
COMPOSITIO MATHEMATICA

Quantifying residual finiteness

of arithmetic groups

Khalid Bou-Rabee and Tasho Kaletha

Compositio Math. 148 (2012), 907–920.

doi:10.1112/S0010437X11007469

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X11007469 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X11007469
https://doi.org/10.1112/S0010437X11007469


Compositio Math. 148 (2012) 907–920
doi:10.1112/S0010437X11007469

Quantifying residual finiteness

of arithmetic groups

Khalid Bou-Rabee and Tasho Kaletha

Abstract

The normal residual finiteness growth of a group quantifies how well approximated the
group is by its finite quotients. We show that any S-arithmetic subgroup of a higher
rank Chevalley group G has normal residual finiteness growth ndim(G).

1. Introduction

The quantification of residual finiteness, begun in [Bou10], seeks to describe how well a residually
finite group is approximated by its finite quotients. This is measured by the normal residual
finiteness growth of the group. During a geometry seminar at Yale University in December 2009,
G. D. Mostow asked the following question.

Question 1.1 (Mostow). Does asymptotic information of residual finiteness characterize
arithmetic subgroups of a given linear algebraic group?

This paper presents a first major step towards answering this question, by showing that in
a fixed Chevalley group G, all S-arithmetic subgroups share the same normal residual finiteness
growth, and moreover this growth is ndim(G). Note that for us, a Chevalley group will be a split
simple algebraic group that is not necessarily simply connected.

To state our results more precisely, we need some notation. Let Γ be a finitely generated,
residually finite group, and let X be a finite generating set for Γ. For γ ∈ Γ, let ‖γ‖X denote the
word length of γ with respect to X. Define

DΓ(γ) := min{|Q| :Q is a finite quotient of Γ, where γ 6= 1}
and

FΓ,X(n) := max{DΓ(γ) : ‖γ‖X 6 n, γ 6= 1}.
The function FΓ,X is called the normal residual finiteness growth function. It is known that
the asymptotic behavior of FΓ,X is independent of X (see § 2). The asymptotic growth of this
function is called the normal residual finiteness growth of Γ.

The main results of this paper characterize the normal residual finiteness growth of
S-arithmetic groups in Chevalley groups. We use the term S-arithmetic subgroup of G to denote
any subgroup of G(C) which is commensurable with G(OK,f ), where K ⊂ C is a number field,
OK is its ring of integers, and f ∈ OK r {0}. The ingredients used include the structure theory
of split semisimple group schemes, results on the congruence subgroup problem, Moy–Prasad
filtrations, Selberg’s lemma, the prime number theorem, and the Cebotarëv density theorem.
Furthermore, we use in an essential way the results of Lubotzky–Mozes–Raghunathan [LMR00].
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Theorem 1.2. Let G be a Chevalley group of rank at least two, K be a number field, and
f ∈ OK r {0}. If Γ is a finitely generated subgroup of G(C) with the property that Γ ∩G(OK,f )
is of finite index in G(OK,f ), then its normal residual finiteness growth is bounded below by
ndim(G).

It is interesting to ask whether an analogous result holds in rank one. So far, the normal
residual finiteness growth of a non-abelian free group has been bounded below by n2/3

(see [KM11]).

Theorem 1.3. Let G be a Chevalley group, K be a number field, and f ∈ OK r {0}. If Γ is a
finitely generated subgroup of G(C) with the property that Γ ∩G(OK,f ) is of finite index in Γ,
then its normal residual finiteness growth is bounded above by ndim(G).

As a corollary of Theorems 1.2 and 1.3, we have the following result.

Corollary 1.4. Let G be a Chevalley group of rank at least two. Then the normal residual
finiteness growth of every S-arithmetic subgroup of G is precisely ndim(G).

This result is surprising, since, in general, if ∆ has finite index in Γ, we cannot hope for
FΓ ≈ F∆ (see Example 2.5 at the end of § 2). Instead, the most general result in this direction is
FΓ(n)� (F∆(n))[Γ:∆] (see [Bou10, Lemma 1.3]).

2. Preliminaries

Let Γ be a finitely generated, residually finite group. For γ ∈ Γ r {1}, we define Q(γ, Γ) to be
the set of finite quotients of Γ in which the image of γ is non-trivial. We say that these quotients
detect γ. Since Γ is residually finite, this set is non-empty, and thus the natural number

DΓ(γ) := min{|Q| :Q ∈Q(γ, G)}

is defined and positive for each γ ∈ Γ r {1}. For a fixed finite generating set X ⊂ Γ, we define

FΓ,X(n) := max{DΓ(γ) : γ ∈ Γ, ‖γ‖X 6 n, γ 6= 1}.

For two functions f, g : N→ N, we write f � g if there exists a natural number M such that
f(n)6Mg(Mn), and we write f ≈ g if f � g and g � f . We will also write f � g for g � f and
in the case when f ≈ g does not hold we write f 6≈ g.

It was shown in [Bou10] that if X, Y are two finite generating sets for the residually finite
group Γ, then FΓ,X ≈ FΓ,Y . Since we will only be interested in asymptotic behavior, we let FΓ be
the equivalence class (with respect to ≈) of the functions FΓ,X for all possible finite generating
sets X of Γ. Sometimes, by abuse of notation, FΓ will stand for some particular representative
of this equivalence class, constructed with respect to a convenient generating set.

We will need to use the following auxiliary function in our proofs. For any natural number
k, we define

Dk
Γ(γ) := DΓ(γk) and FkΓ,X(n) := max{Dk

Γ(γ) : γ ∈ Γ, ‖γ‖X 6 n, γk 6= 1}.

The next lemma, which is a consequence of Selberg’s lemma (see [Alp87]), reveals the potential
utility of FkΓ,X .

