A GENERALISATION OF THE RADON-NIKODYM THEOREM

P. D. FINCH

(received 10 January 1964, revised 6 August 1964)

1. Introduction

Let \mathscr{X} be a space of points x, \mathscr{M} a σ -field of subsets of \mathscr{X} and μ a σ -finite measure on \mathscr{M} . The elements of \mathscr{M} will be called measurable sets and all the sets considered in this paper are measurable sets. A real-valued point function t(x) on \mathscr{X} will be said to be measurable if, for each real α , the set $\{x : t(x) \leq \alpha\}$ is measurable. Let $\mathscr{M}(S)$, $S \subset \mathscr{X}$ denote the σ -field of all measurable subsets of S. A real-valued function $f(\cdot)$ on \mathscr{M} will be called a set function.

In Finch [1] a theory of integration of set functions f(M), $M \in \mathcal{M}$ with respect to the measure μ is developed. In that theory the integral

(1.1)
$$I_f(S) = (\Pi) \int_{\mathcal{M}(S)} f(M) \mu(M)$$

is, when it exists, the limit of the approximating sums

(1.2)
$$F_{\Pi}(S) = \sum_{\Pi(S)} f(M)\mu(M)$$

where the summation is over all elements with positive μ -measure, of the partition $\Pi(S)$ of S by elements of $\mathscr{M}(S)$ and the limit is taken in the sense of Moore-Smith convergence as the partitions spread. For details of the theory we refer to Finch [1] where it is shown that the Π -integral (1.1) is, when it exists, a σ -additive set function on \mathscr{M} , that is,

(1.3)
$$I_f \{ \sum_{j=1}^{\infty} M_j \} = \sum_{j=1}^{\infty} I_f(M_j)$$

whenever the sets M_j are mutually disjoint elements of \mathscr{M} . Thus I_j is a signed measure on \mathscr{M} and it follows from (1.2) that it is absolutely continuous with respect to μ . It follows from the Radon-Nikodym theorem that there is a measurable point function $i_j(x)$ on which is finite except possibly on a set of μ -measure zero, such that

(1.4)
$$I_f(S) = (L) \int_S i_f(x) d\mu(x)$$

where the *L*-integral is the Lebesgue integral of $i_f(x)$ with respect to the measure μ . Further if $j_f(x)$ is any other measurable point function satisfying (1.4) then

$$\mu\{x: j_f(x) \neq i_f(x)\} = 0.$$

It is of interest therefore to examine the relationship between the Π -integrable set function f and the associated point function i_f . A partial solution to this problem is provided by the following theorem to whose proof this paper is devoted.

THEOREM 1. Let \mathscr{X} be a space of points x, \mathscr{M} a σ -field of subsets of \mathscr{X} and μ a σ -finite measure on \mathscr{M} . Let v be a σ -finite signed measure on \mathscr{M} and let $g(\xi)$ be a real-valued function of bounded variation of the variable ξ . Write

(1.5)
$$f(M) = g\{\nu(M)/\mu(M)\}, M \in \mathcal{M}, \mu(M) > 0,$$

then there exists a real-valued measurable point function $\theta(x)$ on \mathscr{X} which is finite, except possibly on a set of μ -measure zero, such that for each S

(1.6)
$$(\Pi) \int_{\mathcal{M}(S)} f(M) \mu(M) = (L) \int_{S} g\{\theta(x)\} d\mu(x)$$

whenever either integral exists.

REMARKS. Since \mathscr{X} is the countable union of disjoint elements of \mathscr{M} on which μ and ν are each finite it is sufficient to prove the theorem when μ and ν are each finite. Secondly it is clearly sufficient to prove the theorem when the function g is monotonic and non-negative. From here on, therefore, we shall assume that μ is a finite measure, ν is a finite signed measure and that g is monotonic non-decreasing and non-negative.

Note that the theorem does not assert that the function $g\{\theta(x)\}$ is *L*-integrable with respect to μ , in fact a necessary and sufficient condition for this is the existence of the Π -itegral in (1.6). Note also that the statement of the theorem does not assert that the signed measure ν is absolutely continuous with respect to μ . However the *L*-integrability of $\theta(x)$ or equivalently the existence of the Π -integral (1.6) when $g(\xi) \equiv \xi$ is a necessary and sufficient condition for the absolute continuity of ν with respect to μ .

