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Abstract

RNA molecules play many functional and regulatory roles in cells, and hence, have gained
considerable traction in recent times as therapeutic interventions. Within drug discovery,
structure-based approaches have successfully identified potent and selective small-molecule
modulators of pharmaceutically relevant protein targets. Here, we embrace the perspective of
computational chemists who use these traditional approaches, and we discuss the challenges of
extending these methods to target RNA molecules. In particular, we focus on recognition
between RNA and small-molecule binders, on selectivity, and on the expected properties of
RNA ligands.

Introduction

RNA’s biological relevance has traditionally been ascribed to its role as an intermediate in the flow
of genetic information from DNA to the production of functional proteins. However, it has
become increasingly evident that RNAhasmany functional and regulatory roles in all domains of
life. For instance, RNA molecules can regulate gene expression directly or by interacting with
small organic molecules (miRNA, Pasquinelli et al., 2005; riboswitches, Serganov and Nudler,
2013, respectively), and can exert enzymatic activity (ribozymes, Doudna and Cech, 2002).
Therefore, being involved in many cellular pathways, RNA molecules offer opportunities as
targets for the development of therapeutic strategies (Shortridge andVarani, 2015; Connelly et al.,
2016; Matsui and Corey, 2017;Warner et al., 2018; Falese et al., 2021). However, most of the drug
discovery efforts have focused on proteins, which have long been known to modulate cellular
activity. Nevertheless, in the human genome only a small fraction of the transcribed RNA is
translated into proteins (Fig. 1) (Warner et al., 2018; ENCODE Project Consortium, 2012; Oliver
et al., 2020), and only a small portion of these proteins has been successfully targeted (Warner
et al., 2018). The growing characterisation of noncoding RNA, therefore, offers new opportunities
for novel therapeutic approaches, whichmay be particularly valuablewhen seeking alternatives in
cases of drug resistance or when traditionally undruggable protein targets are encountered.

Computational approaches have reached the status of standard tools in drug discovery
campaigns (Macalino et al., 2015). This is particularly true for structure-based drug design
(Jorgensen, 2004), where the macromolecule’s structural information is used to find small
molecules able to bind and modulate its activity. These computer-aided approaches have mostly
been used to identify drugs for protein targets, as RNAhas only recently been fully recognised as a
relevant pharmaceutical target. Moreover, RNA targets are particularly challenging for standard
computational approaches due to their complex structural dynamics and high charge density.
Indeed, the applicability of standard approaches to RNA targets is still being debated and is a hot
topic for research (Fedorova et al., 2018; Warner et al., 2018; Juru and Hargrove, 2021;
Manigrasso et al., 2021).

In this Perspective article, we put ourselves in the shoes of computational medicinal chemists
who have experience in targeting proteins and who wish to extend their expertise to RNA to find
potent and selective small-molecule ligands. We discuss critical aspects associated with this
transition, which may require additional operations or some rethinking of standard procedures.
The Perspective is divided into three sections that reflect the main challenges of computational
RNA-targeted drug discovery (Fig. 2). First, we address RNA-small molecule recognition,
particularly how RNA dynamics should be treated and how to identify potential binders. Second,
we address small-molecule selectivity for RNA targets. Third, we address RNA binders and their
expected physicochemical properties. We conclude with an outlook on future opportunities for
computational medicinal chemists on the way to a wider playground, where to apply and expand
their expertise.

RNA-small molecule recognition

Rational drug discovery campaigns typically start with a biomolecular target that has been pre-
clinically validated. Validated targets play a critical role in a physio-pathological process and their
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modulation is likely to produce a therapeutic effect, hopefully
within an acceptable safety window. Drug discovery pipelines,
therefore, begin by identifying small-molecule hits for a validated
target (Hughes et al., 2011). In a structure-based context, compu-
tational strategies for this stage include fragment-based approaches
(Erlanson et al., 2016), de novo design (Schneider and Fechner,
2005), and, most importantly, virtual screening of small-molecule
libraries (Maia et al., 2020). In a virtual screening campaign, a
small-molecule library undergoes molecular docking, a procedure
that aims at predicting how the ligands bind to the target. This
computational approach is rapid and can be used to roughly
discriminate between binders and non-binders. As such, it has
become a well-established strategy for the identification of small-
molecule hits.

