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EXTRA-SPECIAL GROUPS OF ORDER 32 
AS GALOIS GROUPS 

TARA L. SMITH 

ABSTRACT. In this article we examine conditions for the appearance or nonappear­
ance of the two extra-special 2-groups of order 32 as Galois groups over a field F of 
characteristic not 2. The groups in question are the central products DD of two dihedral 
groups of order 8, and DQ of a dihedral group with the quaternion group, obtained by 
identifying the central elements of order 2 in each factor group. It is shown that the 
realizability of each of these groups as Galois groups over F implies the realizability of 
other 2-groups (which are not their quotient groups), and in turn that realizability of cer­
tain other 2-groups implies the realizability of DD and DQ. We conclude by providing 
an explicit construction of field extensions with Galois group DD. 

1. Introduction. The question of the realizability of given groups as Galois groups 
has been of interest for more than a century. One question of interest is that of "automatic 
realizability", i.e. when does the realizability of one group G as a Galois group over a field 
F automatically imply the realizability of another group HI Of course, if H is a quotient 
of G this will always be the case, so the interesting situation is when the realizability 
is "nontrivial", that is, when H is not a quotient of G. This question has been answered 
in some depth for groups of order 8 and 16, as well as certain higher-order 2-groups, 
in papers by a number of authors. See [Je: 1989a,b], [JeY: 1987], [Ki: 1990], [KLe: 1975], 
[MiSm:1991], [Wa:1990], and [Wh:1957], among others. In this article, we consider 
automatic realizability criteria concerning the two extra-special 2-groups of order 32; we 
will always work in the case where the characteristic of F ^ 2. Recall that a group G of 
order pk,p a prime, is called an extra-special p-group if the center and the commutator 
subgroup of G coincide and have order p. Any nonabelian group of order p3 is extra-
special, and any extra-special /?-group is a central product of n nonabelian subgroups of 
order p3, and has order p2n+l. There are precisely 2 isomorphism types of extra-special 
p-groups of order p2n+l. See [Ro:1982, pp. 140-141]. The 2 groups of order 32 are DD, 
which has the presentation 

(x,y,z, w | x2 = y2 = z2 = w2 = [x,y]2 = [z, w]2 = 1, [x,y] = [z, w] = e, 

e centrale2 = l,[x,z] = [x,w] = [y,z] = [y,w] = 1 ) . 

and DQ, which has the presentation 

(x,y,z,w | x2 = y2 = z4 = w4 = [x,y]2 = [z, w]2 = l,z2 = w2 = [x,y] = [z,w] = e, 

e central, e2 = l,[x,z] = [x,w] = [y,z] = [v, w] = 1 ) . 
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It has long been known that realizability of certain groups of order a power of 2 over 
a given field is closely linked to the quadratic structure of that field and the splitting of 
certain (products of) quaternion algebras. It is this fact which we will exploit to achieve 
our automatic realizability results. We will write (y-) to denote the quaternion algebra 
generated over F by two anti-commuting elements / and j , such that i2 = a J2 = b. 
We may write just (a, b) when this causes no confusion. Let A^ denote the norm map 
from F(y/x) to F, for x G F\F2. By abuse of notation, we will also use this to denote 
{y G F : y = Nx(z),3z G F(yfx)}. We will make extensive use of the following two 
well-known facts about quaternion algebras. (The second property is often referred to as 
the "common slot property" for quaternion algebras.) 

PROPOSITION 1.1. Leta,b,c,d G F. Then 
(1) (a, b) = 1 G Br(F) & a £ Nh & b E Na, and 
(2) (a, b) = (c, d) G Br(F) <^ bNa D dNc H Nac ^ 0 & 3x G F such that (a, bx) = 

(c,dx) = (ac,x) = 1. 

We let C denote the cyclic group of order 4, D the dihedral group of order 8, and Q the 
quaternion group of order 8. We write (a\,a2,...,an)to denote the (equivalence class of 
the) quadratic form a\x\ + aj,x\ + • • • + anx% over F. The following two theorems are so 
well known as to be considered folklore. 

