
12
Branchings in the s-channel and

shadowing

We have a serious task ahead: to analyse and sum up the branchings,
taking into account how they influence each other, and to learn how to
write the amplitudes respecting unitarity.

12.1 Reggeon branchings from the s-channel point of view

12.1.1 The s-channel approach

In Lecture 2 we discussed how, given a particle spectrum, we can con-
struct interaction amplitudes with the help of unitarity conditions and
analyticity (dispersion relations). The dispersive method is well formu-
lated and straightforward but not very convenient in practice. So instead
of iterating the amplitudes through the non-linear unitarity relations we
draw series of Feynman diagrams which satisfies (at least term by term)
the unitarity condition.

Now we face an opposite situation for the first time. We discovered the
branchings and found the specific unitarity conditions they satisfy. Can
we construct an effective field theory that would generate the reggeon
unitarity conditions?

There are two ways of attacking the problem.

(1) One can explicitly construct an effective reggeon QFT directly
in the t-channel, identifying reggeons with particles of a non-
relativistic (anti-hermitian) field theory in 2 + 1 dimensions.

(2) Alternatively, we can solve the problem of constructing the reggeon
diagrams which solve the unitarity conditions, working directly in
the s-channel.
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312 Branchings in the s-channel and shadowing

The two routes yield the same results. We will follow the second one, for
a number of reasons.

First of all, the t-channel reggeon unitarity conditions we studied in
Lecture 11 were derived for positive t; in particular, the two-reggeon
unitarity condition holds above t = 16μ2. The information so obtained
has to be continued to the region t < 0 that really interests us. More-
over, the analysis of the discontinuity δfj includes drawing complicated
contours and is rather involved. In turns out that in the physical s-
channel region, t < 0, everything looks much simpler, and the contours are
trivial.

Secondly, if we work in the s-channel and exploit the s-channel unitarity,
the problem of negative signature factors essentially disappears as well.

What did the Regge poles look like in the s-channel? We have seen that
the simplest perturbative model for a pole was the ladder. From the point
of view of the t-channel the ladder solves the two-particle unitarity con-
dition. There are, of course, also corrections due to many-particle states
in the t-channel.

= + + . . .

If we bear in mind the exact pole, rather than its naive perturbative
image, it will contain everything.

Then, we considered a four-particle state and have accurately taken
into account the interaction between particles (1) and (2), and (3) and
(4), while neglecting cross-interactions between the pairs. This gave us a
two-reggeon branch-cut singularity:

. (12.1)

The question is, what does this picture correspond to in the s-channel?
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12.1 Reggeon branchings from the s-channel point of view 313

So, we have two ‘parallel ladders’. What we did
here looks rather strange. Having suppressed cross-
interactions in a four-particle state (which state in
fact contributed to the exact pole) we obtained a non-
pole singularity. To get it we had to pick some specific
and, it seems, unimportant configurations when the
usual strong interaction is not acting upon all the
particles involved.

Recall that in perturbation theory the ladder diagram has emerged as
the probability of a cascade production of many particles:

k
n 

p
1 

p 2 

k
1 k
2

p01 ∼ k01 � k02 � · · · � k0n ∼ m. (12.2)

If I draw parallel cascades, momenta of particles from
different chains will overlap, so that the two ‘combs’
may interact with each other, mixing everything in
many ways. Squaring such an amplitude will produce
a rather complicated picture.

Certainly, by mixing up everything we would get a large contribution,
even in perturbation theory. I hope, however, that this will be a contri-
bution to the pole. Meanwhile, I want to find a particular piece, maybe
not necessarily numerically large, but with specific analyticity.

Since in (12.2) particle momenta are gradually decreasing down the
ladder, it is reasonable to expect that in our two-reggeon diagram (12.1)
there are only particles with large momenta k ∼ p1 ∼ s/m in the upper

block and small momenta k ∼ p2 ∼ m in the lower one

(in the laboratory frame where the target particle p2 is at rest).

12.1.2 Coexisting ladders – s-channel image of branching

Once we decided to suppress the interaction between ‘combs’, I would
draw the probability of such a process as follows:

In the s-channel we have coexisting ladders; from the t-channel point
of view we have two separate (non-interacting) pairs of interacting
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314 Branchings in the s-channel and shadowing

particles as shown in Fig. 12.1(a). The graph (a) has a particular non-
planar topology. What about a simpler picture, also with two ladders,
displayed in Fig. 12.1(b)? Will it also participate in the two-reggeon
branching?

Let us ask ourselves, how does this process
proceed in time? In the laboratory frame
the slow target particle at the bottom of the
graph gets the energy of the order of m so
that the scattering process has to be over in
a finite time t = O

(
m−1

)
. But this implies

that in a unit time the first fluctuation of
the projectile has to collapse back, and the Δt ∼ 1 
other one has to develop in order to assure the second interaction of the
same fast particle with the target. Physically, it is impossible to arrange
at such short notice. It is natural to expect therefore that the space–time
configurations of the type of Fig. 12.1(b) will not contribute significantly
in the high-energy limit. In what follows we will discuss in detail whether
this is indeed the case.

