M. Nakai Nagoya Math. J. Vol. 51 (1973), 131–135

DIRICHLET FINITE BIHARMONIC FUNCTIONS ON THE PLANE WITH DISTORTED METRICS

MITSURU NAKAI*

1. The Laplace-Beltrami operator Δ on a smooth manifold M with a smooth Riemannian metric $ds^2 = \sum_{i,j} g_{ij}(x) dx^i dx^j$ applied to a smooth function φ takes the form $\Delta \varphi = g^{-1/2} \sum_{i,j} (g^{1/2} g^{ij} \varphi_{xj})_{x^i}$. Functions in the class $H^2(M) = \{u \in C^4(M); \Delta^2 u = 0\}$ are called biharmonic. The class $H(M) = H^1(M) = \{u \in C^2(M); \Delta u = 0\}$ of harmonic functions is a subclass of $H^2(M)$. Let D(M) be the class of functions φ on M having squareintegrable gradients, i.e. the Dirichlet integrals $D_M(\varphi) = \int_M |\text{grad } \varphi|^2 * 1$ are finite. In contrast with the harmonic null class $\mathcal{O}_{HD} = \{M; HD(M) = R\}$, R being the real number field (cf. Sario-Nakai [3]), we consider the biharmonic null class

(1)
$$\mathcal{O}_{H^2D} = \{M; H^2D(M) = HD(M)\}.$$

This class was introduced and intensively studied by Nakai-Sario [1]. One of the main questions concerning the class (1) is: Does the property $M \in \mathcal{O}_{H^2D}$ have anything to do with the harmonic degeneracy of the ideal boundary of M?

Let D be the unit disk |z| < 1 and D_{α} be the disk D equipped with the Riemannian metric

$$ds = (1 - |z|)^{-\alpha} |dz|.$$

Nakai-Sario [1] proved

THEOREM 1. The manifold D_{α} belongs to the null class $\mathcal{O}_{H^{2}D}$ if and only if $\alpha \geq 3/4$.

The case $\alpha = 3/4$ was supplemented by O'Malla [2]. The significance of this assertion lies in an interesting contrast with the harmonic case:

Received November 5, 1971.

^{*} Supported by Grant DA-ARO-D-31-124-71-G20, UCLA, Summer, 1971.

M. NAKAI

 $D_{\alpha} \notin \mathcal{O}_{HD}$ for every α . Let C be the finite plane $|z| < \infty$ and C_{α} be the plane C equipped with the Riemannian metric

$$ds = (1 + |z|)^{-\alpha} |dz|,$$

a counter part of D_{α} . Nakai-Sario [1] also proved that $C_0 = C \in \mathcal{O}_{H^2D}$ and $C_{\alpha} \in \mathcal{O}_{H^2D}$ if α is chosen large enough. Again its significance is revealed in an interesting contrast with the harmonic case: $C_{\alpha} \in \mathcal{O}_{HD}$ for every α . Although the existence of α with $C_{\alpha} \notin \mathcal{O}_{H^2D}$ was assured in [1], its exact determination, which may be useful for e.g. producing a more delicate examples, was left unsettled. Therefore the main object of this paper is to establish a counterpart of the above Theorem 1:

THEOREM 2. The manifold C_{α} belongs to the null class $\mathcal{O}_{H^{2}D}$ if and only if $\alpha \leq 3/2$.

2. We denote by Δ_{α} , dv_{α} , and $\operatorname{grad}_{\alpha}$ the Laplace-Beltrami operator, the volume element, and the gradient with respect to the Riemannian manifold C_{α} . Let Δ , dv, grad, and C stand for the case $\alpha = 0$. By using $\lambda_{\alpha}(z) = (1 + |z|)^{-\alpha}$, we see that $\Delta_{\alpha} = \lambda_{\alpha}^{-2}\Delta$, $dv_{\alpha} = \lambda_{\alpha}^{2}dv$, and $\operatorname{grad}_{\alpha} = \lambda_{\alpha}^{-2}\operatorname{grad}$. Therefore $H(C_{\alpha}) = H(C)$, $D(C_{\alpha}) = D(C)$, and $D_{C_{\alpha}}(\varphi) = D_{C}(\varphi)$. A fortiori the assertion $C_{\alpha} \in \mathcal{O}_{H^{2}D}$ is equivalent to the Poisson equation

(2)
$$\Delta u(z) = \lambda_{\alpha}(z)^{2}h(z)$$

having a nonharmonic (Euclidean) Dirichlet finite solution u on C for some harmonic function h. We denote by $H_{\alpha}(C)$ the class of such harmonic functions. Clearly the constant function 0 does not belong to $H_{\alpha}(C)$ but $H_{\alpha}(C) \cup \{0\}$ forms a vector space.