THEOREM 1.2. Let F be a field of characteristic not 2, and a G F, a fi F2. The 
following are equivalent. 

i) 3 an extension L/F with Gal(L/F) = C, such that F(y/a) is the (unique) 
quadratic intermediate field between L and F. 

ii) (tf) ^ M2(F). 
Hi) a is a sum of two squares in F. 
iv) The quadratic form (a, a) represents 1 over F. 

THEOREM 1.3. Leta,b G F, independent mod F2. The following are equivalent, 
i) There exists a Galois extension L/F with Gal(L/F) = D,F G F(^fa, y/b) C L, 

and with Ga[(L/F(y/âb)) ^ C. 

ii) ( f ) = M2(F). 
Hi) The quadratic form (a,b) represents 1 over F. 

Notice that since (a, —a) is always split, D is realizable over any field-F with at least 4 
square classes, provided that — 1 fi F2. In addition to these two results, the criteria for the 
realizability of Q as a Galois group dates back to Witt [Wi: 1936]. We have the following 
conditions. 

THEOREM 1.4. Let F be afield of characteristic not 2, and let a,b G F, independent 
mod/72. The following conditions are equivalent. 

i) There exists a Galois extension L of F, with Gal (L/F) = Q, and such that 
F(-s/a, y/b) is the unique biquadratic intermediate field between F and L. 

ii) (fKfK^f) = 1 e Br(F). 
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iii) (a,b,ab)~ (1,1,1) . 

These results can be generalized to encompass a much larger class of 2-groups. The 

following embedding criterion is a special case of a result proved in [Fr:1985]. (This 

result, in turn, was inspired by work of Serre [Se: 1984], in which the realizability of 

certain Galois groups was related to properties of the trace form of a field extension.) 

THEOREM 1.5 (EMBEDDING CRITERION). Let K = F(^/ôT,..., yfd~r), where a\,..., 
ar are independent mod F2. Let G = Gal(K/F) = (Z/2Z) r . Consider a (nonsplit) central 

extension G of 1 / IT by G: 

1 - ^ Z / 2 Z ^ G ^ G - > 1. 

Let (a\,..., ar) — G, where a ((-/of) = (—\)blj^fa~j, and let T\, . . . ,T> be a lifting of 

<7i,... ,07 to G. Let C(j G {0,1} be defined by Cy = 0 //*[T;,T/] — 1, / ^ j , Cy — 1 

otherwise, and cu = Oifrf = l,c/,- = 1 otherwise. There exists a Galois extension 

L/F,L D K, with Gal(L/F) = G, and such that G —> G is the natural surjection of 

Galois groups, if and only ifHi<j(ai,aj)ClJ = 1 G Br(F) (the Brauer group of central 

simple algebras over F). 

This theorem provides our principal tool for investigating the realizability of these 

2-groups. Since the splitting of one product of quaternion algebras frequently can be 

manipulated to give the splitting of another product of quaternion algebras, it is possible 

to use this (combined with a good grasp of the presentations of 2-groups of the type de­

scribed in the theorem) to show realizability of one group forces realizability of another. 

The groups which can be realized as (nonsplit) central extensions G of Z /2Z by 

(Z/2Z) r are precisely central products of the groups D, Q, C, amalgamating the unique 

central elements of order 2 in each group, and direct products of such groups with el­

ementary abelian 2-groups. Each factor of C,D, or Q will contribute factors of (a^ai), 

(at, aj) i ^ y, or (at, aj){a^ «/)(«;, aj), i ^ j , respectively, to the product of quaternion al­

gebras which must split in order for the group to be realized. These central products are 

investigated in some detail in [LSm:1989]. In particular, they include the extra-special 

2-groups, which are central products of the two nonabelian groups of order 8, D and Q. 

We can make some additional observations concerning the realizability of Q as an F-

Galois group, based on the level s(F) of the field F. Recall that s(F) is the least positive 

integer n such that — 1 is a sum of n squares in F\ s(F) = oo if — 1 is not a sum of squares. 