We will devote the rest of this lecture to the investigation of the high-
energy asymptotics of the diagram of Fig. 12.1(a), which we consider the
main candidate for the s-channel image of the two-reggeon branching.

12.2 Calculation of the reggeon–reggeon branching

12.2.1 Kinematics and factorization

k 

k
1 

q−k 

q 
p

1
−k

1 p
1 

p
2 

k
2

(12.3)

The diagram (12.3) contains three independent momentum integra-
tions:

f2 =
1
2!

∫
d4k

(2π)4i

∫
d4k1

(2π)4i

∫
d4k2

(2π)4i
f1(k1, k2, k)f1(p1−k1, p2−k2, q−k)

× 1
m2 − k2

1

1
m2 − (p1−k1)2

1
m2 − (k1−k)2

1
m2 − (p1−k1−q+k)2

×
{

four lower-part propagators
}
. (12.4)

https://doi.org/10.1017/9781009290227.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.013


12.2 Calculation of the reggeon–reggeon branching 315

(a) (b)

Fig. 12.1 Non-planar (a) and planar (b) two-ladder graphs.

We want to extract the contribution corresponding to the Regge poles
in the ladder blocks f . The poles will appear, if the energy invariants of
the ladders, (k1 + k2)2 and (p1 − k1 + p2 − k2)2, will tend to infinity in
the s → ∞ limit. In this asymptotics we hope to extract the contribution
of the branching. We shall assume that the transverse momenta (and
virtualities) of all participating particles stay finite,

k2
i⊥ ∼

∣∣k2
i

∣∣ = O
(
m2

)
. (12.5)

Introducing the usual Sudakov decomposition,

pμ1 = pμ+ + γpμ−, pμ2 = γpμ+ + pμ−; γ =
m2

s
,

we have

kμi = αip
μ
+ + βip

μ
− + kμi⊥; (kμ⊥)2 = −k2

⊥.

Let us look at the propagators:

k2
1 = α1β1s− k2

1⊥,

(p1−k1)2 = (1 − α1)(γ − β1)s− k2
1⊥.

Applying the restriction (12.5) gives for the Sudakov components of k1∣∣(p1 − k1)2
∣∣ ∼ 2p1k1 ∼ β1s ∼ m2,

so that

β1 = O
(
m2/s

)
, α1 = O(1) . (12.6a)

This means that the offspring move almost parallel to the direction of the
incident particle p1, sharing its large momentum in a finite proportion:
k1 � α1p1, (p1 − k1) � (1 − α1)p1.
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316 Branchings in the s-channel and shadowing

Considering analogously the bottom part of the graph,

k2
2 = α2β2s− k2

2⊥ = O
(
m2

)
,

(p2−k2)2 = (γ − α2)(1 − β2)s− k2
2⊥ = O

(
m2

)
,

we arrive at

β2 = O(1) , α2 = O
(
m2/s

)
. (12.6b)

Now we analyse the momentum transferred along the first ladder,

kμ = αkp
μ
+ + βkp

μ
− + kμ⊥.

From the finiteness of the propagators exiting the ladder we get

(k1 − k)2 ∼ (α1 − αk)(β1 − βk)s = O
(
m2

)
⇒ |βk| ∼ m2/s ,

(k2 + k)2 ∼ (α2 + αk)(β2 + βk)s = O
(
m2

)
⇒ |αk| ∼ m2/s .

(12.7)

This shows that the momentum transfer is practically transversal to the
scattering plane:

k2 = αkβks− k2
⊥ � −k2

⊥, (q − k)2 � −(q − k)2⊥,

where we have used |αq| � |βq| �
∣∣q2

∣∣/s = O
(
m2/s

)
.

Since |α| � α1, |β| � β2, we can omit in all the propagators at the
top part of the graph the α component of the momentum transfer and,
correspondingly, β in the bottom. Then we observe that, thanks to the
kinematical conditions (12.6), the integration variables have factorized:

top propagators: α1, β1, βk;

bottom propagators: α2, β2, αk.
(12.8)

12.2.2 High-energy behaviour

The ladder amplitude f depends on the invariant energy of the pair of
particles that enter the ladder, on the momentum transfer and four virtual
particle ‘masses’, e.g.

fI = f
(
(k1 + k2)2, k2; k2

1, (k1−k)2, k2
2, (k2−k)2

)
. (12.9)

https://doi.org/10.1017/9781009290227.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.013


12.2 Calculation of the reggeon–reggeon branching 317

We observe that in our kinematics the invariant energies are of the order
of the total energy indeed:

sI ≡ (k1 + k2)2 = (α1 + α2)(β1 + β2)s− (k1 + k2)2⊥
� α1β2 s = O(s) , (12.10a)

sII ≡ (p1 − k1 + p2 − k2)2

� (1 − α1)(1 − β2)s = O(s) . (12.10b)

This allows us to substitute the asymptotic Regge pole expression f1 for
the ladder amplitudes (12.9),

f1,I � gI,1 · ξα(k2)s
α(k2)
I · gI,2, (12.11a)

f1,II � gII,1 · ξα((q−k)2)s
α((q−k)2)
II · gII,2, (12.11b)

where

gI,1 = g(k2
⊥; k2

1, (k1−k)2), gI,2 = g(k2
⊥; k2

2, (k2+k)2), (12.11c)

and the residues of the second pole, gII,i in (12.11b), differ from (12.11c)
by the substitution k → q − k, k1 → p1 − k1 and k2 → p2 − k2.