To see this observe that when $g(\xi) \equiv \xi$ the approximating sum (1.2) to the Π -integral (1.6) is

(1.7)
$$F_{\Pi}(S) = \sum_{\Pi(S)} \nu(M)$$

where the summation is over those elements M of the partition $\Pi(S)$ with $\mu(M) > 0$. If ν is absolutely continuous with respect to μ then $F_{\Pi}(S) = \nu(S)$ since $\mu(M) = 0$ implies $\nu(M) = 0$ and the Π integral exists and has the value $\nu(S)$.

Conversely if the Π -integral exists, that is, if the Π -limit of (1.7) exists

this limit is unique. Choosing a sequence of partitions $\{\Pi_n(S)\}$ of S with $\Pi_{n+1}(S)$ finer than $\Pi_n(S)$ and such that each element of the partition $\Pi_n(S)$ has positive μ -measure we see that this limit is $\nu(S)$. Let S_0 be any element of \mathcal{M} with $\mu(S_0) = 0$ and write $S_1 = S_{\cup}S_0$. Choosing a sequence of partitions $\{\Pi_n(S_1)\}$, of S_1 such that each element of $\Pi_n(S_1)$ has positive μ -measure and $\Pi_{n+1}(S_1)$ is finer that $\Pi_n(S_1)$ we obtain the limit $\nu(S_1)$. Since the Π -integral has a unique value $\nu(S_1) = \nu(S)$, that is, $\nu(S_0) = 0$ and this shows that ν is absolutely continous with respect to μ .

It follows from the above that theorem 1, contains the Radon-Nikodym theorem as a particular case and for this reason our proof of it does not depend on the Radon-Nikodym theorem. An example showing that the theorem can be true when v is not absolutely continuous with respect to μ , in fact when μ is absolutely continuous with respect to v is given in section 3. One use of theorem 1 is that it reduces the calculation of the Π -integral to that of an *L*-integral, such a use is illustrated in section 4 by application to a problem in information theory.

2. Some preliminary results

In this section we state some preliminary results which are required for the proof of theorem 1.

LEMMA (2.1). Let R denote the set of real numbers and let $\{\alpha_i\}$ be a sequence of real numbers which is dense in R. Suppose that $\{M(\alpha_i)\}$ is a family of elements of \mathcal{M} , indexed by the dense sequence α_i and such that

(i) $M(\alpha_i) \subset M(\alpha_j)$ if $\alpha_i < \alpha_j$

(ii) $M(\alpha_i) = \bigcap_{\alpha_j > \alpha_i} M(\alpha_j)$ For any real α define

$$M(\alpha) = \bigcap_{\alpha_j > \alpha} M(\alpha_j)$$

then there exists a real-valued measurable point function $\theta(x)$ on \mathscr{X} such that

$$M(\alpha) = \{x : \theta(x) \leq \alpha\}.$$

If further

(iii) $\lim_{\alpha\to\infty} \mu\{\mathscr{X}-M(\alpha)\} = 0$, $\lim_{\alpha\to\infty} \mu\{M(-\alpha)\} = 0$,

then $\theta(x)$ is finite except possibly on a set of μ -measure zero.

This lemma is proved easily by writing

(2.1)
$$\theta(x) = \inf \{ \alpha : x \in M(\alpha) \}.$$

Using lemma (2.1) one may prove

LEMMA (2.2). If μ is a finite measure on \mathcal{M} , v is a finite signed measure on \mathcal{M} then there exists a measurable point function $\theta(x)$ on \mathcal{M} which is finite except possibly on a set of μ -measure zero, such that if for each real α ,

(2.2) $M(\alpha) = \{x : \theta(x) \leq \alpha\}$

then

20

(2.3)
$$\begin{array}{ll}\nu(M) \leq \alpha \mu(M), & M \subset M(\alpha) \\\nu(M) \geq \alpha \mu(M), & M \subset \mathscr{X} - M(\alpha).\end{array}$$