We use Dp(q), or simply D(q) when F i s understood, to denote the set of nonzero elements 

of F which are represented over F by the quadratic form q. Then let a,b G F, independent 

modF 2 .Wehave 

(1) If s(F) = 1, then F ( v
/ 5 , y/b) embeds in a Q-extension of F <=> it embeds in a 

D-extension of F. Thus D is realizable if and only if Q is realizable, and both 

groups fail to be realized over F if and only if F is "rigid" ([MiSm: 1991]), that 

is, if and only if DF(( 1, a)) = F2 U aF2 \/a£F\F2. 
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(2) If s(F) = 2, then Q is realizable as a Galois group over F as long as F has at least 
four square classes (i.e. as long as F has a biquadratic extension). This is because 
(a,-l)(a,a)(-l,-l)= l\/aeF. 

(3) lfs(F) > 4, then if Q is realizable, so are D and C. Moreover ([Wa: 1990]), Q is re­
alizable & sums of 2 squares in F are not all "rigid". (That is, 3a G D(( 1,1 )), a £ 
F2, such that D(( 1, <*)) D F2 U aF2.) 

There are three distinct nonabelian groups of order 16 covered by our version of the 
embedding criterion. They are DC, the central product of D and C; D x Z/2Z; and 
Q x Z/2Z. Since the latter two are realizable if and only if D and Q, respectively, are 
realizable and the square class group of F is large enough, the group DC is the only one 
providing new insight. In [MiSm: 1991], the following facts concerning the realizability 
of DC over a field F with \F/F2\ > 8 are shown. 

(1) DC does not appear as a Galois group over F <£• F is a rigid field (i.e. for a £ 
±F2,DF((l,a)) = F2UaF2). 

(2) If F is a rigid field with at least 4 square classes, then s(F) = 1 & D is not 
a Galois group over F, s(F) = 2 & C and D are Galois groups over F, and 
s(F) = oo <£> C is not a Galois group over F. 

(3) If 5(F) T̂  2, then also 2 cannot be realized as a Galois group over F when F is a 
rigid field. 

2. Realizability of DD and Z)g. The two extra-special groups of order 32 are DD 
and DQ, with presentations as given in §1. By the embedding criterion we then have 

PROPOSITION 2.1. Let F be a field, char F ^ 2. 
(1 ) There exists a Galois extension K/F, with GSL\(K/F) = DD, if and only if there 

exists a, b,c,d G F, independent mod F2, such that (a, b)(c, d) = 1 G Br(F). 
(2 ) There exists a Galois extension K/F, with Ga\(K/F) = DQ, if and only if there 

exists a, b,c,d G F, independent mod F2, such that (a, b)(a, a)(b, b)(c, d) = 1 G 
Br(F), ifandonlyif(-a,-b)(-l,-l)(c,d) = 1 G Br(F). 

Necessarily, then, these two groups can be realized only if |F/F2 | > 16. We will 
assume this hereafter. These groups of course have other presentations, but the ones used 
here turn out to be particularly useful because they involve products of small numbers 
of quaternion algebras. The relations for the existence of DD cannot be expressed as a 
product of fewer than two quaternion algebras, and for DQ one requires at least three 
algebras. It should also be remarked that any quotient of an extra-special 2-group is 
necessarily elementary abelian. Thus results we obtain on the automatic realizability of 
other groups, given the realizability of an extra-special group, are indeed nontrivial. 

THEOREM 2.2. DD is realizable as a Galois group over F if and only if the direct 
product D x D is also realizable. 

PROOF. One direction is trivial: if D x D is realizable, then since DD is a quotient 
of D x D, it must also be realizable. Now suppose DD is a Galois group over F, and let 
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a,b,c,d G F be independent elements mod F2, such that (a,b)(c,d) = 1 G Br(F). In 
order to show D x Dis realizable, we must be able to find two split quaternion algebras, 
(r, s) = 1 and (t, u) — 1, with r,s,t,u independent modF2. In that case we have L\ D 
F(y/r, y/s),L2 D F(v^, y/u) with Gal(L//F) = D, / = 1,2 and Lj HL2 = F, so LiL2 is 
Galois over F with G a K L ^ / F ) ^ D x D. If (a, fc) = (c,d) = 1, we are done. If not, 
the "common slot property" for quaternion algebras (Proposition 1.1 (2)) guarantees the 
existence of x £ F,x £ F2, such that (a,bx) = (c,dx) — (ac,x) = 1. We will use this 
to find two independent split quaternion algebras. By abuse of notation we will identify 
elements of F with their equivalence classes mod F2 . 

