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For sufficiently directionally spread surface gravity wave groups, the set-down of the
wave-averaged free surface, first described by Longuet-Higgins and Stewart (J. Fluid
Mech. vol. 13, 1962, pp. 481–504), can turn into a set-up. Using a multiple-scale
expansion for two crossing wave groups, we examine the structure and magnitude
of this wave-averaged set-up, which is part of a crossing wave pattern that behaves
as a modulated partial standing wave: in space, it consists of a rapidly varying
standing-wave pattern slowly modulated by the product of the envelopes of the
two groups; in time, it grows and decays on the slow time scale associated with
the translation of the groups. Whether this crossing wave pattern actually enhances
the surface elevation at the point of focus depends on the phases of the linear
wave groups, unlike the set-down, which is always negative and inherits the spatial
structure of the underlying envelope(s). We present detailed laboratory measurements
of the wave-averaged free surface, examining both single wave groups, varying the
degree of spreading from small to very large, and the interaction between two wave
groups, varying both the degree of spreading and the crossing angle between the
groups. In both cases, we find good agreement between the experiments, our simple
expressions for the set-down and set-up, and existing second-order theory based on the
component-by-component interaction of individual waves with different frequencies
and directions. We predict and observe a set-up for wave groups with a Gaussian
angular amplitude distribution with standard deviations of above 30–40◦ (21–28◦ for
energy spectra), which is relatively large for realistic sea states, and for crossing sea
states with angles of separation of 50–70◦ and above, which are known to occur in
the ocean.
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1. Introduction
In order to satisfy the nonlinear kinematic and dynamic free-surface boundary

conditions, linear freely propagating surface gravity waves are accompanied by
nonlinear bound components. For periodic waves, a so-called Stokes expansion in the
amplitude of the waves reveals that any periodic wave is accompanied by a series of
harmonic components with integer multiples of the frequency of the linear parent wave
and their magnitude proportional to increasing integer powers of the steepness (Stokes
1847). For multichromatic parent waves representing wave groups, the harmonic
components interact to give both ‘frequency-sum’ and ‘frequency-difference’ terms,
as first described by Longuet-Higgins & Stewart (1962) for unidirectional waves and
to second order in steepness. Although expressions for the frequency-difference terms
in a multidirectional sea can be distilled from Hasselmann (1962) (cf. Okihiro, Guza
& Seymour 1992), Sharma & Dean (1981), Dalzell (1999) and Forristall (2000) are
commonly credited for extending the work of Longuet-Higgins & Stewart (1962) to
directional seas, allowing for interactions between parent wave components of different
frequencies and travelling in different directions (see Pellet et al. (2017) for a recent
rederivation that also includes pressure). In the limit of a quasimonochromatic group
with a single carrier wave travelling in one direction, differential equations describing
these second-order bound interactions can also be calculated using a multiple-scale
approach. In the seminal papers by Dysthe (1979) (infinite water depth) and Davey
& Stewartson (1974) (finite water depth), the nonlinear evolution equations for the
wave group are accompanied by a second set of differential equations describing the
mean flow and the wave-averaged free surface.

Physically, in the unidirectional case, the bound frequency-difference terms cause
a depression in the wave-averaged surface elevation on the scale of the wave group,
often referred to as a set-down (Longuet-Higgins & Stewart 1962). It can be thought
of as the free-surface manifestation of the return flow underneath the group that forms
to balance the Stokes transport, which is divergent on the scale of the group and acts
to ‘pump’ fluid from its trailing edge to its leading edge (McIntyre 1981; van den
Bremer & Taylor 2015, 2016). In the classical interpretation, the return flow is driven
by a gradient in the radiation stresses (Longuet-Higgins & Stewart 1964). The set-
down is simply largest at the centre of the group, where the (negative) return flow is
also largest in magnitude. In the limit of a unidirectional deep-water parent wave and
a group that is long relative to the water depth d, the set-down becomes (Longuet-
Higgins & Stewart 1964)

η(2)
−
=−
|A(x̃)|2

4d
, (1.1)

where A denotes the amplitude envelope of the group and x̃= x− cg,0t is the horizontal
coordinate in the group reference frame. We will briefly review the derivation of (1.1)
in § 2.

However, when examining the very large freak wave that occurred at the Draupner
Platform in the North Sea on 1 January 1995, Walker, Taylor & Eatock Taylor
(2004) observed a large set-up in the wave-averaged surface elevation. Subsequent
analysis of the Draupner wave by Adcock & Taylor (2009) and Adcock et al. (2011)
identified crossing waves as the probable cause of the set-up associated with the
Draupner wave. This finding is supported by a high-resolution hindcast model of the
Draupner storm performed by Cavaleri et al. (2016), which highlighted the presence
of two large crossing wave systems. In addition to Draupner, Fedele et al. (2016)
examined set-up in the wave-averaged surface elevation of two other very large wave
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Directionally spread and crossing surface gravity wave groups 133

events, concluding that crossing directional spectra were the likely cause. The set-up
of the wave-averaged free surface in crossing seas can thus be seen as an important
contribution to the crest height of freak waves (see Kharif & Pelinovsky (2003),
Dysthe, Müller & Krogstad (2008), Onorato et al. (2013) and Adcock & Taylor
(2014) for reviews of the mechanisms behind freak waves). We specifically do not
examine herein the possible (enhanced) occurrence of modulational or Benjamin–Feir
instability in crossing seas, as might be described by coupled nonlinear Schrödinger
equations (e.g. Onorato, Osborne & Serio (2006) and references therein).

A set-up was also observed by Toffoli et al. (2007) for smaller waves measured
on Lake George, Australia. Toffoli et al. (2007) showed this effect to be consistent
with second-order theory, and found that crossing waves of similar frequency result
in positive interaction by numerically computing the frequency-difference interaction
kernel of Sharma & Dean (1981). These effects were also observed in time-domain
simulations performed by Toffoli, Onorato & Monbaliu (2006). A similar observation
was made by Okihiro et al. (1992) based on the (equivalent) frequency-difference
interaction kernel reconstructed from Hasselmann (1962), noting that this kernel
reduces with increasing angle and changes sign for two wave components at an
angle of 30◦ in deep water (k0d � 1). Indeed, the energy spectrum associated with
second-order bound waves reduces considerably with increasing directional spreading
(Herbers, Elgar & Guza 1994). Recently, Herbers & Janssen (2016) have shown that
the set-down associated with (unidirectional) groups can appear as a significant set-up
in Lagrangian buoy records, emphasizing the need to carefully distinguish between
Lagrangian and Eulerian field observations.

Experimentally, Johannessen & Swan (2001) examined the evolution and focusing of
moderately directionally spread focused wave groups and found that the directionality
of the wave groups serves to reduce the overall nonlinearity of the waves, affecting the
onset of breaking and nonlinear modification of the free waves. Onorato et al. (2009)
and Toffoli et al. (2010) performed experiments and numerical analysis of irregular
crossing waves, observing a direct relationship between crossing angle and kurtosis, an
indicator of the probability of freak wave occurrence. All of the experimental studies
that we are aware of have been limited to small degrees of directional spreading
and have not observed the formation of a set-up, with the exception of Toffoli et al.
(2011), who did conduct experiments with crossing wave systems at crossing angles
up to 40◦, but did not specifically examine the occurrence of a set-up.

Herein, we examine the structure and magnitude of the wave-averaged free
surface for directionally spread and crossing surface gravity wave groups through
a combination of multiple-scale expansions and physical experiments for all possible
degrees of spreading. We investigate when a set-down can turn into a set-up. Our
experiments are conducted in the circular wave tank at the FloWave Ocean Energy
Research Facility at the University of Edinburgh (see Ingram et al. (2014) for details
of the facility). This has 168 individually controlled paddles, enabling the generation
of wave groups with any desired directional distribution. We carry out two categories
of experiments: tests in which we vary the degree of directional spreading for an
individual wave group (category A) and tests in which we let two wave groups cross
each other at different angles (category B). Figure 1 illustrates the linear surface
profile at the time of linear focus for the groups we examine experimentally in
category A, showing specifically three individual groups of increasing degree of
directional spreading. Figure 2 shows the perfectly focused predicted linear surface
profile for two groups with narrow individual degrees of directional spreading crossing
at an angle, as examined in category B.
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FIGURE 1. (Colour online) Illustration of the linear surface profile η(1)(x, y, t = 0) for
spreading and surface tests (category A) at time of focus (t = 0) and for three different
degrees of spreading, σθ = 10, 20, 30◦. (a–c) The surfaces and (d–f ) the corresponding
contours, showing positive contours only for clarity (linear amplitude at focus a0= 0.1 m
for a perfectly focused linear group). The colour bar applies to (d–f ) only.

This paper is laid out as follows. First, in § 2, we present our multiple-scale
solutions for crossing groups and review existing second-order theory. In § 3, we
outline our experimental method and introduce the two types of experiments we
perform. We compare our experimental results with theory in § 4. Finally, conclusions
are drawn in § 5.

2. Second-order theory
In this section, we use a multiple-scale approach to gain insight into the mechanisms

behind the formation of the set-down or set-up of the wave-averaged free surface and
their relative magnitudes under different circumstances. We begin by briefly reviewing
the governing equations and boundary conditions in § 2.1, followed by a discussion
of the set-down formed for a single narrowly spread group in § 2.2 and the formation
of a set-up when two groups cross each other at an angle in § 2.3. Finally, in § 2.4,
we compare our simple expressions for the set-down and set-up with the explicitly
computed wave-averaged free-surface elevation from existing second-order theory
based on the component-by-component interaction of individual waves with different
frequencies and directions.

