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1. Introduction 

Let be a space of points x, ^ a <r֊field of subsets of 3C and ¡1 a cr-finite 
measure on The elements of J( will be called measurable sets and all the 
sets considered in this paper are measurable sets. A real-valued point func
tion t(x) on $՝ will be said to be measurable if, for each real a, the set 
{x : t(x) 52 a} is measurable. Let ֊#(S), SC3£՝ denote the a-field of all 
measurable subsets of 5. A real-valued function /(·) o n , ! will be called a 
set function. 

In Finch [1] a theory of integration of set functions f{M), MeJV 
with respect to the measure ft is developed. In that theory the integral 

where the summation is over all elements with positive ^-measure, of the 
partition II(S) of S by elements of JK(S) and the limit is taken in the sense 
of Moore-Smith convergence as the partitions spread. For details of the 
theory we refer to Finch [1] where it is shown that the Z7-integral (1.1) is, 
when it exists, a a-additive set function on JK, that is, 

whenever the sets Mj are mutually disjoint elements of JV. Thus If is a signed 
measure on Jt and it follows from (1.2) that it is absolutely continuous with 
respect to ¡1. It follows from the Radon-Nikodym theorem that there is a 
measurable point function if(x) on which is finite except possibly on a set 
of /^-measure zero, such that 

(1.3) 
i-l 3=1 

(1.4) 
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18 P. D. Finch [2] 

where the /.-integral is the Lebesgue integral of it (x) with respect to the mea
sure (i. Further if jf (x)is any other measurable point function satisfying (1.4) 
then 

/x{x : jf(x) ^ i,{x)} = 0. 
It is of interest therefore to examine the relationship between the II-
integrable set function / and the associated point function if. A partial 
solution to this problem is provided by the following theorem to whose 
proof this paper is devoted. 

Theorem 1. Let 2£ be a space of points x,*Jl a a-field of subsets of 9£ and, 
ft a a-finite measure on J(. Let v be a o-finite signed measure on and let 
g(£) be a real-valued function of bounded variation of the variable f. Write 

(1.5) f(M) = g{v(M)lfi(M)}, I e I , MM)>0, 
then there exists a real-valued measurable point function d(x) on 3C which is 
finite, except possibly on a set of ̂ -measure zero, such that for each S 

(1.6) (77) f(M)v(M) = (L) jsg{6(x)}dMx) 
whenever either integral exists. 

Remarks. Since 9£ is the countable union of disjoint elements of *M 
on which fi and v are each finite it is sufficient to prove the theorem when 
ft and v are each finite. Secondly it is clearly sufficient to prove the theorem 
when the functions is monotonic and non-negative. From here on, therefore, 
we shall assume that /j, is a finite measure, v is a finite signed measure and 
that g is monotonic non-decreasing and non-negative. 

Note that the theorem does not assert that the function g{9{x)} is 
Z-integrable with respect to fi, in fact a necessary and sufficient condition 
for this is the existence of the JJ-itegral in (1.6). Note also that the statement 
of the theorem does not assert that the signed measure v is absolutely con
tinuous with respect to ¡1. However the Z,-integrability of 8 (x) or equivalent-
ly the existence of the i7-integral (1.6) wheng(f) = £ is a necessary and suffi
cient condition for the absolute continuity of v with respect to fi. 

To see this observe that wheng(|) = f the approximating sum (1.2) to 
the //-integral (1.6) is 

(1.7) Fn(S) = 2 v{M) 
ms) 

where the summation is over those elements M of the partition LT(S) with 
fi(M) > 0. If v is absolutely continuous with respect to ¡1 then Fn(S) = v(S) 
since [i(M) = 0 implies v(M) — 0 and the II integral exists and has the 
value v(S). 

Conversely if the //-integral exists, that is, if the //-limit of (1.7) exists 
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this limit is unique. Choosing a sequence of partitions {LTn(S)} of S with 
i7 n + 1 (S) finer than IIn(S) and such that each element of the partition IIn(S) 
has positive /^-measure we see that this limit is v(S). Let S0 be any element of 
֊4? with ju(S0) = 0 and write Sj = S^Sq. Choosing a sequence of partitions 
{n^S^}, of Sj such that each element of II^Sj) has positive ^-measure and 
Hn+i{Si) is finer that LT^Sj) we obtain the limit v(S1). Since the i7-integral 
has a unique value v(S1) = v(S), that is, v(S0) = 0 and this shows that v is 
absolutely continous with respect to ¡1. 

It follows from the above that theorem 1, contains the Radon-Nikodym 
theorem as a particular case and for this reason our proof of it does not 
depend on the Radon-Nikodym theorem. An example showing that the 
theorem can be true when v is not absolutely continuous with respect to 
in fact when fi is absolutely continuous with respect to v is given in section 3. 
One use of theorem 1 is that it reduces the calculation of the //-integral to 
that of an i-integral, such a use is illustrated in section 4 by application to 
a problem in information theory. 