Lemma 2.1. Let Γ be an infinite linear group generated by a finite set X and let k a natural
number. Then FΓ,X ≈ FkΓ,X .
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Proof. The inequality FkΓ,X(n)6 FΓ,X(kn) is straightforward. It suffices to prove FΓ,X(n)6
FkΓ,X(n) for all but finitely many n. Let γn be an element such that DΓ(γn) = FΓ,X(n) and
‖γn‖X 6 n. If γkn 6= 1, then DΓ(γn)6Dk

Γ(γn), giving FΓ,X(n)6 FkΓ,X(n). The proof will be
complete if we show that γkn = 1 holds for only finitely many n. Suppose otherwise; then, by
Selberg’s lemma, there exists a finite-index normal subgroup ∆ of Γ that is torsion-free, and in
particular γn /∈∆ for infinitely many n. Since FΓ,X(n) is non-decreasing in n, it must be bounded
by [Γ : ∆], but this contradicts the infinitude of Γ. 2

Corollary 2.2. If Γ is an infinite linear group and X, Y are finite generating sets for Γ, then
FkΓ,X ≈ FkΓ,Y .

As with the function F, we will denote the asymptotic equivalence class of FkΓ,X as X varies
by FkΓ. The following example shows that the linearity assumption cannot be dropped from
Lemma 2.1.

Example 2.3. Let Γ be the Lamplighter group Z/2Z o Z. Set ∆ =
⊕

i∈Z Z/2Z to be the base
group of Γ, so Γ/∆∼= Z. It is easy to see that for any generating set X of Γ, we have F2

Γ,X(n)≈
FZ(n). Thus, F2

Γ,X(n)≈ log(n) by [Bou10, Corollary 2.3]. We now prove that FΓ(n)� (log(n))2,
so in particular FΓ 6≈ F2

Γ,X .

Proof. Let δi ∈∆ be the element given by the ith Kronecker delta function. For k a natural
number greater than 4, set γk := δ1 + δlcm(1,...,k). Let φ : Γ→ P be a homomorphism to a finite
quotient of Γ that realizes DΓ(γk). We first claim that if δ1 + δ1+n ∈ ker φ for n ∈ N, then n> k.
Indeed, a simple calculation shows that δ1 + δ1+mn ∈ ker φ for any m ∈ N. If n6 k, we have that
lcm(1, . . . , k) is a multiple of n, so δ1 + δlcm(1,...,k) ∈ ker φ, which is impossible.

Next we claim that the set S := {(δn, t) : n, t ∈ {1, . . . , bk/4c}} ⊆ Γ injects into P through φ.
Suppose not; then (δn, t)(δn′ , t′)−1 ∈ ker φ for t, t′, n, n′ ∈ {1, . . . , bk/4c} with (δn, t) 6= (δn′ , t′).
Set α= (δn, t)(δn′ , t′)−1 = (δn + δn′+t−t′ , t− t′). If t− t′ = 0, then, by our first claim, n= n′ or
||n| − |n′||> k. If n= n′, then α= (0, 0), while the latter possibility contradicts ||n| − |n′||6 k/2.
If t− t′ 6= 0, because αδiα−1δ−1

i ∈ ker φ for all i, we have δ1+t−t′ + δ1 ∈ ker φ, where, by our first
claim, |t− t′|> k; however, |t− t′|6 k/2. Our second claim is now shown.

Since S injects into P , we have |P |> bk/4c2. Fix a finite generating set X for Γ; by the prime
number theorem, there exists a natural number M such that ‖γk‖X 6M3k. Set k = blog3(n)c;
then, because FΓ is increasing, we have, for sufficiently large n,

FΓ(Mn)> FΓ(M3k)> FΓ(‖γk‖X)> bk/4c2 > 1
32

[
log(n)
log(3)

]2

. 2

Lemma 2.4. Let Γ,∆ be finitely generated and residually finite.

– If f : ∆→ Γ is a homomorphism with finite kernel, then F∆ � FΓ.

– If in addition f is surjective, its kernel is central in ∆, and Γ is linear, then F∆ ≈ FΓ.

Proof. For the first assertion, factor f as ∆
j
� im(f)

i
↪→ Γ. By [Bou10, Lemma 1.1], we have

Fim(f) � FΓ. By a similar argument one can show that F∆ � Fim(f).

Now consider the second assertion. We will show Fk∆ � FΓ, where k = |ker(f)|. To that end,
fix a finite generating set X for ∆ and use its image for Γ. Construct F∆ and FΓ with respect to
these generating sets. Let g ∈∆, gk 6= 1. Since gk = (zg)k for all z ∈ ker(f), we see that ker(f)N
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is a normal subgroup of ∆ not containing g. Thus, Dk
∆(g)>DΓ(f(g)) for all g ∈∆ with gk 6= 1.

We now need to handle torsion elements in Γ.

For each natural number n, let γn ∈ Γ be an element satisfying DΓ(γn) = FΓ(n) and ‖γn‖6 n.
Since f is surjective, by our choice of generating sets, there exists gn ∈∆ such that f(gn) = γn and
‖gn‖6 n. Then, if gkn = 1 for infinitely many n, we have γkn = 1 for infinitely many n. Following
the Selberg lemma application from Lemma 2.1, we see that Γ is finite, which is impossible.
Thus, gkn 6= 1 for all but finitely many n. For such n, we have Dk

∆(gn)>DΓ(f(gn)) and hence
Fk∆(n)� FΓ(n). 2

We finish the preliminaries section with an example that illustrates that normal residual
finiteness growth of a group may be different from that of a finite index subgroup.

Example 2.5. Let Q be the subgroup of GL2(Z) generated by

A=
(

1 0
0 −1

)
and B =

(
0 1
1 0

)
.