2.1. Governing equations
A three-dimensional body of water of depth d and indefinite lateral extent is assumed
with a coordinate system (x, y, z), where x and y denote the horizontal coordinates
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FIGURE 2. (Colour online) Illustration of the linear surface profile η(1)(x, y, t) for
crossing tests (category B), showing two wave groups with moderate degrees of directional
spreading (σθ = 10◦) at a crossing angle of 1θ = 135◦ for three different times, t̂≡ cg,0t/σx:
before focus at t̂=−4.0 (a,d), at linear focus t̂= 0 (b,e) and after focus at t̂= 4.0 (c, f );
(a–c) display the linear surfaces and (d–f ) the corresponding contours, showing positive
contours only for clarity (combined linear amplitude at focus a0= 0.1 m). The colour bar
applies to (d–f ) only.

and z the vertical coordinate measured from the undisturbed water level upwards.
Inviscid, incompressible and irrotational flow is assumed and, as a result, the velocity
vector can be defined as the gradient of the velocity potential, u=∇φ. The governing
equation within the domain of the fluid is then Laplace,

∇
2φ = 0 for − d 6 z 6 η(x, y, t), (2.1)

where η(x, y, t) denotes the free surface. The kinematic and dynamic free-surface
boundary conditions are respectively

w−
∂η

∂t
− u

∂η

∂x
− v

∂η

∂y
= 0, gη+

∂φ

∂t
+

1
2
|∇φ|2 = 0 at z= η(x, y, t), (2.2a,b)

where gravity g acts in the negative z direction and |∇φ|2 = u2
+ v2

+ w2. Finally,
there is a no-flow bottom boundary condition, requiring that ∂φ/∂z= 0 at z=−d. By
retaining terms up to quadratic in the amplitude of the waves, the two free-surface
boundary conditions in (2.2) can be combined into two forcing equations for the mean
flow and the wave-averaged free surface respectively,(
∂

∂z
+

1
g
∂2

∂t2

)
φ(2)
−

∣∣∣∣
z=0

=∇H · (u(1)H |z=0η(1))−
1
g
∂

∂t

(
∂2φ(1)

∂z∂t

∣∣∣∣
z=0

η(1) +
1
2
|∇φ|2z=0

)
, (2.3)
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η(2)
−
=
−1
g

(
∂φ

(2)
−

∂t

∣∣∣∣∣
z=0

+

(
∂2φ(1)

∂z∂t

∣∣∣∣
z=0

η(1) +
1
2
|∇φ|2

∣∣∣∣
z=0

))
, (2.4)

where the superscripts denote the order in amplitude and the subscripts signify that we
only retain wave-averaged terms here, as also indicated by the overlines on the right-
hand side. We specify our definition of wave-averaging below. Finally, the subscript
H denotes horizontal components only, so that uH = (u, v, 0).

2.2. A single narrow-banded and narrowly spread wave group: set-down
We first consider a single wave group travelling in the positive x direction, which has
the linear signal

η(1) = Re[A(X, Y)ei(k0x−ω0t)
], φ(1) = Re

[
−i
ω0

k0
A(X, Y)ek0z+i(k0x−ω0t)

]
, (2.5a,b)

where we have assumed that the linear wave is short relative to the water depth, so
that k0d � 1, as in the rest of this paper and for the experiments we perform. We
will refer to this assumption as deep water, although the water depth is not truly
infinite, and, in fact, it is shallow to intermediate relative to the spatial extent of
the group. The linear dispersion relationship becomes ω2

0 = gk0, and the prefactor on
φ(1) has been chosen so that the linearized boundary conditions (2.2) are satisfied.
To leading-order in the multiple-scale parameter εx ≡ 1/(k0σx), with σx denoting the
characteristic spatial scale of the group in its direction of propagation, the group is a
function of the slow variables, X ≡ εx(x− cg,0t) and Y ≡ εyy, where cg,0 = dω0/dk0 =

ω0/(2k0) is the group velocity. We define εy ≡ 1/(k0σy) and set O(εy) = O(εx) or
smaller. The case εy = εx corresponds to a round envelope (σy = σx) and εy→ 0 to
a long-crested or unidirectional wave group. By transforming into the reference frame
of the group, neglecting the higher-order (in εx) double time derivative on the left-hand
side of (2.3) and substituting the linear solutions (2.5) on the right-hand side, the mean
flow forcing equation (2.3) becomes, after averaging over the fast temporal scales (cf.
Dysthe 1979),

∂φ
(2)
−

∂z

∣∣∣∣∣
z=0

=
1
2
ω0εx∂X|A|2, (2.6)

where only the divergence of the Stokes transport ∇H · (u(1)H (z= 0)η(1)) on the
right-hand side of (2.3) contributes for deep water (k0d � 1), and a small degree
of directional spreading is captured by the slow variation of the envelope in the
direction normal to propagation (Y). For quasimonochromatic wave groups, the
problem is steady, and the return flow is simply the irrotational and incompressible
response to the divergence of the Stokes transport (cf. ‘Stokes pumping’) in the
reference frame of the group, as is well known (see van den Bremer & Taylor (2016)
for a discussion of the generally small effects of dispersion and a comparison of
the multiple-scale solution with the original solution of Longuet-Higgins & Stewart
(1962)). Solution of the Laplace equation ∇2φ

(2)
− = 0, subject to the bottom boundary

condition and the forcing equation (2.6) in Fourier space, gives after averaging over
the fast temporal scales (cf. van den Bremer & Taylor 2015)

φ(2)
−
=

iω0|a0|
2σxσy

8π

∫
∞

−∞

∫
∞

−∞

κ cosh(
√
κ2 + λ2(z+ d))

√
κ2 + λ2 sinh(

√
κ2 + λ2d)

e−(κσx)
2/4−(λσy)

2/4ei(κ x̃+λỹ) dκ dλ,

(2.7)
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where we have chosen a Gaussian envelope, A= a0 exp(−x̃2/(2σ 2
x )− ỹ2/(2σ 2

y )), with
x̃= x− cg,0t and ỹ= y, for illustrative purposes. Turning to the wave-averaged surface
forcing equation (2.4), it can be shown by substituting the linear solutions (2.5) on
the right-hand side that, for a single wave group in deep water (k0d� 1), only the
mean flow term (−(1/g)∂φ(2)− /∂t) makes a non-zero contribution. Transforming into
the group reference frame and substituting (2.7), equation (2.4) becomes

η(2)
−
=
−|a0|

2σxσy

16π

∫
∞

−∞

∫
∞

−∞

κ2

√
κ2 + λ2 tanh(

√
κ2 + λ2d)

e−(κσx)
2/4−(λσy)

2/4ei(κ x̃+λỹ) dκ dλ.

(2.8)
If we further assume d/σx� 1, namely that the return flow is shallow, equation (2.8)
simplifies to

η(2)
−
=
−|a0|

2σxσy

16πd

∫
∞

−∞

∫
∞

−∞

κ2

κ2 + λ2
e−(κσx)

2/4−(λσy)
2/4ei(κ x̃+λỹ) dκ dλ. (2.9)

In the limit of a long-crested or unidirectional wave group R ≡ σx/σy→ 0, we can
recover (1.1), which in turn corresponds to the well-known result by Longuet-Higgins
& Stewart (1964) (equation (16), p. 549) derived by considering horizontal gradients
in radiation stresses. It is evident that, in this limit (R→ 0 and d/σx� 1), the wave-
averaged set-down inherits the spatial structure and shape of the wave group envelope,
but with opposite sign. For a non-shallow return flow (d/σx =O(1)), the set-down is
accompanied by two positive humps in front and behind, as is evident from the black
lines in figure 3(a). For directionally spread groups, these humps are generally larger
and the set-down is less deep, as is illustrated by comparing either the continuous
(d/σx =O(1)) or the dashed (d/σx→ 0) lines in this figure. For arbitrary wave group
aspect ratio, the integral (2.9) can be explicitly evaluated at the centre of the group,

η(2)
−
(x̃= 0, ŷ= 0)=

−|a0|
2

4d
1

1+ R
, with R≡

σx

σy
. (2.10)

It is evident then from (2.10) that the magnitude of the set-down of the wave-averaged
free surface reduces for more directionally spread groups. This results from a
reduction of the magnitude of return flow straight underneath the group, as the
response to the ‘Stokes pumping’ can now not only return below, but also around the
group. Figure 3(b) illustrates the aspect ratio of the wave-averaged set-down, defined
as RSD ≡ σx/σy,SD, with σy,SD computed explicitly as the square root of the second
central moment of area of the wave-averaged free surface in the y direction (at x= 0)
and σx still defined as a property of the group. Showing RSD as a function of the
aspect ratio of the group itself, R= σx/σy, figure 3(b) demonstrates that the set-down
is generally wider than the group, a phenomenon more generally known as ‘remote
recoil’ in wave–mean-flow interaction theory (Bühler & McIntyre 2003).

2.3. Two crossing groups: set-up and set-down
We now consider two quasimonochromatic wave groups that cross at x = y = 0 (at
t=0): group 1 with envelope A1 travelling in the positive x direction and group 2 with
envelope A2 travelling at an angle 1θ from group 1, with 1θ measured anticlockwise
from the positive x-axis. For simplicity, we assume that the two groups are entirely
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FIGURE 3. (Colour online) Theoretical aspects of the wave-averaged free surface for a
single group: (a) set-down profile for a single wave group, showing the set-down for
d/σx= 1.2=O(1) (continuous lines) and in the shallow return flow limit d/σx→ 0 (dashed
lines), and (b) aspect ratio of the wave-averaged free surface, RSD, as a function of the
aspect ratio of the group, R≡ σx/σy. We set εx = 0.30, corresponding to experiments.

equivalent with the exception of their amplitudes and directions of travel, and have
for the linear surface elevation

η(1) = Re[A1(X1, Y1)ei(k0x−ω0t)
+ A2(X2, Y2)ei(k0x cos(1θ)+k0y sin(1θ)−ω0t)

], (2.11)

where group 1 is a function of the slow scales X1 = εx(x − cg,0t) and Y1 = εyy and
group 2 of X2= εx(x cos(1θ)+ y sin(1θ)− cg,0t) and Y2= εy(−x sin(1θ)+ y cos(1θ)),
so that X1 and X2 are in the direction of propagation of their respective groups.
Substitution of (2.11) and its velocity potential counterpart φ(1) into the mean flow
forcing equation (2.3) gives after some manipulation and to leading-order in the
multiple-scale parameter εx

∂φ
(2)
−

∂z

∣∣∣∣∣
z=0

= FA1A1 + FA2A2 + FA1A2︸ ︷︷ ︸
≡ F

, (2.12)

where the forcing is provided by the divergence of the Stokes transport of group 1
with envelope A1 = |A1| exp(iµ1) (FA1A1), group 2 with envelope A2 = |A1| exp(iµ2)

(FA2A2) and their interaction (FA1A2),

FA1A1 =
1
2ω0εx∂X1 |A1|

2,

FA2A2 =
1
2ω0εx∂X2 |A2|

2,

FA1A2 =
1
2
ω0

(
εx(1+ 3 cos(1θ))

2
(|A1|X1 |A2| + |A1||A2|X2)

+ εy sin(1θ)(|A1|Y1 |A2| − |A1||A2|Y2)

)
× cos(k0x(1− cos(1θ))− k0y sin(1θ)+µ1 −µ2).