There are two particularly critical aspects involved in extending
docking protocols, that have long been refined over proteins, to
RNA targets: i) how to describe the target’s structure, and in
particular how to account for its intrinsic flexibility and structural
dynamics, and ii) how to assess quantitatively the binding poses.
These aspects are already critical in the context of protein targets
but may be even more crucial for RNA targets. Concerning the
former aspect, any docking campaign requires the target’s structure
as the starting point. Experimental methods to reconstruct the 3D
structures at the atomistic level include X-ray crystallography,
nuclear magnetic resonance (NMR), and cryo-electron microscopy
(Palamini et al., 2016). In the absence of experimental data, mod-
elling approaches can be taken advantage of to reconstruct the
target’s structure with varying degrees of accuracy, depending on

the available information (Hameduh et al., 2020). In this respect,
the machine-learning based approach AlphaFold (Jumper et al.,
2021) is achieving impressive results in protein 3D-structure pre-
diction, however, an equivalent for RNA does not exist yet. For
protein targets, X-ray crystallography experiments have long been
established as an efficient method to produce high-resolution
structures. Therefore, a docking effort on a protein target typically
begins with a crystal structure. In contrast, a significant fraction
(about 40%) of RNA structures is solved via NMR (Barnwal et al.,
2017), while crystal structures can be often found in the cases of
larger and structurally complex RNA molecules.

While a reliable structure is certainly a great starting point, it
may however not suffice for a comprehensive description of the
target of interest. Indeed, biomolecules are not frozen entities, but
rather present in solution various degrees of structural flexibility.
This dynamic nature not only can influence the binding of molecu-
lar partners, but structural modifications can also be triggered upon
the binding of smaller molecules. Therefore, including information
about the dynamics of the target during a docking procedure can
depict more realistically what really occurs at the molecular level
and potentially improve results. This is a long-standing issue in
computational drug discovery (Feixas et al., 2014). Indeed, protein
flexibility is typically addressed in docking protocols through dif-
ferent approaches (Buonfiglio et al., 2015), such as soft-docking
(Ferrari et al., 2004) and induced-fit docking (Sherman et al., 2006).
These strategies can be considered an integral part of the docking
protocol. While they do not usually affect the performance of the
docking calculation much, they do account for a rather limited
structural flexibility of the target. An alternative approach is to
include the receptor dynamics as an ensemble of multiple conform-
ations (Huang and Zou, 2007; Amaro et al., 2018). This strategy
allows greater conformational changes of the target, but the docking
calculation scales up linearly as the procedure must be iterated for
each of the structures in the ensemble (Fig. 3).

From a practical standpoint, the ensemble is generated separ-
ately from the docking calculation using other computational
methods. This ensemble docking approach has been used for
protein targets (Amaro et al., 2018). Compared to common protein
targets, RNA molecules display marked and complex structural
dynamics (Ganser et al., 2019). Therefore, the ensemble docking
approach appears as the natural choice and should indeed be
preferred for RNA targets. The literature contains some successful
examples in this direction (Stelzer et al., 2011; Ganser et al., 2018).

A diverse set of computational approaches can be used to
generate RNA conformational ensembles. In particular, static
frameworks could be employed to generate a pool of RNA
structures, as it is done through the popular Fragment Assembly
of RNA with Full-Atom Refinement (FARFAR) algorithm in the
Rosetta software suite (Watkins et al., 2020). In contrast, methods
that mimic the dynamics, such as molecular dynamics (MD) simu-
lations, can be employed in the generation of a conformational
ensemble (Sponer et al., 2018). MD explores the conformational
dynamics of biomolecules under realistic conditions (e.g., explicit
solvent, quasi-physiological ionic concentrations) and has become
an indispensable tool for investigating mechanistic features at the
atomistic level (De Vivo et al., 2016; Decherchi and Cavalli, 2020).
Notably, the results of MD simulations strongly depend on the
ability of the underlying model (i.e., the force field) to capture the
physics of the interactions in molecular systems. Since structural
biology and drug discovery have long been focused on proteins,
force fields for RNA have developed at a much slower pace
(Table 1).

Fig. 1. The targetable portions of the human genome. More than 70% of the human
genome is transcribed into RNA, but only a small portion of this encodes for, and is thus
translated into, proteins (red slice) (ENCODE Project Consortium, 2012; Oliver et al.,
2020), of which, only a small fraction has been successfully targeted with drugs (Warner
et al., 2018). The possibility of targeting non-coding functional RNA molecules (green
slice) could significantly increase the number of drug discovery strategies.