In order to prove Theorem 2, we only have to show that $H_{\alpha}(C) = \emptyset$ if and only if $\alpha \leq 3/2$. It will be convenient to provide a test for an $h \in H(C)$ to belong to $H_{\alpha}(C)$. We denote by $(f,g)_{\alpha}$ the inner product of f and g in $L^2(C_{\alpha}) = L^2(C, \lambda_{\alpha}^2 dv)$ and by (f,g) the $(f,g)_0$. Then we have (Nakai-Sario [1])

LEMMA 1. A nonzero harmonic function h on C belongs to the class $H_{\alpha}(C)$ if and only if

$$(3) \qquad \qquad \sup_{\varphi \in G^{1}(G)} |(h,\varphi)_{\alpha}|^{2}/D_{c}(\varphi) < \infty .$$

Here C_0^1 is the class of C^1 -functions with compact supports. To prove Lemma 1 suppose $h \in H_{\alpha}(C)$, i.e. (2) has a solution $u \in D(C)$. For

132

BIHARMONIC FUNCTIONS

 $\varphi \in C_0^1(\mathbf{C})$, the Green formula yields $(h, \varphi)_{\alpha} = (\varDelta u, \varphi) = -D_c(u, \varphi)$. By the Schwarz inequality, $|(h, \varphi)_{\alpha}|^2 \leq D_c(u) \cdot D_c(\varphi)$. Conversely suppose (3) is valid. Let \mathscr{L} be the closure of $C_0^{\infty}(\mathbf{C})$ in $D(\mathbf{C})$ with respect to $D_c(\cdot)$. By the Riesz theorem, there exists $u \in \mathscr{L}$ such that $\ell(\varphi) = D_c(u, \varphi)$ for every $\varphi \in \mathscr{L}$ and in particular for every $\varphi \in C_0^{\infty}$, where ℓ is the bounded extension to \mathscr{L} of $(h, \cdot)_{\alpha}$. Namely, $(h, \varphi)_{\alpha} = -D_c(u, \varphi)$ for every $\varphi \in C_0^{\infty}(\mathbf{C})$. By the Weyl lemma u is a genuine solution of (1) and also $u \in D(\mathbf{C})$.

3. Expand an $h \in H(C)$ into its Fourier series:

(4)
$$h(re^{i\theta}) = \sum_{n=0}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta), \quad b_0 = 0$$

for $r \in [0, \infty)$ and $\theta \in \mathbf{R}$. For the sake of simplicity we call $m(h) = \sup\{n; a_n^2 + b_n^2 \neq 0\} \le \infty$ the order of h. We denote by E_k the class $\{h \in H(\mathbf{C}); m(h) \le k\}$ for $k = 0, 1, 2, \cdots$ and we set $E_k = \{0\}$ for $k = -1, -2, \cdots, E'_k = \{h \in E_k; h \neq 0, a_0 = b_0 = 0\}$, for $k = 1, 2, \cdots$, and $E'_k = \emptyset$ for $k = 0, -1, -2, \cdots$. We first prove

LEMMA 2. If $2\alpha > k + 2 \ge 3$, then $E'_k \subset H_{\alpha}(C)$.