(2.13a−c)
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The phases of the two groups are denoted by µ1 and µ2, and we have averaged over
the fast temporal scales. The forcing and its response are no longer steady. Avoiding
the prohibitively cumbersome Fourier transforms of FA1A2, we immediately assume
that the return flow is shallow (d/σx� 1), so that we can solve the two-dimensional
Laplace equation subject to a distribution of sources and sinks of fluid given by
(2.12)–(2.13) in physical space,

φ(2)
−
(x, y, t)=−

1
4πd

∫
∞

−∞

∫
∞

−∞

F(x∗, y∗, t) log((x− x∗)2 + (y− y∗)2) dx∗ dy∗. (2.14)

It can readily be shown that for 1θ = 0, equation (2.14) reduces to the mean flow
of a single group (2.7) with A = A1 + A2. Turning to its forcing equation (2.4), we
decompose the wave-averaged surface elevation into a set-down ηSD and an additional
term, which we will later see arises because of wave crossing and we will term the
crossing wave (CW) contribution ηCW ,

η(2)
−
= ηSD,A1A1 + ηSD,A2A2 + ηSD,A1A2︸ ︷︷ ︸

=ηSD

+ηCW . (2.15)

The set-down arises purely in response to the return flow (i.e. through −(1/g)∂φ(2)− /∂t
in (2.4)) and can be decomposed into three terms corresponding to the three forcing
terms in (2.13). Corresponding to FA1A1, we have after transforming into the reference
frame of group 1

ηSD,A1A1(x̃1, ỹ1)=
|a1|

2

4d
1

πσ 2
x

∫
∞

−∞

∫
∞

−∞

e−(x̃
∗

1)
2/σ 2

x −(ỹ
∗

1)
2/σ 2

y x̃∗1(x̃1 − x̃∗1)
(x̃1 − x̃∗1)2 + (ỹ1 − ỹ∗1)2

dx̃∗1 dỹ∗1, (2.16)

where we have assumed a Gaussian envelope as before, namely A1=a1 exp(−x̃2
1/(2σ

2
x )

− ỹ2
1/(2σ

2
y )), with a1 = |a1| exp(iµ1), x̃1 = x − cg,0t and ỹ1 = y. By replacing (x̃1, ỹ1)

with (x̃2, ỹ2) and |a1|
2 with |a2|

2, we can find an equivalent expression for the set-down
ηSD,A2A2 associated with group 2. Although the set-downs for the two individual groups
are steady in their respective reference frames, their interaction is unsteady, and we
have

ηSD,A1A2(x̃, ỹ)=
1

4d
1
π

∫
∞

−∞

∫
∞

−∞

1
g
∂FA1A2(x∗, y∗, t)

∂t
log((x− x∗)2 + (y− y∗)2) dx∗ dy∗,

(2.17)
where the forcing can be obtained by differentiating FA1A2 in (2.13c) with respect to
time,

1
g
∂FA1A2

∂t
= −
|A1||A2|

4σ 2
x

(
1+ 3 cos(1θ)

2

(
(x̃1 + x̃2)

2

σ 2
x

− 2
)

+ sin(1θ)
(x sin(1θ)+ y(1− cos(1θ)))(x̃1 + x̃2)

σ 2
y

)
× cos(k0x(1− cos(1θ))− k0y sin(1θ)+µ1 −µ2), (2.18)

where we use a mixture of coordinate systems for notational convenience. Apart from
the set-down terms, the two terms on the right-hand side of (2.4) give rise to an
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0 45 90 135 180
–0.1

0

0.1

0.2

0.3

FIGURE 4. The different contributions to the total wave-averaged free surface at the focus
point and time as a function of the crossing angle 1θ for two in-phase (µ1 = µ2 = 0)
round (R= 1) wave groups (εx = 0.30 and d/σx = 1.2).

additional term, after averaging over the fast temporal scales, which is responsible for
the set-up, but is inherently associated with crossing waves,

ηCW =
−1
g

(
∂2φ(1)

∂z∂t

∣∣∣∣
z=0

η(1) +
1
2
|∇φ|2

∣∣∣∣
z=0

)
=

1
2
(1− cos(1θ))k0|A1||A2|

× cos(k0(x(1− cos(1θ))− y sin(1θ)︸ ︷︷ ︸
=x̃1−x̃2

)+µ1 −µ2). (2.19)

We note that, although the set-down is always slowly varying in both time and space,
the crossing wave contribution (2.19) responsible for the set-up is slowly varying in
time but rapidly varying in space. A partial standing-wave pattern forms with lines
of constant phase at an angle 1θ/2 to the x-axis, namely in line with the bisection
of the paths of travel of the two groups. The pattern varies rapidly in space, and is
slowly modulated in time and space by the product of the amplitude envelopes of
the two groups (see figure 6i–l). Whether ηCW is actually manifested as a set-up of
the wave-averaged free surface at the location of linear focus (x = y = 0) depends
trivially on the relative phases of the two groups (µ1−µ2). The presence of a set-up
is thus an indicator of perfect or near-perfect focusing of the underlying linear signal
(µ1 = µ2). It is noteworthy that (provided that k0d� 1) the magnitude of the wave
crossing contribution is not a function of the magnitude of the depth relative to the
scale of the group, unlike the set-down, which decreases in magnitude with increasing
d/σx. Finally, it is worth noting that the partial standing wave that forms the set-up
does not have a counterpart in the second-order velocity field, unlike the set-down.

In time, the behaviour of the wave-averaged free surface as the two groups cross
is as follows: the groups are accompanied by a set-down before and after crossing;
at the time of crossing, the wave-averaged free surface consists of a wave-group-like
structure itself with a set-up at the focus location for the phases µ1 = µ2. Figure 4
shows the magnitudes of the different terms that compose the total wave-average
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surface in (2.15) as a function of 1θ . The self-interaction term ηSD,A1A1 remains
constant and negative, as it is independent of the interaction of the two groups,
and similarly for ηSD,A2A2. The cross-interaction set-down term ηSD,A1A2 is initially
negative and reduces to zero at 1θ = 180◦. The set-down associated with two
groups that collide head-on is simply equal to the sum of their respective set-downs,
ηSD = ηSD,A1A1 + ηSD,A2A2. Finally, the crossing wave term ηCW is zero for 1θ = 0,
as in this limit the solution reduces to that of a single group. For 1θ → 180◦, the
crossing wave term increases to a maximum, as can also be readily concluded from
inspection of (2.19).

Summarizing results, the behaviour of the wave-averaged free surface is driven by
two distinct physical processes, the first of which can only give rise to a set-down
and the second of which takes the form of a modulated partial standing-wave
pattern and may or may not give rise to a set-up. The set-down forms as the
simple free-surface manifestation of the Eulerian return flow that forms underneath a
group in response to the divergence of the Stokes transport on the group scale. The
set-down can be computed directly from the unsteady Bernoulli equation, retaining
the unsteady potential corresponding to the return flow (and ignoring all other terms).
The magnitude of the set-down reduces with increasing directional spreading, as
the return flow can flow around as well as underneath the group and reduces in
magnitude. The set-down does not form for periodic waves; it depends on the group
structure. Although its magnitude does not depend on the group width in the limit
in which the group width is larger relative to the water depth, it generally reduces
with increasing group width. When two groups (or indeed two periodic waves) cross
at an angle, further terms in the Bernoulli equation, which are zero for deep water
and for a single group or a crossing angle of zero degrees, give rise to a partial
standing-wave pattern. Its magnitude does not depend on the group width or on the
water depth, provided that k0d� 1. The standing-wave pattern is fixed in space and
is modulated by the product of the two groups in both space and time. A set-up
forms at the point of focus and crossing, if the two groups are in phase, so that their
amplitudes are both positive there.

2.4. Multicomponent second-order theory (review)
The expressions for the wave-averaged free-surface elevation derived thus far have
relied on two approximations: the spectrum is narrow-banded in both frequency and
direction, so that the group can be modelled using the leading-order terms in a
multiple-scale expansion. By considering the linear signal as the sum of individual
components with different frequencies travelling in different directions, Hasselmann
(1962) implicitly and, much later yet explicitly, Sharma & Dean (1981), Dalzell (1999)
and Forristall (2000) derived interaction kernels for the nonlinear bound harmonics
at second order. We assume independence between the directional Ω and amplitude
η̂ distributions, so that the linear signal is given by a summation over Nk discrete
components in Nθ directions,

η(1) =

Nk∑
n=1

Nθ∑
i=1

Ω(θi)η̂n cos(ϕn,i)δkδθ, with ϕn,i = kn,i · x−ωnt+µn, (2.20)

where the wavenumber vector kn,i = kn(cos(θi), sin(θi)) has magnitude kn and θ
is measured anticlockwise from the positive x-axis. Every component satisfies the
linear dispersion relationship ω2

n = gkn tanh(knd), where tanh(kd) ≈ 1 for almost all

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.774


142 M. L. McAllister, T. A. A. Adcock, P. H. Taylor and T. S. van den Bremer

0 5 0 5–5

0

5

–5

0

5

0 5–5

0

5

0 5–5

0

5

0 5 0 5–5

0

5

–5

0

5

0 5–5

0

5

0 5–5

0

5

–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

(a) (b) (c) (d)

(e) ( f ) (g) (h)

y 
(m

)
y 

(m
)

x (m) x (m) x (m) x (m)

FIGURE 5. (Colour online) Contours of the wave-averaged surface elevation η
(2)
− for

a single group at time of linear focus for different degrees of spreading σθ ; (a–d)
are computed from multicomponent second-order theory (2.21) and (e–h) correspond to
the quasimonochromatic limit (2.8), as denoted by εx → 0. The aspect ratio in the
quasimonochromatic limit is computed from R = σθ/εx, which is asymptotically valid in
the limit of a small degree of spreading (R = 0.6, 1.1, 1.7, 2.3 for the four values of
σθ respectively). The black dashed lines correspond to two standard deviations from the
centre of the group.

components of the linear spectrum in our experiments. The coefficients δk and δθ
correspond to the magnitude of the discrete steps, so that δk→ dk as Nk→∞ and
similarly for δθ . The corresponding second-order difference waves that represent the
wave-averaged free surface may be calculated as (Dalzell 1999)

η(2)
−
=

Nk∑
n=1

Nk∑
m=1

Nθ∑
i=1

Nθ∑
j=1

Ω(θi)Ω(θj)η̂nη̂mB−(kn,i, km,j, ωn, ωm, d) cos(ϕn,i− ϕm,j)(δk)2(δθ)2,

(2.21)
where the interaction kernel B− is given in appendix A.