As far as the dependence on the longitudinal components of the
reggeon-loop momentum k is concerned, the factorization property (12.8)
holds also for the Regge residues: the top residues gI,1 and gII,1 depend
only on βk, while the bottom ones, gI,2 and gII,2, only on αk.

Given such a splitting of the dependence of the integrand on αk and
βk variables, we can represent the original integral (12.4) in the following
compact form,

f2(s, q2) =
i

2!

∫
d2k⊥
(2π)2

ξα(k2)ξα((q−k)2)s
α(k2)+α((q−k)2)−1N1N2. (12.12a)

Here

N1 = N(q2; k2, (q−k)2) =
1√
2

∫
d4k1

(2π)4i
α
α(k2)
1 (1−α1)α((q−k)2)

×
∫

s dβk
2πi

g(k1, k)g(p1−k1, q−k)
( ) ( ) ( ) ( )

,

(12.12b)

with ( ) marking the four propagators written explicitly in (12.4). We
have introduced the factor s in the βk integral since from (12.7) we know
that βk ∝ 1/s; so defined, N has a finite s → ∞ limit. The expression for
N2 is similar to (12.12b) but with the internal integral running over αk,
instead of βk. In fact, N1 = N2.
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318 Branchings in the s-channel and shadowing

The factor 1/
√

2 has emerged from the reggeon loop integral:

d4k =
s

2
dαk dβk d

2k⊥ = d2k⊥ ·
(
s dβk√

2

)
·
(
s dαk√

2

)
× 1

s

(the last factor 1/s went into the shift of the energy exponent in (12.12a)).

12.3 Analytic structure of the particle–reggeon vertex

What is the diagrammatic meaning of our exercise? We have replaced the
ladder amplitudes by reggeons:

The function N contains an integral over the loop momentum k1 of the
product of four particle propagators and two reggeon vertices.
I would say that N describes the conversion
of two particles into two reggeons, from the
t-channel perspective, or the particle–reggeon
scattering (in s channel). If I had to invent the
corresponding amplitude A, it would depend on
the energy of the ‘colliding objects’,

s
1

s1 = (p1 − k1)2 = (1 − αk)(γ − βk)s ≈ (γ − βk)s.

This relation tells us that βk determines the particle–reggeon pair energy
so that sdβk = −ds1. Taking this into account, we can write N as

N =
∫ ∞

−∞

ds1

2πi
A(s1, q

2; k2, (q − k)2), (12.13)

where the particle–reggeon scattering amplitude A depends on the ‘virtual
masses’ of the reggeons k2, (q − k)2, apart from the standard s and t = q2

variables.
It is easy to extract the structure of A from (12.12b). Its only unusual

feature is the presence of the powers of α1 and (1 − α1) which factors have
emerged from the reggeon energies (12.10). The origin of these factors can
be understood as follows. If in the t-channel exchange we had a particle k
with spin σ, the vertex would have had tensor structure, kμ1 . . . kμσ

. Our
expression contains, in fact, (cos)α(k2

⊥); here α(k2
⊥) plays the rôle of σ and

‘counts the number of tensor indices’.
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12.3 Analytic structure of the particle–reggeon vertex 319

Let us have a deeper look at the function N . In the complex plane of the
energy variable s1, the amplitude A in (12.13) has cuts both at positive
and negative s1:

s
1

These cuts are described by two diagrams

b d a c 
a 

c 

b 

d 

q − k q − k k k

which differ by the exchange of the reggeon momenta (s ↔ u). By putting
the particles a and c in the first graph on-mass-shell we get the right cut;
cutting through b and d in the second graph corresponds to the left one.

We have here a curious expression: an integral of the amplitude over
the energy. If the behaviour at s1 → ∞ is suitable (which is so for this
concrete diagram which decreases well), the contour can be closed, say,
around the right cut and we get a finite, real answer for N :

N =
∫ ∞

s0

ds1

π
A1(s1). (12.14)

12.3.1 Amati–Fubini–Stanghellini puzzle

Let us return to the diagram of Fig. 12.1(b) which I did not like from
the point of view of the space–time consideration. Repeating the above
procedure literally, we arrive at a picture with a single particle separating
two reggeons:

k
1

s1 = k2
1. (12.15)

Amati, Fubini and Stanghellini (AFS) have considered elastic scatter-
ing and stated that there were branchings generated by the following

https://doi.org/10.1017/9781009290227.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.013


320 Branchings in the s-channel and shadowing

two-reggeon diagram

.