Let ∆ = Z× Z and set Γ = ∆ oQ, where Q acts on ∆ via the standard action of GL2(Z).
Because Q is finite, Γ contains ∆ as a subgroup of finite index. Further, F∆(n)≈ log(n) by
[Bou10, Corollary 2.3]. We now prove that FΓ(n)� (log(n))2.

Proof. Let X be a generating set for Γ containing (1, 0) and (0, 1) in ∆. Set γk to be
(lcm(1, . . . , k), 0) ∈∆. By the prime number theorem, there exists a natural number M such
that ‖γk‖X 6M3k. Let φ : Γ→ P be a homomorphism to a finite quotient of Γ that realizes
DΓ(γk) and set V = ker φ ∩∆. We first construct a subgroup of V of the form dZ× dZ for some
natural number d. Consider the intersection of V with Z× 0. This is a subgroup of Z and hence
is isomorphic to dZ for some natural number d. Thus, we have dZ× 0⊂ V , and conjugating by
B we also find 0× dZ is in V .

Next we claim that the index of dZ× dZ in V is at most 4: let (a, b) ∈ V . Then (2a, 0) =
(a, b) +A(a, b)A−1 ∈ V , and similarly (2b, 0) ∈ V , so 2a, 2b ∈ dZ, and hence 2(a, b) ∈ dZ× dZ,
which shows that every element of V/dZ× dZ has order (at most) two. But V is a free abelian
group of rank two, so V/dZ× dZ is generated by two elements, and the claim follows. We conclude
that d2 = [∆ : dZ× dZ] = [∆ : V ][V : dZ× dZ]6 4[∆ : V ], giving |P |> 1

4d
2.

Finally, since γk /∈ ker(φ), we must have that d> k. Hence, FΓ(M3k)>DΓ(γk)> 1
4k

2. Set
k = b(log3(n))c; then, because FΓ is increasing, we have, for sufficiently large n,

FΓ(Mn)> FΓ(M3k)>
1
4
k2 >

1
16

(
log(n)
log(3)

)2

,

giving FΓ(n)� (log(n))2, as desired. 2

3. Lower bounds

Let G be a Chevalley group, that is, a split simple group scheme defined over Z, and let g be its
Lie algebra. Note that we do not assume that G is simply connected. For a natural number m,
we put G(m) =G(Z/mZ). For a while, we will focus attention on the powers of a single prime p,
and to lighten the notation we put Gk =G(Z/pkZ).
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Recall from [SGA3, exp. 1, 2.3.3+2.3.6] the definition of the center Z(G) of G. It is the
subfunctor of G, which assigns to each scheme S the following subgroup of G(S):

Z(G)(S) := {g ∈G(S) | ∀S′→ S : Ad(g)|G(S′) = idG(S′)},
where Ad(g)|G(S′) denotes the automorphism of G(S′) provided by conjugation by the image of
g under the natural map G(S)→G(S′).

It is shown in [SGA3, exp. 22, 4.1.8] that the functor Z(G) is representable by a closed Z-
subgroup scheme of G, which is finite and diagonalizable. As such, Z(G) is a product of finitely
many group schemes, each isomorphic to µn for some n, where µn is the group scheme of nth
roots of unity. In particular, Z(G) is etale over Z[ord(Z(G))−1]. See [SGA3, exp. 8, 2.1].

From the definition, it is obvious that Z(G)(S)⊂ Z(G(S)). We will show that there exists
f ∈ Z r {0} such that if S lies over Spec(Zf ), then Z(G)(S) = Z(G(S)). The main ingredient in
this proof is the following lemma, which asserts the existence of a strongly regular section of the
split maximal torus in G over Spec(Zf ).

Lemma 3.1. Let T ⊂G be a split maximal torus. There exist f ∈ Z r {0} and a point s ∈ T (Zf )
such that

Cent(s, G× Spec(Zf )) = T × Spec(Zf ).

Proof. Consider the closed subscheme of T given by⋃
α∈R(T,G)

ker(α) ∪
⋃
w∈W

Tw,

whereR(T, G) is the set of roots of T inG andW = Norm(G, T )/T is the Weyl group. Let U be its
complement in T . Then U → T is an open immersion, which when composed with an isomorphism
T ∼= Gr

m and the open immersion Gr
m→ Ar

Z provides an open immersion U → Ar
Z. Since Ar(Q)

is dense in Ar(Q), it follows that U(Q) 6= ∅. As U is of finite type, any map Spec(Q)→ U factors
as Spec(Q)→ Spec(Zf )→ U for some f . Thus, we have a point s : Spec(Zf )→ U . We claim
that this point satisfies the statement of the lemma. To lighten notation, let us base change to
Spec(Zf ). Consider the centralizer H := Cent(s, G). It is a closed subscheme of G, hence affine
and of finite type over Zf , and contains T . By generic flatness, we may assume that H is flat,
after possibly changing f . By the choice of s, all fibers of H and T coincide. By [SGA3, exp. 10,
4.9], H is a torus and, since T is a maximal torus, it follows that H = T . 2

Corollary 3.2. There exists f ∈ Z r {0} such that for all schemes S→ Spec(Zf ), we have

Z(G)(S) = Z(G(S)).

Proof. The inclusion ⊂ is obvious from the definition of Z(G) and we now have to show the
converse. Choose f and s ∈ T (Zf ) as in the above lemma. Let S→ Spec(Zf ) and x ∈ Z(G(S)).
If sS ∈ T (S) denotes the image of s under T (Zf )→ T (S), then

x ∈ Cent(sS , GS)(S) = T (S).