For the experimental parameters considered herein (α= k0a0= 0.20, εx= 1/(k0σx)=
0.30, k0d= 3.9 and d/σx= 1.2), discussed in more detail in § 3, figure 5 compares the
component-by-component solution (2.21) (a–d) with the multiple-scale solution for the
set-down (2.8) (e–h) for a single wave group, demonstrating good agreement for low
degrees of spreading. The mean direction of wave group propagation is left to right
in the positive x direction. For high degrees of spreading, a set-up starts to appear in
the form of a ridge along the x-axis that connects the humps in front of and behind
the group and that is not predicted by the multiple-scale solution (2.8).

Figure 6 compares the component-by-component solution (2.21) (a–d) for two
crossing groups at four different crossing angles with the multiple-scale solution (2.15)
(m–p). Also shown are the individual contributions from the set-down (2.16)–(2.17)
in (e)–(h) and the crossing wave pattern (2.19) in (i)–(l). It is evident from this
comparison that the multiple-scale solution can predict the magnitude, but not the
exact spatial structure, of the set-down for 1θ = 45◦, as the directional spectra of
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FIGURE 6. (Colour online) Contours of the wave-averaged surface elevation η
(2)
− for

crossing wave groups at time of linear focus for different crossing angles 1θ ; (a–d)
are computed from multicomponent second-order theory (2.21), (e–h) correspond to the
set-down in the quasimonochromatic limit (2.16)–(2.17), (i–l) correspond to the crossing
wave pattern in the quasimonochromatic limit (2.19) and (m–p) correspond to the sum of
the last two. The degree of spreading of the individual groups is σθ = 10◦.

the group are not clearly separated for low crossing angles. For all larger crossing
angles, the two methods agree well, and the set-up is dominant.

3. Experimental method

This section introduces the experimental set-up (§ 3.1), details the input parameters
of each category of experiment (§ 3.2) and introduces the method used to isolate
the wave-averaged surface elevation from the measured signal (§ 3.3). Sections 3.4
and 3.5 respectively describe our estimation of spectral and directional parameters
from the measured signal. Finally, § 3.6 discusses sources of measurement error and
repeatability.
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FIGURE 7. The gauge array layout, showing wave gauge locations with respect to the
centre of the tank (x= 0, y= 0). The closed circles denote the location of the 14 gauges
with the positive x-axis corresponding to the mean direction of travel of the group (or one
of the groups). The open circles denote the effective gauge layout achieved by changing
the mean wave direction in steps of 22.5◦ to map out the wave-averaged free surface. The
arrows in (a) illustrate the mean direction of each repeated test used to achieve this.

3.1. FloWave and gauge layout
The experiments are conducted at the FloWave Ocean Energy Research Facility at
the University of Edinburgh. The circular multidirectional wave basin has a 25 m
diameter, is 2 m deep and is encircled by 168 actively absorbing force-feedback
wavemakers, allowing for the creation of waves in all directions. All of our
experiments are of sufficiently short duration, with a run time of 32 s, for reflections
not to play a role. The generation of waves by the wavemakers is based on
linear theory.

Figure 7 shows the layout of the array, consisting of 14 capacitance wave gauges
within the tank, with gauge locations chosen to combine good spatial resolution while
being spaced far enough apart to capture the entire spatial structure of the wave-
averaged free surface. Practically constrained by a limited number of wave gauges
available and their robust positioning on an overhanging gantry, we place all of our
wave gauges along the main axis of travel of the group (x-axis) and on the positive
half of the orthogonal y-axis (with the exception of one further gauge at negative
y), as illustrated by the closed circles in figure 7. To gain additional information
on the two-dimensional structure of the free surface, we repeat (a selection of) the
same experiments varying their angle of propagation relative to the gauge array, thus
obtaining the effective gauge layout illustrated by the open circles in figure 7. These
repetitions are carried out at intervals of 22.5◦ between 0◦ and 90◦, as illustrated by
the arrows in figure 7(a). The wave gauges are calibrated at the start of each day of
testing. A settling time of 10 min between each test is employed to allow for the
absorption of reflected waves.

3.2. Matrix of experiments and input parameters
We conduct tests in two categories: spreading tests (category A, § 3.2.1) and crossing
tests (category B, § 3.2.2), as summarized in table 1. In these two categories of test,
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Category Test numbers a0 (m) σθ (deg.) 1θ (deg.)

A. Spreading A.1–13 0.1 0–90 (at 10), 135, 180, 360 0
A.14–19 0.15 0–50 (at 10) 0

B. Crossing B.1–12 0.1 10, 20, 30 45–180 (at 45)
B.13–16 0.15 20 45–180 (at 45)

B.17 0.1 0 180

TABLE 1. Matrix of experiments.

we respectively vary the degree of directional spreading for a single group (A) and
consider two crossing groups for different crossing angles (B). For all experiments, we
base the input on a Gaussian amplitude distribution in wavenumber magnitude k= |k|,

η̂(k)=
a0

√
2π1k

exp

(
−

1
2

(
k− k0

1k

)2
)

for 0 6 k 6∞, (3.1)

which is converted into the frequency domain using the linear dispersion relationship
before being provided as an input to the wavemakers. We set the peak wavenumber
k0 = 2.0 m−1 (based on a peak frequency of 0.7 Hz) and adopt a standard deviation
of 1k = 0.6 m−1. Although (3.1) only formally corresponds to a group with a
Gaussian envelope in real space if k has support on the entire real line (including
k< 0), S(k) is negligibly small for k= 0 and below for the parameters chosen. Thus,
σx=1/1k=1.7 m corresponds to the spatial scale of the group (the standard deviation
of the approximately Gaussian group). We have εx = 0.30, so the multiple-scale
approximation will probably hold, but be associated with an error that scales as
ε2

x (∼10 %). We choose this large value of εx so that the spatial extent of the group is
considerably smaller than that of the tank. This ensures that long second-order error
waves associated with the linear paddle motion have time to propagate ahead of the
group. Our linear wave is always deep (k0d = 3.9) and we choose the total linear
amplitude a0 to be 0.1 or 0.15 m, corresponding to a steepness of α= k0a0= 0.20 or
0.30. The steepness of the wave groups is chosen to produce second-order components
sufficiently large to observe, while minimizing the effects of higher-order nonlinearity.
Wave breaking is not observed during the experiments and is not expected for
individual (directionally spread) short groups of such steepness. We consider a
Gaussian amplitude distribution in angle θ ,

Ω(θ)=
Ω0
√

2πσθ
exp

(
−

1
2

(
θ − θ0

σθ

)2
)

for −180◦ 6 θ 6 180◦, (3.2)

where θ0 is the mean direction and σθ is a measure of the degree of directional
spreading. We truncate the spreading distribution at −180◦ and +180◦ and choose the
normalization coefficient Ω0 so that the sum of Ω(θ) is unity over this range. For
small degrees of spreading, σθ corresponds to the root-mean-squared spreading value.
For crossing wave groups, two directional distribution functions with different values
of θ0 are superimposed. We emphasize the difference between our σθ and the usual
energy spectrum directional spreading parameter, which is equal to σθ/

√
2.
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3.2.1. Category A – spreading tests
First, tests are carried out to assess the relationship between the degree of

directional spreading σθ , and the amplitude and sign of the wave-averaged surface
elevation for a single focused wave group. The degree of directional spreading σθ is
varied in the range 0–360◦ for groups with an amplitude of a0 = 0.1 m, and in the
range σθ = 0–50◦ for an increased amplitude of a0 = 0.15 m. In practice, σθ = 360◦
corresponds to the case where the directional spectrum has almost fully saturated
(σθ →∞ corresponds to fully axisymmetric spreading: the variation of Ω(θ) as a
function of θ is less than 7 % for σθ = 360◦). The difference in the amplitude of
the wave-averaged surface elevation between σθ = 360◦ and σθ → ∞ is negligible
(<0.1 %). An illustration of three of these tests is presented in figure 1 for σθ = 10,
20, 30◦.

Having observed the temporal behaviour of the wave-averaged surface elevation of
directionally spread wave groups at the point of intended linear focus, we seek to gain
further understanding by measuring the spatial variation of the wave-averaged surface
elevation. We achieve this by repeating certain tests and varying the mean direction
of propagation relative to the gauge array from 0 to 90◦ and at intervals of 22.5◦.
In doing so, we capture the spatial structure of the wave-averaged surface elevation,
as measured with the effective gauge layout shown by the open circles in figure 7.
We map the wave-averaged free surface by carrying out such repeats for four tests
from this category, σθ = 20, 30, 40◦ (and at an increased amplitude of a0 = 0.15 m
for σθ = 40◦). In doing so, we capture the spatial structure of the wave-averaged free
surface dominated by the set-down, the set-up and the transition between these as a
function of σθ .

3.2.2. Category B – crossing tests
Second, tests are carried out to assess the relationship between the crossing angle

1θ of two directionally spread focused wave groups and the set-up or set-down of
the wave-averaged surface elevation. The crossing angle 1θ of the wave groups is
varied between 0 and 180◦ at 45◦ intervals. This is repeated for groups with directional
spreading of σθ = 10, 20, 30◦ and a0= 0.1 m (and for an increased amplitude of a0=

0.15 m at σθ = 20◦). An illustration of one of these tests is presented in figure 2 for
σθ = 10◦ and 1θ = 135◦.