2 . Some preliminary results 

In this section we state some preliminary results which are required 
for the proof of theorem 1. 

Lemma (2.1). Let R denote the set of real numbers and let {oc3} be a 
sequence of real numbers which is dense in R. Suppose that {M (a )̂} is a family 
of elements of ֊/t, indexed by the dense sequence ol} and such that 

(i) M(a,.)CM(a,) if «,.<«, 
(ii) Jlf(«,) = n„,>a<M(a,) 

For any real a define 

M(a) = fi M(xt) 
a.j>a 

then there exists a real-valued measurable point function 6 (x) on SC such that 

M(x) = {x : 6(x) ^ a}. 
If further 
(iii) l i n y ^ { 3 r - M ( a ) } = 0, l i m ^ /*{M(֊a)} = 0, 
then d(x) is finite except possibly on a set of ju-measure zero. 

This lemma is proved easily by writing 

(2.1) 0(x) = inf {a :xeM(x)}. 

Using lemma (2.1) one may prove 

Lemma (2.2). / / fi is a finite measure on -JK, v is a finite signed measure 
on then there exists a measurable point function 6 (x) on which is finite 
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except possibly on a set of fi-measure zero, such that if for each real a, 
(2.2) M(a) = {x : 0(x) ^ a} 
then 

(2 3) v{M)^w{M), MCM(a) 
v{M) ^ a/*(M), M C ^ - A f ( a ) . 

Proof. For each real a and each M eJK write 
A(M; a) = » ( M ) - a / ( ( I ) 

Let {a,} be a dense sequence of real numbers, for each a.j։X{M; a,) is a finite 
signed measure on and so, by the Hahn decomposition of $£ with respect 
to this signed measure, there exists an element M(a.}) of JK such that 

«,)<£<>. M C M f o ) 
A(M; a , . )^0 , M C ^ - M ( a ^ ) . 

The proof of lemma (2.2) consists in verifying that we can choose the sets 
M(a.j) to satisfy the conditions of lemma (2.1). Since this verification uses 
standard procedures, for example, Royden [3], it will be omitted. 

3 . Proof of theorem 1 

We proceed now to the proof of theorem 1. Since g is non-negative and 
monotonic non-decreasing the inequality 

f(M) ^ a, MeJK, fi(M) > 0 

is equivalent to the inequality 

v(M)֊(g֊1oL)/x{M) ^ 0, MeJC, n(M) > 0. 

Here and in what follows 

g-1* = sup{f :g(£) ^ a}. 

Thus if 6(x) is the measurable point function of lemma (2.2) we have, 

/ ( A f ) ^ a if MCMfe- 'a) 
1 / ( A f ) ^ a if J l f C f - i l f f g - ' a ) 
where 

Mfe-Ja) = {x: d(x) ^ g ^ a } 
and 

g{6(x)} = inf {a : x e M(g^a)}. 

Let <5 be an arbitrary positive real number and let {^}, ƒ = 0, 1, · · · be a 
sequence of real numbers with d0 = 0, and such that 
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0 < <53—<5,._i ^ 8, j ^ 1, and sup <5,- = + oo. 
Write 

(3.2) M, = {x : Vi < g{0(*)} S <5;}> ƒ ^ 1. 

Then for any ƒ such that /t(Mt) > 0 we have 

(3.3) 8 ^ ^ f{M) ^dit MeJt, MC M„ (i(M) > 0. 

It follows that the total variation 

|/|(AT) = s u p t f ^ ) - / ^ , ) : MA) > 0, 

on / on Jl with respect to ft does not exceed d on the measurable subsets of 
each Mj. Thus 

(3.4) | / | ( M ) g ^ , MeJt.MC Mt՝, fi{M) > 0. 

Write 

r /(M) if f(M) < » 
ƒ<"> (M) = ! ' V 

for each M e i 1 with /*(M) > 0. 
Let S be any element of , then 

I7(S) = {SM,}, j = 0, 1, 2, · · · 

is a partition of S. It follows from (3.4) and theorem (3.3) of Finch [1], that 
/ < n ) (-) is /7-integrable on u^(S) with respect to p , that is, 

(3.5) +oo 

= (/7) lim 2 p*>(SM,)fi(SMt) 
S= —oo 

exists. 
Because of (3.2) and (3.3) it follows also that the sum on the right-hand 

side of (3.5) is an approximating sum for the Lebesgue integral 

where 

fg(f) if 
g{£) > n, 

and hence that 

(3.6) (/7)J^5 )/<»>(MMM) = (L) jag<՝>{6{x)№[z) 
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22 P. D. Finch [6] 
Letting n -s֊ oo in (3.6) we obtain (1.6) whenever either integral exists. The 
uniqueness of 0(x) follows immediately since if <p(x) is another such measur
able point function 

(L)Ss [£<n){%)}-s(n)M*)}№(*) = o 
for all S e J( and each n > 0, hence 

H{x; <f>(x) ^ 6(x)} = 0. 