We claim that for every root α ∈R(TS , GS), we have α(x) = 1. Assume by way of contradiction
that this were not the case. Let uα : Ga,S →GS be the root subgroup corresponding to α, and
y = uα(1). Then y ∈G(S) is a point not centralized by x, contrary to the assumptions. It follows
that

x ∈
⋂

α∈R(TS ,GS)

ker(α)(S) = Z(G)(S),

where the last equality is [SGA3, exp. 22, 4.1.6]. 2
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Corollary 3.3. There exists a finite set of primes P such that |Z(Gk)| divides ord(Z(G)) for
all primes p /∈ P . In particular, if m is an integer coprime to the elements of P , then the order
of every element of Z(G(m)) divides ord(Z(G)).

Proof. The second statement is an immediate consequence of the first, since Z(G(m)) =∏
pk‖m Z(Gk). To prove the first, let P be the set of primes p for which Z(G)(Z/pkZ) is a

proper subgroup of Z(Gk). According to Corollary 3.2, the set P is finite. For a prime p not in
P , we then have Z(Gk) = Z(G)(Z/pkZ). As already remarked, Z(G) is a finite product of the
µn. Since (Z/pkZ)× is cyclic, the number |µn(Z/pkZ)| divides n. The statement now follows. 2

Lemma 3.4. The natural projection Z/pkZ→ Z/pk−1Z induces a surjective homomorphism

Gk→Gk−1.

For all but finitely many primes p, this homomorphism restricts to an isomorphism

Z(Gk)→ Z(Gk−1).

Proof. The first claim follows directly from the infinitesimal lifting property of smoothness.
For the second claim, let p be a prime which does not divide ord(Z(G)) and for which
Z(Gk) = Z(G)(Z/pkZ) for all k. By Corollaries 3.2 and 3.3, these are all but finitely many
primes. Then Z(G) is etale over Z(p) and this implies the bijectivity of the second map. 2

Corollary 3.5. Assume that G is simply connected. Then, for all but finitely many p,

Z(Gk/Z(Gk)) = {1}.

Proof. We prove this by induction on k. The base case is k = 1, which is known, since
G(Fp)/Z(G(Fp)) is simple. For the induction step, let k > 1. Let z ∈Gk be an element which
is central in Gk/Z(Gk). Then, for all g ∈Gk, zg := gzg−1z−1 ∈ Z(Gk). Under the surjection
Gk→Gk−1, the element z maps to an element z̄ with the same property. Applying the induction
hypothesis, we see that z̄ ∈ Z(Gk−1). This implies that z̄g = 1. Lemma 3.4 now implies zg = 1
and the statement follows. 2

For 06 i6 k, let Gik := ker(Gk→Gi). This provides a descending filtration

Gk =G0
k >G

1
k > · · ·>Gkk = {1}.

We fix a closed embedding G→ SLm defined over Z. This yields an embedding of Lie algebras
g→ slm defined over Z. We identify G and g with their respective images. Clearly, Gik =
[1 + piMm(Z/pkZ)] ∩Gk, and an element 1 + pix ∈Gik belongs to Gi+1

k if and only if x≡ 0 mod p.
The following lemma is a well-known result from the theory of Moy–Prasad filtrations [MP94].

Lemma 3.6 (Moy–Prasad). (i) [Gik, G
j
k]⊂G

i+j
k .

(ii) For 16 i6 k − 1, the map

Gik/G
i+1
k → g(Fp), 1 + pix 7→ x mod p

induces an isomorphism of groups, which is equivariant with respect to the action of G(Fp) on
both sides by conjugation.

Remark 3.7. In particular, one sees inductively that each Gik for i > 0 is a p-group.
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Lemma 3.8. There exist positive constants c, C such that for all prime powers m= pk,

cmdim(G) 6 |G(m)|6 Cmdim(G).

Proof. In the case k = 1, the lemma follows from [Ste68, Theorem 25, § 9]. The general case
reduces to this, because according to Lemma 3.6 we have |Gk|= p(k−1) dim(G)|G(Fp)|. 2

Lemma 3.9. For all but finitely many p, the Lie algebra g(Fp) has no center, and the adjoint
action of G(Fp)/Z(G(Fp)) on g(Fp) is faithful and irreducible.

Proof. This is a well-known classical result. See for example [His84, Hog82]. 2

Lemma 3.10. Assume that p is sufficiently large, and 06 i6 k − 2. For every g ∈Gik r
Gi+1
k Z(Gk), there exists h ∈G1

k such that hgh−1g−1 ∈Gi+1
k rGi+2

k Z(Gk).

Proof. Note first that by Lemma 3.4, Gi+1
k ∩ (Gi+2

k Z(Gk)) =Gi+2
k . Hence, it is enough to find h

such that hgh−1g−1 /∈Gi+2
k .

Write h= 1 + py with some y ∈Mm(Z/pkZ) to be determined. We will make use of the
following computation: for any x ∈Mm(Z/pkZ), we have:

(1 + py)x(1 + py)−1 = (x+ pyx)(1 + py)−1

= (x+ pxy − p[x, y])(1 + py)−1

= (x− p[x, y](1 + py)−1),

where [x, y] = xy − yx.
First assume that i= 0. Then, using the above computation, we see that

hgh−1g−1 = 1− p[g, y](1 + py)−1g−1.