Fig. 2. RNA-targeted computational drug discovery. A schematic representation of the
Perspective’s three main sections: structural dynamics of the target in RNA-ligand
recognition (top), target selectivity (left) and physicochemical properties of RNA
binders (right).
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Among the Amber family of force fields, the ff99 force field
combined with the bsc0 and χOL3 refinements is considered state-
of-the-art, as it is the most validated and widely used (Wang et al.,
2000; Pérez et al., 2007; Zgarbová et al., 2011). In particular, ff99
(Wang et al., 2000) is a major branch of Amber force fields that
includes parameters for both proteins and nucleic acids and was
based on the previous ff94 version (Cornell et al., 1995). For DNA
and RNA, the main difference between ff94 and ff99 is the refine-
ment of the sugar puckering and χ dihedral parameters. In 2007,
Orozco and coworkers introduced a major correction, known as
bsc0, where the α and γ dihedral angles of the nucleic acid backbone
were modified to avoid the formation of nonnative γ-trans back-
bone dihedral states, thus reducing unrealistic helical twists in
A-RNA (Pérez et al., 2007). In 2011, the χOL3 refinement involved
a reparameterisation of the χ dihedral to prevent high-anti γ shifts
in RNA, which led to entirely untwisted and ladder-like structures
(Zgarbová et al., 2011). In more recent attempts to improve the
force field, dihedral reparameterisation was conducted in theMath-
ews group (Aytenfisu et al., 2017), while dihedral, electrostatic and
van derWaals parameters were considered by the Shaw group (Tan
et al., 2018). Recently, different schemes were also proposed, which
used an additional term to better describe hydrogen-bond inter-
actions (Fröhlking et al., 2022) or introduced the grid-based energy
correction map (CMAP) term in the context of RNA force fields
(Chen et al., 2022). The ability of the CHARMMandOPLS families
of force fields to describe RNA structures is also gradually being
improved (see Table 1) (Denning et al., 2011; Robertson et al.,
2019). In addition to the force field, the thoroughness of conform-
ational sampling is a common issue for both protein and RNA
modelling. This is because the timescales that are accessible via
conventional (or “plain”) MD simulations are still limited (in the
order of tens of microseconds for most of the research projects).
Nevertheless, outstanding results have been achieved thanks to hard-
ware advances (Pande et al., 2003; Shaw et al., 2014) and sophisticated
enhanced sampling approaches (Abrams and Bussi, 2013; Mlýnský
and Bussi, 2018) being implemented in popular instruments such as
PLUMED (Tribello et al., 2014). In the context of proteins, particu-
larly challenging systems in terms of conformational sampling are

intrinsically disordered proteins (Habchi et al., 2014). In this respect,
enhanced sampling methods were successfully employed (Granata
et al., 2015; Palazzesi et al., 2015; Bernetti et al., 2017; Masetti et al.,
2020), and we thus envision that they will find increasing application
also on RNA molecules.

Despite recent improvements, the current force fields still bear
some limits. Combined with the shortcomings linked to the sam-
pling, they can generate RNA conformational ensembles that do
not entirely agree with experiments. While this is problematic in
general, it may become particularly critical when using the gener-
ated structural ensembles for docking. However, experimental
information can be used to generate more reliable ensembles
(Pitera and Chodera, 2012; Hummer and Köfinger, 2015; Bonomi
et al., 2016, 2017; Cesari et al., 2018; Orioli et al., 2020) in both static
(Shi et al., 2020) and dynamic frameworks (Bottaro et al., 2018).
During MD simulations, for example, experimental data can be
included on the fly to guide the sampling towards regions of the
conformational space that are supported by experiments. Alterna-
tively, reweighting approaches can be applied after the MD simu-
lation to identify those conformations that better agreed with the
experimental data. Both strategies have been successfully applied to
reconstruct reliable conformational ensembles of RNA molecules
(Borkar et al., 2013; Bottaro et al., 2018). Notably, the experimental
data here can come from a broader range of sources than the data
on the initial atomistic structures. Indeed, any experimental infor-
mation that can be related to an observable computed from the
biomolecule coordinates in the MD trajectory can be exploited.
Thus, experimental methods that provide coarser structural infor-
mation (e.g., small-angle X-ray scattering, SAXS) are extremely
valuable and have been used for this purpose (Bernetti et al.,
2021). Finally, clustering algorithms that have become of routine
use in the context ofMD simulations (Bernetti et al., 2020) can be of
remarkable support to select representative structures from
MD-generated ensembles for the subsequent docking/virtual
screening stage.