Indeed, if the reggeon residue g were a constant, we would get a finite
answer N ∝ g2 coming from A1(s1) = πg2δ(s1 − μ2).

However, g(s1) �= const, since the vertex contains various singularities
reflecting the dependence on the virtuality k2

1 ≡ s1,

. (12.16)

Because of this, N will have a right cut apart from the pole at s1 = μ2:

µ2 4µ2 

s 1

The main question is, how g behaves – does it decrease with k2
1? If yes, we

can close the contour to the left and get N =0. This is so in all reasonable
theories (in λϕ3, for example; in any case, we are actually interested in
those theories in which the transverse momenta are limited).

It is interesting to see how N disappears. When we calculate the imag-
inary part of the AFS diagram,

= + + + . . . Im

each discontinuity, corresponding to a definite cut on the r.h.s., is different
from zero. The first contribution is obviously positive. The other have
alternating signs and correspond, in fact, to cutting through the vertex (or
simultaneously two vertices) as in (12.16). We see an astonishing picture:
each specific cut of the amplitude decreases slowly with s, while the whole
amplitude falls fast and does not contribute in the high-energy limit due
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12.3 Analytic structure of the particle–reggeon vertex 321

to N =0. According to Mandelstam, there are branchings, indeed, but
they are different from (12.15).

To understand the mechanism of the vanishing of the AFS graph is very
important. It teaches us how analytic properties of Feynman diagrams are
related to the space–time picture of the s-channel processes.

Let us return to the general case and represent the particle–reggeon
scattering amplitude as a sum of right- and left-cut contributions:

A(s1) =
1
π

∫
right

ds′1 A1(s′1)
s′1 − s1

+
1
π

∫
left

ds′1 A2(s′1)
s′1 − s1

. (12.17)

Now substitute into the integral (12.13) for N the right- and left-cut
contribution, separately. We could, it seems, close the contour to the left
in the s1-integral of the first (right cut) term, to the right of the second
(left cut) one, and get N =0 + 0. When would such a trick not work? We
will have N �=0 in the only case when the separate contributions of two
cuts do not decrease faster than 1/s1 on the large circle, |s1| → ∞. But
these are just those diagrams (see section 1 of this lecture) which possess
a third spectral function ρsu.

Let us recall that it was actually the third spectral function which led
us to a contradiction with the Regge pole picture: a problem of the partial
wave having the pole at � = −1 emerged.

In a way, here the circle closes. Both from the t-channel and the
s-channel we came to the conclusion that the reggeon branching emerges
only in the relativistic theory, where we have ρsu �= 0 which guarantees a
non-vanishing contribution, N �=0. This corresponds to diagrams in which
the singularities in s and u cannot be separated.

12.3.2 Reggeon branching contribution to cross section

Finally, let us calculate f2 given in (12.12) to see whether it corresponds
indeed to a two-reggeon branching as we expect. For positive signature,
at small transverse momenta where α � 1 we have

ξα = −1 + e−iπα

sinπα
=

−e−iπα

2

sin πα
2

� i.

Since the integrand in (12.12a) contains an exponential factor

exp
{(

α(k2) + α((k − q)2)
)
ln s

}
,

at large ln s the answer will be dominated by the value of the transverse
momentum at which the exponent is maximal, and can be evaluated by
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322 Branchings in the s-channel and shadowing

the steepest-descent method. In the linear approximation,

α(k2) + α((k − q)2) − 2α(0) � −α′(k2
⊥ + (k − q)2⊥)

= −1
2α

′q2
⊥ − 2α′(k − 1

2q
)2

⊥ ,

the k⊥ integration yields∫
d2k⊥
(2π)2

e−α′(k2
⊥+(k−q)2⊥) ln s =

1
8π ln s

e−
1
2α

′q2
⊥ ln s.

Observing that

2α(0) − 1 + 1
2α

′t � 2α (t/4) − 1, t ≡ q2 = −q2
⊥,

we finally arrive at

f2(s, t) � i ξ2
α(t/4)N

2 s
2α(t/4)−1

16πα′ ln s
; N = N(q/2, q/2). (12.18)

The result of our s-channel calculation is perfectly satisfactory: the
(ln s)−1 suppression tells us that we have indeed found a branch-cut sin-
gularity. Its position in the j-plane follows the Mandelstam rule (11.36);
the sign of this expression is also correct: Im f2 ∝ ξ2

α = −1 (N is real).