3.3. Harmonic separation
In order to observe the wave-averaged free surface of wave groups and other nonlinear
harmonics, these components must be extracted from the fully nonlinear signal
measured by the gauges. By repeating experiments and changing the phases of all of
the linear components of the wave group in the wavemaker signal by 180◦ between
experiments, nonlinear harmonic terms of odd and even powers in amplitude may be
extracted from the measured time series (Baldock, Swan & Taylor 1996),

ηodd =
η0 − η180

2
, ηeven =

η0 + η180

2
, (3.3a,b)

where η0 denotes a crest-focused and η180 a through-focused repeat of the same
experiment. Measured second-order sum η

(2)
M+ and difference η(2)M− components are then

extracted from ηeven by filtering ηeven with cutoffs below 1.5ω0 and above 3ω0, and
above 0.75ω0 respectively for the reasonably narrow-banded groups considered here.
Similarly, the linear signal η(1)M may be extracted from ηodd. Carrying out further repeat
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experiments with phase shifts of 90◦ and 270◦ allows for separation of higher-order
harmonics, including for higher-bandwidth signals, in physical experiments (Fitzgerald
et al. 2014; Mai et al. 2016; Zhao et al. 2017). We examine these four-phase
combinations for spreading tests A.3–4 and A.13 and find that two- and four-phase
combinations produce very similar results (see appendix B). Consequently, we repeat
all other experiments with only a single phase shift of 180◦. It should be noted that
the inversion of phase is unaffected by cubic nonlinear interactions, so perfect phase
focusing is not required.

3.4. Estimation of spectral parameters
As our input amplitude distribution η̂(k) is assumed to be Gaussian in wavenumber
magnitude, and our measurements are in time, the resulting Fourier transform η̂(ω) is
converted in order to estimate spectral parameters by setting η̂(k)= η̂(ω(k))dω(k)/dk,
where ω(k)=

√
kg tanh kd. The carrier wavenumber k?0 is estimated as the wavenumber

of the spectral peak of the linear spectrum. The linear amplitude a?0 is estimated by
taking the zeroth moment of the measured linear wavenumber spectrum,

a?0 =
∫
∞

0
η̂(1)(k) dk. (3.4)

The spectral bandwidth 1k is then estimated using the variance of the observed
spectrum,

Var(k)=
1
a?0

∫
∞

0
η̂(1)(k)(k− k?0)

2 dk and 1k? =
√

Var(k). (3.5a,b)

We use the symbol ? throughout to indicate parameters estimated from measurements,
as distinct from values provided as inputs to the wavemakers.

3.5. Estimation of measured directional spectrum
In all of our experiments, the degree of directional spreading is of primary concern.
It is therefore necessary to estimate the actual degree of directional spreading
σ ?θ experienced for each experiment. The non-ergodic nature of the experiments
considered herein makes estimates using maximum-likelihood and entropy methods
inappropriate (cf. Krogstad 1988; Benoit, Frigaard & Schäffer 1997). Instead, a
least-squares approach is adopted, and σ ?θ is identified as the value that minimizes
the difference between the measured, η(1)M , and predicted, η(1)T , linear time series. The
predicted time series η(1)T at each probe is calculated using the Fourier transform η̂

(1)
M

of the time series observed at the central probe, which is propagated in space to the
other probes using linear wave theory,

η
(1)
T (xp, t)= Re

[
Nk∑

n=1

Nθ∑
i=1

Ω(θi)η̂
(1)
M,n exp(−i(ωnt− ki,n · xp))δkδθ

]
, (3.6)

where xp is the location of probe p and Ω(θ) is the assumed spreading distribution
function as a function of the parameter σθ to be identified. The least-squares estimate
of spreading is then found as

σ ?θ = arg min
σθ

Np∑
p=1

∫ 6σx/cg,0

−6σx/cg,0

(η
(1)
M (xp, t)− η(1)T (xp, t))2 dt. (3.7)
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Input Estimated
Test: σθ a0 k0 1k σ ?θ a?0 k?0 1k?

(deg.) (m) (m−1) (m−1) (deg.) (m) (m−1) (m−1)

A.1 0 0.1 1.97 0.6 0 0.094 1.90 0.56
A.2 10 8.8 0.090 1.74 0.61
A.3†∗ 20 16.4 0.082 1.74 0.64
A.4†∗ 30 28.2 0.085 1.90 0.61
A.5†∗ 40 37.9 0.083 1.90 0.62
A.6 50 47.5 0.081 1.90 0.63
A.7 60 57.0 0.080 1.90 0.64
A.8 70 66.6 0.079 1.90 0.64
A.9 80 76.4 0.078 1.90 0.64
A.10 90 85.9 0.077 1.90 0.65
A.11 135 130.3 0.075 1.90 0.58
A.12 180 178.1 0.076 1.90 0.63
A.13† 360 412 0.076 1.90 0.63

A.14 0 0.15 1.97 0.6 0 0.157 1.74 0.71
A.15 10 7.8 0.138 1.74 0.66
A.16 20 15.7 0.123 1.74 0.65
A.17 30 28.0 0.127 1.90 0.60
A.18∗ 40 38.0 0.127 1.90 0.61
A.19 50 47.6 0.126 1.90 0.60

TABLE 2. Input and estimated spectral parameters for the spreading tests (category A)
(† denotes tests that were repeated with additional 90◦ and 270◦ phase shifts, and ∗ tests
that were repeated with mean direction from 0–90◦ at intervals of 22.5◦ to produce spatial
measurements).

The integral limits are set to ±6σx/cg,0 to capture the passage of the entire wave group,
focused at t = 0, and minimize the influence of reflections. Our approach assumes
that components of equal frequency are in phase at the central probe. This is valid
provided that there is not significant modification to the linear dispersion of free waves
through cubic wave–wave interactions as the waves travel from the paddles to the
observation points.

The input and estimated spectral parameters for each test are presented in tables 2–3
and discussed in § 4.

3.6. Measurement error and repeatability
To quantify the sources of error affecting the comparison between our experiments
and theory, we examine the role of residual tank motion (error measure I), assess
repeatability (error measures II and III), quantify how accurately we can estimate the
degree of directional spreading (error measure IV) and, finally, compute the accuracy
of wave gauge calibration (error measure V). Details of this error quantification can
be found in appendix C, with results summarized in table 4. Looking ahead to the
results in § 4, the measured wave-averaged surface elevation is generally in the range
±2 mm for the smaller-amplitude experiments (a0=0.1 m) and ±6 mm for the larger-
amplitude experiments (a0 = 0.15 m).

We estimate the error in the wave-averaged free surface associated with residual
tank motion (error measure I) to be negligibly small (±0.025 mm). The repeatability

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.774


Directionally spread and crossing surface gravity wave groups 149

Input Estimated
Test: 1θ σθ a0 k0 1k σ ?θ a?0 k?0 1k?

(deg.) (deg.) (m) (m−1) (m−1) (deg.) (m) (m−1) (m−1)

B.1 45 10 0.1 1.97 0.6 9.5 0.086 1.90 0.57
B.2 90 9.3 0.086 1.90 0.54
B.3 135 9.7 0.088 1.90 0.58
B.4 180 8.8 0.087 1.90 0.55

B.5 45 20 0.1 1.97 0.6 18.4 0.084 1.90 0.60
B.6 90 18.6 0.082 1.90 0.59
B.7 135 18.5 0.083 1.90 0.58
B.8 180 18.7 0.084 1.90 0.59

B.9 45 30 0.1 1.97 0.6 27.5 0.083 1.90 0.60
B.10 90 28.3 0.083 1.90 0.97
B.11 135 28.2 0.080 1.90 0.61
B.12 180 28.0 0.080 1.90 0.60

B.13 45 20 0.15 1.97 0.6 17.7 0.129 1.96 0.61
B.14 90 18.6 0.127 1.95 0.61
B.15 135 19.1 0.131 1.95 0.61
B.16 180 18.6 0.130 1.88 0.57

B.17† 180 0 0.1 1.97 0.6 —

TABLE 3. Input and estimated spectral parameters for the crossing tests (category B). The
† indicates that test B.17 constituted four separate repeat tests in which unidirectional
directional groups were created in phase (µ1 = µ2) and out of phase (µ1 − µ2 = 180◦),
resulting in total cancellation of the two linear wave groups at x= 0 (see figure 15).

of experiments is found be extremely high (error measure II), with exact repeats of
the same experiment giving an error in the maximum amplitude of the wave-averaged
free surface between repeats of 0.023–0.14 mm. We define our measure of error to
be two times the standard deviation in all cases. A more substantial error in the
wave-averaged free surface of 0.1–0.38 mm (a0= 0.1 m) and 0.43 mm (a0= 0.15 m)
(two standard deviations) is identified when the same experiments are repeated, but the
main direction of travel of the group is varied, reflecting slight azimuthal asymmetry
in the wavemaker configuration or the gauge layout. From repeated resampling
from our 14 probes we obtain an error in the wave-averaged free-surface amplitude,
resulting from an error in σ ?θ of 0.047–0.28 mm (a0 = 0.1 m) and 0.3–0.7 mm
(a0 = 0.15 m). Underlying all of these sources of error is most likely the error
associated with wave gauge calibration of 0.4 mm (error measure V). As our measures
of error are not independent, we take calibration error to be the dominant source of
error and use this in the error bars presented in the next section. Specifically, the
error bars correspond to two standard deviations either side of the mean.

4. Results
In this section, we compare our experimental results with predictions for the

wave-averaged free surface based on the parameters estimated from the linear signal
in the two categories we consider: spreading tests (category A, §§ 4.1 and 4.2) and
crossing tests (category B, § 4.3). Throughout this section, we compare measured
and theoretically predicted surface elevations, denoted by the subscripts M and T
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respectively. The measured wave-averaged surface elevation η
(2)
M− is extracted from

the measured time series using the process outlined in § 3.3, and its theoretical
counterpart η(2)T− is calculated using (2.21), using as inputs the linear part of the time
series measured at the central probe, η(1)M , and the estimated values of σ ?θ reported in
tables 2 and 3 for the two respective categories. Appendix D gives the original time
series of the free-surface elevation measured at the central probe for completeness.