This completes the proof of the theorem. 
As remarked in section one the formulation of theorem 1 does not intro

duce explicitly the condition that v should be absolutely continuous with 
respect to ¡1, although, as we have shown, if the //-integral (1.6) exists 
when g (|) this implies that the signed measure v is absolutely continuous 
with respect to [A,. To illustrate that meaningful results may be obtained when 
v is not absolutely continuous with respect to suppose in fact that v and fc 
are both finite measures and that ¡1 is absolutely continuous with respect to v 
with density <f>(x), so that 

/ i (M)= (L)\MHx)dv{x). 

Suppose also that <f>(x) belongs to the class L„(v) for some ft > 1, so that 

{L)\M{№)}>dv(x) 

exists for each M e ^ . 
Consider the identity 

{n(M)lv{M)Yv(M) = {v(M)/^(M) }-<»-> (M) 

where v{M) > 0. By applying theorem 1 to the left-hand side we obtain 

<3-7> ^ {M(M)lv(M)}>v(M) = (L) j s {*(z)}>dv{z) 

Since n is absolutely continuous with respect to v 

X № \ ( M ) = 2 ( ^ P W ) 

where the summations are over the elements of the partition IT(S) of 5 e J( 
with positive v and /1 measure respectively. Thus the //-integral of which the 
right-hand side is the approximating sum exists and equals the //-integral 
of (3.7), that is, 

(3.8) (JO) J {v(M)lix{M)Y«-»!i{M) = (//) {^(M)/r(M)}^ (M). 
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Since the /7-integral on the left-hand side of (3.8) exists theorem 1 ensures 
the existence of 6(x) such that 

( 3 9 ) ( / 7 ) ^ ( S ) { , ( M ) / M M ) } ^ ֊ ^ ( M ) 

= (L)fs{B(z)}-»-»dp(z). 

In fact it is clear that 8{x) = {<£(#) } ֊ 1 except on a set of v measure zero. 
Equation (3.9) is the desired example of theorem 1 when v is not absolutely 
continuous with respect to fl. 

4. An application to information theory 

Let J be a space of points x, a c-field of subsets of 3C and let 
{P(-|0,)}, j = 1, 2, · · ·, k, be a finite family of probability measures on 
We write 8m = (61։ 02, · · ·, 0J, call the 03 indices or index values and refer 
to 0( f c ) as the indexing set. The elements of ^ we refer to as events. For each 
8 e8im we call the ordered pair {2£, P(-|0)} a probability space. 

In Finch [2] it is shown that an appropriate measure of the amount of 
conditional information about the particular probability space {S£, P(-|0,)} 
provided by the occurrence of the event M when it is known that 0 e 0(*> 
is given by 

/[{ST, P(.|fl)}:ilf|fle0<*>] 
՝ ' = ֊log[P(M|0)/2?= 1P(M|0,)], 0e0<*>. 
The quantity 
(4.2) G(M\6<*՝) = A-* PWt), 

is a probability measure over J( and, according to Finch [2], can be inter
preted as the generalised probability that the event M occurs under the 
logical disjunction of hypotheses 6X v 62 v · · · v 6k. 

The quantity (4.1) defines an amount of information provided by the 
occurrence of a particular event M e Jl'. In order to define an average 
amount of information it is natural to introduce the quantity 

E-I[{ar, P(-|0)}|0<*>] 
( 4 ' 3 ) = (ZZ) ƒ P(-|<9)} : M\6 efl«»»]G(M|9«*>), 

for each 6 e 6{k) whenever the 77-integral exists. The quantity (4.3) is the 
expected amount of conditional information about the probability space 
{HE, P(-|0)} provided by an experiment, whose possible outcomes are the 
events of , when it is known that 8 e 0(*'. 

The quantity 
(4.4) a(8\M; 0<*>) = P{M\8)l^1P{M\dj), 0 e 0(S> 
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is called the acceptability of the index value 8 in the light of the occurrence 
of the event M when it is known that 8 e 6m. In terms of the acceptabilities 
we may rewrite equation (4.3) in the form 

E-I[{&, P(-|0)}|0<*>] 
( 4 ' 5 ^ = ֊ (//) ƒ log {a(0|M; 0«}G(M|0<*>). 

It follows from theorem 1 that when this //-integral exists there is a real-
valued measurable point function on 2£, a (B\x; 0№ )) which is finite, except 
possibly on a set of G(-\8m) measure zero, such that 

E ·!{{%, P(-|0)}|0e0<*>] 
( 4 ' 6 ) = - ( £ ) f log {a(8\x; 8™)} • G{dx\B™) 

and where the Lebesgue integral exists if and only if the //-integral (4.5) 
exists. 

Since the probability measure P(-|0) is absolutely continuous with re
spect to the probability measure G(-\8m) for each 8 e 8m it follows from the 
proof of theorem 1 also, that the point function a(8\x; 6{k)) is in fact the 
density of P(-|0) with respect to the measure AG(-|0<*)). Thus theorem 1 
reduces the calculation of the //-integral (4.5) to that of the X-integral (4.6). 
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