Given a biomolecular target’s structure or ensemble of struc-
tures, the docking procedure attempts to find plausible ligand-
target bound configurations, that is, binding modes (or “poses”)

Fig. 3. Ensemble docking. An ensemble comprising multiple conformations of the target is included to take into account its structural dynamics. The docking calculation (virtual
screening for large libraries) is repeated for each structure in the ensemble. The RNA structures here belong to the conformational ensemble of the transactivation response element
(TAR) RNA from human immunodeficiency virus type-1 reconstructed in Salmon et al. (2013).
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with overall favourable interactions between the two binding part-
ners. We here briefly outline some popular docking software pack-
ages and refer the interested reader to a recent comprehensive
overview (Zhou et al., 2021). Glide (Friesner et al., 2004), GOLD
(Jones et al., 1997) and AutoDock Vina (Trott and Olson, 2010) are
software packages that were devised for protein targets and that can
also be used for RNAwhen needed. Conversely, AutoDock (Morris
et al., 1998), DOCK 6 (Lang et al., 2009) and ICM (Abagyan et al.,
1994) have been improved to be used with RNA through dedicated
docking protocols, optimised ligand-sampling algorithms, or the
inclusion of solvation effects either in the generation of poses or in
the scoring functions. Finally, the software packages MORDOR
(Guilbert and James, 2008), rDOCK (Ruiz-Carmona et al., 2014),
and the very recent RLDOCK (Sun et al., 2020) and NLDock (Feng
et al., 2021) were specifically developed for RNA docking, reflecting
the growing interest in RNA-oriented drug discovery. The trend
that emerges from the validation of the latter approaches on diverse
datasets of experimental RNA-ligand complexes, usually evaluated
as the success rate in reproducing experimental binding poses, is

that RNA-specific methods outperform the tools developed for
proteins or generic macromolecules (Feng et al., 2021; Zhou
et al., 2021). Notably, such trend highlights the relevance of specif-
ically considering interaction and structural features that are pecu-
liar of RNA-ligand binding.

The quality of the poses identified by the docking procedure can
be assessed through a variety of strategies that fall under the term
“scoring functions”. These can be broadly classified as the follows: i)
knowledge-based, when the scoring is built upon information
extracted from known three-dimensional structures of target-
ligand complexes; ii) physics-based, when the scoring is based on
force fields or simplified empirical functions of the target-ligand
interactions and iii) machine learning (ML)-based, when the scor-
ing is evaluated through ML models trained on available experi-
mental data (Zhou et al., 2021). Scoring functions are typically
included in docking software. However, there has been a rapid
growth in standalone options, including the knowledge-based
ITScore-NL scoring function (Feng and Huang, 2020) and the
ML-based RNAPosers (Chhabra et al., 2020), RNAmigos (Oliver

Table 1. Main classes of RNA force fields and their major variants

Year FF name Composition Main features

Amber

1995 ff94 (Cornell et al., 1995) ff94

1999 ff98 (Cheatham et al., 1999) ff94 þ P þ χ Improves pucker and twist; comparable to ff94

2000 ff99 (Wang et al., 2000) ff98 þ P Improves pucker; small changes

2007 parmbsc0 (Pérez et al., 2007) ff99 þ αγbsc0 Avoids nonnative α/γ conformations but penalises
native γ ones

2011 ff99bsc0χOL3 (Zgarbová et al., 2011) ff99 þ αγbsc0 þ χOL3 Prevents high-anti g shifts; state-of-the-art force field
for amber

2010 Amber99χ (Yildirim et al., 2010) ff99 þ χYIL Reduces ladder-like structures and the A-form
inclination

2012 Amber99TOR (Yildirim et al., 2012) ff99 þ χYIL þ β,ε,ζYIL þ αγbsc0 Improves the description of cytidine and uridine in
solution; performs suboptimally for canonical RNA

2017 Aytenfisu�Spasic�Stern�Mathews
(Aytenfisu et al. (2017)

ff99 þ αβγεζχMathews Performs well for tetraloops; reduces intercalation
events

2013 Chen�Garcia (Chen and García
(2013)

ff99 þ vdWGC þ χGC Reduces stacking, but overstabilises hydrogen-bond
interactions between bases