First, if x = ac, we have (a, bac) — (c,dac) = 1, and a,bac,c,dac are independent 
modF2, so we are done in this case. If x ^ ac then ac and x are independent modF2. 
If a,/?, c,x are independent, so are a,bx,ac,x, and (a,bx) = (ac,x) = 1 realizes D x D. 
If a,c,d,x are independent, we have (c,dx) = (ac,x) = 1 realizing D x D. If both 
these sets of elements are dependent sets, then necessarily x = a or x = c, since we 
have already excluded x = 1 and x = ac. In this case, a, bx, c, dx are independent, and 
(a, bx) = (c, dx) = 1 realizes D x D. m 

Notice that the D x D extension has a DD-subextension because DD is a quotient 
of D x D. However, the original DD-extension has F{y/a, \fb, ^Jc, \J~d) as its unique 
maximal multiquadratic subfield, while the DD-extension in D x D contains this field if 
and only if x depends on {a, b, c, d} modF2. 

COROLLARY 2.3. Realizability ofDD as an F-Galois group implies the realizability 
of D and DC. 

PROOF. Again we remark that these groups are not quotients of DD. However, D 
is a quotient of D x D, and hence occurs as a Galois group of a subextension of the 
D x D-extension whose existence is implied by that of the DD-extension. The existence 
of this extension also implies the existence of two split quaternion algebras (r, s) ~ 1 
and (t, u) = 1, with r, s, t, u independent modF2. Necessarily, one of the pairs {r, s} or 
{t, w}, must be independent of ±F2 . Say it is {r, s}. Then (r, s) = 1 ^> (r, s) represents 
1, so the form (1, —s) represents r, where s £ ±F 2 , and r ^ F2 U —sF2. This means the 
field is not rigid, so by [MiSm: 1991], DC is a Galois group over F. m 

THEOREM 2.4. Let F be afield, s(F) < 2. Then DD is realizable as an F-Galois 
group if and only ifDQ is realizable. 

PROOF. For s(F) = 1, the proof is essentially the same as the proof that Q is realiz­
able if and only if D is. Since (x,x) = 1 Vi Ç F, we have (a,b)(a,a)(b,b)(c,d) = 1 <=> 
(a,b)(c,d)= 1. 

For s(F) — 2, we have already observed that Q arises as a Galois group provided the 
square class group is big enough, since (a, —a)(—1, — 1) = 1 \/a G F. Thus if there exist 
elements c, d G F such that c, d, — 1 are independent mod squares and (c, d) = 1, we 
have in fact D x Q, and therefore DQ, realizable as a Galois group over F. If DD is an 
F-Galois group, then we know there exists two independent split quaternion algebras, so 
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necessarily we have elements c,d G F such that {c, d, —1} is independent mod squares 
and (c, d) = 1. 

Conversely, assume DQ is realizable, so there exist independent a, b, c, d such that 
(-a,-b)(-l,-l)(c,d) = 1. Since s(F) = 2, we have ( - 1 , - 1 ) = 1, and so 
(—a, —b)(c, d) = 1. If —a, — /?, c, J are independent mod F2, we are done. If not, there are 
two cases to consider: —aor—b = 1, or — a ^ 1 ̂  — /?, but {c, J, cd} H {—«, — b, ab} ^ 
0. Consider the first case, and say a = — \,b ^ — 1. Then {—1,&,c, J} is an indepen­
dent set modF2, and 1 = (-a,-b)(c,d) = (l,-b)(c,d) = (c,d), so (c,d)(b,-b) = 1, 
giving the necessary condition for the realizability of DZ). In the second case we may 
assume without loss of generality that c — —a or cd — —a. (Recall that a,b,c,d are 
independent.) If c — —a, then 1 = (—a, —b)(—a, d) = {—a, —bd), —a, —bd, d, —d 
are independent, {—a, —bd)(d, —d) — 1 and DD is realizable. If c = —ad, then 1 = 
(—a,—b)(—ad,d) = (—a,—b)(—d,d)(a,d) — (—a,— b)(a,d), and d ^ —1 because 
c T̂  a. In this case —a, —&, a, J are independent, and this implies the realizability of 
DD. m 

PROPOSITION 2.5. Assume s(F) > 2 and \F/F2\ > 16. IfQ is realizable as a Galois 
group over Fy then so are DD, D x D, and DQ. 