We only have to show that $r^n \cos n\theta$ and $r^n \sin n\theta$ belong to $H_{\alpha}(C)$ for every n with $1 \le n < 2\alpha - 2$. Since the reasoning is the same, we only show that $r^n \cos n\theta \in H_{\alpha}(C)$. Let $\varphi \in C_0^{\infty}(C)$, and expand it into its Fourier series:

(5)
$$\varphi(re^{i\theta}) = \sum_{n=0}^{\infty} (a_n(r) \cos n\theta + b_n(r) \sin n\theta)$$

where $a_n(r)$ and $b_n(r)$ are all in $C_0^{\infty}[0,\infty)$. Observe that

(6)
$$D_c(\varphi) = \sum \pi \left(\int_0^\infty (a'_n(r)^2 + b'_n(r)^2) r dr + n^2 \int_0^\infty (a_n(r)^2 + b_n(r)^2) \frac{dr}{r} \right).$$

On the other hand we have

$$(h,\varphi)_{\alpha} = \int_0^{\infty} \left(\int_0^{2\pi} \varphi(re^{i\theta}) \cos n\theta d\theta \right) r^{n+1} (1+r)^{-2\alpha} dr$$

= $\pi \int_0^{\infty} a_n(r) r^{n+1} (1+r)^{-2\alpha} dr$.

By the Schwarz inequality

$$|(h,\varphi)_{\alpha}|^{2} \leq \pi^{2} K_{\alpha} \cdot \int_{0}^{\infty} a_{n}(r)^{2} \frac{dr}{r}$$

M. NAKAI

where $K_{\alpha} = \int_{0}^{\infty} r^{2n+3}(1+r)^{-4\alpha} dr$ is finite if and only if $2\alpha > n+2 \ge 3$. By (6) and (7), we have (3) and $r^{n} \cos n\theta \in H_{\alpha}(C)$.

LEMMA 3. If $k + 3 \ge 2\alpha$, then $H_{\alpha}(C) \subset E'_{k}$.

Let the Fourier expansion of $h \in H_{\alpha}(C)$ be given by (4) and suppose $a_n^2 + b_n^2 \neq 0$. For t > 1 let

(8)
$$\rho_t(r) = \begin{cases} (r - t^{1/2})^2 (t - r)^2, & r \in [t^{1/2}, t]; \\ 0, & r \in [0, \infty) - [t^{1/2}, t], \end{cases}$$

which belongs to $C_0^1(0,\infty)$. Then the function

$$\varphi_t(re^{i\theta}) = \rho_t(r)(a_n \cos n\theta + b_n \sin n\theta)$$

belongs to $C_0^1(C)$. By an easy computation we find the universal positive constants A, B and $t_0 > 1$ such that

(9)
$$(h,\tau\varphi_t)_{\alpha} \geq A\tau t^{6+n-2\alpha}, \quad D_c(\tau\varphi_t) \leq B\tau^2 t^8$$

for every $t > t_0$ and $\tau > 0$. If $6 + n - 2\alpha > 4$, then (9) implies that $|(h, \varphi_t)_{\alpha}|^2 / D_c(\varphi_t) \to \infty$, which contradicts (3). If $6 + n - 2\alpha = 4$, then (9) takes the form

(10)
$$(h, \tau \varphi_t)_{\alpha} \geq A \tau t^4, \quad D_c(\tau \varphi_t) \leq B \tau^2 t^8.$$

Let $\{t_{\nu}\}_{\nu=0}^{\infty}$ be a sequence of real numbers such that $t_{\nu} + \nu < t_{\nu+1}^{1/2}$. Next consider a sequence $\{\tau_{\nu}\}_{\nu=1}^{\infty}$ given by

(11)
$$\tau_{\nu}t_{\nu}^{4} = \nu^{-1} \quad (\nu = 1, 2, \cdots).$$

We then consider a sequence $\{\Phi_{\mu}\}_{\mu=1}^{\infty}$ of functions Φ_{μ} in $C_0^1(C)$ given by

(12)
$$\varPhi_{\mu}(re^{i\theta}) = \sum_{\nu=1}^{\mu} \tau_{\nu} \varphi_{t\nu}(re^{i\theta}) .$$

By (10) and (11) we deduce that

(13)
$$(h, \Phi_{\mu})_{\alpha} \ge A \sum_{\nu=1}^{\mu} \nu^{-1}$$

By definition (12) we see that $(\partial \Phi_{\mu}/\partial x^{i})^{2} = \sum_{\nu=1}^{\mu} (\tau_{\nu} \partial \varphi_{\nu}/\partial x^{i})^{2}$ (i = 1, 2), and a fortiori $D_{c}(\Phi_{\mu}) = \sum_{\nu=1}^{\mu} D_{c}(\tau_{\nu} \varphi_{\nu})$. Again by (10) and (11) we obtain