PROOF. For each real α and each $M \in \mathcal{M}$ write

$$\lambda(M; \alpha) = \nu(M) - \alpha \mu(M)$$

Let $\{\alpha_j\}$ be a dense sequence of real numbers, for each α_j , $\lambda(M; \alpha_j)$ is a finite signed measure on \mathscr{M} and so, by the Hahn decomposition of \mathscr{X} with respect to this signed measure, there exists an element $M(\alpha_j)$ of \mathscr{M} such that

(2.4)
$$\lambda(M; \alpha_j) \leq 0, \qquad M \subset M(\alpha_j) \\ \lambda(M; \alpha_j) \geq 0, \qquad M \subset \mathscr{X} - M(\alpha_j)$$

The proof of lemma (2.2) consists in verifying that we can choose the sets $M(\alpha_i)$ to satisfy the conditions of lemma (2.1). Since this verification uses standard procedures, for example, Royden [3], it will be omitted.

3. Proof of theorem 1

We proceed now to the proof of theorem 1. Since g is non-negative and monotonic non-decreasing the inequality

$$f(M) \leq lpha, M \in \mathscr{M}, \mu(M) > 0$$

is equivalent to the inequality

$$\nu(M)-(g^{-1}\alpha)\mu(M) \leq 0, \quad M \in \mathcal{M}, \quad \mu(M) > 0.$$

Here and in what follows

$$g^{-1}\alpha = \sup\{\xi : g(\xi) \leq \alpha\}$$

Thus if $\theta(x)$ is the measurable point function of lemma (2.2) we have,

(3.1)
$$f(M) \leq \alpha \quad \text{if} \quad M \subset M(g^{-1}\alpha)$$
$$f(M) \geq \alpha \quad \text{if} \quad M \subset \mathscr{X} - M(g^{-1}\alpha)$$

where

$$M(g^{-1}\alpha) = \{x: \theta(x) \leq g^{-1}\alpha\}$$

and

$$g\{\theta(x)\} = \inf \{\alpha : x \in M(g^{-1}\alpha)\}$$

Let δ be an arbitrary positive real number and let $\{\delta_j\}$, $j = 0, 1, \cdots$ be a sequence of real numbers with $\delta_0 = 0$, and such that

A generalisation of the Radon-Nikodym theorem

$$0 < \delta_j - \delta_{j-1} \leq \delta, \quad j \geq 1, \text{ and } \sup \delta_j = +\infty.$$

Write

[5]

$$(3.2) M_j = \{x : \delta_{j-1} < g\{\theta(x)\} \leq \delta_j\}, j \geq 1.$$

Then for any j such that $\mu(M_i) > 0$ we have

$$(3.3) \qquad \qquad \delta_{j-1} \leq f(M) \leq \delta_j, \quad M \in \mathcal{M}, \quad M \subset M_j, \quad \mu(M) > 0.$$

It follows that the total variation

$$|f|(M) = \sup\{f(A_1) - f(A_2) : \mu(A_i) > 0, A_i \subset M\}$$

on f on \mathcal{M} with respect to μ does not exceed δ on the measurable subsets of each M_i . Thus

$$(3.4) |f|(M) \leq \delta, \quad M \in \mathcal{M}, M \subset M_j; \quad \mu(M) > 0.$$

Write

$$f^{(n)}(M) = \begin{cases} f(M) & \text{if } f(M) \leq n \\ n & \text{if } f(M) \geq n \end{cases}$$

for each $M \in \mathcal{M}$ with $\mu(M) > 0$.

Let S be any element of \mathcal{M} , then

$$\Pi(S) = \{SM_j\}, \quad j = 0, 1, 2, \cdots$$

is a partition of S. It follows from (3.4) and theorem (3.3) of Finch [1], that $f^{(n)}(\cdot)$ is Π -integrable on $\mathscr{M}(S)$ with respect to μ , that is,

(3.5)
$$(\Pi) \int_{\mathcal{M}(S)} f^{(n)}(M) \mu(M) = (\Pi) \lim_{j = -\infty} \sum_{j = -\infty}^{+\infty} f^{(n)}(SM_j) \mu(SM_j)$$

exists.

