and $\theta \in \boldsymbol{R}$. For the sake of simplicity we call $m(h)=$ $\sup \left\{n ; a_{n}^{2}+b_{n}^{2} \neq 0\right\} \leq \infty$ the order of h. We denote by E_{k} the class $\{h \in H(C) ; m(h) \leq k\}$ for $k=0,1,2, \cdots$ and we set $E_{k}=\{0\}$ for $k=-1$, $-2, \cdots, E_{k}^{\prime}=\left\{h \in E_{k} ; h \not \equiv 0, a_{0}=b_{0}=0\right\}$, for $k=1,2, \cdots$, and $E_{k}^{\prime}=\emptyset$ for $k=0,-1,-2, \cdots$. We first prove

Lemma 2. If $2 \alpha>k+2 \geq 3$, then $E_{k}^{\prime} \subset H_{\alpha}(C)$.
We only have to show that $r^{n} \cos n \theta$ and $r^{n} \sin n \theta$ belong to $H_{\alpha}(\boldsymbol{C})$ for every n with $1 \leq n<2 \alpha-2$. Since the reasoning is the same, we only show that $r^{n} \cos n \theta \in H_{\alpha}(\boldsymbol{C})$. Let $\varphi \in C_{0}^{\infty}(\boldsymbol{C})$, and expand it into its Fourier series:

$$
\begin{equation*}
\varphi\left(r e^{i \theta}\right)=\sum_{n=0}^{\infty}\left(a_{n}(r) \cos n \theta+b_{n}(r) \sin n \theta\right) \tag{5}
\end{equation*}
$$

where $a_{n}(r)$ and $b_{n}(r)$ are all in $C_{0}^{\infty}[0, \infty)$. Observe that

$$
\begin{equation*}
D_{C}(\varphi)=\sum \pi\left(\int_{0}^{\infty}\left(a_{n}^{\prime}(r)^{2}+b_{n}^{\prime}(r)^{2}\right) r d r+n^{2} \int_{0}^{\infty}\left(a_{n}(r)^{2}+b_{n}(r)^{2}\right) \frac{d r}{r}\right) . \tag{6}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
(h, \varphi)_{\alpha} & =\int_{0}^{\infty}\left(\int_{0}^{2 \pi} \varphi\left(r e^{i \theta}\right) \cos n \theta d \theta\right) r^{n+1}(1+r)^{-2 \alpha} d r \\
& =\pi \int_{0}^{\infty} a_{n}(r) r^{n+1}(1+r)^{-2 \alpha} d r .
\end{aligned}
$$

By the Schwarz inequality

$$
\begin{equation*}
\left|(h, \varphi)_{\alpha}\right|^{2} \leq \pi^{2} K_{\alpha} \cdot \int_{0}^{\infty} a_{n}(r)^{2} \frac{d r}{r} \tag{7}
\end{equation*}
$$

where $K_{\alpha}=\int_{0}^{\infty} r^{2 n+3}(1+r)^{-4 \alpha} d r$ is finite if and only if $2 \alpha>n+2 \geq 3$. By (6) and (7), we have (3) and $r^{n} \cos n \theta \in H_{\alpha}(C)$.

Lemma 3. If $k+3 \geq 2 \alpha$, then $H_{\alpha}(C) \subset E_{k}^{\prime}$.
Let the Fourier expansion of $h \in H_{\alpha}(C)$ be given by (4) and suppose $a_{n}^{2}+b_{n}^{2} \neq 0$. For $t>1$ let

$$
\rho_{t}(r)= \begin{cases}\left(r-t^{1 / 2}\right)^{2}(t-r)^{2}, & r \in\left[t^{1 / 2}, t\right] \tag{8}\\ 0, & r \in[0, \infty)-\left[t^{1 / 2}, t\right]\end{cases}
$$

which belongs to $C_{0}^{1}(0, \infty)$. Then the function

$$
\varphi_{t}\left(r e^{i \theta}\right)=\rho_{t}(r)\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

belongs to $C_{0}^{1}(\boldsymbol{C})$. By an easy computation we find the universal positive constants A, B and $t_{0}>1$ such that

$$
\begin{equation*}
\left(h, \tau \varphi_{t}\right)_{\alpha} \geq A \tau t^{6+n-2 \alpha}, \quad D_{C}\left(\tau \varphi_{t}\right) \leq B \tau^{2} t^{8} \tag{9}
\end{equation*}
$$

for every $t>t_{0}$ and $\tau>0$. If $6+n-2 \alpha>4$, then (9) implies that $\left|\left(h, \varphi_{t}\right)_{\alpha}\right|^{2} / D_{c}\left(\varphi_{t}\right) \rightarrow \infty$, which contradicts (3). If $6+n-2 \alpha=4$, then (9) takes the form

$$
\begin{equation*}
\left(h, \tau \varphi_{t}\right)_{\alpha} \geq A \tau t^{4}, \quad D_{c}\left(\tau \varphi_{t}\right) \leq B \tau^{2} t^{8} \tag{10}
\end{equation*}
$$

Let $\left\{t_{\nu}\right\}_{\nu=0}^{\infty}$ be a sequence of real numbers such that $t_{\nu}+\nu<t_{\nu+1}^{1 / 2}$. Next consider a sequence $\left\{\tau_{\nu}\right\}_{\nu=1}^{\infty}$ given by

$$
\begin{equation*}
\tau_{\nu} t_{\nu}^{4}=\nu^{-1} \quad(\nu=1,2, \cdots) \tag{11}
\end{equation*}
$$