4.1. Spreading tests (category A)
Beginning our discussion with the properties of the linear signal, table 2 compares
input and estimated spectral parameters for the spreading tests. The estimated
spreading σ ?θ is consistent with the input values of spreading σθ . A slight offset
is observed, with the estimates consistently smaller than the inputs. The increased-
amplitude tests A.14–19 show a slightly larger reduction in spreading for tests at
σ ?θ = 10◦ and σ ?θ = 20◦, which is consistent with the numerical simulations of Gibbs
& Taylor (2005). These authors observe a reduction in spreading proportional to the
steepness α2 for a degree of spreading σθ = 15◦. Deviations in the amplitude from
the input can be attributed to either nonlinear evolution or wavemaker performance.
Turning to the estimated wavenumber, we observe a slight reduction in carrier
wavenumber for tests with low degrees of directional spreading (0–20◦), as evidence
of classical down-shift of the peak wavenumber, which is more pronounced for larger
steepness (Lake et al. 1977; Tian, Perlin & Choi 2011). Consistently, the down-shift
becomes less pronounced for increasing degrees of directional spreading, as the effects
of spreading serve to decrease the overall degree of nonlinearity (see also Johannessen
& Swan 2001). There are no significant trends in the estimated bandwidth 1k?.

Figure 8 compares the measured (η(2)M−) and theoretically predicted (η(2)T−) wave-
averaged surface elevations at the central probe for tests A.1–12. Both the measured
and the predicted results show a set-down for low degrees of directional spreading
(a–d). As the degree of spreading is increased, the amplitude of the set-down
decreases, and reaches zero at around σ ?θ ≈ 40◦ (e), after which a set-up begins
to form ( f –l). The measured and predicted wave-averaged surface elevations show
very good agreement, with best agreement for low and high degrees of spreading. At
the extremes σθ → 0 and σθ →∞, it is straightforward to accurately estimate the
spreading. The slight decrease in agreement for intermediate values of σ ?θ is probably
indicative of uncertainty associated with estimation of σ ?θ in this regime. In all cases,
the differences between the measured and the predicted values lie well within the
approximate error bounds estimated in § 3.6. At higher values of steepness, figure 9
shows improved agreement between the measurements and the predictions in the
range σθ = 0–50◦ (tests A.14–19), especially for intermediate degrees of spreading.

Figure 10 summarizes the results of the spreading tests. Panel (a) compares the
amplitude of the measured wave-averaged surface elevation a(2)M− with the theoretical
prediction a(2)T− calculated from (2.21). The values of a(2)T− in this panel rely on
the measured linear spectra, as in figures 8 and 9. Accordingly, we note that the
increased-steepness experiments compare with theory slightly better. In order to
compute the theoretical line in (a), we must specify a single amplitude distribution
η̂(k), despite slight variations in k?0 and 1k? between experiments (cf. table 2). The
red lines in figure 10(b) show the amplitude of the wave-averaged surface elevation
for a Gaussian amplitude distribution (3.1) with k0 = 1.90 m−1 and 1k = 0.60 m−1.
The dotted line, denoted by εx→ 0, corresponds to the multiple-scale approximation
(2.8), whereas the dashed line corresponds to the multiple-component solution (2.21).
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FIGURE 8. (Colour online) The wave-averaged surface elevation η(2)− at the central probe
(x=0, y=0) for the spreading tests (category A), showing measurements η(2)M− (black lines)
and theoretical predictions η(2)T− (red dashed lines) for an input amplitude of a0 = 0.1 m.
The different panels correspond to increasing degree of input spreading σθ = 0–180◦ (see
table 2) and the labels denote the estimated degree of spreading σ ?θ used for the theoretical
predictions of η(2)T−.

Both lines rely on the same Gaussian directional distribution. It is evident from
comparing these two lines that both approaches agree for small degrees of directional
spreading, noting a slight underestimation of the magnitude of the set-down by the
multiple-scale approximation (εx = 0.3). For larger degrees of directional spreading,
the multiple-scale solution fails, as expected.

4.2. Spreading tests (category A): spatial measurements
Beginning our discussion again with the properties of the linear signal, the estimated
spectral parameters for the repeat tests carried out in producing spatial measurements
are evidently consistent with those for the analogous tests discussed before (tests A.3–
5,18). As we change the direction of travel of the wave group θ0 from 0 to 90◦,
leaving the gauge array fixed, we can observe that our estimate of σ ?θ varies by 1.2◦
at most. This variation is less for the increased-amplitude tests, with σ ?θ only varying
by 0.4◦. In order to assess how well the directional spectrum is reproduced by the
wavemakers, figure 11 compares the measured linear free surface η(1)M shown in the top
half with the predicted linear surface η(1)T at the same gauges mirrored in the bottom
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FIGURE 9. (Colour online) The wave-averaged surface elevation η(2)− at the central probe
(x = 0, y = 0) for the spreading tests (category A), showing measurements η(2)M− (black
lines) and theoretical predictions η(2)T− (red dashed lines) for a linear input amplitude of
a0= 0.15 m. The different panels correspond to increasing degree of input spreading σθ =
0–50◦ (see table 2) and the labels denote the estimated degree of spreading σ ?θ .

half, all at the time of focus. The predicted linear free surface compares very well
with measurements, illustrating that our approach is capable of accurately measuring
the spatial free-surface elevation and that our estimates of σ ?θ are correct.

The two-dimensional structure of the wave-averaged surface elevation is examined
in figure 12. Panels (a–c) show the measured wave-averaged surface elevation η(2)M− as
input spreading is increased from 20–40◦, and (d) shows the increased-amplitude test
with σθ = 40◦. For (a–d), the measured surface η(2)M− in the south-west quadrant (x< 0,
y < 0) is mirrored from the north-west quadrant (x < 0, y > 0), assuming symmetry,
in order to complete the surface measured by our asymmetric gauge array. Panels
(e–h) show the predicted wave-averaged surface elevation η

(2)
T− (calculated using σ ?θ ).

The set-down can clearly be observed as a deep hole that reduces with increasing
spreading by the formation of the set-up, eventually splitting into two holes either
side of the wave crest, which is now enhanced by a set-up ridge. The agreement is
better for the increased-amplitude experiment in (d,h). For each test, the holes are
slightly deeper than predicted and the set-up is slightly less pronounced, all within
the bounds of experimental error. The formation of the set-up ridge is clearly captured.
It is worth noting that the array of probes used to generate these contours is sparse
around the point of focus (x = 0, y = 0) (see figure 7). Therefore, any error in this
area is exaggerated when linear interpolation is used to produce the contour surfaces.
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FIGURE 10. (Colour online) The amplitude of the wave-averaged surface elevation at
the central probe (x = 0, y = 0) for the spreading tests (category A); (a) shows the
measured wave-averaged surface amplitude a(2)M− as a function of the theoretical prediction
a(2)T−, with error bars shown in grey (see § 3.6 and appendix C for details), and (b) shows
the measured amplitude a(2)M− as a function of the estimated degree of spreading σ ?θ . The
red dashed lines correspond to a perfectly focused Gaussian wave group.
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FIGURE 11. (Colour online) Contours comparing the measured linear free surface η
(1)
M

(top half) and the predicted linear surface η
(1)
T (bottom half) at time of focus; (a)–(c)

correspond to increasing degree of input spreading σθ = 20, 30, 40◦ (for a0 = 0.1 m) and
the labels give the estimated degree of spreading σ ?θ used for theoretical predictions of η(1)T ;
(d) corresponds to an increased amplitude a0 = 0.15 m at σθ = 40◦. Only positive values
of y are shown and the white horizontal lines demarcate the measured linear free surface
shown in the top half (labelled M) and the theoretically predicted linear free surface shown
in the bottom half (labelled T).

4.3. Crossing group tests (category B)
Beginning our discussion with the properties of the linear signal as before, estimated
spectral parameters for the crossing tests are reported in table 3. We note that the
amplitude refers to the combined linear amplitude of the two groups. As the steepness
of the individual groups before they meet is thus halved, this could perhaps explain
the reduction in the (small) deviation between input and estimated spreading, and input
and estimated carrier wavenumber. Both are associated with nonlinearity, respectively
through the phenomena of spectral down-shift and narrowing of the group observed
in numerical simulations by Gibbs & Taylor (2005).
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FIGURE 12. (Colour online) Contour plots showing the measured wave-averaged surface
elevation η

(2)
M− (a–d) and the predicted wave-averaged surface elevation η

(2)
T− (e–h) at

time of focus; (a–c,e–g) correspond to increasing degree of input spreading σθ = 20,
30, 40◦ (for a0 = 0.1 m) and (d,h) correspond to an increased amplitude a0 = 0.15 m
at σθ = 40◦. The labels in (e–h) give the estimated degree of spreading σ ?θ used
for theoretical predictions of η

(1)
T (see the supplementary material online available at

https://doi.org/10.1017/jfm.2017.774 for animations of η(2)M−(x, y, t)).

Figure 13 compares the measured (η(2)M−) and theoretically predicted (η(2)T−) wave-
averaged surface elevations at the central probe for tests B.1–16. For all degrees of
spreading and a crossing angle of 1θ = 45◦, a small set-down is observed. When
the crossing angle is increased to 90◦, a significant set-up can be observed for all
degrees of spreading, growing to a maximum value at a crossing angle of 1θ = 180◦.
The measured and predicted wave-averaged surface elevations again show remarkable
agreement, with even better agreement for higher crossing angles.

In the absence of full surface measurements, figure 14 compares measured and
theoretical wave-averaged surface elevations along the x-axis, where nine probes
are located. There is good agreement between the measurements, η(2)M− (black dots),
and the multiple-component solution (2.21) (red dashed lines) in all cases. The
multiple-scale solution for two crossing groups (2.15) (continuous black lines)
is computed under the assumption of perfectly focused Gaussian wave groups
(µ1 = µ2 = 0) and is somewhat larger than the multiple-component solution.
Nevertheless, the measured wave-averaged surface elevation is well captured by
the multiple-scale solution, except for low crossing angles (1θ = 45◦), where the
azimuthal distribution is not well separated. Crucially, it is evident from figure 14
that for higher crossing angles, all of the wave-averaged surface elevations exhibit
a rapidly varying local structure, which differs drastically from the slow hole or
hump formed by an individual wave group. As captured by (2.19), the crossing wave
pattern consists of a modulated wave group with its peak coinciding with the main
linear crest for two wave groups that are in phase (µ1 = µ2 = 0). The set-up crest,
in turn, is part of a wider ridge along the bisection of the directions of travel of the
two groups.
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FIGURE 13. (Colour online) The wave-averaged surface elevation η(2)− at the central probe
(x= 0, y= 0) for the crossing tests (category B), showing measurements η(2)M− (black lines)
and theoretical predictions η(2)T− (red dashed lines) for an input amplitude of a0 = 0.1 m,
for different values of the crossing angle 1θ = 0–180◦ and the degree of input spreading
σθ = 10, 20, 30◦ (a–d,e–h,i–l), with estimated values σ ?θ reported in the labels (see table 3);
(m–p) correspond to increased-amplitude experiments at a0 = 0.15 m.

