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ON ADDITIVE POLYNOMIALS OVER A FINITE FIELD
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This paper is based on the interpretation of the ring .A, of additive polynomials in one variable over a finite
field F, as a maximal K-order inside a certain skew-field D, R being a principal ideal domain isomorphic to
FP[T|. The classical (1930's) structure theory of maximal orders in global fields is used to solve enumeration
questions involving the iteration of members of A,.

1991 Mathematics subject classification: 12CO5, 16HO5.

0. Introduction

For h, p in N, with p prime, let F, be the finite field of order q = ph, and let T, T
be independent (commuting) variables over F,. Consider the set

A := {/(T) e F,[T];/(r + T) =f(T) +f(T) in F,[7\ T']} (0.1)

The members of Aq are the additive polynomials over F,. It is classically well-known
that the f(T) in Aq are just the polynomials of the type J2j=oajTP''» f o r d^° a n d

a0,..., ad e F,. Although closed under +, Aq (for q £ p) is not a subring of ¥q[T].
However, as observed by O. 0re [8], Aq can be made into a (non-commutative) ring
under the + of F,[T], and the product o ("composition of maps"), i.e., (fog)(T) =
f(g(T)). The 1-element for (Aq, +, o) is /(T) = T. When speaking of Aq we shall
henceforth assume that it is equipped with (+, o). It is easily seen that the polynomials
AT (k e Fp) are central in Aq, so that Aq may be regarded as an F,,-algebra. Amongst
the various results of [8], the following are both elementary and crucial for all that
follows. Let deg be the standard degree-function on F,[T]. If f(T),g(T) e Aq we have
deg(/ o g)(T) = deg/(r).deg g(T), and, in particular, ( / o g)(T) = 0 if and only if f(T)
or gf(T) = 0. Hence Aq is a (non-commutative) integral domain. Moreover deg induces
"Euclidean algorithms" on Aq in the following sense. Let g(T),f(T) e Aq, with
/ C O ^ O . Then there exist unique hl(T),h2(T),rx(T),r1{T) in Aq, with degr,(7),
degr2(T)<deg/(T)and
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(The first of these is obvious, while the second becomes clear once we recall that F, is
a perfect field.)

Consequently every left (resp. right-) ideal in Aq is left (resp. right-) principal. One
easily checks that the units in Aq are just the /(T) = <xT, ( 0 / a e F,), and that the
centre C of Aq consists of the polynomials of the type X^U bfTq>, d > 0, bj e ¥p. Further
if J — Aq of is a non-zero left ideal, then Aq/J is a finite-dimensional F,-vector space
of dimension d, where deg/(T) = pd. The same is true of AJf, where / = f oAq, a
non-zero right ideal.

There are numerous problems about finite fields F, which lead to questions about
Aq - [6, 12] for some examples.

In this paper we consider two apparently new problems about Aq which are not, in
general, accessible to the classical (commutative) methods which have previously been
used for ¥q[T\. In particular we consider:

Problem 1. Given d>\, how many (distinct) irreducible elements n in Aq have
degree pdt! (Here (0 ^)n e Aq is irreducible if and only if Aq o n is a maximal left-ideal;
equivalently, n cannot be expressed as X o p. with 1, p non-units. This is also equivalent
to saying that n o Aq is a maximal right-ideal.)

Problem 2. Let/(T) e Aq with deg/(r) > p,/(T) not a power of T. For neN, let
/" '(T) = ( / o .. . o/)(T) (n factors). For each n e N let s(n) = s(n,f) be the least s e N
such that/^'CT) splits completely into linear factors in F,,[T]. Determine the manner in
which s(ri) varies with n.

In this paper we shall solve Problem 1 completely, and give very precise information
about Problem 2. The exact statements of our results will be given later.

The new ideas introduced in this paper are as follows. In Section 1 we show that
there is an F,,-algebra isomorphism of Aq with the skew-polynomial ring ¥q[X; a], where
o '• C |-+ C is the Frobenius automorphism of F,, i.e., the canonical generator of
Gal(F,/Fp). (This result is already implicit in [9].) Writing A for ¥q[X; a], we show that
the centre R of A is the "ordinary" polynomial ring FP[X*], where q = p \ (Thus R is
a commutative P.I.D.)