PROOF. If Q is realizable and s(F) > 2, then Ware [Wa: 19901 has shown there exists 
a G F\F2,a a sum of two squares, such that (—a, b) = 1 for some b fi F2 U aF2. If 
b G —F2 U —aF2, we would have —1 as a sum of two squares. As this is not the case, 
a,b, and —1 are independent modF2. Let c G F b e such that a,b,c, —1 are indepen­
dent modF2. Then (—a,b)(c, —c) — 1 shows that DD and D x D are realizable. Let 
(—a, — b)(— 1, — 1) = 1 be a quaternion algebra splitting "realizing" Q. Then a,b, — 1 
must be independent, or else (—a, —b) = 1, implying (—1,-1) = 1 and thus s(F) < 2. 
Choose c independent of {a,b, — 1}. Then (—a, —b){—1,-1 )(c,—c) — 1 is a quaternion 
algebra splitting realizing DQ. m 

THEOREM 2.6. Assume s(F) > 2. IfDQ is realizable as a Galois group over F, so 
is DD. 

PROOF. The proof involves using the "common slot" property of quaternion al­
gebras and checking possible dependence relations among the square classes appear­
ing. Assume DQ is realizable, and let a,b,c,d G F, independent mod F2, such that 
(—a, — b)(— 1,— l)(c, d) = 1 G Bx{F). First assume a,b, —1 are dependent modF2; say 
b — — 1 or a — —b. Then (—a,—b) = 1, so (—l,—l)(c,d) = 1 G Br(F), implying the 
existence of a g-extension, and thus by the preceding proposition also a DD-extension. 

Next assume a, b, — 1 are independent, but a, b, c,d,—\ are dependent mod F2. With­
out loss of generality, we may assume —1 G {c,cd,ac,acd, abc, abed}. If —1 = c, we 
have —a,—b,—\,—d independent, and (—a,—b)(—\,—d) = 1. If — 1 = cd, 
(—a,—b)(—l,—\) = 1, implying realizability of Q, and hence of DD. If — 1 = ac, 
we have (—a, —bd){—\,—\) — 1, giving realizability of Q and DD. If — 1 = acd, we 
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h a v e ( - a , - f t ) ( - l , - l ) ( c , - a c ) = ( -a , - f t c ) ( - l , - l ) (c ,c ) = (-a,-bc)(-\,-c) = 1, 
giving the realizability of DD. If — 1 = abc, we have 

(a,b)(a,a)(b,b)(-ab,d)=(a,b)(a,a)(b,b)(a,d)(b,d)(d,d) = 1 G Br(F). 

This is precisely the requirement for the group with presentation 

(x,y,z | x2 = y2 = z2 = [x,y] = [y,z] = [*,d,x4 = 1) 

to be realized as a Galois group over F. But this group is isomorphic to g x Z/2Z 
[LSm:1989], so g is realizable, and therefore so is DD. Finally, let —1 = abed. Then 
(-a,-b)(-l,-l)(c,-abc) = ( -a ,-f tc)(- l , - l )(c,f tc) = (-ac,-bc)(-\,-c) = 1 G 
Br(F), so DD is realizable. 

Lastly, assume a,b,c,d,—l are independent modF2, and (—a, —ft)(—1,—l)(c,d) = 
1. We may assume no individual quaternion algebra in this expression is split, or else 
we are done. Then there exist elements/,x,y G F \ F2 such that (—a,—b) — (f,x), 
(—1,-1) = (f,y),(c,d) — (f,xy). If —f,—y are independent modF2, then 
(—1, —\)(f9y) — 1 gives the realizability of g, and we are done. Otherwise, there are 
three cases to consider: ( i ) / = — l, y ^ ±1 , (ii)y — — 1,/ ^ ±1 , and (iii)/ = y ^ 1. 