Because of (3.2) and (3.3) it follows also that the sum on the right-hand side of (3.5) is an approximating sum for the Lebesgue integral

$$(L)\int_{S}g^{(n)}\{\theta(x)\}d\mu(x)$$

where

$$g^{(n)}(\xi) = \begin{cases} g(\xi) & \text{if } g(\xi) \leq n, \\ n & \text{if } g(\xi) > n, \end{cases}$$

and hence that

(3.6)
$$(\Pi) \int_{\mathcal{M}(S)} f^{(n)}(M) \mu(M) = (L) \int_{S} g^{(n)} \{\theta(x)\} d\mu(x)$$

Letting $n \to \infty$ in (3.6) we obtain (1.6) whenever either integral exists. The uniqueness of $\theta(x)$ follows immediately since if $\varphi(x)$ is another such measurable point function

$$(L)\int_{S} [g^{(n)}\{\theta(x)\} - g^{(n)}\{\varphi(x)\}]d\mu(x) = 0$$

for all $S \in \mathcal{M}$ and each n > 0, hence

$$\mu\{x; \phi(x) \neq \theta(x)\} = 0.$$

This completes the proof of the theorem.

As remarked in section one the formulation of theorem 1 does not introduce explicitly the condition that ν should be absolutely continuous with respect to μ , although, as we have shown, if the Π -integral (1.6) exists when $g(\xi) \equiv \xi$ this implies that the signed measure ν is absolutely continuous with respect to μ . To illustrate that meaningful results may be obtained when ν is not absolutely continuous with respect to suppose in fact that ν and μ are both finite measures and that μ is absolutely continuous with respect to ν with density $\phi(x)$, so that

$$\mu(M) = (L) \int_M \phi(x) d\nu(x).$$

Suppose also that $\phi(x)$ belongs to the class $L_p(v)$ for some p > 1, so that

$$(L)\int_{M} \{\phi(x)\}^{p} d\nu(x)$$

exists for each $M \in \mathcal{M}$.

Consider the identity

$$\{\mu(M)/\nu(M)\}^{p}\nu(M) = \{\nu(M)/\mu(M)\}^{-(p-1)}\mu(M)$$

where $\nu(M) > 0$. By applying theorem 1 to the left-hand side we obtain

(3.7)
$$(\Pi) \int_{\mathcal{M}(S)} \{ \mu(M) / \nu(M) \}^{p} \nu(M) = (L) \int_{S} \{ \phi(x) \}^{p} d\nu(x)$$

Since μ is absolutely continuous with respect to ν

$$\sum_{\nu(M)>0} \left\{\frac{\mu(M)}{\nu(M)}\right\}^{p} \nu(M) = \sum_{\mu(M)>0} \left\{\frac{\nu(M)}{\mu(M)}\right\}^{-p-1} \mu(M)$$

where the summations are over the elements of the partition $\Pi(S)$ of $S \in \mathcal{M}$ with positive ν and μ measure respectively. Thus the Π -integral of which the right-hand side is the approximating sum exists and equals the Π -integral of (3.7), that is,

(3.8)
$$(\Pi) \int_{\mathcal{M}(S)} \{ \nu(M) / \mu(M) \}^{-(\nu-1)} \mu(M) = (\Pi) \int_{\mathcal{M}(S)} \{ \mu(M) / \nu(M) \}^{\nu} \nu(M).$$

23

Since the Π -integral on the left-hand side of (3.8) exists theorem 1 ensures the existence of $\theta(x)$ such that

(3.9)
$$(\Pi) \int_{\mathcal{M}(S)} \{ \nu(M) / \mu(M) \}^{-(p-1)} \mu(M)$$
$$= (L) \int_{S} \{ \theta(x) \}^{-(p-1)} d\mu(x)$$

In fact it is clear that $\theta(x) = {\phi(x)}^{-1}$ except on a set of ν measure zero. Equation (3.9) is the desired example of theorem 1 when ν is not absolutely continuous with respect to μ .

4. An application to information theory

Let \mathscr{X} be a space of points x, \mathscr{M} a σ -field of subsets of \mathscr{X} and let $\{P(\cdot|\theta_j)\}, j = 1, 2, \cdots, k$, be a finite family of probability measures on \mathscr{M} . We write $\theta^{(k)} = (\theta_1, \theta_2, \cdots, \theta_k)$, call the θ_j indices or index values and refer to $\theta^{(k)}$ as the indexing set. The elements of \mathscr{M} we refer to as events. For each $\theta \in \theta^{(k)}$ we call the ordered pair $\{\mathscr{X}, P(\cdot|\theta)\}$ a probability space.