We also show that, as an R-module, A is free of rank h2. Let F be the field of
fractions of R. We put D = A ®R F, regarded initially as i?-algebra, but, in the usual
way, made into an F-algebra. We show that D is a skewfield, having F as centre, with
dimF(D) = h2, in which A (identified with A <8>R R) is a maximal R-order in the
classical sense [3, 10]. This makes available the full apparatus of "arithmetic" in
maximal R-orders in simple-central algebras over global fields F, R being a Dedekind
domain with field of fractions F; this beautiful theory is described in near-optimal
fashion in [10].

As a result of our work in Section 1, the solution of Problem 1 is presented in
Section 2.

Problem 2 needs some preliminary reductions before the results of Section 1 can be
applied to it, and these reductions occupy Section 3. In Sections 4-5 we complete the
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analysis of s(n,f). The end-result of this work (expressed more precisely in Section 5
as Theorem 2) is that there exists a positive constant <xf such that lim inf {&p} = <xf,
lim sup {^p-} = pay. Theorem 2 actually gives more explicit descriptions of af and the
behaviour of s(n,f) for large n.

In Section 6 we illustrate Theorem 2 for a special choice of f(T) e Aq. For this
particular/ the sequence s(n) = s(n,f) can be calculated explicitly via elementary linear
algebra over Fp. For general / this elementary approach does not usually work.

I am greatly indebted to my colleague Professor K. A. Brown for a number of useful
discussions, and for providing reference [7] and to Dr. R. J. Chapman (Exeter) for
pointing out an error in an earlier draft of this paper.

1. Aq as a skew-polynomial ring

Let K be any (commutative) perfect field and let <x e Aut (K) have finite order. We
recall 0re's classical construction [2, 9] of the skew-polynomial ring K[X; a]. The
underlying set of K[X; a] is the set of all sequences a = (ao, a,,..., aB,...) where an e K
for all n > 0, and only finitely many an are non-zero. The sum of two such sequences
a and b is defined to be c, where cn = an + bn for all n > 0, while the product a.b is
defined to be d, where, for all n > 0,

# ' . (l.i)
i+J=n

Here the calculations of cn, dn are performed within K (with its standard addition
and multiplication), bf being the image of bt under a1. Under (+,.), K[X; a] becomes
a (non-commutative) ring with zero-element 0 = (0,. . . ,0,. . .) and 1-element 1 =
(1,0 0,...). The sequence (0,1,0, 0,...) is denoted by X, while c e K is
identified with (c, 0 , , . . . , 0,...). The degree of a e K[X; a] is max{« > 0; an ^ 0}. We
have deg(a.b) = deg(a) + deg(b) except if a or b = 0. In particular, a.b = 0 if and only if
a or b = 0, so that K[X; a] is a (non-commutative) integral domain. The degree-
function (defined above) yields Euclidean algorithms for both left- and right-division in
K[X; a], so that every left/right ideal in K[X; a] is left/right principal. Finally, if a
has degree d, then a = Y^^o0^' ^ u t for fc 6 X we have X'.b — b"'.X', i.e., in general,
X "does not commute with the coefficients".

Now let K = ¥„, q = ph, p prime, and let a : ( i-+ £p be the Frobenius automorphism
of F,, i.e., the canonical generator of Gal(F,/Fp). We put A = ¥q[X; a]; multiplication in
A will be denoted by juxtaposition, suppressing the "dot" used above. Consider the
(set-) map ip : Aq -» A, sending J Z M I a , ^ to YLoaix' whenever a0, ...,ad e Fq. As a
set-map ij/ is trivially bijective, but a simple calculation shows that it is also a ring-
isomorphism from (Aq, +, o) to (A, +, •), sending T to 1, and XT to k\ for ). e ¥p.
Moreover, \]/ establishes an Fp-algebra-isomorphism from Aq to A. Clearly \j/ maps the
centre C of Aq onto the centre R of A; by the results quoted in Section 0, R = ij/(C)
is the "ordinary" polynomial ring Fp[Xh] in one commutative variable Xh, a
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(commutative) P.I.D. (That ¥p[Xh] is the centre of A can also be verified directly,
without reference to Aq.)