2018 Tan�Piana�Dirks�Shaw (Tan et al.
(2018)

ff99bsc0χOL3 þ γζχShaw þ vdWShaw þ electrostaticsShaw Focused on non-bonded interactions; the
conformational ensembles closely reproduce
experimental ones

2022 gHBfix21 (Fröhlking et al., 2022) ff99bsc0χOL3 þ HbFix Improves hydrogen-bond interactions, stabilises
native structures

2022 ff99OL3_CMAP1 (Chen et al., 2022) ff99bsc0χOL3 þ ζ/αCMAP Decreases population of incorrect structures;
improves stability of tetranucleotides

CHARMM

1995 CHARMM22 (MacKerell et al., 1995) CHARMM22

2000 CHARMM27 (MacKerell et al., 2000) CHARMM27 Significant improvements over CHARMM22; known
issues with pair opening

2011 CHARMM36 (Denning et al., 2011) CHARMM27 þ 2’-OH dihedral Partial stabilisation of the structures; state-of-the-art
force field for CHARMM

OPLS

1991 OPLS-AA (Pranata et al., 1991) OPLS-AA

2019 OPLS-AA/M (Robertson et al., 2019) OPLS-AA þ αγχ þ P Reduces intercalation events and is well-suited to
describing non-canonical motifs
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et al., 2020) and AnnapuRNA (Stefaniak and Bujnicki, 2021)
scoring functions. Notably, MD simulations can also be used for
scoring (Menchon et al., 2018). Indeed, binding pose stability can
be assessed with plain MD runs or, alternatively, binding affinities
can be estimated with more computationally intensive MD-based
free energy calculations (Decherchi and Cavalli, 2020). These pro-
cedures can straightforwardly be applied to RNA targets. The only
caveats are the accuracy of the force field and,most importantly, the
limited number of RNA-ligand complexes that can typically be
managed via these approaches, which hinders their use for large-
scale virtual screenings.

Selectively targeting RNA structures

Most functional proteins targeted in drug discovery campaigns fold
in a well-defined native state under physiological conditions. The
functional activity of proteins usually takes place in surface cavities.
In structure-based approaches, structural information about these
cavities is directly used to design ligands that might bind there
(Pérot et al., 2010). If the target of interest is well-characterised,
relevant binding sitesmay already be known.Often, however, either
the binding site is unknown or alternative binding sites may be
sought (e.g., for allosteric modulation) (Kuzmanic et al., 2020). The
possibility of identifying binding pockets by computational means
is thus integral to modern structure-based drug design. The Site-
Map tool of the Schrödinger suite (Halgren, 2009), the ICM Pock-
etFinder (An et al., 2005), the NanoShaper software suite
(Decherchi and Rocchia, 2013) and its dynamic extension Pock-
etron (La Sala et al., 2017) are popular options in this regard (Pérot
et al., 2010). These tools have been widely employed to detect
pockets in proteins. Although some of them have also been used
to identify pockets in RNA molecules (Ganser et al., 2018; Hewitt
et al., 2019; Panei et al., 2022), an extensive exploration of their
applicability is still missing. In proteins, suitable binding pockets
have a well-defined 3D organisation of the amino acids comprised
therein, which, alongside their composition and variability, display
a wealth of physicochemical features (e.g., balance between hydro-
phobic/hydrophilic regions, solvent exposure and shape) that make
the pockets rather distinctive. Taken together, these aspects encode,
to a certain extent, the target selectivity that can potentially be
achieved by addressing that site (Ehrt et al., 2016; Smilova et al.,
2022). Usually, however, this information is not extensively
exploited in the early stages of the drug discovery pipeline, where
most of the effort is directed towards the identification of potential
hits. Conversely, it is only during later phases of lead optimisation
that target selectivity is fully explored, together with chemical
modifications that can improve the affinity and ADMET (absorp-
tion, distribution, metabolism, excretion and toxicity) properties.

Moving into the context of RNA, molecules with functional
roles in cellular pathways display a markedly heterogeneous struc-
tural complexity. Indeed, functional RNA molecules vary from
short hairpin loops and miRNA, to tRNA, riboswitches and larger
ribozymes, up to the scale of the ribosome (Ganser et al., 2019).
From a structure-based drug discovery perspective, we can broadly
distinguish two main scenarios depending on the complexity of the
RNA target’s molecular structure.