4.3.1. The role of phase
Examining the role of phase more carefully, figure 15 compares the wave-averaged

free surfaces for two opposing unidirectional wave groups (1θ = 180◦) that are in
phase (µ1 =µ2) and out of phase (µ1 −µ2 = 180◦). When the phase of one group is
shifted by 180◦, the wave-averaged surface elevation is reversed, becoming negative, as
predicted by (2.15). It is also evident from this figure that the ‘hole’ is deeper than the
‘hump’, as the set-down is not a function of phase and always remains negative, while
the crossing wave contribution changes sign. Nevertheless, it is worth emphasizing
that in the in-phase case (µ1 = µ2), the linear signal constructively interferes and
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FIGURE 14. (Colour online) The wave-averaged surface elevation η
(2)
− in the direction

of propagation (y = 0) at the time of linear focus for the crossing tests (category
B), showing measurements η

(2)
M− (black dots), theoretical predictions η

(2)
T− made using

the multiple-component solution (2.21) (red dashed lines) and using the multiple-scale
solution (2.15) (continuous black lines) for an input amplitude of a0= 0.1 m, for different
values of the crossing angle 1θ = 0–180◦ and the degree of input spreading σθ =
10, 20, 30◦ (a–d,e–h,i–l), with estimated values σ ?θ reported in the labels; (m–p) correspond
to increased-amplitude experiments at a0 = 0.15 m.

the ‘hump’ contributes to an already large and positive crest, whereas in the out-of-
phase case (µ1−µ2= 180◦), the linear signal deconstructively interferes and the ‘hole’
combined with second-order sum components (see appendix E) is the only observable
feature. Finally, due to its (partial) standing-wave nature, the set-up varies slowly in
time (a), while varying rapidly in space. In time and space, it is subject to the same
slow modulation associated with the product of the crossing groups, which travel at
twice the group velocity from the perspective of a stationary observer.
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FIGURE 15. (Colour online) Temporal (a) and spatial (b) evolution of the wave-averaged
surface elevation η

(2)
− at the focus point (x = 0, y = 0) for two wave groups colliding

head-on (1θ = 180◦). The red lines correspond to two groups that are in phase (µ1=µ2)
and the black lines to groups that are out of phase (µ1 −µ2 = 180◦). The multiple-scale
solution (2.15) is given by the continuous lines, and the measurements by the dashed lines
in (a) and the dots in (b).

Finally, figure 16 summarizes the results of the crossing tests. In (a), the amplitude
of the measured wave-averaged surface elevation a(2)M− is shown as a function of the
theoretically predicted amplitude a(2)T−, showing good agreement. In (b), the amplitude
of the measured wave-averaged surface elevation a(2)M− is shown as a function of the
crossing angle 1θ . As before, in order to compute the theoretical line in (a), we must
specify a single amplitude distribution η̂(k), despite slight variations in k?0 and 1k?
between experiments (cf. table 2). The red dashed lines show the amplitude of the
wave-averaged surface elevation for two Gaussian wave groups with k0 = 1.90 m−1

and 1k= 0.60 m−1 for degrees of spreading σθ = 10, 20, 30◦.

5. Conclusions
Herein, we have examined the formation of a set-down or set-up of the wave-

averaged free surface for compact directionally spread and crossing wave groups on
deep water (k0d � 1). We compare detailed measurements conducted at the fully
directional FloWave Ocean Energy Research Facility at the University of Edinburgh
with existing multiple-component second-order wave theory (Sharma & Dean 1981;
Dalzell 1999; Forristall 2000) and derive new results using a multiple-scale approach
which lend greater insight into the problem. We believe that ours is the first
experimental observation of set-up for highly directionally spread and crossing groups,
following field observations of a set-up underneath the famous Draupner rogue wave
(Walker et al. 2004) and on Lake George, Australia (Toffoli et al. 2007).

For a single directionally spread wave group, the total wave-averaged free surface is
made up from the combination of a set-down and a set-up, which vary slowly in time
but have very different spatial structures. For a perfectly focused wave group and at
the centre of the group at the time of focus, the sign of the wave-averaged free surface
changes for degrees of directional spreading σθ = 30–40◦, which corresponds to more
commonly reported degrees of spreading of the energy spectrum of σθ/

√
2= 21–28◦.
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FIGURE 16. (Colour online) The amplitude of the wave-averaged surface elevation at
the central probe (x = 0, y = 0) for the crossing tests (category B). (a) The measured
wave-averaged surface amplitude a(2)M− as a function of the theoretical prediction a(2)T−,
with error bars shown in grey (see § 3.6 and appendix C for details). (b) The measured
amplitude a(2)M− as a function of the crossing angle 1θ . The red dashed lines correspond
to two perfectly focused crossing Gaussian wave groups with degrees of spreading σθ =
10, 20, 30◦.

The set-down inherits the shape of the group envelope, albeit wider due to the
remote recoil of the underlying return flow that causes it, which also occurs for
three-dimensional internal wave groups (Bühler & McIntyre 2003). The magnitude
of the set-down reduces monotonically with an increasing degree of directional
spreading. As the degree of directional spreading increases, the set-up, which is zero
for unidirectional seas, forms a ridge through the set-down ‘hole’ which is aligned
in the main direction of propagation of the group. The set-up is in fact part of a
crossing wave pattern, which may be modulated by the presence of groups.

The spatial structure of this crossing wave pattern and the associated set-up is
elucidated by considering a multiple-scale expansion for two crossing wave groups.
It behaves as a partial standing wave. In time, the crossing wave pattern grows and
decays on the slow time scale associated with the translation of the groups. In space,
it consists of a rapidly varying standing-wave pattern, which is slowly modulated
by the product of the envelopes of the two groups. The sign of the crossing wave
pattern varies spatially. Whether this crossing wave pattern actually enhances the
surface elevation at the point of focus (and leads to a set-up) depends on the phases
of the linear wave groups, unlike the set-down, which is always negative and inherits
the spatial structure of the underlying envelopes and remains present for crossing
groups. If two groups are in phase, the crossing wave ridge formed along the
bisection of the two directions of travel is positive, and it is negative for out-of-phase
groups. Assuming two groups that are in phase, the total wave-averaged free surface
is always positive (a set-up) at the focus location and time for crossing angles of
50–70◦, for which the crossing wave contribution dominates.

The practical implications of the change between a set-down to a set-up can be
illustrated by considering a large wave group of linear crest height a0 = 10 m, a
peak period of 12 s on a water depth of 140 m, representative of realistic severe
conditions, and chosen to approximately correspond to the non-dimensional water
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depth and steepness in our scaled experiments (k0d = 3.9, k0a0 = 0.28 and εx = 0.3).
For single wave groups with degrees of spreading of σθ = 10, 20, 30 and 40◦, the
predicted modifications of the maximum crest height due to the set-down or set-up
of the wave-averaged free surface are −0.22, −0.12, 0.00 and +0.13 m respectively.
The contributions from the frequency-sum components, not considered explicitly
herein, but given in appendix E, would be +1.4, +1.2, +1.0 and +0.83 m, giving a
total crest modification at second order of +1.1, +1.1, +1.0 and +0.96 m. Unlike
the wave-averaged free surface, which is slowly varying in time and slowly varying
(set-down) or rapidly varying (set-up) in space, the frequency-sum components are
rapidly varying in both space and time (at twice the frequency and wavenumber).

For two identical wave groups with a small degree of individual spreading σθ = 20◦
that cross at angles of 45, 90, 135 and 180◦ and have a combined linear amplitude
of 10 m at the point of crossing, the predicted modifications of the maximum crest
height due to set-down or set-up of the wave-averaged free surface are +0.00,
+0.27, +0.50 and +0.60 m respectively. The contributions from the frequency-sum
components (appendix E) would be +1.0, +0.63, +0.45 and +0.45 m, giving a total
crest modification at second order of +1.0, +0.90, +0.96 and +1.1 m. Here, as
the crossing angle increases, the contribution from the frequency-sum components
decreases by approximately the same amount as the contribution from the set-up
increases. In reality, it is likely that crossing waves that result from wind and swell
systems will be of different frequencies, which will affect the magnitude of the
set-up at large angles. Nevertheless, this study reinforces the notion that the crossing
of waves presents a likely scenario for the observation of a large set-up observed
under extreme or freak waves in the oceans. The effects of finite water depth of the
linear waves (k0d=O(1)) will act to increase the magnitude of the set-up, which will
be considered in future work.
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Appendix A. Second-order interaction kernels
The interaction kernels for the sum B+ and difference B− terms at second order and

for general water depth are given by (Dalzell 1999)

B+ =
ω2

n +ω
2
m

2g
−
ωnωm

2g

(
1−

cos(θi − θj)

tanh(|kn,i|d) tanh(|km,j|d)

)
×

(
(ωn +ωm)

2
+ g|kn,i + km,j| tanh(|kn,i + km,j|d)

C+(kn,i, km,j, ωn, ωm, d)

)
+

(ωn +ωm)

2gC+(kn,i, km,j, ωn, ωm, d)

[
ω3

n

sinh2(|kn,i|d)
+

ω3
m

sinh2(|km|d)

]
, (A 1)
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B− =
ω2

n +ω
2
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ωnωm
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(
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tanh(|kn,i|d) tanh(|km,j|d)

)
×

(
(ωn −ωm)

2
+ g|kn,i − km,j| tanh(|kn,i − km,j|d)

C−(kn,i, km,j, ωn, ωm, d)

)
+

(ωn −ωm)

2gC−(kn,i, km,j, ωn, ωm, d)

[
ω3

n

sinh2(|kn,i|d)
−

ω3
m

sinh2(|km|d)

]
, (A 2)

where the coefficients C+ and C− are respectively given by

C+(kn,i, km,j, ωn, ωm, d)= (ωn +ωm)
2
− g|kn,i + km,j| tanh(|kn,i + km,j|d) (A 3)

and

C−(kn,i, km,j, ωn, ωm, d)= (ωn −ωm)
2
− g|kn,i − km,j| tanh(|kn,i − km,j|d). (A 4)

Appendix B. Harmonic separation
B.1. Two-phase harmonic extraction

Two-phase harmonic extraction through the creation of crest- and trough-focus wave
groups η0 and η180 allows for the separation of harmonics of odd and even powers in
amplitude (Baldock et al. 1996),

ηeven =
η0 − η180

2
= η(1,1) + η(3,1) + η(3,3), (B 1)

ηodd =
η0 + η180

2
= η(2,0) + η(2,2) + η(4,0) + η(4,2) + η(4,4), (B 2)

where in the superscript the first index refers to the power in amplitude and the
second to the harmonic. Provided that the groups under consideration are sufficiently
narrow-banded, individual harmonic components can then be cleanly extracted through
filtering.