Let (o e¥q be a normal basis for F, over Fp, i.e., the elements co0 = (o,(O\ =
(op,..., O)fc_i = or ' form an Fp-basis for F,. (The existence of such an co is a standard
fact from elementary Galois theory, since a : ^ >-> £' generates Gal(F,/Fp) - see[5].) It is
simple to check that the OjX' (0 < ij < h) freely-generate A as an R-module, i.e., A is
a free R-module of rank h2.

Let F = Wp(X
h) be the field of fractions of R. We now construct D = A ®R F, which

may be regarded as an F-algebra. We may identify A with A <g>R R, and do so whenever
convenient. Certainly dimfD = h2. We show that D is a skewfield with centre F
(identifying F with R ®R F).

Choose an R-basis for A ( b , , . . . , bhi, say), and consider the R-linear map y >-> yX of
A, where A e A. With,respect to b , bhi, y >-> yA is described by an ft2 x h2 R-matrix
M(A), and M(AA') = M(;.)M(A') for all A, A' e A. If A = 0, M(A) = 0; if A ^ 0 then
detM(A) ^ 0, since A/AA ^ A , /A , °/> where / = iA"'(A) ^ 0, and >l,/>t, o / is a finite
Fp-module, ( by Section 0), so that WcR(AA) = rkR(A) = h2.

Let A ^ 0 lie in A. Then det M(A) is a non-zero element of R; we write det(A) rather
than detM(A). Thus 0 ^ det(A) e R, and clearly det(A) = XX = XX for some X e A,
A' / 0. We are now ready to prove:

Lemma 1.1. D = A <8>R F is a skewfield, with R ®R F as its centre.

Proof. Let <5 e D be non-zero. Writing ® for <g»R, we have 8 = J™=i h ®fi f ° r some
n > 1, where A, e A, / e F. We may assume that no A, = 0 and no ft — 0. Choose some
non-zero r 6 R such that all rf{ lie in R, i.e., r/J = rf ^ 0 (i = 1 , . . . , n). Then

8Q®r) = YiXi®rl (1.2)

Here 1 <8> r is clearly a (central) unit in D. Hence 0 ^ 5(1 ® r) = £"=i(r.'*. ® 1) = A ® 1,
where A e A is non-zero. From the foregoing, we have 0 / det A = XX = XX € R, for
some A' / 0 in A. Thus 5(1 <g> r)(A' ® 1) = (1 ® det A) is a (central) unit in D. Hence <5 is
a unit in D, since (1 <8> r) is a (central) unit. This shows that D is, indeed, a skewfield.

Finally, let 5 e D be central. Then 3 commutes with y ® 1 for all y € A. As
above, let (5(1 ® r) = A <g> 1 where 0 / r e R . Since 1 ® r is central, so is A ® 1; hence
(A® 1)(}><8> l) = (y® 1)(A<8> 1) for all y e A, so that Xy = yX; thus A 6 R. This gives
R® F = centre of D, proving the lemma.

To summarise, D is a simple central F-algebra of dimension h2, and is a skewfield,
while A is an R-order in D. It is an easy exercise to show that D may also be regarded
as the classical (0re) skewfield of fractions of the domain A.

Since R is a commutative P.I.D., the results of [7] show that A is a maximal R-order
in D. Since F £ Fp(T) is a global field, and R ^ FP[T] is a Dedekind domain (indeed,
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a P.I.D.), having F as field of fractions, the whole "classical theory of maximal orders"
given in [3, 10] may be applied to study D, A and (A,,, +, o). In particular, we are
now well-placed to solve Problems 1 and 2 of Section 0.

2. Solution of problem 1

In Problem 1 we are given d > 1, and seek to enumerate the n e Aq of degree pd such
that Aq o n is a maximal left ideal in (Aq, +, o). Using the isomorphism t]/ : Aq -*• A of
Section 1, Problem 1 is equivalent to enumerating the n in A of degree d such that Arc
is a maximal left ideal in A.