In the first scenario, relatively simple secondary structure elem-
ents can be identified as hot spots for small-molecule binding.
These short stem-loop motifs include for instance apical loops,
bulges and internal loops, and have been extensively studied in this
regard (Liu et al., 2004; Disney andChilds-Disney, 2007;Meyer and
Hergenrother, 2009). Here, the structure-based strategy is made

possible by the unpaired nucleobases, which can arrange in char-
acteristic structures and thus offer the possibility of small-molecule
binding (Juru and Hargrove, 2021). However, their pockets are
usually shallow or relatively small, which makes it challenging to
find high-affinity binders that produce specific interactions (Fig. 4)
(Warner et al., 2018; Juru and Hargrove, 2021). Indeed, shallow
pockets pose a biophysical limit to how potent non-irreversible
binders can be. Furthermore, this strategy may prove particularly
arduous in terms of selectivity because similar secondary structure
elements can be found across diverse RNAmolecules. Indeed, only
modest potency and selectivity have been achieved in reported
studies focused on these types of RNA molecules (Warner et al.,
2018). However, this strategy may be particularly valuable and
viable in the absence of a more complex tertiary structure, which
offers more characteristic architectures for potential drug binding
(Juru and Hargrove, 2021).

The second scenario involves RNAmolecules achieving a higher
level of folding and thus complex 3D structures. Although RNA
molecules have less chemical variety than proteins (4 nucleotides vs
21 amino acids), this complex folding can nevertheless produce
distinctive cavities reminiscent of protein-like binding pockets
(Warner et al., 2018; Hewitt et al., 2019). These cavities can be
suitable for computational approaches already established in the
context of protein targets. In such cases, the determinants of RNA-
ligand recognition are likely to be similar to those of protein-
ligands, with no need to develop alternative RNA-centric
approaches (Fedorova et al., 2018). Riboswitches and ribozymes
are remarkable examples of highly folded RNA molecules with
complex tertiary structures (Zafferani and Hargrove, 2021). Since
those interact withmetabolites or substrates, they are already prone
to ligand recognition in pre-formed binding pockets. Multi-
junctions and pseudoknots, in general, have also been suggested
as promising RNA species for RNA-targeted drug discovery
because their great structural complexity is suitable for pocket
formation (Warner et al., 2018). Despite this, to the best of our
knowledge, the literature contains just one report of a successful
campaign of rational drug design using classical, established medi-
cinal chemistry protocols (Fedorova et al., 2018). This work used
high-throughput experimental assays to identify hits. However,
computational approaches could also be employed for hit

Fig. 4. Protein and RNA binding pockets. Binding pockets in proteins (left, riboflavin
kinase, PDBID: 1NB9) are typically highly structured. In RNAs, structured pockets like
those in proteins are found in highly folded structures (right, FMN riboswitch, PDBID:
3F4G). In contrast, relatively simple RNA structures (middle, HIV TAR, PDBID: 1QD3)
usually offer shallow or relatively small pockets, which are more challenging to target
with small molecules. The pockets shown herein (in violet) were identified with the
NanoShaper software (Decherchi and Rocchia, 2013). The two RNA structures were
chosen as representatives of good and intermediate quality pockets from the examples
reported by Warner et al. (2018): in this work, pocket quality was estimated using the
ICM tool PocketFinder (An et al., 2005), where pockets of larger size and buriedness
resulted in higher quality.
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identification of these RNAmolecules, so compound libraries could
potentially be investigated on a much larger scale.

Given this overall picture, at variance with protein targets, the
discourse around selectivity becomes more urgent already at an
earlier stage when targeting RNA molecules. This is because the
choice of a certain class of RNA targets can greatly impact the level
of selectivity that can be achieved. While the second scenario
discussed for RNA appears to hold more promise for identifying
selective binders to modulate RNA activity, this may however
preclude opportunities to develop effective drugs for pathological
conditions mediated by structurally simpler RNAs (Juru and Har-
grove, 2021). We, therefore, encourage researchers to be open to
both scenarios while considering their respective implications for
selectivity.