B.2. Four-phase harmonic extraction
By repeating experiments at two further phase shifts of 90 and 270◦, four-phase
extraction allows for the following separation of harmonics (Fitzgerald et al. 2014):

η0 − η̃90 − η180 + η̃270

4
= η(1) + η(3,1), (B 3)

η0 − η90 + η180 − η270

4
= η(2,2) + η(4,2), (B 4)

η0 + η̃90 − η180 − η̃270

4
= η(3,3), (B 5)

η0 + η90 + η180 + η270

4
= η(2,0) + η(4,0) + η(4,4), (B 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.774


162 M. L. McAllister, T. A. A. Adcock, P. H. Taylor and T. S. van den Bremer

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

2

1

0

–1

2

1

0

–1

2

1

0

–1

2

1

0

–1

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

–0.10

0.05

0

–0.05

0.10

t (s)

–5 0 5

–5 0 5

t (s)
–5 0 5

t (s)
–5 0 5

t (s)
–5 0 5

–5 0 5 –5 0 5 –5 0 5

–5 0 5 –5 0 5 –5 0 5–5 0 5

(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l )

FIGURE 17. (Colour online) Results of four-phase harmonic extraction for degrees of
spreading σθ = 20, 30, 40, 360◦: measured time series η0 (black line), η90 (red line), η180
(black dashed line) and η270 (red dashed line) at the central probe (x = 0, y = 0) (a–d);
extracted linear waves η(1) (e–h); extracted wave-averaged free surface η(2)− (i–j). The black
lines denote results obtained from the two-phase method and the red dots those from the
four-phase method.

where the tilde denotes a Hilbert transform. Second-order sum and difference terms
can now be separated without any filtering. To assess both two- and four-phase
methods, tests A.3–4 and A.13 are carried out with four phase shifts, as shown in
figure 17(a–d). The linear and wave-averaged surface elevations extracted using both
methods are compared in (e)–(h) and (i)–(l) respectively. The results generated by
both methods compare very well. Figure 18 displays (log-scaled) amplitude spectra
of the extracted harmonic components. Over the range of 0–0.5ω0, the sum and
difference terms are well separated. Hence, both methods produce similar estimates
of the wave-averaged surface elevation.

Appendix C. Measurement error and repeatability
C.1. Residual tank motion (error measure I)

In order to capture the effect of waves that are not fully absorbed by the wavemakers
and remain present in the tank throughout the tests, we measure the variation in the
surface elevation after the 10 min of settling time between experiments. Specifically,
we define 1ηI as the difference between the maximum and the minimum surface
elevation in the 32 s window before tests. In order to assess the effect of this residual
tank motion on the error in the wave-averaged free surface, we apply the same low-
pass filter to the residual motion.
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FIGURE 18. (Colour online) Amplitude spectra of extracted harmonic components
produced using two- and four-phase extraction methods: two-phase results (black lines)
and four-phase results (red lines). The different panels correspond to increasing degrees
of input directional spreading σθ = 20, 30, 40, 360◦.

C.2. Repeatability (error measures II and III)
To quantify the repeatability of tests (error measure II), 1ηII reports two times the
standard deviation of the maximum measured wave-averaged surface amplitude a(2)M−
across a number of tests that have been repeated two or three times. Similarly, while
performing the spatial measurements, only the mean direction of the wave group is
varied. The measurements at the central probe that are thus repeated five times can be
used to quantify azimuthal imperfection of the wavemakers and gauge location (error
measure III). Two times the standard deviation of the measured wave-averaged surface
amplitude a(2)M− for these repeat tests is reported as the error in 1ηIII .

C.3. Estimation of directional spreading (error measure IV)
We estimate the error in the predicted value of the wave-averaged surface amplitude
a(2)T− that arises from the estimation of the degree of directional spreading σ ?θ from the
linearized signal. The estimates of σ ?θ in tables 2–3 are obtained from (3.7) using all
14 probes. Estimation of σ ?θ using fewer than 14 probes allows for multiple estimates
of σ ?θ using different combinations of probes. Here, we use combinations of seven
of the 14 probes (excluding the central probe). This allows for 1716 (=13!/(7!6!))
estimates of σ ?θ , from which we can compute a standard deviation 1σ ?θ . To avoid the
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FIGURE 19. (Colour online) Measured time series η at the central probe (x = 0, y = 0)
for the spreading tests (category A), showing crest-focused groups η0 (black lines) and
trough-focused groups η180 (red dashed lines) for an input amplitude of a0 = 0.1 m. The
different panels correspond to increasing degrees of input spreading σθ = 0–180◦, with
estimated values σ ?θ given in the labels.

time-consuming computation of the wave-averaged free-surface amplitude a(2)T− for all
estimates of σ ?θ , we compute upper and lower bounds of a(2)T− using σ ?θ − 21σ ?θ and
σ ?θ +21σ ?θ and report the average difference with the mean as our error measure 1ηIV .
It should be noted that the means of the resampled spreading estimates agree with the
value obtained using all 14 probes, demonstrating that our estimator (3.7) is unbiased.

C.4. Wave gauge calibration (error measure V)
Finally, the error associated with wave gauge calibration is calculated. The gauges
are calibrated by positioning them at known heights in still water and fitting a linear
relationship to the resulting measured voltage. Two times the standard deviation of the
predicted values of height z is taken as the calibration error 1ηV .

Appendix D. Measured time series
The raw data measured at the central probe for the spreading tests (category

A) are presented in figures 19 and 20 and for the crossing tests (category B) in
figure 21. Both crest- and trough-focused repeat experiments are shown. In general,
the experiments exhibit good focusing, with maxima occurring at t = 0, and display
horizontal symmetry. However, for the long-crested increased-amplitude wave groups
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FIGURE 20. (Colour online) Measured time series η at the central probe (x = 0, y = 0)
for the spreading tests (category A), showing crest-focused groups η0 (black lines) and
trough-focused groups η180 (red dashed lines) for an input amplitude of a0 = 0.15 m.
The different panels correspond to increasing degrees of input spreading σθ = 0–50◦, with
estimated values σ ?θ given in the labels.

in figure 20, the groups exhibit horizontal asymmetry. Here, the dispersion of the
free waves is affected by cubic nonlinearity, shifting the location at which the waves
focus, as also observed by Taklo et al. (2017), among others. As discussed in § 3.3,
this will not affect the extraction of the measured wave-averaged surface elevation,
but will introduce a phase shift.

Appendix E. Frequency-sum components
As well as the wave-averaged surface elevation, the second-order frequency-sum

components η(2)+ corresponding to the linear signal (2.20) may be calculated (Dalzell
1999),

η(2)
+
=

Nω∑
n=1

Nω∑
m=1

Nθ∑
i=1

Nθ∑
j=1

Ω(θi)Ω(θj)η̂nη̂mB+(kn,i, km,j, ωn, ωm, d) cos(ϕn,i + ϕm,j), (E 1)

where the interaction kernel B+ is given in appendix A.
For a single wave group, figure 22 compares the measured amplitude of the

frequency-sum components a(2)+ with those predicted for a single Gaussian wave group
(category A) as a function of the spreading. Here, a(2)+ is calculated using the wave
envelope in order to circumvent the phase-sensitive nature of these high-frequency
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FIGURE 21. (Colour online) Measured time series η at the central probe (x= 0, y= 0) for
the crossing tests (category B), showing crest-focused groups η0 (black lines) and trough-
focused groups η180 (red dashed lines) for an input amplitude of a0= 0.1 m, for increasing
values of the crossing angle 1θ = 0–180◦ and increasing degree of input spreading σθ =
10, 20, 30◦ (a–d,e–h,i–l), with estimated values σ ?θ given in the labels; (m–p) correspond
to increased-amplitude experiments at a0 = 0.15 m.

waves. As the frequency-sum components are composed of high-frequency waves, the
location of the maximum is more sensitive to the phase. At low values of spreading,
the sum waves are larger than expected for a Gaussian wavepacket, which could be
the result of unabsorbed reflections or a non-Gaussian spectral tail.

For two crossing groups, figure 23 shows the measured amplitude of the
frequency-sum components a(2)+ as a function of the crossing angle (category B).
As with the spreading tests, the measured values a(2)M+ are larger than predicted for
Gaussian wavepackets at low crossing angles only. For larger crossing angles, the
theory and the experiments agree well. Panel (a) compares the predicted amplitudes
of the frequency-sum components a(2)T+ with the measured ones a(2)M+, showing good
agreement.
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FIGURE 22. (Colour online) The amplitude of the second-order frequency-sum
components at the central probe (x = 0, y = 0) for the spreading tests (category A).
(a) The measured amplitude a(2)M+ as a function of the theoretical prediction a(2)T+, with
error bars shown in grey (see § 3.6 and appendix C for details), and (b) the measured
amplitude a(2)M+ as a function of the estimated degree of spreading σ ?θ .
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FIGURE 23. (Colour online) The amplitude of the second-order frequency-sum
components at the central probe (x = 0, y = 0) for the crossing tests (category B).
(a) The measured amplitude a(2)M+ as a function of the theoretical prediction a(2)T+, with
error bars shown in grey (see § 3.6 and appendix C for details), and (b) the measured
amplitude a(2)M+ as a function of the crossing angle 1θ .
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