(14)
$$D_{c}(\Phi_{\mu}) \leq B \sum_{\nu=1}^{\mu} \nu^{-2}.$$

From (13) and (14) it follows that

134

BIHARMONIC FUNCTIONS

$$|(h, \Phi_{\mu})_{\alpha}|^{2}/D_{c}(\Phi_{\mu}) \geq (A^{2}/B)\left(\sum_{\nu=1}^{\mu}\nu^{-1}\right)^{2}/\left(\sum_{\nu=1}^{\mu}\nu^{-2}\right) \to \infty$$

as $\mu \to \infty$, in violation of (3). Hence *n* must satisfy $6 + n - 2\alpha < 4$, i.e. $n + 2 < 2\alpha \le k + 3$. Then $n \le k$, and $H_{\alpha}(C) \subset E_k$. Because of Lemma 2

$$a_0 = h(re^{i\theta}) - \sum_{n=1}^{m(h)} r^n (a_n \cos n\theta + b_n \sin n\theta)$$

must belong to $H_{\alpha}(C)$ unless $a_0 = 0$. It is easy to find a bounded sequence $\{\varphi_{\mu}\}_{1}^{\infty} \subset C_{0}^{1}(C)$ such that φ_{μ} converges to 1 and $D_{c}(\varphi_{\mu}) \to 0$. If $a_0 \in H_{\alpha}(C)$, then $|(a_0, \varphi_{\mu})|^{2} \to \left(2\pi a_0 \int_{0}^{\infty} (1 + r)^{-2\alpha} r dr\right)^{2} > 0$; but $D_{c}(\varphi_{\mu}) \to 0$ as $\mu \to \infty$, in violation of (3). Therefore $a_0 = 0$ and $h \in E'_{k}$, i.e. $H_{\alpha}(C) \subset E'_{k}$.

4. Suppose that $H_{\alpha}(C) = \emptyset$. If $2\alpha > 1 + 2 = 3$, then by Lemma 2, $E'_1 \subset H_{\alpha}(C)$, a contradiction. Therefore $2\alpha \leq 3$. Conversely suppose that $2\alpha \leq 3$, i.e. $0 + 3 \geq 2\alpha$. By Lemma 3 we see that $H_{\alpha}(C) \subset E'_0 = \emptyset$. Thus $H_{\alpha}(C) = \emptyset$ if and only if $\alpha \leq 3/2$. This completes the proof of Theorem 2.

5. Let u_1 and u_2 be Dirichlet finite solutions of (2). Then $u_1 - u_2$ is a Dirichlet finite harmonic function on C, i.e. $u_1 - u_2 \in HD(C) = R$. Therefore the vector space $H^2D(C_{\alpha})/R$ is isomorphic to $H_{\alpha}(C) \cup \{0\}$. By Lemmas 2 and 3, $H_{\alpha}(C) \cup \{0\} = E'_k(2\alpha - 2 > k \ge 2\alpha - 3)$. Since dim $E'_k = 2k$ for k > 0 and = 0 for $k \le 0$, as a more precise form of Theorem 2, we obtain

THEOREM 3. Let d_{α} be the dimension of the vector space $H^2D(C_{\alpha})/HD(C_{\alpha}) = H^2D(C_{\alpha})/R$. If $\alpha \leq 3/2$, then $d_{\alpha} = 0$. If $\alpha > 3/2$, then $d_{\alpha} = 2k_{\alpha}$ with $2\alpha - 2 > k_{\alpha} \geq 2\alpha - 3$.

REFERENCES

 M. Nakai-L. Sario: Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn., 532 (1973), 1-34.

[2] H. O'Malla: Dirichlet finite biharmonic functions on the unit disk with distorted metrics, Proc. Amer. Math. Soc., 32 (1972), 521-524.

[3] L. Sario-M. Nakai: Classification Theory of Riemann Surfaces, Springer, 1970.

Nagoya University