For d=\, the enumeration is trivial, since the n in Aq of degree p are just the
aT" + bT, a,be¥q,a^ 0. Putting

Nd := #{n e Aq\ irreducible, deg n = pd}, (2.1)

we thus have

AT, = 9 ( 9 - l ) . (2.2)

We assume that d > 2 from now onwards. We shall evaluate Nd by working in A. Let
n e A be irreducible of degree d, so that An is a maximal left A-ideal. By Sections 0, 1,

#{AJAqon) = cf = (\:Kn), (2.3)

where n — \p~l(n), degn = pd, deg7r = d. Here, and throughout, (T : A) denotes the
index of the subgroup A of an additive abelian group F such that F/A is finite.

Let p = AnHR; clearly p is a maximal ideal of R. By [10, pp. 195-6], A/An is a
simple left A-module, while P := annA(A/A7i) is a maximal two-sided A-ideal with
P c A u and PDR — p.

Further A/P is a finite simple ring, hence a total matrix algebra MK(Fe) over a finite
field Fe with Q elements.

Moreover A/An is a simple left A/P-module, and so, as a left A/P-module, A/P
itself is isomorphic to a direct sum of K copies of A/An. This gives

(A : P) = (A : ATT)K = cfK = QK*. (2.4)

Next, let R be the finite field R/p. Then, for some / e N, A/P is of dimension / over
R, so that

(A : P) = (R : p)'. (2.5)

Using [10, p. 213], we have
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f = Kh (q = ph). (2.6)

Also, by [10, p. 222] we have pA = P' for some e e N, where e > 1 only if p divides
the discriminant d\s(A/R). Using the R-basis co,XJ (0 < i,j < h) for A, described just
before Lemma 1.1, it is easily seen that e = 1 unless p — (Xh) = XhR, corresponding to
Arc = AX, degrc = 1. Hence, for degrc = d > 2, we have e = 1, and pA — P. This gives

(A : pA) = (R : pf = (A : P). (2.7)

since A is R-free of rank h2. From (2.5)-(2.7) w e see that f — h2, K — h, and then, by
(2.4), Q = pd = (R : p).

To summarise, for d > 2, and n e A irreducible of degree d, p = Arc n R is a
maximal ideal of R with (i? : p) — pd, while pA — P is annAA/A7i, P n R = p and
A/P 3* M^F^). Conversely, given a maximal ideal f of R with (R : p) — pd, the
maximal left-A ideals An which contain P = j>A satisfy degn = d. This immediately
gives (via (2.1)) that, for d > 2,

J Af,,, (2.8)

where Nd() is #{irreducible 7t in A; degn = d, R n An = p}.
Since A has q — 1 units, we see from the above that

Nd.p =(,q- l)#{maximal left ideals in Mh(¥pj)}. (2.9)

In particular Ndf is independent of the choice of p with (R : p) = pd; writing Md for this
common value of the Ndp in (2.9), and Gd for ^{maximal p in R; (R : p) = d), we have,
from (2.8) and (2.9), that

Nd = GdMd. (2.10)

By a celebrated result of Dedekind [4], we have

eld

where n(...) is the classical Mobius function on N. It now only remains to evaluate
M, of (2.10).

For any field K, T := Mh(K) is a simple central X-algebra, and, by a trivial special
case of "Morita equivalence", the maximal left ideals of F are in bijective cor-
respondence with codimension-one /C-vector subspaces of Kh. Specialising to K = F^,
we thus see that Md = (qd — \)/{pd — 1), the number of codimension-one ¥^i subspaces

*
To summarize, with Nd as in (2.1), we have proved
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Theorem 1. (i) For d = 1, Nd = N, = q{q - 1).

(ii) For d>2,

Nd = d'\pd - \y\q - \){cf -

Clearly Theorem 1 yields the complete solution to Problem 1.

3. Problem 2 - preliminary reductions

Let / € Aq, deg/ > p. We write

(3.1)

where the a, € ¥q and acad ̂  0. (Here c < d.) A simple induction on n shows that the
nth iterate / n ) of/ has the form

nd

/(">( T) — Y^ aSn)
 JP7' , (3.2)

i=nc

where a|n) G_F, for all i and a^a^ ^ 0.
Now let F, be the algebraic closure of F,. We regard Aq as a subset of ¥q[T] and

¥q[T] as a subset of F,[T]. Problem 2 asks for the least s = s(n,/) such that /n)(T) splits
completely into linear factors in F^T].