12.3.3 Branching in the impact parameter space

At small t the two-reggeon contribution is suppressed as 1/ ln s as com-
pared to the pomeron pole. It is easy to understand the origin of this
suppression, if we turn to the impact parameter space. The image of the
pole amplitude is

f1(s, q2) � isg2 e−α′k2ξ ≡ isg2

∫
d2ρ eik·ρ G1(ρ, ξ); (12.19a)

G1(ρ, ξ) =
e−ρ2/4α′ξ

4πα′ξ
, ξ ≡ ln s. (12.19b)

Let us evaluate the Fourier transform of the two-pomeron branching:

s ·G2(ρ, ξ) ≡
∫

d2q
(2π)2

e−iq·ρf2(s, q2). (12.20)

Substituting (12.19) in the amplitude (12.12),∫
d2q

(2π)2
d2k

(2π)2
e−iq·ρ eik·ρ1+i(q−k)·ρ2G1(ρ1, ξ)G1(ρ2, ξ)N

2 d2ρ1 d
2ρ2,

the integrals over momenta produce ρ1 = ρ2 = ρ, and we derive

G2(ρ, ξ) = −iN2G2
1(ρ, ξ). (12.21)
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12.4 Branchings in quantum mechanics: screening 323

The pole amplitude (12.19b) describes two-dimensional diffusion in the
impact parameter space. It gives the probability to find a particle (placed
at ρ=0 at zero time) in a given point ρ after the time ξ (α′ determines
the diffusion rate). In this language, the expression (12.21) corresponds to
finding two particles in the same point. It is clear that such a probability
is inverse proportional to the area and decreases with time, 1/S ∝ 1/α′ξ.
This can be seen directly by integrating (12.21) over ρ:

f2(t=0) ∝
∫

d2ρG2(ρ, ξ) ∝
1
ξ
, while f1(t=0) ∝

∫
d2ρG1(ρ, ξ) = 1.

12.4 Branchings in quantum mechanics: screening

We got the reggeon branchings from the Mandelstam diagrams with
‘crosses’ in both vertices (Fig. 12.2(a)). In the previous section we have
analysed the rôle of the third spectral function and understood, why a
simpler picture, that of Fig. 12.2(b), would not produce a branch cut in
the j-plane.

What is the difference between the two pictures? In the second case,
the particle moves as an elementary object just repeating the interaction.
As we have discussed above, the probability
of such a process cannot be significant since
the multi-particle fluctuation (‘ladder’) does
not have enough time to collapse back into a
single particle before it experiences the second
scattering.

What is shown in the diagram of Fig. 12.2(a)?
Let us look at the lower part of the graph. Here the scattering occurs not

on an elementary object, as in the diagram (b), but on the decay products
of the target particle. We can model this picture in the non-relativistic

(b) (a)

Fig. 12.2 Mandelstam two-reggeon branching (a) and the AFS graph (b).
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324 Branchings in the s-channel and shadowing

scattering theory language if we take a deuteron D – a pn bound state –
and study the scattering of the projectile off the proton and the neutron
inside D.

There is a subtle point: in the relativistic theory both the upper and the
lower parts of the diagram have to be complex – have to have ‘crosses’.
However, we will ignore this detail for the time being and consider the
pion–deuteron scattering in non-relativistic quantum mechanics.

12.4.1 Deuteron scattering

Graphically, there are three possibilities for the πD scattering:

n n 

p n 

p p (12.22)

Since what happens in the upper part does not concern us for the time
being, we can look upon this process as a scattering of a deuteron in the
external potential (of the target pion).

Assume that a fast deuteron hits a potential:
r1

r2 target
How would I calculate this process quantum-mechanically?

In the initial state we have the wave function

ψ(r1, r2) = eip·
1
2 (r1+r2)ψD(r12), r12 = r1 − r2, (12.23)

where p is the deuteron momentum, and ψD(r12) describes the relative
motion of the proton p and neutron n inside it.

When D flies fast, it is clear that its nucleons have no time to interact
with each other, so that the potential acts on p and n independently. Then
in the final state the wave function acquires the scattering phase given by
the sum of the p and n scattering phases:

ψ(r1, r2) → ψ′(r1, r2) = ψ(r1, r2) e2iδ(ρ1)+2iδ(ρ2).

The phase depends on the impact parameters of the nucleons in the
deuteron, ρ1 and ρ2, which do not change (stay ‘frozen’) in the course of
the high-energy scattering.

To calculate the amplitude, I have to project ψ′ onto the final state wave
function ψf with a given momentum pf = p + q. If we are interested in
D in the final state, we take ψf = ψD; if we investigate the decay, we look
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D

(a) (b)

D

Fig. 12.3 Independent scattering (a) and shadowing configurations (b).

for ψpψn. Since the S-matrix element does not depend on the longitudinal
coordinates, zi, the momentum transfer is purely transversal, q = q⊥.

To derive the following expression is a very useful exercise (−1 subtracts
the incoming beam):

f =
p

i

∫
d2ρc

2π
eiq⊥·ρc

∫
d3r12 ψ

∗
f (r12)

[
e2iδ(ρ1)+2iδ(ρ2) − 1

]
ψD(r12).

(12.24)

Let us take D in the final state and consider the forward scattering
amplitude, q⊥ = 0:

f(0) = ip

∫
d2ρc

2π

∫
ψ∗
D(r12)

[
1 − e2i(δ1+δ2)

]
ψD(r12) d3r12. (12.25)

At the first glance nothing in the expression (12.25) resembles the dia-
grams of (12.22).