Properties of RNA ligands

To identify drug candidates, it is essential to know the physico-
chemical features that ligands should possess in order to bind to a
particular class of biomolecular targets. In computational drug
discovery, this knowledge can be instrumental to design libraries
for virtual screening or to guide the lead optimisation stage of a
candidate. For proteins, drug discovery usually aims to identify
small organic molecules with physicochemical profiles that meet
the criteria of oral drugs, including solubility, bioavailability, cell
and tissue permeability, chemical stability and absence of toxicity.
In this respect, Lipinski’s rule of five is the established guiding
principle for rational drug design (Lipinski, 2004). Indeed, through
a retrospective analysis of approved drugs and drug candidates,
Lipinski’s rule of five empirically set the drug-likeness boundaries
for physicochemical parameters including molecular weight, lipo-
philicity and number of hydrogen-bond donors and acceptors.
This, in conjunction with the wealth of knowledge accumulated
through years of experience in the field, has led to the identification
of a rather defined chemical space that is characteristic of protein-
targeting small organic molecules. Similarly, the knowledge gained
in decades of successes and failures in drug discovery campaigns
has allowed to compile a list of undesirable chemical features that
for several reasons (mostly non-specific interference with biological
assays) should not be possessed by drugs, the so-called PAINS
(Baell and Holloway, 2010). In structure-based virtual screening,
Lipinski’s rule of five and PAINS filters are typically applied before
the molecular docking. This is to avoid wasting time on performing
docking calculations of molecules that will likely be discarded
anyway, regardless of their ability to bind to the target.

For RNA targets, the chemical space of small-molecule binders
has not been fully characterised yet. Since relatively few small
organic molecule binders of RNA targets are known, their expected
properties are not yet established and are a hot research topic
(Warner et al., 2018; Juru and Hargrove, 2021). Early identified
ligands that acted by binding RNA had a positive net charge and
were able to intercalate between RNA bases (Thomas and
Hergenrother, 2008; Guan and Disney, 2012). However, such phy-
sicochemical properties cause non-specific binding on the nega-
tively charged RNA backbone, yielding low selectivity. For this
reason, ligands may display a relatively high level of toxicity,
therefore often resulting non-viable. Recently, research efforts
based on the analysis of ligands with activities towards RNA were
directed to the characterisation of the physicochemical space of
RNA small-molecule binders (Morgan et al., 2017, 2019; Haniff
et al., 2020; Rizvi et al., 2020). The overall picture that is gradually
emerging points to an RNA-privileged chemical space. The most

peculiar structural features identified in RNA-targeting ligands
appear to be a higher nitrogen count, a lower oxygen count, an
enrichment in aromatic rings, fewer stereocenters and fewer
sp3-hybridised carbon atoms (Morgan et al., 2019; Haniff et al.,
2020). Additionally, in contrast to the more heterogeneous spatial
arrangements of the approved drugs, a prevalence of rod- and
planar-like shapes (Wirth and Sauer, 2011) has also been observed.
Interestingly, we note how, as a whole, these features are reminiscent
of the nucleobases. Most remarkably, this RNA-privileged chemical
space appears to be a subset of the space traditionally occupied by
protein-binding ligands and, more generally, by orally administered
drugs (Fig. 5) (Juru and Hargrove, 2021). An interesting implication
of this latter aspect is that there is a real potential for these molecules
to beRNA-targeting therapeutics. Fromamore practical perspective,
the identified characteristics represent indispensable instruments for
computationalmedicinal chemists to refine screening libraries and to
guide the optimisation of promising binders.

While it is essential to take advantage of this knowledge, the
number of known RNA binders is still limited, so the exploration
and definition of the chemical space of RNA-binding ligands has
only just begun. Therefore, further advances may come into play
and refine the current picture in the (possibly near) future. Indeed,
as a further level of complexity, recently discovered potent and
selective ligands of an RNA ribozyme contained chemical groups
that would usually be classified as PAINS (Fedorova et al., 2018).
This highlights how critical it can be to apply rules of thumb, which
were developed to target proteins, for RNA targeting, since the
ligands’ chemical space is still under construction. Given our
limited knowledge, it is therefore important to build screening
libraries by taking a non-RNA-biased approach, increasing chem-
ical diversity and maintaining drug-likeness.

In conclusion, we are still in the process of comprehensively
characterising the physicochemical properties of RNA binders.
Therefore, while the boundaries of their features are gradually
becoming clearer, room for potential expansion in this respect
should nevertheless be contemplated.