From (3.2) there is, for all n e N, a finite subset J(n) = J(n,f) of N, such that, in ¥q[T],

(3.3)
JeJ(n) '

here bn ^ 0 is in F,, and #J(n) = pn(d~c), the ajn) (; 6 J(n)) being distinct elements of F,
(one of which is 0).

Lemma 3.1. Let f e Aq be as above, and let s G N, n e N. The following are
equivalent:

(i) a// zeroj offn\T) lie in F,..

(ii) (T1^ - T)"" 6e/on^ /o >t, o/n ) .

Proof. Let (i) hold. Then, by (3.3), all «)"' (; e J(n)) lie in F .̂ Since the a)"' are
distinct, n;ej(»)(T ~ ay"') divides T*" - T in F^T], so that /n)(T} divides (T** - Tf in
F^[T]. Both these polynomials lie in Fe[71, so that (7** - Ty = g(T)f\T) in F,[T]
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for some g(T) in ¥q[T\. It is clear that {T* - T)"" lies in Aq. From the Euclidean
algorithm in Aq, there exist unique h(T), r(T) in Aq such that deg r(T) < p"4 and

(7V _ rf = (h o/<">)(T) + r(T) (3.4)

We now regard (3.4) as an equation in F,[T]. Since h e Aq, we have h(0) = 0, and so
r(T) vanishes with multiplicity at least pnc at each a]"\ (j e J(n)). Since deg r(T) <
pni = deg/^CT), we see that r(T) = 0, and so

(7V _ Tfc = (h 0 /n ))(T) eAqo f \ (3.5)

Conversely, if (3.5) holds, then

for all; e J(n) (since /J(0) = 0), and so all ajn) lie in F,..

Lemma 3.1 reduces Problem 2 to a congruence question in Aq. Writing g e A for
•K/) OA a s m Section 1), we thus seek (in Problem 2) the least s = s(n,f) such that

X K ( r * - 1) e Ag" (3.6)

Our plan will be to evaluate s = s(n,f) in the first place along a certain arithmetic
progression of n, and then to deal with the general case. Note that for nc = 0 (mod h),
(3.6) is equivalent to

X"c(Xsh - 1) e /„ := R n Ag". (3.7)

In the next section we investigate the variation of /„ with n; in Section 5 this will
yield our main result (Theorem 2) about Problem 2.

4. The sequence /„ — R n Ag"

Throughout g e A, g neither 0 nor a unit. For n > 0 let /„ = R n Ag". Then /„ < R.
We have 70 = R, and /„+, c In for all n. Moreover, as R = centre of A, we have
ImIn c Im+n for all n, m > 0. By Sections 1-2, A/Ag" is a finite set, hence is torsion as a
left R-module. It is easily checked that /„ = annR(A/A#") for all n > 0. To summarise,
we have

/n+, c /„, ImIn c /m+n> /„ = ann^A/Ag"). (4.1)

To these relations we may also append
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7,#0 and f]ln = 0. (4.2)
nc=N

For certainly det(g) e /, and det(g") = (detg)" e /„, while det(g) / 0; here det(g) is as
in Section 1. Also if r ^ 0 lies in /„ then deg r > n deg(g) > n; hence only 0 lies in
I IneN 'n-

We now analyse the sequence /„ in more detail, using (4.1). Choose any free R-
module basis /? , , . . . , phi of A, and let G be the matrix describing the R-linear map
k i-> kg on A with respect to /? , , . . . , f}hi. Then, with respect to this basis, G" describes
/ i-» kg". Now let F be the field Fp(X

h) of fractions of R, with algebraic closure F.
Suppose that, over F, the characteristic polynomial det(xl — G) of G factorises as
rX<ji2(x ~ ^;); w e Put F — F(ji\, • •• >/v)> a finite extension of F. Since R is integrally
closed in F, the eigenvalues n,,... ,fihi of G lie in R, the integral closure of R in F.
Also, by the Akizuki-Krull theorem [5], R is a Dedekind domain, since R is a P.I.D.