First assume/ = — 1. Then (—a, —ft)(— 1, JC) = 1 realizes DD unless x = —a, — ft, — 1, 
ab, a, b, or — ab. If JC = —a, then(—a, ft)(c, —c) — 1 realizes DD; similarly, if x = ft, 
then (a,-ft)(c, —c) = 1 realizes DD. If JC = - l , ( a , f t ) ( - l , - 1 ) = 1 =̂> g is re­
alizable. If x — ab,(—a,—b)(—l,ab) = (a,b)(— 1, — 1) = 1 =4> g is realizable. If 
* = a , ( -a , - fc ) ( - l , a ) = (-a, - f t ) ( -1 , - a ) ( - l , -1 ) = (-a,f t)(- l , - 1 ) - 1 => g; an 
analogous argument holds if x = ft. Finally, if x = —a/?, then 1 = (—a, — ft)(— 1, —a/?) = 
(-a, - f t ) ( -1 , -a){-1, -ft) = (a, ft), so (a, ft)(c, - c ) = 1, realizing DD. 

Next consider the case y = —1. If —a, —b,f,x are independent, (—a, —b)(f,x) = 1 
realizes DD. If they are dependent, an analysis as above shows DD is realizable except 
possibly when fx G {1, —a, —ft, ab}. If c, J , / , — x are independent, (c, d)(/\ — x) = 1 
realizes DD. If they are dependent, it can again be shown DD is realizable unless fx G 
{ — l,—c,—d9—cd}. Since {1, — a, — ft, aft} Pi {—1, — c, — d, — cd} = 0, necessarily DD is 
realizable. 

The concluding case is when / = y. Here we have (—a, —ft)(/,x) = 1 and 
(c,d)(f,xf) — 1. Analyzing as in the preceding case, we see that we can realize DD 
except perhaps in the case fx G {1, —a, —ft, ab} H {1, c, d, cd}. By the independence of 
{—l,a,ft, c, d}, we see this implies/x = 1, so (c,d) = 1, and thus (—a, — ft)(— 1, — 1) = 1, 
implying the existence of a g-extension, and hence also a DD-extension. • 

The converse to the preceding theorem is not true. There do indeed exist fields which 
have Galois extensions with group isomorphic to DD, but which do not have extensions 
with group isomorphic to Dg. The following example, which relies on some results from 
quadratic form theory, shows the existence of such fields. 

EXAMPLE. Let Fbe a field with Witt ring W(F) = (ZxZx Z)[Z/2Z]. (The existence 
of such a field has been demonstrated by Kula [Ku:1979].) Such a field has 16 square 
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classes, and we may take F/F2 to be generated by — \,a,b,c, with quaternion algebra 
relations (a, b) = 1, (a,-\)(a,a) = 1, (b, - 1 )(b,b) = 1, (c,-l)(c,c) = 1. Then the 
relation (a, b)(c, —c) — 1 proves the existence of DD as a Galois group over F. On the 
other hand, DQ is not realizable as an F-Galois group. Perhaps the "easiest" way to see 
this is via the so-called W-group of F. This is the Galois group of a certain 2-extension of 
F, namely the compositum K of all quadratic extensions of F and all quadratic extensions 
of K which remain Galois over F. Then if DQ is realizable as a Galois group over F, 
it must in fact be a quotient of the W-group of F. In this case, it is not hard to show 
([MiSm:pre]) that the W-group is isomorphic to the group with presentation 

G = (x, y,z,w | x4 = y4 = z4 — w2 — [x, wjx2 = [y, w]y2 

= [zMz2 = [x,z] = ly,z] = [x,y]2 = 1). 

If DQ is a quotient of this group, say DQ = G/K, then the kernel K must be contained 
in the Frattini (here = commutator) subgroup of G, since DQ also requires a minimum 
of four generators. Moreover, since the Frattini subgroup of DQ is of order 2 and the 
commutator subgroup of G is of order 16, the kernel must be one of the 15 subgroups of 
order 8 in [G, G]. An analysis of the various possibilities shows that 11 of these subgroups 
will give a quotient group with center of order bigger than 2 (and therefore not extra-
special), while the remaining 4 give quotients isomorphic to DD. (These correspond to 
the 4 quaternion splittings (a,b)(c, —c) — 1, (a,b)(acJ—ac) = 1. (a,b)(bc,—bc) — 1, 
and (a, b)(abc, —abc) = 1.) 