What is the difference between the two approaches?
The quantum-mechanical expression contains no information on which

of the two particles has actually interacted and which has not, while in
the language of Feynman graphs this is the main thing that enters.

To relate the two approaches, let us look at the simple algebraic identity

1 − S1S2 = (1−S1) + (1−S2) − (1−S1)(1−S2), Si = e2iδ(ρi).
(12.26)

It can be interpreted as follows. The first two terms (1 − S) describe
independent interactions of p and n with the potential; the presence of the
third one tells us that the sum of independent contributions apparently
overestimates the answer, over-counts something. Indeed, when one of the
nucleons interacts with the target as in Fig. 12.3(a), we get a sum of two
contributions to the cross section.

However, the deuteron may also hit the potential in the configuration
shown in Fig. 12.3(b). Here both nucleons interact though this contribu-
tion should be counted only once in the total cross section. It is the rôle
of the quadratic term in (12.26) to correct for the double counting of the
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deuteron configuration in which one of the nucleons is screened by the
other. It is clear therefore that this term – the ‘shadowing correction’ –
must enter with a minus sign in the total cross section, related to the
forward amplitude by the optical theorem,

σtot =
4π
p

Im f(0). (12.27)

The magnitude of the shadowing depends entirely on the geometry of the
scattering process, on the size of the deuteron rD as compared to the size
of the potential, R. Let us analyse the two extreme cases.

R � rD. This is the case of a very broad target. The total deuteron
cross section, σtot = 2πR2, will emerge from (12.26) as

2πR2 = 2πR2 + 2πR2 − 2πR2, (12.28a)

meaning that the shadowing is 100% strong.

R � rD. In this case the shadowing will occur only when the pro-
ton and neutron happen to have the same impact parameter,
|ρ1 − ρ2| <∼ rD. The geometric weight of such rare configura-
tions translates into a small shadowing correction

Δσ

σ1
∝ R2

r2
D

� 1. (12.28b)

12.4.2 Broad target

Consider first the case of a large target. One may have in mind, e.g.
deuteron scattering off a heavy nucleus A, A1/3 ∝ R � rD. We obtain a
big cross section by integrating the deuteron impact parameter ρc over
the large area, |ρc| < R. In this situation we can neglect the dependence
on the relative coordinate, ρ12 = ρ1 − ρ2, and approximate

δ1 = δ(ρc + 1
2ρ12) � δ2 = δ(ρc − 1

2ρ12) � δ(ρc).

Since in this approximation the S-matrix does not depend on r12, we get

f(0) = ip

∫
d2ρc

2π

(
1 − e4iδ(ρc)

)
× 1, (12.29)

where the last ‘1’ originates from the wave function normalization,∫
d3r12|ψD(r12)|2 = 1. (12.30)

If a deuteron hits a big nucleus head-on, it definitely interacts and disap-
pears (is absorbed), feeding various inelastic channels. This corresponds
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to the elasticity coefficient η(ρ) in the S-matrix element being vanishingly
small at |ρ| < R, so that

e2iδ(ρ) ≡ η(ρ) e2iβ(ρ) �
{

0, for |ρ| < R,

1, |ρ| � R.

This is the ‘black disc’ picture,∫ ∞

0

d2ρc

2π
(1 − e4iδ(ρc)) �

∫ R

0

d2ρc

2π
� 1

2R
2,

yielding the total cross section

σtot =
4π
p

Im f(0) � 2πR2.

Half of this cross section is the diffractive elastic scattering,

σel =
∫

dΩ |f(q)|2 =
∫

d2q
|f(q)|2
p2

=
∫

d2ρ
∣∣∣1 − e4iδ(ρ)

∣∣∣2 � πR2;

the other half is due to inelastic processes.

12.4.3 Diffractive dissociation of a deuteron

What if I am interested not in the elastic scattering, but in the deuteron
break-up D → pn? In principle, this is one of the inelastic channels. We
are, however, interested in the specific inelastic process in which the tar-
get nucleus remains intact and scatters as a whole, D + A → p + n + A,
instead of being ‘heated up’.

Such a diffractive dissociation of the deuteron is possible only if the
momentum transfer is very small, q ∼ R−1, corresponding to scattering
angles θs ∼ 1/pR; otherwise the nucleus A would break up too.

What will be the scale of such a cross section? Obviously, its amplitude
cannot be as large as the elastic one. If it were, integrating over the same
narrow angular cone as for the elastic scattering, we would get a diffractive
dissociation cross section σdd

tot as large as the elastic one:

σdd
tot =

∫
|fD→pn|2 dΩ ∼

∫
dθ2

s

∣∣pR2
∣∣2 ∼ R2, dθ2

s ∼ 1
(pR)2

.

But there is no place left in σtot to accommodate another contribution of
the order of R2. What is going on in the formula?

The point is that in the rough approximation of the scattering phases
independent of ρ12, the main term in the forward scattering amplitude,
q = 0, cancels because of the orthogonality of the initial- and final-state
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wave functions:

fD→pn(0) =
ip

2π

∫
d2ρc[1 − S1S2] ·

〈
ψpn

∣∣ψD

〉
;

〈
ψpn

∣∣ψD

〉
=

∫
d3r12 ψ

∗
pn(r12)ψD(r12) = 0.