Now let J be the Jordan canonical form of G. There is an element U in GL(/i2, F)
such that

IT'GU = J, I T ' C U ^ J", fo ra l ln>0 . (4.3)

Now there is some p e R, p ^ 0, such that W := pV has all entries in R. We thus
have

G"W = WJ" (V« > 0) (4.4)

in Mhi(R), the h2 x fr2-matrix ring over R. Here G", W, J" lie in Mh2(R), none of them
having zero determinant. Recall that the object of this chapter is to evaluate the ideals
/„ in R. It is clear that r e /„ if and only if

r\ = XG" (4.5)

for some X e Mh2(R), I being the identity element of Mh2(R). Using (4.4) and (4.5),
and working in Mh2(R), we see that, for r e R, we have r 6 /„ if and only if there is an
equation

rW = YWJ" in M^(A). (4.6)

For, if Y satisfies (4.6) then rl = YG", so that the entries of Y lie in F n R — R, while
if X e MAR) satisfies (4.5), then Y = X satisfies (4.6).

Since F and F have characteristic p, we have

J" = A" whenever /1 n, (4.7)

where A = diag(/i ,H>?)- This observation allows us to evaluate /„ for ph \n, by
means of (4.6). Indeed, for such n, (4.6) shows that r e !„ if and only if
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rW = YWA" holds in M#(R). (4.8)

We now work with the entries of the matrices in (4.8). Given r, n, (4.8) is soluble if
and only if

rwik = J2yuwik^k (4-9)
i

for all i, k < h2, for some yu e R (i,j < h2). Let Tk be the R-ideal generated by the /cth
column of W; then r t ^ 0 as det(W) / 0. Clearly (4.9) holds if and only if

rwik€fin
krk, Wi,k<h2 (4.10)

For any fixed k we first vary i in (4.10), and then vary k, obtaining

r 6/„ <» r 6 R n DOijA). (4.11)

Hence, provided that ph \n, we have

(4.12)

Equation (4.12) allows us to obtain, for n e ph N, the factorisation of /„ in terms of
maximal ideals in R. For F is a finite normal extension of F, being the splitting field
over F of the characteristic polynomial of G. Possibly F/F is inseparable; this does not
matter, since, by [11], every maximal ideal p of R decomposes in R as

PR = Wl...ymf>\ (4.13)

where m = m(p) e N, e(p) & N and ^J , . . . , 9Jm are distinct maximal ideals in R. (Here
the residue field R/p is finite, hence a perfect field.) Because of this, the maximal ideals
p occurring as factors of /„ for any n > 1, are precisely those which divide det(g). Let
S 7̂  0 be the latter finite set of maximal ideals of R. Then, for k < h2 we have

where the a{k, *P) > 0 lie in Z. Thus, for n e N, we have

pi K R = n n y™^"*1'™. (4.15)

From this, when n e p^N, we have by (4.12),
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*n>\ (4.16)

where

b(n, p) = max{[mj(k, <P)/e(p))+; k < h\ <#\pk). (4.17)

Here, for y e R, [y]+ = min{m e Z; m > y}.
When « e N is not in p^N we rfe/me b{n, p) via (4.16). For such n, (4.17) no longer

holds, but we still have, for all p e S, and all n e N,

fc(n+ l ,p) > fc("-P) > l,fc(m + n,p) < b(m, p) + b(n, p) (4.18)

for all m, n > 1, while fr(M-P) -*• °° a s « ->• °o, by (4.17).
From (4.18) an elementary argument shows that n~xb(n,p) tends to a finite limit

l(p) as n -> oo. Indeed,

6(n,i»);neN}. (4.19)

Letting n -y oo through ph N, we see from (4.17) that

; k < ^2, ^3|pR} (4.20)

In more precise terms, let n e N, and write n = dp* + r, d > 0, 0 < r < ph . Then, by
(4.18), for JJ 6 S,

Kdph\ p) < b(n, p) < b(dph\ p) + b(r, p)

while b(dph , p) can be calculated via (4.17). This gives

HP) < ^ ^ < KP) + n'lUP) (4.21)
n

for all n e N, p e S, where L( |J) > 0 depends only on p e S.

5. Growth of s(n,f) with n

In connection with Problem 2 we study the function s(n,f) for any fixed / e Aq,
deg(/) > p. We put s(n) = s(n,/) for n e N. Thus s(n) is the least s e N such that /"'(T)
splits completely in F^T]. Since /"'(0) = 0 we clearly have s(n)\s(n + 1) for all n. In
particular s(n) is non-decreasing. We prove
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Theorem 2. (a) There is a positive constant <xf such that l iminf^^j^} = af and
limsup(M00{^}=p«f.