Clearly, the right-hand side belongs to G1
k, and to show that it does not belong to G2

k it is enough
by Lemma 3.6 to show that the reduction mod p of the matrix [g, y](1 + py)−1g−1 ∈Mm(Z/pkZ)
is non-zero. Call this reduction T . It belongs to g(Fp). Using the formula

(1 + py)−1 =
k−1∑
j=0

(−py)j ,

we compute that T = [ḡ, ȳ]ḡ−1 = ḡȳḡ−1 − ȳ. By Lemma 3.4, the preimage of Z(G(Fp)) under
Gk→G(Fp) is G1

kZ(Gk). Thus, by assumption, the image ḡ of g in G(Fp)/Z(G(Fp)) is non-
trivial and, by Lemma 3.9, there exists ȳ ∈ g(Fp) such that ḡȳḡ−1 6= ȳ. According to Lemma 3.6,
there exists h= 1 + py ∈G1

k corresponding to this ȳ. This completes the proof in the case i= 0.
Now assume i > 0. We write g = 1 + pix for some x ∈Mm(Z/pkZ) whose reduction mod p

belongs to g(Fp). Then

(1 + py)(1 + pix)(1 + py)−1(1 + pix)−1 = (1 + pi(1 + py)x(1 + py)−1)(1 + pix)−1

= (1 + pix− pi+1[x, y](1 + py)−1)(1 + pix)−1

= 1− pi+1[x, y](1 + py)−1(1 + pix)−1.

Again, hgh−1g−1 ∈Gi+1
k , and we want to choose y so that this element does not belong to Gi+2

k .
By Lemma 3.6, this is equivalent to the demand that the reduction mod p of the element

[x, y](1 + py)−1(1 + pix)−1 ∈Mm(Z/pkZ)
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be non-trivial. Using the formula for (1 + pix)−1 analogous to that used above for (1 + py)−1, we
compute that this element is equal mod p to [x, y]. Now we consider the image of [x, y] ∈Mm(Fp).
Of course, this is just the bracket of the images of x and y in Mm(Fp). But these images, and
hence their bracket, lie in g(Fp). Again, as in the case i= 0, specifying h is equivalent to choosing
the class of y in g(Fp) in such a way that its bracket with the class of x is non-trivial. Since the
Lie algebra g(Fp) has no center, the class of x is non-central, and so an appropriate y exists. 2

Proposition 3.11. Assume that p is sufficiently large and G is simply connected. Then every
normal subgroup N <Gk which contains Z(Gk) equals GikZ(Gk) for some i.

Proof. We will first prove under the assumption k > 1 by descending induction on i the following
statement.

∀06 i < k :N ∩ [Gik rGi+1
k Z(Gk)] 6= ∅⇒Gik ⊂N.

The base case is when i= k − 1> 0. Then the isomorphism of Lemma 3.6 identifies Gik with
g(Fp) and N ∩Gik with an invariant subspace of g(Fp). By assumption, this space is non-trivial
and, by Lemma 3.9, it is all of g(Fp), hence N ∩Gik =Gik. For the induction step, assume
i> 0. Let g ∈N ∩ [Gik rGi+1

k Z(Gk)]. Use Lemma 3.10 to obtain h ∈G1
k such that hgh−1g−1 ∈

Gi+1
k rGi+2

k Z(Gk). Then hgh−1g−1 ∈N , and we may apply the induction hypothesis to conclude
Gi+1
k ⊂N . Now look at the normal subgroup (N ∩Gik)/G

i+1
k of Gik/G

i+1
k . If i > 0, then we

have the isomorphism Gik/G
i+1
k → g(Fp) and the image of that normal subgroup is a non-trivial

invariant subspace. If i= 0, then we have the isomorphism Gik/G
i+1
k →G(Fp) and the image of

that normal subgroup is a normal subgroup of G(Fp) which properly contains Z(G(Fp)). In both
cases, we conclude that (N ∩Gik)/G

i+1
k =Gik/G

i+1
k , and hence N ∩Gik =Gik. This completes the

induction.
Now we show how the proposition follows from the above statement. The case k = 1 is

trivial, since G1/Z(G1) is simple. Thus, assume k > 1. If N = Z(Gk), there is nothing to prove.
Otherwise, there exists a unique smallest index i such that Gik rGi+1

k Z(Gk) contains an element
of N . By the above statement, Z(Gk)Gik ⊂N , but by minimality of i this must in fact be an
equality. 2

Proposition 3.12. Let N be a natural number, and H = ker[G(Z)→G(N)]. If G is simply
connected, then, for any m coprime to N , the projection G(Z)→G(m) maps H surjectively
onto G(m).

Proof. We begin with the special case N = 1; then H =G(Z). Since G is smooth, the natural
projection G(Zp)→G(Z/pkZ) is surjective for all primes p and all natural numbers k, and
hence the natural projection G(Ẑ)→G(m) is surjective for all natural numbers m. By strong
approximation [PR94], the inclusion G(Z)→G(Ẑ) has dense image. Thus, the natural projection
G(Z)→G(m) is surjective.

For the general case, we have G(Nm)∼=G(N)×G(m) and, by the first part of the proof, the
projection G(Z)→G(N)×G(m) is surjective. The preimage in G(Z) of the subgroup 1×G(m)
of G(N)×G(m) is precisely H, and maps surjectively onto G(m). 2

Proposition 3.13. Assume that the rank of G is at least two. Let u : Ga→G be a root
subgroup, and X a finite generating set for G(Z). Then there exists a positive constant M
such that for any positive z ∈ Z,

‖u(z)‖X 6M log(z).

914

https://doi.org/10.1112/S0010437X11007469 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007469


Quantifying residual finiteness of arithmetic groups

Proof. Composing u with the chosen closed embedding G→ SLm, and then further with the
natural inclusion SLm→Mm, we obtain a morphism of Z-schemes

u′ : A1
Z→ Am2

Z ,

which is given by the collection {u′i,j} of m2-many polynomials in one variable with integral
coefficients. Let k = max deg(u′i,j) + 1. Then there exists a positive constant C such that
u′i,j(z)6 Cz

k for all positive integers z and all i, j. Thus, ‖u′(z)‖6 Czk for all z ∈ N, where
‖ ‖ is the maximum norm on Mm(R). The result now follows from [LMR00, Theorem A]. 2

We are now ready to prove our main lower bound. In the proof, we are going to use the fact
that if G is simply connected and has rank at least two, then G(Z) has the congruence subgroup
property. We refer the reader to [PR94, ch. 9.5] for a discussion of this property. Also, recall
that a subgroup of G(m) is called essential if it does not contain the kernel of the natural map
G(m)→G(r) for any r|m with r <m.