(12.31)

To prevent this cancellation, the expansion of the phase in ρ12 has to be
carried out,

δ[1 − S1S2] � 1
4

[
(ρ12∇ρc

S)2 − S(ρ12∇ρc
)2S

]
, S = S(ρc). (12.32)

If S changes smoothly, |∇S| ∼ R−1, then

p−1fD→pn(0) ∼
∫ R

ρc dρc

〈
ψpn

∣∣ρ2
12

∣∣ψD

〉
R2

∼ r2
D. (12.33)

If the target has a relatively sharp edge, in which region S only changes,
the forward amplitude gets enhanced,

p−1fD→pn(0) ∼
∫

ρc dρc
δ(ρc −R)

H
· r2

D ∼ R

H
· r2

D, (12.34)

where H ∼ 1/μ is the width of the transition region, R � H � rD. In
this case the inelastic amplitude is still suppressed as 1/R ∝ A−1/3 as
compared to the elastic one.

The nature of the suppression of the forward dissociation amplitude
(12.34) is consistent with the total contribution of inelastic diffraction to
the interaction cross section, σdd

tot. When we take q �= 0 in the transition
amplitude (12.24), the wave functions are no longer orthogonal; for small
q one has 〈

ψpn(p + q)
∣∣ψD(p)

〉
∼ (q · kpn) r2

D,

where kpn is the relative momentum of the nucleons. Integrating the am-
plitude squared over the scattering angle, one obtains∫

d2q
p2

|fD→pn|2 ∼ r4
D

∫
d2ρc

∣∣(kpn · ∇ρc
S2

)∣∣2 ∼ πR · r
2
D

H
· k2

pnr
2
D .

An integral over kpn produces
〈
k2
pn

〉
r2
D ∼ 1, and we get the estimate

σdd
tot ∼ πR · r

2
D

H
,

consistent with the magnitude of the forward amplitude (12.34).
Diffractive dissociation occurs only on the periphery of the target nu-

cleus. It is very important to understand that the diffraction does not
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change the internal state of the system, unless the system is scattered as
a whole, q⊥ �= 0.

12.4.4 Shadowing

We return to the discussion of the shadowing correction. Combining
(12.24) and (12.26), we have

f(q) =
ip

2π

∫
d2ρc eiqρc

〈
(1−S1) + (1−S2) − (1−S1)(1−S2)

〉
, (12.35)

where 〈 〉 stands for the average over the deuteron state. Let us con-
sider this expression term by term, f = f1 + f2 + f12. Recall that S1 =
S1(ρ1) = S1(ρc + 1

2ρ12). Introducing the Fourier transform of the profile
of the nucleon scattering matrix element,

1 − S1(ρ) =
∫

d2k
(2π)2

e−ik·ρϕ1(k),

and performing the impact parameter integrals we have

f1(q) =
ip

2π
ϕ1(q) · FD(q2), (12.36)

where F is the electromagnetic charge form factor of the deuteron, given
by the Fourier transform of the probability density to find the electric
charge (proton) inside the deuteron:

FD(q2) =
∫

d3r12|ψD(r12)|2 e−iq
2
·r12 ; F (0) = 1.

The optical theorem (12.27) tells us that ϕ(0) is simply related to the
total interaction cross section of a single nucleon with the target,

ϕ(0) = 1
2σN . (12.37)

For the last term in (12.35) we have

(1−S1)(1−S2) =
∫

d2k1

(2π)2
d2k2

(2π)2
ϕ1(k1)ϕ2(k2) e−i(k1+k2)ρc e−i

k1−k2
2

ρ12 ,

and derive analogously

f12(q) = − ip

2π

∫
d2k

(2π)2
ϕ1(1

2q + k)ϕ2(1
2q − k) · FD(4k2) . (12.38)

Assembling the three terms of (12.35), for the total cross section we obtain

σD = σp + σn − 2 Re
∫

d2k
(2π)2

ϕp(k)ϕn(−k) · FD(4k2). (12.39)
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Now we are ready to check our expectations (12.28) about the magnitude
of the shadowing correction that were based on the classical geometric
considerations.

Broad potential. In this case p and n almost always hit the target
together, and we expected in (12.28a) a 100% negative shadowing cor-
rection. Within the black-disc model, the nucleon amplitude f1 is purely
imaginary, so that ϕ is real and we can replace Reϕ2 by |ϕ|2. Using

|ϕ(k)|2
(2π)2

=
1
p2

|f1(k)|2 =
1
p2

dσN
el

dΩ
� dσN

el

d2k
,

this allows us to represent (12.39) in terms of the differential elastic
nucleon scattering cross section as

σD
tot = 2σN

tot − 2
∫

dk2dσ
N
el

dk2
FD(4k2). (12.40)

The characteristic momenta in the integral (12.40), k2 ∼ R−2 are much
smaller than the internal scale of the form factor, r−2

D , therefore we can
put F = F (0) = 1 to obtain

σD
tot = 2σN

tot − 2σN
el = 2σN

tot − σN
tot = σN

tot.