It is in fact possible to give a complete characterization of all Witt rings of fields which 
fail to realize DD as a Galois group [Sm:pre]. Since Witt rings of rigid fields are easily 
seen to fit this description ([Wa:1979]), this observation combined with [MiSm:1991] 
gives a somewhat roundabout proof that the realizability of DD implies the realizability 
of DC. Since the W-group can be determined from the Witt ring, the characterization 
of the realizability of DD in terms of the Witt ring provides a method for constructing 
examples such as the one above, where DD must occur as a Galois group but DQ need 
not. 

3. Fields with DD as a Galois group. In this final section, we give an explicit con­
struction of the Galois extension realizing DD, using the relationship (a,b)(c,d) = 1. 
General formulas for constructing extensions realizing certain types of /^-groups as Ga­
lois groups, including the group DD, have been given in [Ma: 1987] ; however, in working 
with a specific group, as is done here, the description is of course simpler. The construc­
tion used here is very similar in nature to the constuction of the Galois extensions real­
izing DC, given in [MiSm: 1991]. We will make heavy use of the facts about splitting of 
quaternion algebras given in Proposition 1.1. 

THEOREM 3.1. Suppose there exist elements a,b,c,d G F, linearly independent 
modF2, such that (a, b)(c, d) = 1 G Br(F). Then there is afield L, which is a quadratic 
extension ofK = F(sfa, \fb, yfc, \fd)y such that Lj F is Galois, with Gal(L/F) = DD. 
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PROOF. Since (a, /?)(c, d) = 1, there exists y G Nc such that bdy G Na and dy G Nac. 
Set 

/ I = J C I + ^ I ^ / C , f2=x2+yiy/â, f3=x3+y3x/âc, 

whereby, G F, / G {1,2,3}, and W,(fi) = ^ ( / i ) = bdy,Nac(f3) = rfy. Set/ = A/2/3, 
and L = ÀXvT). Let (aa,ah,(jc,ad) = Gal(/^/F) ^ (Z/2Z)4, where aa(y/â) = -y/a, 
but Ga leaves y/b, \fc, and \fd fixed, and so forth. To prove the theorem, we must show 
two things: 

(1) aa, at,, ac, ad extend to automorphisms âa,âb, âc, ôd of L/F, so that L/F is a Ga­
lois extension. 

(2) Let r G Gal(L/F) be such that T(V7) = - y ? - T h e n DD = Gal(L/F) = 
(T,âa,âb,âc,ôd \ T2 = °l = °ï = °l = °2d = UT = f^ôV] = [ ^ , ^ 1 , 
Tcentral,[<7a,<7f] = [<7a,<7</] = [^,âc] = [à/,,^] = 1) 

To check (1), define d(y/f) = yJW) Va G Gal(AT/F)- We calculate this explicitly for 
the generators âa,âb, àc, °d'-

°a(f)f = CTa(fl)Ma(f2)(f2)CTa(f3)f3 

= f2Na(f2)Nac(f3) 

and so 

Similarly, one checks that ab(\/f) = °d(Vf) = y/f, and that âc(y/f) = (fâ)y/f-
To check (2), we must see that the relations on r, ô^, à/,, ov, o^ are as given. This is a 

straightforward calculation; we show a2
a — 1 as an example. 

One checks the remaining relations similarly. Thus Gal (L/F) = DD as desired. • 

Conversely, given a Galois extension L/F with Gal(L/F) = DD,we would like to 
demonstrate the existence of elements a,b,c,d G F, linearly independent modF2, such 
that (a, b)(c, d) — 1 G Br(F). We may assume that the following conditions hold: 

( 1 ) L D ^ = F(y/â,y/b,y/c,y/d), where Gal(/f/F) = {(Ta,°biOc,°d) = (Z/2Z)4, 

and cra, 07,, a 0 a</ act as in Theorem 3.1. 
(2) Gal(L/F) = (r,âa,âb,crc,âd \ T2 = â2

a = â2
h = a2, = v2

d = l ,r = [ô^,^] = 
[<7f, aj],r central, [<7fl,<rc] = [<7a,<7</] = [âb,crc] = [°b,5d\ = 1), where <7a|/r = 
OaiôbU = ^ ,â c . |^ = ac,âd\K = ^ , andr^ = 1. 