Theorem 3.14. Assume that the rank of G is at least two. Let K be a number field, f ∈ OK ,
and ∆ a finitely generated subgroup of G(C) with the property that ∆ ∩G(OK,f ) is of finite
index in G(OK,f ). Then

F∆(n)� ndim(G).

Proof. Let Gsc be the simply connected cover of G, and p :Gsc(OK,f )→G(OK,f ) the natural
map. Then ∆sc := p−1(∆ ∩G(OK,f )) is of finite index in Gsc(OK,f ) and the map p : ∆sc→∆
has finite kernel. By Lemma 2.4, we may assume for the rest of the proof that G=Gsc and
∆⊂G(OK,f ).

Since ∆ is of finite index in G(OK,f ), so is ∆ ∩G(Z) of finite index in G(Z). By virtue
of the congruence subgroup property of G(Z), we can find a principal congruence subgroup
∆′ ⊂∆ ∩G(Z). Applying again Lemma 2.4, we may assume for the rest of the proof that
OK,f = Z and that ∆ is a principal congruence subgroup of G(Z).

Let N = ord(Z(G)). By Lemma 2.1, it suffices to find a lower bound for FN∆ . Loosely speaking,
we will see that working with FN∆ instead of F∆ will aid us in ignoring certain central elements
in finite images of ∆.

We first construct candidates that are poorly approximated by finite quotients. Let X and
Y be finite generating sets for G(Z) and ∆, respectively. Let S be the set of primes p for which
at least one of the following conditions fails.

– |Z(Gk)| divides N .

– If Z(Gk)EN EGk, then N =GikZ(Gk) for some i.

– The projection G(Z)→Gk maps ∆ surjectively onto Gk,

where, as before, Gk =G(Z/pkZ). By Corollary 3.3 and Propositions 3.11 and 3.12, this set
is finite. Put α=

∏
p∈S p and rk = αk lcm(1, . . . , k). Let u : Ga→G be a root subgroup, and

Bk = u(rk). Since u is defined over Z, we have Bk ∈G(Z), hence Ak :=B
[G(Z):∆]
k ∈∆. The

elements Ak will be our candidates for achieving lower bounds for FN∆ .
Next we bound the word length of Ak, that is, the function k 7→ ‖Ak‖Y . By Proposition 3.13,

there exists a natural number M such that

‖Ak‖X 6M log(lcm(1, . . . , k)αk).
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Hence, by the prime number theorem, we may find a potentially different natural number M so
that ‖Ak‖X 6Mk. Finally, since G(Z) is quasi-isometric to ∆, we have that

‖Ak‖Y 6Mk (1)

for some other natural number M .
The remainder of the proof is devoted to finding a lower bound for the cardinality of any

finite quotient Q= ∆/H which detects ANk , in particular to the quotient realizing DN
∆ (Ak). We

start by taking one such quotient Q. Since we are looking for a lower bound of the cardinality
of Q, we may replace it by either a subgroup or a quotient of it, and we will do so repeatedly in
the following.

By the congruence subgroup property for G(Z), there exists a natural number m such that
the kernel of the projection φ :G(Z)→G(m) lies in H. Let ∆′, H ′, and A′k be the images of ∆, H,
and Ak, respectively, in G(m). By the Chinese remainder theorem, we may write G(m) =A×B,
where

A=
∏
pj‖m
p∈S

G(pj) and B =
∏
pj‖m
p6∈S

G(pj)

and pj‖m means that j is the greatest power of p which divides m.
We know (A′k)

N 6= 1. For any c ∈ Z(B), we have ord(c)|N (see Corollary 3.3 and the choices
of S and N). Thus, we have (cA′k)

N = (A′k)
N for any c ∈ Z(B), which implies cA′k /∈H ′. Hence,

A′k /∈H ′Z(B). Letting A′′k, ∆′′, and H ′′ be the images of A′k, ∆′, and H ′ in A×B/Z(B),
respectively, we have that A′′k /∈H ′′. Further, [∆′′ :H ′′]6 [∆′ :H ′], since ∆′′/H ′′ is an image
of Q= ∆′/H ′.

We claim that any quotient of B/Z(B) is centerless: indeed, by the choice of S, for every
p /∈ S, Lemma 3.4 and Corollary 3.5 imply that all quotients of G(pj)/Z(G(pj)) are centerless.
By [LL, 1.4], every normal subgroup of B/Z(B) is a product of normal subgroups of the factors
of B/Z(B), and the statement follows.

Recall that ∆ was assumed to be a principal congruence subgroup of G(Z). By
Proposition 3.12, G(Z) projects onto A×B/Z(B). Hence, ∆′′ is normal in A×B/Z(B) and,
applying [LL, 1.3, 1.4], we see that ∆′′ = ∆1 ×∆2, where

∆1 = π1(∆′′) and ∆2 = π2(∆′′),

where π1 and π2 are the natural projection maps of A×B/Z(B) onto A and B/Z(B),
respectively.

By the choice of S, we have ∆2 =B/Z(B). The subgroup H ′′ is normal in ∆′′ = ∆1 ×∆2

and, since ∆2 has no center, [LL, Corollary 1.4] applies again giving H ′′ =H1 ×H2, where
H1 = π1(H ′′) and H2 = π2(H ′′). Now, since A′′k /∈H1 ×H2, we have two cases: π1(A′′k) /∈ π1(H ′′)
or π2(A′′k) /∈ π2(H ′′). In both cases, we claim that there exists a natural number M , independent
of k, such that M |Q|> kd, where d := dim(G).