Compact potential, large-size projectile. The product ϕp(ρ1)ϕn(ρ2)
requires p and n to be at the same impact parameter in order to simulta-
neously aim at the small-size target, R � rD, and screen one another. The
deuteron form factor falling sharply above k2 ∼ r−2

D � R−2, the factors
ϕ in (12.39) can be taken out,

σD � σp + σn − 2ϕp(0)ϕn(0)
∫

dk2

4π
FD(4k2).

Invoking (12.37), this immediately gives the Glauber formula

σD � σp + σn − σpσn
4π

· r−2
D , (12.41a)

where we have used

r−2
D ≡

∫
d3r12

|ψD(r12)|2
r2
12

= 1
2

∫
dk2 FD(4k2). (12.41b)

12.5 Back to relativistic theory

The analogy between the quantum-mechanical shadowing phenomenon
and the two-reggeon branching can be made explicit if we substitute the
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relativistic amplitude in the expression (12.38) for the double-scattering
graph:

2iϕ1(q) =
4πf1(q)

p
=⇒ A(s, t)

s
.

We have used the deuteron as a model for a composite target, in order
to understand the origin of the negative correction due to the exchange
of two reggeons. Let us say a few words about the real deuteron, about
high-energy πD scattering.

12.5.1 Glauber scattering

We have analysed the double scattering in
quantum mechanics and found a large cor-
rection. We could carry out this calculation
directly from relativistic diagrams, in the
non-relativistic approximation (treating the
masses of the particles as large parameters).
But, in the framework of our former logic, this correction has to be zero,
since there is no cross in the upper part of the corresponding diagram!
On the other hand, the non-zero answer was legitimately obtained in the
non-relativistic theory. What is happening here?

Normally there are no small parameters in the diagrams describing
relativistic hadron interactions. The deuteron problem is, however, spe-
cial: calculating the diagrams for πD scattering we encounter a small
parameter, namely the ratio of the size of the pion, R ∼ r0 ∼ μ−1, to that
of the deuteron, R/rD � 1. It is the presence of this new parameter that
is responsible for the survival of the semi-AFS diagram.

π
What is the reason for that, in classical

terms? Consider the process in a reference
frame in which the π meson is fast. Assum-
ing that the situation is non-relativistic, we
have obtained three contributions: π collided
with either of p or n, or there was screening
as a result of a double interaction. Why were

there no virtual particles involved; why was the answer expressed via the
on-mass-shell amplitudes, i.e. via real particles?

We assumed rD to be large, and this was the reason why, in the non-
relativistic theory, π propagated between the two successive collisions as a
real particle. The fact that the π meson had to pass a large distance, lim-
ited the energy uncertainty, ΔE ∼ 1/Δt ∼ 1/rD � 1/R ∼ μ, and forced
π to be real. But this argument disregards the relativistic retardation
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effect (as if virtual objects could not propagate at large distances!). In
the relativistic situation, Eπ � μ, the lifetime of the virtual pion fluctu-
ation, Δt ∼ Eπ/(Δm)2, may become comparable with rD even for large
invariant masses of the virtual state, Δm. Depending on the pion energy,
we have three scenarios.

(1) E/μ2 � rD. There is just one π, and the non-relativistic quantum
mechanics gives a correct answer.

(2) E/μ2 ∼ rD. A transitional regime: the pion can be accompanied by
a small number of additional particles.

(3) E/μ2 � rD. In the space between the collisions with p and n,
multi-particle showers with large invariant masses (Δm)2 � μ2 can
propagate, and the probability of just one π becomes vanishingly
small.

12.5.2 Relativistic inelastic corrections to Glauber scattering

The deuteron example shows that the vertex blocks N that we have
treated as constant, may contain, in specific cases, small internal parame-
ters (like the deuteron binding energy) and therefore may still be changing
fast at small momenta, well below a typical hadronic scale k2 <∼ μ2.

There is another very important lesson. In the non-relativistic theory
the screening means that one particle is an obstacle for another one just
geometrically, i.e. the screening is the result of the geometry of subsequent
collisions. It looks natural to discuss the scattering of a particle off a
nucleus in terms of successive interactions with nucleons. In so doing, it
is usually implied that the projectile pre-
serves its identity when it propagates be-
tween successive collisions. This picture
takes into account the Glauber corrections
due to elastic screening. In the reggeon lan-
guage, these diagrams correspond to non-
enhanced branchings.

π 
In the relativistic case there may be a

whole shower propagating between the in-
teraction points, since when the energy of
the projectile E → ∞, it itself fluctuates at
distances exceeding the size of the target.
We get another contribution to the screen-
ing phenomenon – an inelastic screening.
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At very high energies the processes with large cascades become domi-
nant. But these are again ‘ladders’. Summing up high-mass intermediate
inelastic states we arrive at the enhanced branchings,

g 

g g 

r .
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