(b) For n > no(f) we have s(n + 1) — s(n) or ps(n).

Remark. Since s(n) f, it suffices to prove Theorem 2(a) as n -> oo through vN, for
some v e N, arbitrarily chosen but fixed. We adopt this approach; to begin with we
merely assume v e hN where q — ph, but later impose a stronger condition on v which
suffices to obtain Theorem 2(a); Theorem 2(b) will then be a simple corollary. Subject
to later refinement, we now assume that v e hN and n e vN. By (3.7), with g = iK/),
(i/f as in Section 1), we have: s(n) is the least s € N such that Xnc(Xh! - 1) e /„, which,
by (4.16) is equivalent to

Xnc(Xhs - 1) s 0(mod p*"'"') (Vp € H , (5.1)

where T* = {maximal p < R; p|det(#)}. Let T = r*\{j)0}, where p0 = XhR. By hypothesis,
r ^ 0. Then (5.1) is equivalent to

X e p0 (c y\
Xhs s 1 mod p**\ (Vp e D-

It is easy to see that the condition Xnc e p^n't>o) holds automatically for n e hN, imposing
no condition on s. Hence, by the Chinese remainder theorem, it follows from (5.2) that

s(n) = l.c.m.{a(n, p); peV), (5.3)

where

<r(n, p) = min{s 6 N; Xsh = l(mod pKnp))}. (5.4)

The next, elementary, result leads simply to the evaluation of cr(«, p) for n e hN.

Lemma 5.1. Let p be a maximal ideal of R, p / XhR. Then

(i) the least S = S,(p) in N with XhS'ip) = l(mod p) is not divisible by p.

(ii) With Si(p) as in (i), let p"<»')||x'lSl(p) - 1. (Thus w(p) e N.) Ifue N\pN and I > 0,
thenpMp)\\Xhup'Sim-\.

Proof, (i) R/p is a finite field, of order pa, say, a e N, while ^(mod p) is non-zero
in R/p. The order e of ^(mod p) in (R/p)' divides p" — 1, and so is not a multiple of
p. Clearly e = S,(p).

(ii) Put Y = Xh, S, = S,(p), w = w(p). By hypothesis, pw||ySl - 1. Put p = nR. Then,
in R, YSt = 1+ enw, where e e R\p.
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If u e N\pN we have

YuS' = (1 + enw)u = 1 + uenw + vn2w, (v e R)

and so has the form 1 + e,nw, e, 6 R\p. Now let / > 0. Since R has characteristic p,
we have Y^uSx = (1 + e.izw)"' = 1 + e,^"', with e, e R\p. This proves the lemma.

We now apply Lemma 5.1 with p e F, in order to find a(n, p) of (5.4). The order
of X V o d j>r) for r e N, p e T, is clearly S^p)/ '" ' , where t(r,p) = [log^q^f. Hence,
for p e T, n e hN, cj(n, p) = S,(|i)pl(*(11J>)*)

> which, by (5.2), yields

s(n) = ^p""1' (5.5)

where fff = /.c.m{S, (JJ); p e f], and

hM))r
We recall that (5.5) and (5.6) hold for n e hN. If we now further assume that

at

(5.7)

n 6 lip* N we may also use (4.17) to evaluate b(n, p). Now suppose, additionally, that

per

Then for « e v N and p e F, (4.17) gives

w(j>)

so that //(M) of (5.6) is given by

(5.8)

*<») = [ , o g , ( m a * { « „ . r. * < *. 9»k\)J. (5.9)

Putting

^ = VmaX{^)'per^^kSh2}' (510)

we have, for n e vN,
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For r e K let ((r)) = r - max{m 6 Z; m < r), so that 0 < ((r)) < 1. Clearly

M + = r + ((-r)). (5.12)

Thus, in (5.11) we have

pH(") = ^v-ipa-iog^/v-1)^ ( 5 . ! 3 )

and so, for n e vN, (5.5) gives

^ " ^ " 1 ™ , (5.14)

where â - = flfyfv~\ We now show that ?/iw value of a7 is the ay required for Theorem
2(a). Let t e N be prime, t ^ p. Then log/t) is irrational, so that, by [1], the sequence
um = ((m logp(0)), (m 6 N) is uniformly distributed in [0,1). This is certainly enough to
show that the numbers ( ( - logp(ny/v~1))), n e vN, are everywhere dense in [0, 1). In view
of the remarks following the statement of Theorem 2, this suffices to prove Theorem
2(a).