In Finch [2] it is shown that an appropriate measure of the amount of conditional information about the particular probability space $\{\mathcal{X}, P(\cdot|\theta_j)\}$ provided by the occurrence of the event M when it is known that $\theta \in \theta^{(k)}$ is given by

(4.1)
$$I[\{\mathscr{X}, P(\cdot|\theta)\} : M|\theta \in \theta^{(k)}] = -\log \left[P(M|\theta) / \sum_{j=1}^{k} P(M|\theta_j) \right], \qquad \theta \in \theta^{(k)}.$$

The quantity

(4.2)
$$G(M|\theta^{(k)}) = k^{-1} \sum_{j=1}^{k} P(M|\theta_j),$$

is a probability measure over \mathcal{M} and, according to Finch [2], can be interpreted as the generalised probability that the event M occurs under the logical disjunction of hypotheses $\theta_1 \vee \theta_2 \vee \cdots \vee \theta_k$.

The quantity (4.1) defines an amount of information provided by the occurrence of a particular event $M \in \mathcal{M}$. In order to define an average amount of information it is natural to introduce the quantity

(4.3)
$$E \cdot I[\{\mathscr{X}, P(\cdot|\theta)\}|\theta^{(k)}] = (\Pi) \int_{\mathscr{A}} I[\{\mathscr{X}, P(\cdot|\theta)\} : M|\theta \in \theta^{(k)}] G(M|\theta^{(k)}),$$

for each $\theta \in \theta^{(k)}$ whenever the Π -integral exists. The quantity (4.3) is the expected amount of conditional information about the probability space $\{\mathscr{X}, P(\cdot|\theta)\}$ provided by an experiment, whose possible outcomes are the events of \mathscr{M} , when it is known that $\theta \in \theta^{(k)}$.

The quantity

(4.4)
$$a(\theta|M; \theta^{(k)}) = P(M|\theta) / \sum_{j=1}^{k} P(M|\theta_j), \qquad \theta \in \theta^{(k)}$$

is called the acceptability of the index value θ in the light of the occurrence of the event M when it is known that $\theta \in \theta^{(k)}$. In terms of the acceptabilities we may rewrite equation (4.3) in the form

(4.5)
$$E \cdot I[\{\mathscr{X}, P(\cdot|\theta)\}|\theta^{(k)}] = -(\Pi) \int_{\mathscr{M}} \log \{a(\theta|M; \theta^{(k)})\} G(M|\theta^{(k)}).$$

It follows from theorem 1 that when this Π -integral exists there is a realvalued measurable point function on \mathscr{X} , a $(\theta|x; \theta^{(k)})$ which is finite, except possibly on a set of $G(\cdot|\theta^{(k)})$ measure zero, such that

(4.6)
$$E \cdot I[\{\mathscr{X}, P(\cdot|\theta)\}|\theta \in \theta^{(k)}] = -(L) \int_{\mathscr{X}} \log \{a(\theta|x; \theta^{(k)})\} \cdot G(dx|\theta^{(k)})$$

and where the Lebesgue integral exists if and only if the Π -integral (4.5) exists.

Since the probability measure $P(\cdot|\theta)$ is absolutely continuous with respect to the probability measure $G(\cdot|\theta^{(k)})$ for each $\theta \in \theta^{(k)}$ it follows from the proof of theorem 1 also, that the point function $a(\theta|x; \theta^{(k)})$ is in fact the density of $P(\cdot|\theta)$ with respect to the measure $kG(\cdot|\theta^{(k)})$. Thus theorem 1 reduces the calculation of the Π -integral (4.5) to that of the *L*-integral (4.6).

References

- Finch, P. D., Integration of real-valued set functions in abstract spaces, This Journal 4 (1964), 202-213.
- [2] Finch P. D., The theory of information and statistical inference I, Journ. App. Prob. 1 (1964), 121-140.
- [3] Royden H. L., Real Analysis. Macmillan, New York (1963).

Monash University