We first handle the case π1(A′′k) /∈ π1(H ′′). Write A=G(m0), and let r be the smallest natural
number such that the kernel of the natural map φ :G(m0)→G(r) is contained in π1(H ′′).
Then φ(π1(A′′k)) /∈ φ(π1(H ′′)) and φ(π1(H ′′)) is essential or trivial. Since the image of Ak in
G(r) is non-trivial, r does not divide αk. But any prime dividing r also divides α (recall the
choices of A, r, and α), hence pk|r for some p ∈ S. In the case φ(π1(H ′′)) is essential, [LS03,
Proposition 6.1.2] gives C[G(r) : φ(π1(H ′′))]> r > pk, where C is a natural number that only
depends on G. If φ(π1(H ′′)) is trivial, we get the better bound C|G(r)|> C|G(pk)|> pkd by
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Lemma 3.8, where C is again a natural number that depends only on G. Set M ′ = C[G(Z) : ∆].
Since [G(r) : φ(π1(∆′′))]6 [G(Z) : ∆], we have

M ′[∆′′ :H ′′]> C[G(r) : φ(π1(∆′′))][φ(π1(∆′′)) : φ(π1(H ′′))] = C[G(r) : φ(π1(H ′′))]> pk.

There exists a natural number M ′′ such that M ′′pk > kd for all p ∈ S and k ∈ N. Setting
M =M ′M ′′, we see that

M [∆′′ :H ′′]>M ′′pk > kd.

Since |Q|> [∆′′ :H ′′], the claim is shown.
Next we handle the case π2(A′′k) /∈ π2(H ′′). By repeated use of [LL, Corollary 1.4], there exists

a natural projection φ :A×B/Z(B)→Gk/Z(Gk) with φ(A′′k) /∈ φ(H ′′) and Gk =G(pk), where
p /∈ S. By Proposition 3.11 and the normality of H2 in ∆2 =B/Z(B), we have φ(H ′′) =Gik/Z(Gk)
for some i, hence the image of φ(A′′k) through the natural projection onto Gi/Z(Gi) is non-trivial.
Further, Q maps onto Gi/Z(Gi).

From the estimate M ′|Gi|> pdi (Lemma 3.8), where M ′ is a natural number, and the fact
that pi does not divide lcm(1, . . . , k), we obtain pi > k and, thus,

M ′|Gi|> pid > kd.

Finally, since |Gi|/|Z(Gi)|6 |Q| and |Z(Gi)|6N (by the choice of S), the claim holds with
M =M ′N .

The inequality M |Q|> kd in tandem with inequality (1) gives some natural number M such
that MFN∆(k)> kd, finishing the proof of the theorem. 2

4. Upper bounds

In this section, G continues to be a Chevalley group. Our main upper bound result is a corollary
of the following three propositions.

Proposition 4.1. Let L be a number field with ring of integers OL. Then

FOL
(n)≈ log(n).

Moreover, the finite quotients of the form Z/pZ∼=OL/p, where p is a prime number that splits
completely in OL, p|pOL, are enough to obtain the upper bound.

Proof. The fact FOL
(n)� log(n) follows immediately from [Bou10, Theorem 2.2] and Lemma 2.4.

We just need to show that the upper bound is obtainable from quotients OL/q.
Let S = {b1, . . . , bk} be an integral basis for OL, and fix a non-trivial g in OL with ‖g‖S = n.

Then g =
∑n

i=1 aibi, where ai ∈ Z and |ai|6 n. Since g 6= 0, there exists k such that ak 6= 0. By
the Cebotarëv density theorem, the set P of all primes in Z that split in OL has non-zero
natural density in the set of all primes. We claim that there exist C > 0, which does not depend
on n, and a prime q such that (q) splits in OL and q 6 C log(n) and ak 6≡ 0 mod q. Indeed,
enumerate P = {q1, q2, . . .}. Let qr+1 be the first prime in P such that ak 6≡ 0 mod qr+1. Then
q1 · · · qr divides ak and, by the prime number theorem and positive density of P , we have that
qr+1 6Mr log(r) for some M > 0, depending only on L. A similar calculation shows that there
exists M ′ > 0 such that q1 · · · qr > eM

′r log(r). Hence, qr+1 6 C log(ak), where C > 0 depends only
on L. The claim is shown.
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Write (q) = q1 · · · qc with |OL/qi|= q. Since q does not divide ak and, since the integral basis
S gets sent to a Fq-basis of OL/(q), we have that g 6= 1 in OL/(q). Hence, there exists one qi
with g 6= 1 in OL/qi. As the cardinality of OL/qi is equal to q, which is no greater than C log(n),
we have the desired upper bound. 2

Proposition 4.2. Let Γ be a finitely generated subgroup of G(OL,f ), where L is a number field
and f ∈ Z. Then

FΓ � ndim(G).

Proof. Recall that we have fixed a closed embedding G→ SLm and are identifying G with its
image. Let X be a finite set of generators for Γ as a semigroup. Let S be an integral basis for
OL. We claim that there exists λ > 0 such that for any A ∈ Γ with ‖A‖X = n and any non-zero
coefficient a ∈ OL,f of A− I, we have

‖fka‖S 6 λn,

where k is the least natural number such that fka ∈ OL.
The prove the claim, let a′ = a+ 1 or a′ = a according to whether a is a diagonal coefficient

or not. Thus, a′ is a coefficient of A. Let K be the least natural number such that for all X ∈ X ,
fKX ∈Mm(OL). Because A is a product of exactly n elements of X, we have fnKA ∈Mm(OL)
and, in particular, k < nK. Then

‖fka‖S 6 ‖fnKa‖S 6 ‖fnKa′‖S + fnK‖1‖S .