We then consider a sequence $\left\{\Phi_{\mu}\right\}_{\mu=1}^{\infty}$ of functions Φ_{μ} in $C_{0}^{1}(\boldsymbol{C})$ given by

$$
\begin{equation*}
\Phi_{\mu}\left(r e^{i \theta}\right)=\sum_{\nu=1}^{\mu} \tau_{\nu} \varphi_{t_{\nu}}\left(r e^{i \theta}\right) \tag{12}
\end{equation*}
$$

By (10) and (11) we deduce that

$$
\begin{equation*}
\left(h, \Phi_{\mu}\right)_{\alpha} \geq A \sum_{\nu=1}^{\mu} \nu^{-1} . \tag{13}
\end{equation*}
$$

By definition (12) we see that $\left(\partial \Phi_{\mu} / \partial x^{i}\right)^{2}=\sum_{v=1}^{\mu}\left(\tau_{\nu} \partial \varphi_{\nu} / \partial x^{i}\right)^{2}(i=1,2)$, and a fortiori $D_{C}\left(\Phi_{\mu}\right)=\sum_{\nu=1}^{\mu} D_{C}\left(\tau_{\nu} \varphi_{\nu}\right)$. Again by (10) and (11) we obtain

$$
\begin{equation*}
D_{C}\left(\Phi_{\mu}\right) \leq B \sum_{\nu=1}^{\mu} \nu^{-2} . \tag{14}
\end{equation*}
$$

From (13) and (14) it follows that

$$
\left|\left(h, \Phi_{\mu}\right)_{\alpha}\right|^{2} / D_{C}\left(\Phi_{\mu}\right) \geq\left(A^{2} / B\right)\left(\sum_{\nu=1}^{\mu} \nu^{-1}\right)^{2} /\left(\sum_{\nu=1}^{\mu} \nu^{-2}\right) \rightarrow \infty
$$

as $\mu \rightarrow \infty$, in violation of (3). Hence n must satisfy $6+n-2 \alpha<4$, i.e. $n+2<2 \alpha \leq k+3$. Then $n \leq k$, and $H_{\alpha}(C) \subset E_{k}$. Because of Lemma 2

$$
a_{0}=h\left(r e^{i \theta}\right)-\sum_{n=1}^{m(n)} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

must belong to $H_{a}(C)$ unless $a_{0}=0$. It is easy to find a bounded sequence $\left\{\varphi_{\mu}\right\}_{1}^{\infty} \subset C_{0}^{1}(\boldsymbol{C})$ such that φ_{μ} converges to 1 and $D_{\boldsymbol{C}}\left(\varphi_{\mu}\right) \rightarrow 0$. If $a_{0} \in H_{\alpha}(C)$, then $\left|\left(a_{0}, \varphi_{\mu}\right)\right|^{2} \rightarrow\left(2 \pi a_{0} \int_{0}^{\infty}(1+r)^{-2 \alpha} r d r\right)^{2}>0$; but $D_{C}\left(\varphi_{\mu}\right) \rightarrow 0$ as $\mu \rightarrow \infty$, in violation of (3). Therefore $\alpha_{0}=0$ and $h \in E_{k}^{\prime}$, i.e. $H_{\alpha}(C) \subset E_{k}^{\prime}$.
4. Suppose that $H_{\alpha}(C)=\emptyset$. If $2 \alpha>1+2=3$, then by Lemma 2, $E_{1}^{\prime} \subset H_{\alpha}(C)$, a contradiction. Therefore $2 \alpha \leq 3$. Conversely suppose that $2 \alpha \leq 3$, i.e. $0+3 \geq 2 \alpha$. By Lemma 3 we see that $H_{\alpha}(C) \subset E_{0}^{\prime}=\emptyset$. Thus $H_{\alpha}(C)=\emptyset$ if and only if $\alpha \leq 3 / 2$. This completes the proof of Theorem 2.
5. Let u_{1} and u_{2} be Dirichlet finite solutions of (2). Then $u_{1}-u_{2}$ is a Dirichlet finite harmonic function on \boldsymbol{C}, i.e. $u_{1}-u_{2} \in H D(C)=\boldsymbol{R}$. Therefore the vector space $H^{2} D\left(\boldsymbol{C}_{\alpha}\right) / \boldsymbol{R}$ is isomorphic to $H_{\alpha}(\boldsymbol{C}) \cup\{0\}$. By Lemmas 2 and $3, H_{\alpha}(C) \cup\{0\}=E_{k}^{\prime}(2 \alpha-2>k \geq 2 \alpha-3)$. Since $\operatorname{dim} E_{k}^{\prime}$ $=2 k$ for $k>0$ and $=0$ for $k \leq 0$, as a more precise form of Theorem 2, we obtain

THEOREM 3. Let d_{α} be the dimension of the vector space $H^{2} D\left(C_{\alpha}\right) /$ $H D\left(C_{\alpha}\right)=H^{2} D\left(C_{\alpha}\right) / R$. If $\alpha \leq 3 / 2$, then $d_{\alpha}=0$. If $\alpha>3 / 2$, then $d_{\alpha}=2 k_{\alpha}$ with $2 \alpha-2>k_{\alpha} \geq 2 \alpha-3$.

References

[1] M. Nakai-L. Sario: Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn., 532 (1973), 1-34.
[2] H. O'Malla: Dirichlet finite biharmonic functions on the unit disk with distorted metrics, Proc. Amer. Math. Soc., 32 (1972), 521-524.
[3] L. Sario-M. Nakai: Classification Theory of Riemann Surfaces, Springer, 1970.