Finally, we turn to the proof of Theorem 2(b). In fact, the preceding analysis permits
the proof of a rather stronger result, which we formulate as follows.

Lemma 5.2. For n e N, let an be a sequence in N with n~xan -v 0. Then, for sufficiently
large n, either s(n + an) = s(n) or s(« + an) = ps(n).

Proof. Let v satisfy (5.7). We assume that n > v and put kn = [nv~']+ - 1,
ln — [(n + an)v~']+. By hypothesis lnk~] -»• 1 as n -» oo. We clearly have s(v/cn)|s(n)|
s(n + an)\s(vln) in N whenever n > v. It therefore suffices to prove that Xn := s(yln)/
s(ykn) = 1 or p for all large n.

In view of (5.5), kn is a power of p and lies in N, i.e., ln = p^"(fin > 0 in Z).
Also, by (5.14),

K = l.KlF—. where vn,une [0,1).

Since lnk~x ->• 1 we certainly have Xn < p+ 1 for all large n. For such n, \in is 0 or 1,
and this proves the lemma.

6. A special case of Theorem 2

We take q = ph and /(T) = T" - T e Aq. For this / , we shall calculate all terms
s{n,f) = s{n) of the sequence occurring in Theorem 2. For this purpose we shall use
elementary linear algebra over F,,; the special arguments used here will not work for
the general / in Aq. We define maps L, P, Q on Fp via
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:^^,Q:^(' (6.1)

All three are Fp-linear, i.e., lie in U = HomFp(F^, Wp), while Q = P \ P and Q are both
units in H, and L is surjective, but ker L = F,. For n e N let Vn = ker L". Then
Vn = {zeros of/n )(T)} and #Vn = p", so that dimFp Vn = n. Also the splitting field £ „ of
f"\T) over Fp is F,(FJ, so that

s(«) = \Fq(K): F,]. (6.2)

Now, in H, P = 1 + L, where I is the identity map. Writing h = p'm with t > 0 and
m e N\pN, we have, for r > 0,

Q / = (I + L"'+'r. (6.3)

Now define a sequence un (n e N) in Fp as follows. Take t>, = 1, and for every n 6 N
let «n+, be arbitrary, subject to Lun+1 = vn. Then for every n e N it is clear that vt,... ,vn

is an Fp-basis for Vn — ker L". It is convenient to put v} = 0 for ; < 0. Then 1/(1;,,) = 0
whenever a > 0 and a > b inZ.

Now let n G N and suppose that pr+l > n. Then clearly Q/'f, = y; for all j < n. Hence
Q/' fixes Yin = ^q(K) pointwise; it follows that s(n)\pr, i.e., s(«) is a p-power. Suppose
now that pr+l < n. Write c = pr+t. Then O / = (1 + V)m = I + £,™, fl;L

CJ', with a} e Fp and
a, = m(mod p) 9̂  0.

Then Q/ vn =vn + J2j>i ajvn-jc ¥" vn< since a, ^ 0 and n > n - c > 0, while un y,
are linearly independent over Fp. Since Qp does not fix vn it cannot fix ^n pointwise.
Hence s(n) cannot divide pr if pr+t < n.

From this we deduce that

s(n) = pr, r = m i n { / > 0 ; p ' + ( > n } . (6.4)

Hence s(«) = 1 if n < p', while, for n > p', p's(n) = pp°s'M]+.
Suppose now that n > p'. Then if / e N and p'"1 < « < p' we have p's(n) = p'. This

immediately gives

.. . Js{n)a, := hminfi

and limsupj = P ' •
I " J

hence confirming Theorem 2 for / .
The reader will note that this easy verification of Theorem 2 for / is due to the

particularly simple relation L + 1 = P for the / in question. For more general / in Aq

there is no simple analogue of the formula L + 1 = P, and thus no easy proof of
Theorem 2. Nonetheless, this special example suggests that, in some sense, Theorem 2
is best possible.
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