Outlook and concluding remarks

The growing recognition of RNAs as promising pharmaceutical
targets requires a mindset change in drug discovery. In this

Fig. 5. The chemical space of RNA-binding ligands. Bioactive RNA-targeted compounds
populate a region in chemical space (here projected along two hypothetical principal
components of cheminformatic parameters) occupied by FDA-approved drugs, which
mostly target proteins (Juru and Hargrove, 2021). Therefore, while RNA ligands have
particular structural and shape properties, they can also possess the typical drug-like
properties.
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Perspective, we discussed the three main challenges of computa-
tional RNA-targeted drug discovery: i) the prominent role of target
flexibility in predicting small-molecule binding; ii) the importance
of achieving binding selectivity; and iii) the knowledge of the
chemical space expected for RNA-binding drugs.

We have discussed how the currently available computational
procedures, which have been optimised and refined over decades of
efforts directed to protein targets, can be used in the novel and
partially unexplored context of RNA targets, and how to take
appropriate precautions. For example, recent scoring functions
were specifically developed to describe the interaction of small
molecules with RNA, which means that well-established docking
protocols can be easily adapted to RNA targets. Moreover, we
discussed howMD simulations, which are extensively used for lead
optimisation in protein-based drug discovery, will become an
essential tool for considering RNA target flexibility in the earlier
stages of screening campaigns. Furthermore, experimental data can
increase the reliability of RNA conformational ensembles recon-
structed via MD. Interestingly, we note how experimental infor-
mation often has a dual function when targeting RNA, since the
experimental data can be used as the source of starting structures
for the simulations and as a guide to refine the conformational
ensembles. Moreover, MD simulations (possibly combined with
enhanced sampling methods and appropriate analysis tools) may
help identify suitable pockets to focus on in the search for specific
interactions. In this respect, by showing a greater amount of struc-
tural complexity, RNA motifs such as riboswitches, ribozymes,
multi-junctions and pseudoknots are intrinsically more inclined
to pocket formation, and thus they are better suited for RNA-
targeted discovery of small molecule drugs. Given the above and
relative to traditional protein-based drug discovery, computational
medicinal chemists may need a more skilled background in statis-
tical mechanics and simulative methods in order to take full advan-
tage of these approaches.

Once the chemical space of RNA-targeting drugs has been
defined, machine learning and artificial intelligence, which are
revolutionising several aspects of conventional drug discovery
(Vamathevan et al., 2019), will be critical to developing novel active
compounds. Indeed, the most recently developed scoring functions
for docking tend to be based on machine learning approaches, and
artificial intelligence is already being leveraged to advance the area
of force field improvement.

The landscape of currently available small-molecule drugs tar-
geting RNA is somewhat limited. Current drugs are antibiotics
targeting ribosomal RNA (rRNA), such as the synthetic oxazolidi-
none linezolid that acts by binding a highly structured pocket, and
the very recent Roche and PTC Therapeutics’ risdiplam, used in the
treatment of spinal muscular atrophy (SMA), which acts by stabi-
lising the interaction between an RNA splice site and a small
nuclear ribonucleoprotein (snRNP) (Sheridan, 2021). Further-
more, Merck’s ribocil inhibits bacterial growth by binding to a
bacterial riboswitch, however, this small molecule is on hold at
the preclinical stage due to the rapid development of bacterial
resistance and unlikely will be pursued further (Warner et al.,
2018). Despite being limited in number, all these examples support
the idea that RNA is a legitimate target of small molecules and
highlights the potential of focusing on RNA molecules with high
structural complexity to achieve high affinity and selectivity.

Finally, a mention is here required on other types of RNA
molecules (not extensively covered in this contribution) as pharma-
ceutical targets, which are currently in the market/clinical trials for
major unmet medical needs. Remarkable examples thereof are the

recently approved risdiplam for SMA and the Novartis’s brana-
plam, under clinical trial for both SMA and Huntington disease,
which act as splicingmodulators by binding to pre-mRNA (Childs-
Disney et al., 2022).

In conclusion, time has come for computational drug discovery
to embrace the potential of RNA to become an established drug
target shortly. Indeed, thanks to the growing interest in discovering
small molecules that target RNA, the field is gradually producing
useful resources, such as the recent HARIBOSS database of RNA-
small molecule structures (Panei et al., 2022). In the same spirit,
efforts by the computational community in sharing simulation
inputs via dedicated resources (e.g., the PLUMED-NEST initiative
(Bonomi et al., 2019)), and sharing computational practises via
Jupyter Notebooks (Kluyver et al., 2016), are likely to accelerate the
expansion of more complex and sectorial computational skills to
successful drug discovery.
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