This reduces the above claim to the following. There exists µ > 0 such that for any A ∈ Γ with
‖A‖X = n and any non-zero coefficient a ∈ OL,f of A, we have

‖fnKa‖S 6 µn.

We claim that if α denotes the maximum of ‖st‖S , where s, t range over the elements of S,
and β denotes the maximum of ‖fKx‖S , where x ranges over all entries of all elements of X ,
then µ :=mαβ satisfies the last statement. To see this, consider first the case A=XY with
X, Y ∈ X . The entries of A are scalar products of the rows of X and the columns of Y . Thus,
we are led to study ‖x · y‖S for x, y ∈ OmL , where · denotes scalar product. Clearly, we have
‖x · y‖S 6mmax{‖xiyi‖S : 16 i6m}. In terms of the basis S, we can write

xi =
∑
s∈S

λx,i,ss and yi =
∑
s∈S

λy,i,ss,

where the λ belong to Z. One computes

‖xiyi‖S 6 ‖xi‖S‖yi‖S max{‖st‖S : s, t ∈ S}.

This formula and induction on n complete the proof of the claim.
To complete the proof of the proposition, let A ∈ Γ be such that ‖A‖X 6 n. Let a be a

non-zero entry of A− I and k the least integer with fka ∈ OL. According to Proposition 4.1
and the claim above, there exist a natural number M , independent of n, and a homomorphism
φ :OL→ Fp such that p <Mn and φ(fka) 6= 0. For all but finitely many primes p, we have
that φ(f) is non-zero in Fp. Hence, we may assume that φ extends to a homomorphism
φ :OL,f → Fp and φ(a) 6= 0. The image of A under the induced map G(OL,f )→G(Fp) is non-
trivial. Further, according to Lemma 3.8, there exists M ′ > 0 such that |G(Fp)|6M ′pdim(G).
Hence, |G(Fp)|6M ′(Mn)dim(G). 2
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Proposition 4.3. Let K ⊂ C be a number field, b ∈ OK r {0}, and Γ⊂G(C) a finitely
generated subgroup, such that G(OK,b) ∩ Γ is of finite index in Γ. Then there exist a finite
extension L⊂ C of K, an element f ∈ Z r {0}, and a homomorphism Γ→G(OL,f ) with finite
kernel.

Proof. Let S ⊂ Γ be a finite generating set. There exists a field F ⊂ C, finitely generated over
K, such that S ⊂G(F ). Let t1, . . . , tn be a transcendence basis for F/K. The extension
F/K(t1, . . . , tn) is finitely generated and algebraic, hence finite. Let a ∈ F be a primitive
element for that extension. Thus, F =K(t1, . . . , tn, a). The ring OK,b[t1, . . . , tn] is a free
polynomial algebra overOK,b with field of fractionsK(t1, . . . , tn). There exists s ∈ OK [t1, . . . , tn]
such that the coefficients of the minimal polynomial of a over K(t1, . . . , tn) lie in the
localization OK,b[t1, . . . , tn]s. Thus, the element a is integral over OK,b[t1, . . . , tn]s and the ring
OK,b[t1, . . . , tn]s[a]⊂ F has F as its field of fractions. Thus, there exists r ∈ OK,b[t1, . . . , tn]s[a],
such that if we put R=OK,b[t1, . . . , tn]s[a]r, then S ⊂G(R), and consequently Γ⊂G(R).

We can find a homomorphism of OK,b-algebras

φ :OK,b[t1, . . . , tn]→OK,b

such that φ(s) 6= 0. Then φ extends to a homomorphism

φ :OK,b[t1, . . . , tn]s→OK,bφ(s).

There exists a finite extension L⊂ C of K such that the composition of φ with the natural
inclusion OK,bφ(s)→K extends to a homomorphism

φ :OK,b[t1, . . . , tn]s[a]→ L.

The element φ(a) ∈ L is integral over OK,bφ(s), and hence belongs to OL,bφ(s). Thus, in fact, we
obtain a homomorphism

φ :OK,b[t1, . . . , tn]s[a]→OL,bφ(s).

We consider φ(r) ∈ OL,bφ(s). Perturbing φ slightly if necessary, we may assume that φ(r) 6= 0. In
this way we obtain a homomorphism of OK-algebras

φ :R→OL,bφ(rs).

The algebra homomorphism OL ⊗Z Q→ L given by multiplication is an isomorphism. Since
Q = lim−→f∈Z Zf , we conclude that

L∼= lim−→
f∈Z
OL ⊗Z Zf ∼= lim−→

f∈Z
OL,f .

Thus, there exists some f ∈ Z such that [bφ(rs)]−1 ∈ OL,f . Composing φ with the inclusion
OL,bφ(rs)→OL,f , we finally arrive at a homomorphism of OK,b-algebras

φ :R→OL,f .

It induces a group homomorphism φ∗ :G(R)→G(OL,f ) which fits into the commutative diagram.

G(R)
φ∗ // G(OL,f )

G(OK,b)

ddJJJJJJJJJ

99rrrrrrrrrr
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The restriction of φ∗ to Γ is the desired homomorphism: its kernel has trivial intersection with
G(OK,b), that is, it avoids a finite-index subgroup of Γ, and hence must be finite. 2

Corollary 4.4. Let Γ⊂G(C) be a finitely generated subgroup. Assume that there exist a
finite extension K ⊂ C of Q and b ∈ OK r {0} such that G(OK,b) ∩ Γ is of finite index in Γ.
Then

FΓ(n)� ndim(G).

Proof. This follows immediately from Proposition 4.3, Lemma 2.4, and Proposition 4.2. 2
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