(3) Gal(L/F(v^, y/b)) 9* Gal(L/F(v^, >/</)) = D. 

(4) Gal(L/F(v«, y/b, y/cdj) = G a l ( L / F ( ^ , y/d, y/ob)) = Z/4Z. 
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(5) L = K(y/f) for some/ G F ( ^ , y/à), and r(y/f) = -y/f. 
That we may assume (1) and (2) is clear; (3) and (4) follow from (1) and (2), and (5) 
follows from the fact that Gal(L/F(y/a, y/cfj = (Z/2Z)3. There are seven quadratic 
extensions of F{y/a, yfc) in L, only three of which lie in K. Choose/ G F{yfa, y/c) such 
that F(yfa, y/c, y/f) Ç L, and y/f ^K. 

THEOREM 3.2. Let L/F be an extension of F such that (J)-(5) above hold. Then 
(a,b)(c,d) = 1 EBr(F). 

PROOF. We need only find an element y G Nc such that bdy G Na and dy G Nac. We 
consider the three elements kc = ac(/)/, /ca = cra(f)f, and &flC = acaa(f)f. Then one can 
check that in fact kc, ka, and &ac are all in K2. For example, to see kc G £2 , observe that 
yfkc G L, so if \fkc ^ A', then L = K(y/Yc), and v^c = * + j v ^ f° r some x,y £ K. Thus 
&c = (x + ̂ v^)2 — x2 + ZxyVf + y2 ^ ^ ' and necessarily x = 0 or y = 0. If y = 0, then 
&c =x2 e K2 as claimed. If * = 0, then kc = y2f =» a r(/) = y2 => âc(y/f) = y G K, a 
contradiction. Similarly, one can see that £a and kac are in A'2. Now kc is fixed by <JC, so 

kc G F(v^) HK2 = F(y/a){\,b,c,be,d,bd,cd,bed}. 

Similarly, we have 

ka G F{yfc){\,a,b,ab,d,ad,bd,abd}, 

kac G F(y/ac){l,b,c,be,d,bd,cd,bed}. 

Thus we have kc = fcd
2
a, 3fc G F,da G F(y/â); ka = fad

2, 3fa G F, dc G F(y/c); and kac = 
facd

2
ac, 3fac G F, dac G F(y/a~c). By applying <ra, <r*, <7C, âj to each of V^ , y/ka, y/kZ, we 

can determine in which of the given eight cosets each of fc,fa,fac lies. We work out the 
details forfa. 

&a(Vka) = dliy/fi&aiy/f) = v C 

= Ôa(\[fi)Ôa(dc) = &(yjfa)dc,^ &a(\[fi) = \/fâ,=> fa G {\,b,d,bd} 

ôb(Vki) = °b°a(yjf)°b(\ff) = -°a&b(\ff)5b(\ff) = -y/k~a 

= Ôb{\Jfa)°b(dc) = âb(y[fa)dc => &b(\jfa) = ~\Jfa,=>fa G {b,d} 

Vd(Vki) = °dOa(\ff)&d(\Jf) = °a&d(\[f)°d(\jf) = ~V^a~ 

= °d(\[fa)°d(dc) = âd(y/fâ)dc => âd(yffa) = yjfa, => fa = b. 

Similarly, evaluating âc,âb, and ô^ on yfkc and V ^ shows/. = d and/^ = M. We 
calulate \/f à a(y/f)d c{y/f)d cd a(\ff) in three different ways. 

\ffÔa(\[f)Vc(\jf)Vc&a(\if) = Oc(VKi)Vka" = bNcdc 

= oa(\/kc)y/kc = dNada 

= &a(\/ka~c)\/ka~c = bdNacdac-

Now let y = Ncdc. Then by = dNada => bdy G A ,̂ and by = bdNacdac => <iy G A^r. 
This then shows (A, &)(C, d) = 1 G Br(F), as claimed. • 
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